JP2005171109A - Polyester resin for compression molding, manufacturing method of preform, preform and polyester container - Google Patents

Polyester resin for compression molding, manufacturing method of preform, preform and polyester container Download PDF

Info

Publication number
JP2005171109A
JP2005171109A JP2003414121A JP2003414121A JP2005171109A JP 2005171109 A JP2005171109 A JP 2005171109A JP 2003414121 A JP2003414121 A JP 2003414121A JP 2003414121 A JP2003414121 A JP 2003414121A JP 2005171109 A JP2005171109 A JP 2005171109A
Authority
JP
Japan
Prior art keywords
preform
resin
compression molding
polyester
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414121A
Other languages
Japanese (ja)
Inventor
Atsushi Kikuchi
淳 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003414121A priority Critical patent/JP2005171109A/en
Publication of JP2005171109A publication Critical patent/JP2005171109A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • B29C2949/3009Preforms or parisons made of several components at neck portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • B29C2949/3058Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded
    • B29C2949/306Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin for compression molding which satisfies both of conveyablity to a compression molding machine and resin flowability on compression molding and has enhanced production efficiency, and an efficiently productive manufacturing method of a preform. <P>SOLUTION: The polyester resin for compression molding has surface tension at 280°C of 25-50 mN within an intrinsic viscosity (IV) range of 0.70-0.90 dL/g. The manufacturing method of the preform comprises supplying a melt resin mass composed of the polyester resin to a compression molding machine and compression molding the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮成形用ポリエステル樹脂に関し、より詳細には、圧縮成形機への搬送性及び圧縮成形における樹脂の流動性の両方を満足し得るポリエステル樹脂及びこの樹脂を用いて成形されたプリフォーム及びポリエステル容器、並びにこの樹脂を用いたプリフォームの製造方法に関する。   TECHNICAL FIELD The present invention relates to a polyester resin for compression molding, and more specifically, a polyester resin that can satisfy both the transportability to a compression molding machine and the fluidity of the resin in compression molding, and a preform molded using this resin. The present invention relates to a polyester container and a method for producing a preform using the resin.

延伸ブロー成形プラスチック容器、特に、二軸延伸ポリエステル容器は、今日では、一般化しており、その優れた透明性と適度なガスバリヤー性とにより、液体洗剤、シャンプー、化粧品、醤油、ソース等の液体、或いは食品等の容器の外に、ビール、コーラ、サイダー等の炭酸飲料や、果汁、ミネラルウォーター等の他の飲料容器に広く使用されている。
二軸延伸ポリエステル容器の成形に際しては、ポリエステル樹脂の射出成形により、最終容器より寸法がかなり小さく、且つポリエステルが非晶質である有底プリフォームを予め形成し、このプリフォームをその延伸温度に予備加熱し、ブロー金型中で軸方向に引張り延伸すると共に、周方向にブロー延伸する方法が採用されている(例えば、特許文献1)。
Stretch blow molded plastic containers, in particular biaxially stretched polyester containers, are now commonplace, and liquids such as liquid detergents, shampoos, cosmetics, soy sauce, sauces, etc. due to their excellent transparency and moderate gas barrier properties. In addition to containers for foods and the like, they are widely used for carbonated drinks such as beer, cola and cider, and other drink containers such as fruit juice and mineral water.
When forming a biaxially stretched polyester container, a bottomed preform having a size considerably smaller than the final container and having an amorphous polyester is formed in advance by injection molding of a polyester resin, and the preform is brought to its stretching temperature. A method of preheating, stretching in the axial direction in the blow mold and blow-stretching in the circumferential direction is employed (for example, Patent Document 1).

この有底プリフォームの形状としては、容器の口頚部に相当する口頚部と延伸ブロー成形されるべき有底筒状部とを備え、全体としての形状が試験管状のものが一般的である。口頚部には、例えば密封用開口端や蓋との係合手段が形成されている。またこの底部には、射出成形の必要性から、底部中心から外方に突出したゲート部が必ず形成されている。
しかしながら、一般に射出成形によるプリフォームの製造では、溶融可塑化された樹脂は、ノズル、スプルー、ランナー、ゲートを経てキャビティに注入されるため、射出成形機中における樹脂の滞留時間が長く、このような成形機中の長時間の滞留は、樹脂の劣化の原因になるおそれがある。特にポリエステル樹脂は、熱分解により固有粘度や分子量が低下するため、満足な機械的強度を得ることができないという問題が生じる。
また、ポリエステル樹脂の熱分解の際にはアセトアルデヒドが発生し、かかるポリエステル中に残留するアセトアルデヒドは、ポリエステル容器の香味保持性を低下させる原因になる。
As the shape of the bottomed preform, a mouth-and-neck portion corresponding to the mouth-and-neck portion of the container and a bottomed cylindrical portion to be stretch blow molded are generally used, and the shape as a whole is a test tube. The mouth / neck portion is formed with, for example, a sealing opening end or an engaging means with a lid. In addition, a gate portion that protrudes outward from the center of the bottom portion is always formed on the bottom portion because of the necessity of injection molding.
However, in general, in the manufacture of a preform by injection molding, the melt-plasticized resin is injected into the cavity through the nozzle, sprue, runner, and gate, so that the residence time of the resin in the injection molding machine is long. A long stay in a simple molding machine may cause deterioration of the resin. In particular, the polyester resin has a problem in that satisfactory mechanical strength cannot be obtained because the intrinsic viscosity and molecular weight decrease due to thermal decomposition.
Further, acetaldehyde is generated during the thermal decomposition of the polyester resin, and the acetaldehyde remaining in the polyester causes a decrease in the flavor retention of the polyester container.

このような観点から、有底プリフォームを樹脂の圧縮成形で製造することも既に提案されており、例えば特許文献2には、押出機から押し出された溶融樹脂塊を切断、保持して雌型内に供給した後、前記雌型内に雄型を圧入して雌型内で圧縮成形することからなるプリフォームの製造方法が記載されている。   From such a viewpoint, it has already been proposed to produce a bottomed preform by compression molding of a resin. For example, Patent Document 2 discloses a female mold in which a molten resin mass extruded from an extruder is cut and held. A method for manufacturing a preform is described, which comprises supplying a male mold into the female mold and compressing the female mold into the female mold after being supplied into the female mold.

特開平4−154535号公報JP-A-4-154535 特開2000−280248号公報JP 2000-280248 A

しかしながら、圧縮成形によるプリフォームの製造では、上記のゲート部の白化傾向は解消されるとしても、樹脂の可塑化時に固有粘度(IV)が低下して、溶融樹脂塊を圧縮成形用金型への搬送性が低下するという問題がある。
すなわち、プリフォームの圧縮成形においては、押出機から押出された溶融樹脂塊(ドロップ)を圧縮成形位置まで搬送する必要があるが、熱可塑性ポリエステル樹脂のような延伸配向可能な結晶性樹脂は、一般にドローダウン傾向が大きく、可塑化時、すなわち溶融混練時の固有粘度(IV)低下が大きい場合には、ドロップ成形時にドローダウンを発生して、溶融樹脂塊の的確な保持が困難である場合や、或いは溶融樹脂塊が搬送治具に密着して圧縮成形金型へスムーズに供給できない場合が生じ、溶融樹脂塊の搬送性が低下する。一方、ドローダウン傾向を解消するために溶融樹脂塊の固有粘度(IV)を高くすれば、搬送性は向上するものの、押出機からの溶融樹脂の押出性、溶融樹脂の切断によるカッターマークの発生によるプリフォームの傷つき、樹脂の流動性の低下による圧縮成形性が低下する。
However, in the production of a preform by compression molding, even if the above-mentioned whitening tendency of the gate portion is eliminated, the intrinsic viscosity (IV) is lowered during plasticization of the resin, and the molten resin mass is turned into a compression mold. There is a problem that the transportability of the paper is lowered.
That is, in the compression molding of the preform, it is necessary to transport the molten resin mass (drop) extruded from the extruder to the compression molding position, but a crystalline resin capable of stretching orientation such as a thermoplastic polyester resin is In general, the tendency to draw down is large, and when plasticization, that is, the decrease in intrinsic viscosity (IV) during melt kneading is large, drawdown occurs during drop molding, and it is difficult to accurately hold the molten resin mass Or, the molten resin lump may be brought into close contact with the conveying jig and cannot be supplied smoothly to the compression mold, and the conveying property of the molten resin lump is deteriorated. On the other hand, if the intrinsic viscosity (IV) of the molten resin mass is increased to eliminate the drawdown tendency, the transportability is improved, but the extrudability of the molten resin from the extruder and the generation of cutter marks due to the cutting of the molten resin Due to the damage of the preform due to the above, the compression moldability is lowered due to the decrease in the fluidity of the resin.

従って本発明の目的は、上記問題が解決され、生産効率の向上が可能な圧縮成形用ポリエステル樹脂及び生産効率のよいプリフォームの製造方法を提供することである。
また本発明の他の目的は、外観特性に優れたプリフォーム及びこのプリフォームを延伸成形して成るポリエステル容器を提供することである。
Accordingly, an object of the present invention is to provide a polyester resin for compression molding in which the above-described problems are solved and production efficiency can be improved, and a preform production method with high production efficiency.
Another object of the present invention is to provide a preform having excellent appearance characteristics and a polyester container formed by stretching the preform.

本発明によれば、固有粘度(IV)0.70乃至0.90dL/gの範囲で、温度280℃における表面張力が25乃至50mNであることを特徴とする圧縮成形用ポリエステル樹脂が提供される。
本発明によればまた、ポリエステル樹脂から成る溶融樹脂塊を圧縮成形金型に供給し、これを圧縮成形してプリフォームを製造する方法において、前記溶融樹脂塊が、固有粘度(IV)が0.70乃至0.90dL/gで、温度280℃における表面張力が25乃至50mNであるポリエステル樹脂からなることを特徴とするプリフォームの製造方法が提供される。
本発明によれば更にまた、上記製造方法により製造されるプリフォーム及びこのプリフォームを延伸成形して成ることを特徴とするポリエステル容器が提供される。
According to the present invention, there is provided a polyester resin for compression molding characterized by having an intrinsic viscosity (IV) in the range of 0.70 to 0.90 dL / g and a surface tension at a temperature of 280 ° C. of 25 to 50 mN. .
According to the present invention, in the method of supplying a molten resin lump made of a polyester resin to a compression mold and compressing and molding the molten resin lump, the molten resin lump has an intrinsic viscosity (IV) of 0. There is provided a method for producing a preform, comprising a polyester resin having a surface tension of 25 to 50 mN at a temperature of 280 ° C. at .70 to 0.90 dL / g.
According to the present invention, there is further provided a preform produced by the above production method and a polyester container formed by stretching the preform.

本発明の圧縮成形用ポリエステル樹脂によれば、溶融押出しの際の樹脂のドローダウンの発生が有効に抑制されると共に搬送治具への溶融樹脂塊の密着を有効に防止でき、圧縮成形機への溶融樹脂塊(ドロップ)の搬送性を向上させることができ、生産性よくプリフォームを圧縮成形により成形することが可能となる。また押出機から押出された溶融樹脂の切断の際にカッターマークが形成されることもなく、プリフォームの傷つきも防止できる。更に溶融樹脂塊の流動性にも優れているため圧縮成形性(賦形性)にも優れている。
また本発明の上記圧縮成形用ポリエステル樹脂を圧縮成形して成るプリフォームは、底部に流動配向歪がなく、ゲート部やその他トリミング操作も一切必要がないという利点がある。またこのプリフォームを延伸成形してなるポリエステル容器は、多層容器であっても、底部中心に層構成の乱れがなく、底部の外観特性や耐衝撃性に優れているという利点もある。
According to the polyester resin for compression molding of the present invention, the occurrence of resin drawdown during melt extrusion can be effectively suppressed, and adhesion of the molten resin mass to the conveying jig can be effectively prevented, leading to a compression molding machine. It is possible to improve the transportability of the molten resin lump (drop), and it is possible to form the preform by compression molding with high productivity. Further, the cutter mark is not formed when the molten resin extruded from the extruder is cut, and the preform can be prevented from being damaged. Furthermore, since the fluidity of the molten resin mass is also excellent, the compression moldability (shapeability) is also excellent.
Further, the preform formed by compression-molding the above-mentioned polyester resin for compression molding of the present invention has an advantage that there is no fluid orientation strain at the bottom, and that no gate part or other trimming operation is required. Further, even if the polyester container formed by stretching the preform is a multilayer container, there is an advantage that there is no disorder in the layer structure at the center of the bottom and that the appearance characteristics and impact resistance of the bottom are excellent.

本発明においては、溶融ポリエステル樹脂を押出機から押出す際の溶融樹脂塊のドローダウン傾向や溶融樹脂塊が搬送治具に密着してスムーズに圧縮成形機への供給が困難になるのは、溶融樹脂塊の表面特性に起因することを見出し、圧縮成形に使用するポリエステル樹脂として、固有粘度(IV)0.70乃至0.90dL/g及び温度280℃における表面張力が25乃至50mN、特に30乃至45mNのものを使用することにより、溶融樹脂塊のドローダウン傾向等の問題を解決することが可能になったのである。   In the present invention, when the molten polyester resin is extruded from the extruder, the molten resin lump tends to draw down and the molten resin lump is in close contact with the conveying jig, making it difficult to supply to the compression molding machine smoothly. The polyester resin used for compression molding was found to be caused by the surface characteristics of the molten resin mass, and the surface tension at an intrinsic viscosity (IV) of 0.70 to 0.90 dL / g and a temperature of 280 ° C. was 25 to 50 mN, particularly 30. By using a material having a viscosity of 45 mN, problems such as a tendency to draw down the molten resin mass can be solved.

また本発明においては、圧縮成形機に供給される溶融樹脂塊の表面が所定の表面張力を有することにより、ドローダウンの発生や搬送治具に密着することを抑制して溶融樹脂塊の搬送性、生産性を向上させることができるだけでなく、押出機から押出された溶融樹脂の切断の際にカッターマークが形成されることも抑制でき、これによりプリフォームの傷つきも防止できる。更に一定の固有粘度を有しているため溶融樹脂塊の流動性にも優れているため圧縮成形性にも優れているという効果を発現することも可能となるのである。
尚、本発明において固有粘度0.70乃至0.90dL/g及び温度280℃を基準とするのは、圧縮成形でプリフォームを成形するには、少なくとも上記範囲の固有粘度を有することが必要であり、また温度280℃は溶融押出しされる溶融樹脂の一般的な温度範囲内の温度を基準としたものである。
Further, in the present invention, the molten resin lump surface supplied to the compression molding machine has a predetermined surface tension, thereby suppressing the occurrence of drawdown and the close contact with the conveying jig, thereby conveying the molten resin lump. In addition to improving productivity, it is also possible to suppress the formation of cutter marks when the molten resin extruded from the extruder is cut, thereby preventing the preform from being damaged. Furthermore, since it has a certain intrinsic viscosity, it is possible to exhibit an effect that it is excellent in compression moldability because it is excellent in fluidity of the molten resin mass.
In the present invention, the intrinsic viscosity of 0.70 to 0.90 dL / g and the temperature of 280 ° C. are used as a standard, in order to form a preform by compression molding, it is necessary to have an intrinsic viscosity of at least the above range. In addition, the temperature of 280 ° C. is based on a temperature within a general temperature range of the molten resin to be melt-extruded.

本発明のこのような作用効果は、後述する実施例の結果からも明らかである。すなわち固有粘度が上記範囲内であるが表面張力が25mNよりも小さいポリエステル樹脂(比較例1)や、表面張力は上記範囲内であるが、固有粘度が上記範囲内よりも小さいポリエステル樹脂(比較例2)を用いて圧縮成形を行った場合には、溶融押出しの際ドローダウンが生じ、また搬送治具に密着して効率よく圧縮成形機に供給できず、溶融樹脂塊の搬送性に劣っていることがわかる。また固有粘度は上範囲内であるが表面張力が50mNよりも大きいポリエステル樹脂(比較例3)や、表面張力が上記範囲内であるが、固有粘度が上記範囲よりも大きいポリエステル樹脂(比較例4)を用いて圧縮成形を行った場合には、圧縮成形した際に樹脂の流動性に劣り、プリフォームにカッターマークに起因する傷が生じ、圧縮成形性に劣っていることがわかる。
これに対し、固有粘度及び表面張力が上記範囲内にあるポリエステル樹脂(実施例1〜3)を用いて圧縮成形を行った場合には、ドローダウンが抑制され、溶融樹脂塊が確実に搬送治具に保持されて圧縮成形金型内に供給されていると共に、流動性及び圧縮成形性に優れ、更にカッターマークが発生せずポリエステル容器の外観特性にも優れていることが理解される。
Such operational effects of the present invention are also apparent from the results of Examples described later. That is, a polyester resin (Comparative Example 1) having an intrinsic viscosity within the above range but a surface tension of less than 25 mN, or a polyester resin having a surface tension within the above range but having an intrinsic viscosity less than the above range (Comparative Example) When compression molding is performed using 2), drawdown occurs during melt extrusion, and it cannot be supplied efficiently to the compression molding machine in close contact with the transport jig, resulting in poor transportability of the molten resin mass. I understand that. In addition, the intrinsic viscosity is in the upper range but the surface tension is greater than 50 mN (Comparative Example 3), or the surface tension is in the above range but the intrinsic viscosity is greater than the above range (Comparative Example 4). When the compression molding is performed using the above, the fluidity of the resin is inferior when the compression molding is performed, and the preform is scratched due to the cutter mark, and the compression molding property is poor.
On the other hand, when compression molding is performed using a polyester resin (Examples 1 to 3) whose intrinsic viscosity and surface tension are within the above ranges, drawdown is suppressed and the molten resin lump is reliably transported. It is understood that while being held by the tool and supplied into the compression mold, it is excellent in fluidity and compression moldability, and further, the cutter mark is not generated and the appearance characteristics of the polyester container are also excellent.

(ポリエステル樹脂)
本発明に用いるポリエステル樹脂は、固有粘度(IV)0.70乃至0.90dL/g及び温度280℃における表面張力が25乃至50mNである点を除けば、従来公知のジカルボン酸成分及びジオール成分から成るポリエステル樹脂を用いることができる。
(Polyester resin)
The polyester resin used in the present invention is from the conventionally known dicarboxylic acid component and diol component except that the intrinsic viscosity (IV) is 0.70 to 0.90 dL / g and the surface tension at a temperature of 280 ° C. is 25 to 50 mN. A polyester resin can be used.

ジカルボン酸成分としては、ジカルボン酸成分の50%以上、特に80%がテレフタル酸であることが機械的性質や熱的性質から好ましいが、テレフタル酸以外のカルボン酸成分を含有することも勿論できる。テレフタル酸以外のカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、p−β−オキシエトキシ安息香酸、ビフェニル−4,4’−ジカルボン酸、ジフェノキシエタン−4,4’−ジカルボン酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸等を挙げることができる。   As the dicarboxylic acid component, 50% or more, particularly 80% of the dicarboxylic acid component is preferably terephthalic acid from the viewpoint of mechanical properties and thermal properties, but it is of course possible to contain a carboxylic acid component other than terephthalic acid. Examples of carboxylic acid components other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, p-β-oxyethoxybenzoic acid, biphenyl-4,4′-dicarboxylic acid, diphenoxyethane-4,4′-dicarboxylic acid, 5- Examples thereof include sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid and the like.

ジオール成分としては、ジオール成分の50%以上、特に80%以上がエチレングリコールであることが、機械的性質や熱的性質から好ましく、エチレングリコール以外のジオール成分としては、1,4−ブタンジオール、プロピレングリコール、ネオペンチルグリコール、1,6−へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、グリセロール、トリメチロールプロパン等を挙げることができる。   As the diol component, 50% or more, particularly 80% or more of the diol component is preferably ethylene glycol in view of mechanical properties and thermal properties. As diol components other than ethylene glycol, 1,4-butanediol, Examples thereof include propylene glycol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexane dimethanol, an ethylene oxide adduct of bisphenol A, glycerol, and trimethylolpropane.

多官能成分は、三官能以上の多塩基酸及び多価アルコールであり、トリメリット酸、ピロメリット酸、ヘミメリット酸,1,1,2,2−エタンテトラカルボン酸、1,1,2−エタントリカルボン酸、1,3,5−ペンタントリカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、ビフェニル−3,4,3’,4’−テトラカルボン酸等の多塩基酸や、ペンタエリスリトール、グリセロール、トリメチロールプロパン、1,2,6−ヘキサントリオール、ソルビトール、1,1,4,4−テトラキス(ヒドロキシメチル)シクロヘキサン等の多価アルコールが挙げられる。   The polyfunctional component is a tribasic or higher polybasic acid or polyhydric alcohol, trimellitic acid, pyromellitic acid, hemimellitic acid, 1,1,2,2-ethanetetracarboxylic acid, 1,1,2- Polybasic acids such as ethanetricarboxylic acid, 1,3,5-pentanetricarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, biphenyl-3,4,3 ′, 4′-tetracarboxylic acid, Polyhydric alcohols such as pentaerythritol, glycerol, trimethylolpropane, 1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl) cyclohexane are exemplified.

本発明の圧縮成形用ポリエステル樹脂は、圧縮成形によりプリフォームを成形するために必要な固有粘度、すなわち0.70乃至0.90dL/g、特に0.75乃至0.85dL/g(重量比1:1のフェノール/テトラクロロエタン混合溶媒を用いて30℃で測定)を有することも重要である。前述したように、固有粘度が上記範囲にない場合は、表面張力が上記範囲にあっても満足する溶融樹脂塊の搬送性や圧縮成形性を得ることができないのである。   The polyester resin for compression molding of the present invention has an intrinsic viscosity necessary for molding a preform by compression molding, that is, 0.70 to 0.90 dL / g, particularly 0.75 to 0.85 dL / g (weight ratio 1). 1) (measured at 30 ° C. using a 1: phenol / tetrachloroethane mixed solvent). As described above, when the intrinsic viscosity is not in the above range, satisfactory transportability and compression moldability of the molten resin mass cannot be obtained even if the surface tension is in the above range.

また本発明の圧縮成形用ポリエステル樹脂の固有粘度(IV)0.70乃至0.90dL/g及び温度280℃における表面張力を25乃至50mN、特に30乃至45mNの範囲内に調整するには、共重合成分やその配合量等のポリエステル樹脂の組成や、含有されるオリゴマー量、或いは溶融粘度等種々の条件を変化させることにより調整することができる。   In order to adjust the surface tension of the polyester resin for compression molding of the present invention at an intrinsic viscosity (IV) of 0.70 to 0.90 dL / g and a temperature of 280 ° C. within a range of 25 to 50 mN, particularly 30 to 45 mN, It can adjust by changing various conditions, such as a composition of a polyester resin, such as a polymerization component and its compounding quantity, the amount of oligomers contained, or melt viscosity.

更に、ポリエステル樹脂はプリフォーム又はポリエステル容器の耐熱性、加工性等を満足するため、265℃未満、特に220乃至255℃の融点(Tm)を有することが好ましい。またガラス転移点は、30℃以上、特に50乃至120℃の範囲であることが好ましい。
本発明のポリエステル樹脂には、それ自体公知の樹脂用配合剤、例えば着色剤、抗酸化剤、安定剤、各種帯電防止剤、離型剤、滑剤、核剤等を最終成形品の品質を損なわない範囲で公知の処方に従って配合することができる。
Furthermore, the polyester resin preferably has a melting point (Tm) of less than 265 ° C., particularly 220 to 255 ° C., in order to satisfy the heat resistance and processability of the preform or polyester container. The glass transition point is preferably 30 ° C. or higher, particularly 50 to 120 ° C.
The polyester resin of the present invention contains known compounding agents for resins such as colorants, antioxidants, stabilizers, various antistatic agents, mold release agents, lubricants, nucleating agents, etc. It can mix | blend according to a well-known prescription in the range which is not.

(プリフォーム)
本発明のプリフォームは、上記圧縮成形用ポリエステル樹脂を圧縮成形することにより得られるものであるが、上記圧縮成形用ポリエステル樹脂のみからなる単層のものは勿論、上記圧縮成形用ポリエステル樹脂から成る層に他の熱可塑性樹脂から成る層を有する多層プリフォームであってもよい。
上記ポリエステル樹脂以外の熱可塑性樹脂としては、延伸ブロー成形及び熱結晶化可能な樹脂であれば任意のものを使用でき、これに限定されないが、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ビニルアルコール共重合体、環状オレフィン重合体などのオレフィン系樹脂や、キシリレン基含有ポリアミドなどのポリアミド樹脂等を挙げることができる。また、キシリレン基含有ポリアミドにジエン系化合物、遷移金属系触媒を配合した酸素吸収性ガスバリヤー樹脂組成物や、リサイクルポリエステル(PCR(使用済みボトルを再生した樹脂)、SCR(生産工場内で発生した樹脂)又はそれらの混合物)等も用いることができる。これらのリサイクルポリエステル樹脂は、前述した方法で測定した固有粘度(IV)が0.65乃至0.75dL/gの範囲にあることが好ましい。
(preform)
The preform of the present invention is obtained by compression-molding the above-mentioned compression-molding polyester resin, but it is made of the above-mentioned compression-molding polyester resin as well as a single layer composed only of the above-mentioned compression-molding polyester resin. A multilayer preform having a layer made of another thermoplastic resin in the layer may be used.
As the thermoplastic resin other than the polyester resin, any resin can be used as long as it is a resin that can be stretch blow molded and thermally crystallized, and is not limited thereto. However, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene- Examples thereof include olefin resins such as vinyl alcohol copolymers and cyclic olefin polymers, and polyamide resins such as xylylene group-containing polyamide. In addition, oxygen-absorbing gas barrier resin compositions containing diene compounds and transition metal catalysts in polyamides containing xylylene groups, recycled polyesters (PCR (resin that recycles used bottles), SCRs (generated in production plants) Resin) or a mixture thereof) can also be used. These recycled polyester resins preferably have an intrinsic viscosity (IV) measured by the method described above in the range of 0.65 to 0.75 dL / g.

リサイクルポリエステルは、単独で使用することもできるし、バージンのポリエステルとのブレンド物として用いることもできる。リサイクルポリエステルが低下した固有粘度を有する場合には、バージンのポリエステルとブレンドして用いることが好ましく、この場合、リサイクルポリエステル:バージンのポリエステルの配合比は、1:5乃至5:1の重量比にあることが好ましい。
また内層又は外層と中間層を接着させるために、接着性樹脂を介在させることもできる。接着性樹脂としては、マレイン酸などをグラフト重合した酸変性オレフィン系樹脂や非晶性のポリエステル系樹脂やポリアミド系樹脂等を使用することができる。
また、上記ポリエステル樹脂以外の熱可塑性樹脂にも、上記圧縮成形用ポリエステル樹脂と同様に各種樹脂用添加剤を配合できる。
The recycled polyester can be used alone or as a blend with virgin polyester. When the recycled polyester has a reduced intrinsic viscosity, it is preferably used by blending with the virgin polyester. In this case, the ratio of the recycled polyester: virgin polyester is 1: 5 to 5: 1. Preferably there is.
Moreover, in order to adhere | attach an inner layer or an outer layer, and an intermediate | middle layer, adhesive resin can also be interposed. As the adhesive resin, an acid-modified olefin resin obtained by graft polymerization of maleic acid or the like, an amorphous polyester resin, a polyamide resin, or the like can be used.
Moreover, various additives for resin can be mix | blended with thermoplastic resins other than the said polyester resin similarly to the said polyester resin for compression molding.

本発明の多層プリフォームの層構成は、これに限定されないが、以下のものを例示できる。尚、以下の多層構造における略号は、PET:本発明の圧縮成形用ポリエステル樹脂、GBR:ガスバリヤー性樹脂、PCR:リサイクルポリエステル樹脂、ADR:接着性樹脂、OAR:酸素吸収性樹脂組成物、COC:環状オレフィン共重合体である。
三層構造:PET/GBR/PET、PET/PCR/PET
PET/(PET+PCR)/PET
四層構造:PET/GBR/PCR/PET、
PET/GBR/OAR/PET、
PET/GBR/COC/PET
五層構造:PET/ADR/GBR/ADR/PET
PET/ADR/OAR/ADR/PET
PET/GBR/PCR/GBR/PET
PET/ADR/(GBR+OAR)/ADR/PET
六層構造:PET/ADR/GBR/AR/PCR/PET
PET/ADR/OAR/ADR/PCR/PET
七層構造:PET/PCR/ADR/GBR/ADR/PCR/PET
PET/ADR/GBR/ADR/OAR/ADR/PET
Although the layer structure of the multilayer preform of the present invention is not limited to this, the following can be exemplified. The following abbreviations in the multilayer structure are: PET: polyester resin for compression molding of the present invention, GBR: gas barrier resin, PCR: recycled polyester resin, ADR: adhesive resin, OAR: oxygen-absorbing resin composition, COC : Cyclic olefin copolymer.
Three-layer structure: PET / GBR / PET, PET / PCR / PET
PET / (PET + PCR) / PET
Four-layer structure: PET / GBR / PCR / PET,
PET / GBR / OAR / PET,
PET / GBR / COC / PET
Five-layer structure: PET / ADR / GBR / ADR / PET
PET / ADR / OAR / ADR / PET
PET / GBR / PCR / GBR / PET
PET / ADR / (GBR + OAR) / ADR / PET
Six-layer structure: PET / ADR / GBR / AR / PCR / PET
PET / ADR / OAR / ADR / PCR / PET
Seven-layer structure: PET / PCR / ADR / GBR / ADR / PCR / PET
PET / ADR / GBR / ADR / OAR / ADR / PET

(プリフォームの成形)
本発明のプリフォームは、前述した通り、上記圧縮成形用ポリエステル樹脂を用いて従来公知の圧縮成形法により成形することができる。
圧縮成形では、樹脂の滞留時間が短いので、射出成形のような樹脂の熱劣化が少ないため、汎用樹脂を用いることもできる。また、射出成形のように底部に底部の白化原因となるゲート部が形成されることがなく、しかもプリフォームの底部に樹脂の流動配向が生じにくく、該底部に流動配向による残留歪みが生じることがないので、成形品の物性に影響が少ないという利点もある。
(Preform molding)
As described above, the preform of the present invention can be molded by a conventionally known compression molding method using the above-described compression molding polyester resin.
In compression molding, since the residence time of the resin is short, there is little thermal deterioration of the resin as in injection molding, so that a general-purpose resin can also be used. In addition, the gate part that causes whitening of the bottom is not formed at the bottom as in the case of injection molding, and the flow orientation of the resin hardly occurs at the bottom of the preform, and the residual strain due to the fluid orientation occurs at the bottom. Therefore, there is an advantage that the physical properties of the molded product are less affected.

すなわち押出機により、本発明の圧縮成形用ポリエステル樹脂の溶融物を連続的に押し出すと共に、これを切断して、溶融状態にあるプリフォーム用の前駆成形体である溶融樹脂塊(ドロップ)を製造し、この溶融樹脂塊を圧縮成形機のキャビティ型に投入し、これをコア型で圧縮成形する。この際前述した通り、溶融樹脂塊が、固有粘度(IV)0.70乃至0.90dL/gの範囲で温度280℃における表面張力が25乃至50mNの範囲にあることが溶融樹脂塊の搬送性及び流動性の点で重要である。
また圧縮成形金型を回転ターレット上に周状に多数配置させると、間欠的ではあるが連続に近い状態で、プリフォームを高能率で成形することが可能となる。
In other words, the melt of the polyester resin for compression molding according to the present invention is continuously extruded by an extruder, and the melt is cut to produce a molten resin lump (drop) which is a preform for a preform in a molten state. Then, this molten resin mass is put into a cavity mold of a compression molding machine, and this is compression molded with a core mold. At this time, as described above, the molten resin lump has an intrinsic viscosity (IV) in the range of 0.70 to 0.90 dL / g and a surface tension at a temperature of 280 ° C. in the range of 25 to 50 mN. And is important in terms of liquidity.
Further, when a large number of compression molding dies are arranged circumferentially on the rotating turret, the preform can be molded with high efficiency in an intermittent but nearly continuous state.

本発明のプリフォームの製法においては、溶融ポリエステル樹脂の溶融押出温度が、ポリエステル樹脂の融点(Tm)を基準として、Tm+5℃乃至Tm+40℃、特にTm+10℃乃至Tm+30℃の範囲であることが好ましく、上記温度よりも低い温度では、剪断速度が大きくなりすぎて一様な溶融押出物を形成することが困難になる場合があり、一方上記範囲よりも高温では、樹脂の熱劣化の程度が大きくなったり、或いはドローダウンが大きくなりすぎ、上述した特性を有するプリフォームを成形することが困難になる。   In the preform production method of the present invention, the melt extrusion temperature of the molten polyester resin is preferably in the range of Tm + 5 ° C. to Tm + 40 ° C., particularly Tm + 10 ° C. to Tm + 30 ° C., based on the melting point (Tm) of the polyester resin. At a temperature lower than the above temperature, the shear rate becomes too high, and it may be difficult to form a uniform melt extrudate. On the other hand, at a temperature higher than the above range, the degree of thermal degradation of the resin increases. Or the drawdown becomes too large, and it becomes difficult to form a preform having the above-mentioned characteristics.

図1は、本発明の圧縮成形用ポリエステル樹脂を用いて多層プリフォームを成形する際に用いる圧縮成形装置を示す説明図であり、全体を1で示す圧縮成形装置は、本発明の圧縮成形用ポリステル樹脂から成る内外層用樹脂Aを主押出機2から連続的に供給し、ガスバリヤー性樹脂等の中間層用樹脂Bを副押出機3から間欠的に供給して、多層ダイ4内で合流させて樹脂Aが樹脂Bを封入するように多層ダイ4の下方に設けられたノズル5から溶融押出しを行い、水平方向に移動可能な切断手段6によって押出された複合溶融樹脂7を中間層の存在しない部分で所定寸法に切断する。この切断された複合溶融樹脂塊8は、切断直後に治具に挟んで雌型9及び雄型10から構成される圧縮成形装置の雌型9内に搬送する。雌型9内にある複合溶融樹脂塊8を雄型10で圧縮成形して中間層が内層及び外層で封入された多層プリフォームが成形される。   FIG. 1 is an explanatory view showing a compression molding apparatus used when a multilayer preform is molded using the polyester resin for compression molding according to the present invention. The compression molding apparatus generally indicated by 1 is for compression molding according to the present invention. A resin A for inner and outer layers made of polyester resin is continuously supplied from the main extruder 2, and an intermediate layer resin B such as a gas barrier resin is intermittently supplied from the sub-extruder 3, The molten resin 7 is melt-extruded from the nozzle 5 provided below the multilayer die 4 so that the resin A encloses the resin B, and the composite molten resin 7 extruded by the cutting means 6 movable in the horizontal direction is used as the intermediate layer. Cut to a predetermined dimension at the part where no. The cut composite molten resin lump 8 is conveyed into a female mold 9 of a compression molding apparatus composed of a female mold 9 and a male mold 10 immediately after cutting, sandwiched between jigs. The composite molten resin mass 8 in the female mold 9 is compression-molded by the male mold 10 to form a multilayer preform in which the intermediate layer is sealed with the inner layer and the outer layer.

図2は、本発明のプリフォームの内、多層プリフォームの一例の断面図である。全体を20で示す多層プリフォームは、口頚部21、胴部22及び底部23から成っている。図に示す具体例では、底部にゲート部のない圧縮成形により成形されたプリフォームであり、また口頚部21の端部21aを除く部分は、内層24、中間層25及び外層26の3層同構造になっている。   FIG. 2 is a cross-sectional view of an example of a multilayer preform among the preforms of the present invention. The multi-layer preform indicated as a whole by 20 consists of a mouth-and-neck part 21, a trunk part 22 and a bottom part 23. In the specific example shown in the figure, the preform is formed by compression molding having no gate portion at the bottom, and the portion excluding the end portion 21a of the mouth and neck portion 21 is the same as the three layers of the inner layer 24, the intermediate layer 25 and the outer layer 26. It has a structure.

(ポリエステル容器)
本発明のポリエステル容器は、上記プリフォームを延伸成形することにより得ることができる。
延伸ブロー成形においては、本発明のプリフォームを延伸温度に加熱し、このプリフォームを軸方向に延伸すると共に周方向に二軸延伸ブロー成形して二軸延伸容器を製造する。
尚、プリフォームの成形とその延伸ブロー成形とは、コールドパリソン方式の他、プリフォームを完全に冷却しないで延伸ブロー成形を行うホットパリソン方式にも適用できる。 延伸ブローに先立って、必要により、プリフォームを熱風、赤外線ヒーター、高周波誘導加熱等の手段で延伸適正温度まで予備加熱する。その温度範囲はポリエステルの場合85乃至120℃、特に95乃至110℃の範囲あるのがよい。
(Polyester container)
The polyester container of the present invention can be obtained by stretching the preform.
In the stretch blow molding, the preform of the present invention is heated to a stretching temperature, the preform is stretched in the axial direction, and biaxial stretch blow molding is performed in the circumferential direction to produce a biaxially stretched container.
The preform molding and the stretch blow molding can be applied to a hot parison system in which stretch blow molding is performed without completely cooling the preform, in addition to the cold parison system. Prior to stretching blow, if necessary, the preform is preheated to an appropriate stretching temperature by means of hot air, an infrared heater, high frequency induction heating or the like. In the case of polyester, the temperature range is 85 to 120 ° C., particularly 95 to 110 ° C.

このプリフォームをそれ自体公知の延伸ブロー成形機中に供給し、金型内にセットして、延伸棒の押し込みにより軸方向に引っ張り延伸すると共に、流体の吹込みにより周方向へ延伸成形する。金型温度は、一般に室温乃至190℃の範囲にあることが好ましいが、後述するようにワンモールド法で熱固定を行う場合は、金型温度を120乃至180℃に設定することが望ましい。
最終のポリエステル容器における延伸倍率は、面積倍率で1.5乃至25倍が適当であり、この中でも軸方向延伸倍率を1.2乃至6倍とし,周方向延伸倍率を1.2乃至4.5倍とするのが好ましい。
The preform is supplied into a publicly known stretch blow molding machine, set in a mold, stretched in the axial direction by pushing a stretching rod, and stretched in the circumferential direction by blowing a fluid. In general, the mold temperature is preferably in the range of room temperature to 190 ° C. However, as described later, when heat setting is performed by the one mold method, the mold temperature is preferably set to 120 to 180 ° C.
The draw ratio in the final polyester container is suitably 1.5 to 25 times in terms of area magnification. Among these, the axial draw ratio is 1.2 to 6 times, and the circumferential draw ratio is 1.2 to 4.5. It is preferable to double.

本発明のポリエステル容器は、それ自体公知の手段で熱固定することもできる。熱固定は、ブロー成形金型中で行うワンモールド法で行うこともできるし、ブロー成形金型とは別個の熱固定用の金型中で行うツーモールド法で行うこともできる。熱固定の温度は120乃至180℃の範囲が適当である。
また他の延伸ブロー成形方法として、本出願人にかかる特許第2917851号公報に例示されるように、プリフォームを、1次ブロー金型を用いて最終成形品よりも大きい寸法の1次ブロー成形体とし、次いでこの1次ブロー成形体を加熱収縮させた後、2次ブロー金型を用いて延伸ブロー成形を行って最終成形品とする二段ブロー成形法を採用してもよい。
The polyester container of the present invention can be heat-set by a means known per se. The heat setting can be performed by a one-mold method performed in a blow molding die, or can be performed by a two-mold method performed in a heat fixing die separate from the blow molding die. The temperature for heat setting is suitably in the range of 120 to 180 ° C.
As another stretch blow molding method, as illustrated in Japanese Patent No. 29178851 of the present applicant, a preform is subjected to primary blow molding having a size larger than that of a final molded product using a primary blow mold. A two-stage blow molding method may be employed in which the primary blow molded body is heated and shrunk, and then stretch blow molding is performed using a secondary blow mold to obtain a final molded product.

本発明のポリエステル容器のうち、多層構造の一例を図3に示す。この図3において、全体を40で示す二軸延伸容器はボトル形状で、口部41、胴部42及び底部43からなっており、胴部42及び底部43は、内層44a外層44b及びこれらの間に内封された中間層45からなっている。口部41は、上述した多層プリフォームと同様に内外層樹脂のみで形成されている。   An example of the multilayer structure of the polyester container of the present invention is shown in FIG. In FIG. 3, the biaxially stretched container generally indicated by 40 has a bottle shape and is composed of a mouth part 41, a body part 42 and a bottom part 43. The body part 42 and the bottom part 43 are composed of an inner layer 44a and an outer layer 44b. It consists of the intermediate | middle layer 45 enclosed in. The mouth portion 41 is formed of only the inner and outer layer resins as in the multilayer preform described above.

1.表面張力の測定
周知のペンダントドロップ法により溶融樹脂(ドロップ)を押し出し、空気中、280℃で20分間放置した後の表面張力を測定した。
1. Measurement of surface tension Molten resin (drop) was extruded by a well-known pendant drop method, and the surface tension after being left in air at 280 ° C. for 20 minutes was measured.

[実施例1]
固有粘度(IV)が0.71dL/g、表面張力が27mNのホモポリエチレンテレフタレートを押出機ホッパーに供給し、ダイ温度270℃、樹脂圧力70kgf/cmの条件で押出し、溶融樹脂塊に切断した。この溶融樹脂塊を20℃の圧縮金型内に搬送して、型締め圧力100kgf/cmの条件で圧縮成形を行い、単層プリフォームを作成した。ドローダウンによる溶融樹脂塊の変形が良好に抑制された状態で搬送することができ、また圧縮時の賦形性も良好であった。
[Example 1]
Homopolyethylene terephthalate having an intrinsic viscosity (IV) of 0.71 dL / g and a surface tension of 27 mN was supplied to an extruder hopper, extruded under conditions of a die temperature of 270 ° C. and a resin pressure of 70 kgf / cm 2 , and cut into a molten resin lump. . The molten resin mass was conveyed into a compression mold at 20 ° C. and compression molded under the condition of a clamping pressure of 100 kgf / cm 2 to prepare a single layer preform. It was possible to transport in a state where the deformation of the molten resin mass due to drawdown was satisfactorily suppressed, and the shapeability during compression was also good.

[実施例2]
固有粘度(IV)が0.78dL/g、表面張力が32mNのホモポリエチレンテレフタレートを用いた以外は実施例1と同様に成形を行った。ドローダウンによる溶融樹脂塊の変形が良好に抑制された状態で搬送することができ、また圧縮時の賦形性も良好であった。
[Example 2]
Molding was performed in the same manner as in Example 1 except that homopolyethylene terephthalate having an intrinsic viscosity (IV) of 0.78 dL / g and a surface tension of 32 mN was used. It was possible to transport in a state where the deformation of the molten resin mass due to drawdown was satisfactorily suppressed, and the shapeability during compression was also good.

[実施例3]
多官能成分としてトリメリット酸を0.1モル%含み、固有粘度(IV)が0.89dL/g、表面張力が48mNである共重合ポリエチレンテレフタレートを用いた以外は実施例1と同様に成形を行った。ドローダウンによる溶融樹脂塊の変形が良好に抑制された状態で搬送することができ、また圧縮時の賦形性も良好であった。
[Example 3]
Molding was carried out in the same manner as in Example 1 except that copolymerized polyethylene terephthalate containing 0.1 mol% of trimellitic acid as a polyfunctional component, having an intrinsic viscosity (IV) of 0.89 dL / g and a surface tension of 48 mN was used. went. It was possible to transport in a state where the deformation of the molten resin mass due to drawdown was satisfactorily suppressed, and the shapeability during compression was also good.

[比較例1]
共重合成分としてイソフタル酸を8モル%含み、固有粘度(IV)が0.71dL/g、表面張力が21mNである共重合ポリエチレンテレフタレートを用いた以外は実施例1と同様に成形を行った。その結果、賦形性は良好であったが、ドローダウンによる溶融樹脂塊の変形により搬送が不安定であった。
[Comparative Example 1]
Molding was performed in the same manner as in Example 1 except that copolymerized polyethylene terephthalate containing 8 mol% of isophthalic acid as a copolymerization component, having an intrinsic viscosity (IV) of 0.71 dL / g and a surface tension of 21 mN was used. As a result, the formability was good, but the conveyance was unstable due to deformation of the molten resin mass due to drawdown.

[比較例2]
多官能成分としてトリメリット酸を0.05モル%含み、固有粘度(IV)が0.67dL/g、表面張力が27mNである共重合ポリエチレンテレフタレートを用いた以外は実施例1と同様に成形を行った。その結果、賦形性は良好であったが、ドローダウンによる溶融樹脂塊の変形により搬送が不安定であった。
[Comparative Example 2]
Molding was performed in the same manner as in Example 1 except that copolymerized polyethylene terephthalate containing 0.05 mol% of trimellitic acid as the polyfunctional component, having an intrinsic viscosity (IV) of 0.67 dL / g and a surface tension of 27 mN was used. went. As a result, the formability was good, but the conveyance was unstable due to deformation of the molten resin mass due to drawdown.

[比較例3]
多官能成分としてトリメリット酸を0.4モル%含み、固有粘度(IV)が0.88dL/g、表面張力が55mNである共重合ポリエチレンテレフタレートを用いた以外は実施例1と同様に成形を行った。その結果、溶融樹脂塊の搬送は安定であったが、賦形しにくく、良好なプリフォームを成形することができなかった。
[Comparative Example 3]
Molding was performed in the same manner as in Example 1 except that copolymerized polyethylene terephthalate containing 0.4 mol% of trimellitic acid as a polyfunctional component, having an intrinsic viscosity (IV) of 0.88 dL / g and a surface tension of 55 mN was used. went. As a result, conveyance of the molten resin mass was stable, but it was difficult to form and a good preform could not be formed.

[比較例4]
固有粘度(IV)が0.98dL/g、表面張力が49mNのホモポリエチレンテレフタレートを用いた以外は実施例1と同様に成形を行った。その結果、溶融樹脂塊の搬送は安定であったが、賦形しにくく、良好なプリフォームを成形することができなかった。
[Comparative Example 4]
Molding was performed in the same manner as in Example 1 except that homopolyethylene terephthalate having an intrinsic viscosity (IV) of 0.98 dL / g and a surface tension of 49 mN was used. As a result, conveyance of the molten resin mass was stable, but it was difficult to form and a good preform could not be formed.

以上、実施例及び比較例の結果を表1に示す。   The results of Examples and Comparative Examples are shown in Table 1 above.

Figure 2005171109
Figure 2005171109

本発明のプリフォームの成形に用いられる圧縮成形機の一例を示す図である。It is a figure which shows an example of the compression molding machine used for shaping | molding of the preform of this invention. 本発明のプリフォームの一例を示す図である。It is a figure which shows an example of the preform of this invention. 本発明のポリエステル容器の一例を示す図である。It is a figure which shows an example of the polyester container of this invention.

Claims (4)

固有粘度(IV)0.70乃至0.90dL/gの範囲で、温度280℃における表面張力が25乃至50mNであることを特徴とする圧縮成形用ポリエステル樹脂。   A polyester resin for compression molding having an intrinsic viscosity (IV) of 0.70 to 0.90 dL / g and a surface tension at a temperature of 280 ° C. of 25 to 50 mN. ポリエステル樹脂から成る溶融樹脂塊を圧縮成形金型に供給し、これを圧縮成形してプリフォームを製造する方法において、前記溶融樹脂塊が、固有粘度(IV)0.70乃至0.90dL/gの範囲で温度280℃における表面張力が25乃至50mNであるポリエステル樹脂からなることを特徴とするプリフォームの製造方法。   In the method of supplying a molten resin lump made of polyester resin to a compression mold and compression-molding it to produce a preform, the molten resin lump has an intrinsic viscosity (IV) of 0.70 to 0.90 dL / g. A preform manufacturing method comprising a polyester resin having a surface tension of 25 to 50 mN at a temperature of 280 ° C. 請求項2記載の製造方法により製造されることを特徴とするプリフォーム。   A preform manufactured by the manufacturing method according to claim 2. 請求項3記載のプリフォームを延伸成形して成ることを特徴とするポリエステル容器。   A polyester container, wherein the preform according to claim 3 is stretch-molded.
JP2003414121A 2003-12-12 2003-12-12 Polyester resin for compression molding, manufacturing method of preform, preform and polyester container Pending JP2005171109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414121A JP2005171109A (en) 2003-12-12 2003-12-12 Polyester resin for compression molding, manufacturing method of preform, preform and polyester container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414121A JP2005171109A (en) 2003-12-12 2003-12-12 Polyester resin for compression molding, manufacturing method of preform, preform and polyester container

Publications (1)

Publication Number Publication Date
JP2005171109A true JP2005171109A (en) 2005-06-30

Family

ID=34734018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414121A Pending JP2005171109A (en) 2003-12-12 2003-12-12 Polyester resin for compression molding, manufacturing method of preform, preform and polyester container

Country Status (1)

Country Link
JP (1) JP2005171109A (en)

Similar Documents

Publication Publication Date Title
KR101154138B1 (en) Preform and blow molded container from the preform
EP0109305B1 (en) Laminates and their use in making containers
AU688899B2 (en) Polyethylene terephthalate-containing laminate
US8808611B2 (en) Method of producing biaxially stretched polyester bottles
JP2002103428A (en) Multilayered preform and multilayered bottle manufactured using the same
US20090317577A1 (en) Preform, method of producing the same, and biaxially drawn container made from the preform
EP2130782B1 (en) Pressure-resistant polyester container and process for producing the same
US20060006586A1 (en) Method of improving the environmental stress crack resistance of RPET without solid stating
JP4265122B2 (en) Multilayer bottle
JP4186587B2 (en) Preform and biaxially stretched container manufactured using the same
JP4239436B2 (en) Multilayer preform and multilayer bottle using the same
JPH1177744A (en) Preparation of multilayer preform having recovered polyester resin layer and multilayer preform
JP2003127211A (en) Method and apparatus for molding preform
JP2002248675A (en) Multilayer preform and its manufacturing method
JP4232348B2 (en) Multilayer preform manufacturing method
JP2005171109A (en) Polyester resin for compression molding, manufacturing method of preform, preform and polyester container
JP2005171081A (en) Polyester resin for compression molding, and preform and polyester container composed of the same
JP2004168039A (en) Preform, its manufacturing method, and container produced by biaxially stretching the preform
JP2005171082A (en) Polyester resin for compression molding, and preform and polyester container composed of the same
JP2005193379A (en) Method for manufacturing polyester preform
JP2002001802A (en) Method for manufacturing biaxially stretched polyester container showing prevented whitening at bottom portion
JP2019072902A (en) Preform, plastic bottle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915