JP2005171082A - Polyester resin for compression molding, and preform and polyester container composed of the same - Google Patents

Polyester resin for compression molding, and preform and polyester container composed of the same Download PDF

Info

Publication number
JP2005171082A
JP2005171082A JP2003413145A JP2003413145A JP2005171082A JP 2005171082 A JP2005171082 A JP 2005171082A JP 2003413145 A JP2003413145 A JP 2003413145A JP 2003413145 A JP2003413145 A JP 2003413145A JP 2005171082 A JP2005171082 A JP 2005171082A
Authority
JP
Japan
Prior art keywords
preform
resin
polyester
compression molding
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413145A
Other languages
Japanese (ja)
Inventor
Atsushi Kikuchi
淳 菊地
Hodaka Fukahori
穂高 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003413145A priority Critical patent/JP2005171082A/en
Publication of JP2005171082A publication Critical patent/JP2005171082A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • B29C2949/3009Preforms or parisons made of several components at neck portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • B29C2949/3058Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded
    • B29C2949/306Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin for compression molding which is suppressed in a drawing-down tendency at the time of melt extrusion and smoothly flowable at the time of compression molding, and to provide a manufacturing method of a preform which has reduced molding strain and excellent mechanical strength and is suppressed in scratch generation. <P>SOLUTION: The polyester resin for compression molding has melt viscosity of 100-200 Ns/m<SP>2</SP>at 265°C and a shear rate of 2,000 (1/sec). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮成形用ポリエステル樹脂に関し、より詳細には、圧縮成形金型への溶融押出し時のドローダウンが有効に防止されたポリエステル樹脂及びこの樹脂を用いて成形されたプリフォーム及びポリエステル容器、並びにこの樹脂を用いたプリフォームの製造方法に関する。   The present invention relates to a polyester resin for compression molding, and more specifically, a polyester resin in which drawdown during melt extrusion into a compression mold is effectively prevented, and a preform and a polyester container molded using this resin And a method for producing a preform using the resin.

延伸ブロー成形プラスチック容器、特に、二軸延伸ポリエステル容器は、今日では、一般化しており、その優れた透明性と適度なガスバリヤー性とにより、液体洗剤、シャンプー、化粧品、醤油、ソース等の液体商品、或いは食品等の容器の外に、ビール、コーラ、サイダー等の炭酸飲料や、果汁、ミネラルウォーター等の他の飲料容器に広く使用されている。
二軸延伸ポリエステル容器の成形に際しては、ポリエステル樹脂の射出成形により、最終容器より寸法がかなり小さく、且つポリエステルが非晶質である有底プリフォームを予め形成し、このプリフォームをその延伸温度に予備加熱し、ブロー金型中で軸方向に引張り延伸すると共に、周方向にブロー延伸する方法が採用されている(例えば、特許文献1)。
Stretch blow molded plastic containers, in particular biaxially stretched polyester containers, are now commonplace, and liquids such as liquid detergents, shampoos, cosmetics, soy sauce, sauces, etc. due to their excellent transparency and moderate gas barrier properties. In addition to containers for products or foods, they are widely used for carbonated drinks such as beer, cola, and cider, and other drink containers such as fruit juice and mineral water.
When forming a biaxially stretched polyester container, a bottomed preform having a size considerably smaller than the final container and having an amorphous polyester is formed in advance by injection molding of a polyester resin, and the preform is brought to its stretching temperature. A method of preheating, stretching in the axial direction in the blow mold and blow-stretching in the circumferential direction is employed (for example, Patent Document 1).

この有底プリフォームの形状としては、容器の口頚部に相当する口頚部と延伸ブロー成形されるべき有底筒状部とを備え、全体としての形状が試験管状のものが一般的である。口頚部には、例えば密封用開口端や蓋との係合手段が形成されている。またこの底部には、射出成形の必要性から、底部中心から外方に突出したゲート部が必ず形成されている。
しかしながら、一般に射出成形によるプリフォームの製造では、溶融可塑化された樹脂は、ノズル、スプルー、ランナー、ゲートを経てキャビティに注入されるため、射出成形機中における樹脂の滞留時間が長く、このような成形機中の長時間の滞留は、樹脂の劣化の原因になるおそれがある。特にポリエステル樹脂は、熱分解により固有粘度や分子量が低下するため、満足な機械的強度を得ることができないという問題が生じる。
As the shape of the bottomed preform, a mouth-and-neck portion corresponding to the mouth-and-neck portion of the container and a bottomed cylindrical portion to be stretch blow molded are generally used, and the shape as a whole is a test tube. The mouth / neck portion is formed with, for example, a sealing opening end or an engaging means with a lid. In addition, a gate portion that protrudes outward from the center of the bottom portion is always formed on the bottom portion because of the necessity of injection molding.
However, in general, in the manufacture of a preform by injection molding, the melt-plasticized resin is injected into the cavity through the nozzle, sprue, runner, and gate, so that the residence time of the resin in the injection molding machine is long. A long stay in a simple molding machine may cause deterioration of the resin. In particular, the polyester resin has a problem in that satisfactory mechanical strength cannot be obtained because the intrinsic viscosity and molecular weight decrease due to thermal decomposition.

このような観点から、有底プリフォームを樹脂の圧縮成形で製造することも既に提案されており、例えば特許文献2には、押出機から押し出された溶融樹脂を切断し、溶融樹脂塊(ドロップ)を保持して雌型内に供給した後、前記雌型内に雄型を圧入して雌型内で圧縮成形することからなるプリフォームの製造方法が記載されている。   From this point of view, it has already been proposed to produce a bottomed preform by compression molding of a resin. For example, Patent Document 2 discloses a method of cutting a molten resin mass (drop) by cutting a molten resin extruded from an extruder. ) Is held and supplied into the female mold, and then a male mold is press-fitted into the female mold and compression molding is performed in the female mold.

特開平4−154535号公報JP-A-4-154535 特開2000−280248号公報JP 2000-280248 A

熱可塑性ポリエステル樹脂のような延伸配向可能な結晶性樹脂は、一般にドローダウン傾向が大きく、可塑化時、すなわち溶融混練時の固有粘度(IV)低下が大きい場合には、ドロップ成形時にドローダウンを発生して、溶融樹脂塊を的確に保持することが困難になり、溶融樹脂塊の圧縮成形機への搬送性が低下してしまうことから、押出時の溶融樹脂の固有粘度が高いことが要求されるが、その一方、搬送性に優れる固有粘度の高い溶融樹脂塊は溶融粘度も高いため樹脂の流動性に劣り、このため圧縮成形金型における圧縮の際の成形歪がプリフォームに残留し、成形される容器の機械的強度に劣るという問題や、溶融樹脂塊の切断端縁にカッターマークが形成され、成形される容器に傷が付くという問題が生じていた。   Crystalline resins that can be stretched and oriented, such as thermoplastic polyester resins, generally have a large tendency to draw down, and when the intrinsic viscosity (IV) decreases greatly during plasticization, that is, during melt-kneading, drawdown is performed during drop molding. Occurs, it becomes difficult to accurately hold the molten resin lump, and the transportability of the molten resin lump to the compression molding machine is reduced, so that the intrinsic viscosity of the molten resin at the time of extrusion is required to be high On the other hand, a molten resin lump with high intrinsic viscosity, which is excellent in transportability, has poor melt flowability due to its high melt viscosity, so that molding distortion during compression in the compression mold remains in the preform. The problem is that the mechanical strength of the container to be molded is inferior, and the cutter mark is formed on the cut edge of the molten resin lump, and the molded container is scratched.

従って本発明の目的は、溶融押出し時のドローダウン傾向を抑制する一方、圧縮成形の際のスムーズな流動が可能な圧縮成形用ポリエステル樹脂を提供することである。
本発明の他の目的は、成形歪が低減され機械的強度に優れると共に、傷の発生が抑制されたプリフォームの製造方法を提供することである。
Accordingly, an object of the present invention is to provide a polyester resin for compression molding capable of suppressing a draw-down tendency at the time of melt extrusion while allowing a smooth flow during compression molding.
Another object of the present invention is to provide a method for producing a preform in which molding distortion is reduced and mechanical strength is excellent, and generation of scratches is suppressed.

本発明によれば、温度265℃及び剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/mであることを特徴とする圧縮成形用ポリエステル樹脂が提供される。
本発明によればまた、ポリエステル樹脂から成る溶融樹脂塊を圧縮成形機に供給し、これを圧縮成形してプリフォームを製造する方法において、前記溶融樹脂塊が、温度265℃及び剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/mであるポリエステル樹脂から成ることを特徴とするプリフォームの製造方法が提供される。
本発明によれば更にまた、上記製造方法により製造されることを特徴とするプリフォーム及びこのプリフォームを延伸成形して成ることを特徴とするポリエステル容器が提供される。
According to the present invention, there is provided a polyester resin for compression molding having a melt viscosity of 100 to 200 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec).
According to the present invention, a molten resin lump made of a polyester resin is supplied to a compression molding machine, and the molten resin lump is compressed at a temperature of 265 ° C. and a shear rate of 2000 ( 1 / sec), a preform manufacturing method comprising a polyester resin having a melt viscosity of 100 to 200 Ns / m 2 is provided.
According to the present invention, there is further provided a preform characterized by being produced by the above production method, and a polyester container characterized by being formed by stretching the preform.

本発明の圧縮成形用ポリエステル樹脂によれば、溶融押出しの際の樹脂のドローダウンの発生が有効に抑制されていると共に、圧縮成形の際の溶融樹脂の流動がスムーズであるため、成形歪を残すことなくプリフォームを成形することが可能になる。また溶融樹脂塊(ドロップ)の切断端縁が均一でカッターマークが形成されていないため、プリフォームに傷がつくことを有効に防止することが可能となる。
また本発明の圧縮成形ポリエステル樹脂から成るプリフォームは、機械的強度に優れると共に、外観特性にも優れている。
According to the polyester resin for compression molding of the present invention, the occurrence of resin drawdown during melt extrusion is effectively suppressed, and the flow of molten resin during compression molding is smooth, so that molding distortion is reduced. It becomes possible to mold the preform without leaving it. Further, since the cut edge of the molten resin lump (drop) is uniform and the cutter mark is not formed, it is possible to effectively prevent the preform from being damaged.
Further, the preform made of the compression-molded polyester resin of the present invention is excellent in mechanical strength and appearance characteristics.

本発明の圧縮成形用ポリエステル樹脂においては、温度265℃及び剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/mであることが重要な特徴であり、これにより、ドローダウン傾向が抑制されながら、圧縮成形の際の溶融樹脂のスムーズな流動を可能にし、成形性を向上することが可能となるのである。
すなわち、一般的なポリエステル樹脂(ポリエチレンテレフタレート)は溶融張力が低く、溶融押出し時にドローダウンが生じて、溶融樹脂塊を効率よく圧縮成形機に供給することが困難であり、このため溶融樹脂塊の固有粘度を高めにすることが要求されるが、樹脂の固有粘度を高くすると溶融粘度も高くなり、このため圧縮成形機での圧縮の際樹脂の流動性が低下して成形歪が大きくなり、これがプリフォームに残留するため、機械的強度に劣るようになる。また溶融樹脂塊の成形は、成形押出機から連続的に押し出された溶融樹脂をカッターで切断することにより行われるが、この際溶融樹脂塊の粘度が高いと、カッターの移動方向に切断端縁が流れ、その端部が角だった状態であるカッターマークが形成される傾向がある。このようなカッターマークのある溶融樹脂塊を圧縮成形すると成形されるプリフォームにカッターマークに起因する傷が入り、この傷が付いたプリフォームを延伸成形すると、成形品にも傷が生じてしまうのである。
In the polyester resin for compression molding according to the present invention, it is an important characteristic that the melt viscosity at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec) is 100 to 200 Ns / m 2 , and thereby drawdown While the tendency is suppressed, the molten resin can be smoothly flowed during compression molding, and the moldability can be improved.
That is, a general polyester resin (polyethylene terephthalate) has a low melt tension, and drawdown occurs during melt extrusion, making it difficult to efficiently supply the molten resin mass to the compression molding machine. Although it is required to increase the intrinsic viscosity, if the intrinsic viscosity of the resin is increased, the melt viscosity is also increased, so that the fluidity of the resin is reduced during compression in the compression molding machine, and the molding distortion is increased. Since this remains in the preform, it becomes inferior in mechanical strength. Molding of the molten resin mass is performed by cutting the molten resin continuously extruded from the molding extruder with a cutter. At this time, if the viscosity of the molten resin mass is high, the cutting edge in the moving direction of the cutter. Flows, and there is a tendency that a cutter mark having a corner at its end is formed. When a molten resin mass having such a cutter mark is compression-molded, scratches caused by the cutter mark enter the preform to be molded, and when the preform with this scratch is stretch-molded, the molded product is also scratched. It is.

本発明において、温度265℃における剪断速度2000(1/sec)の溶融粘度を問題とするのは、圧縮成形の際の雌型及び雄型表面により溶融樹脂に生じる流動歪を基準としてかかる流動歪が生じる際の溶融粘度を上記範囲に設定することにより、溶融押出し時のドローダウン傾向の抑制と圧縮成形の際の溶融樹脂の流動性という相反する特性の両方を満足することが可能となるのである。   In the present invention, the problem of the melt viscosity at a shear rate of 2000 (1 / sec) at a temperature of 265 ° C. is that the flow strain generated on the molten resin by the female mold and the male mold surface during compression molding is the reference. By setting the melt viscosity in the above range to the above range, it becomes possible to satisfy both contradictory properties of suppressing the drawdown tendency during melt extrusion and the fluidity of the molten resin during compression molding. is there.

本発明のこのような作用効果は、後述する実施例の結果からも明らかである。すなわち温度265℃における剪断速度2000(1/sec)のときの溶融粘度が100Ns/mよりも小さいポリエステル樹脂を用いた場合には(比較例1)、樹脂のドローダウンが発生し、圧縮成形金型に効率よく溶融樹脂塊を搬送することができず、生産性に劣っており、一方温度265℃における剪断速度2000(1/sec)のときの溶融粘度が200Ns/mよりも大きいポリエステル樹脂を用いた場合には、溶融樹脂塊の切断端縁にカッターマークが形成されプリフォームに傷が付き、延伸ブロー成形されたポリエステル容器の胴部に傷が付いていたり(比較例2)、或いはプリフォーム成形時の賦形性が劣っている(比較例3)ことがわかる。これに対し、温度265℃における剪断速度2000(1/sec)のときの溶融粘度が上記範囲にあるポリエステル樹脂を用いた場合には、溶融樹脂塊の搬送性に優れていると共に、成形されたプリフォームにはカッターマークもなく、延伸ブロー成形されたポリエステル容器は外観特性にも優れているのである(実施例1〜4)。 Such operational effects of the present invention are also apparent from the results of Examples described later. That is, when a polyester resin having a melt viscosity smaller than 100 Ns / m 2 at a shear rate of 2000 (1 / sec) at a temperature of 265 ° C. is used (Comparative Example 1), the resin draws down and compression molding is performed. Polyester that cannot efficiently convey the molten resin mass to the mold and is inferior in productivity, while the melt viscosity at a shear rate of 2000 (1 / sec) at a temperature of 265 ° C. is greater than 200 Ns / m 2 When the resin is used, a cutter mark is formed on the cut edge of the molten resin lump, the preform is scratched, and the body of the stretch blow molded polyester container is scratched (Comparative Example 2). Or it turns out that the shaping property at the time of preform molding is inferior (comparative example 3). On the other hand, when a polyester resin having a melt viscosity in the above range at a shear rate of 2000 (1 / sec) at a temperature of 265 ° C. is used, the molten resin lump is excellent in transportability and molded. The preform has no cutter mark, and the stretch blow molded polyester container is excellent in appearance characteristics (Examples 1 to 4).

本発明のプリフォームの圧縮成形による製造方法においては、押出機から押出された溶融樹脂をカッターで切断した溶融樹脂塊が、上述した溶融粘度を有することが重要である。これにより、溶融樹脂塊のドローダウンが抑制され、搬送治具による確実な保持及び圧縮成形金型への供給が可能になると共に、溶融樹脂塊のカッターマークの形成が防止され、プリフォームに傷が入ることが防止できる。また圧縮成形金型での溶融樹脂塊の圧縮に際し、溶融樹脂が流動性よく雌型及び雄型で形成される空間に行き渡り、成形歪を残すことなくプリフォームを成形することが可能となるのである。   In the production method of the preform of the present invention by compression molding, it is important that the molten resin mass obtained by cutting the molten resin extruded from the extruder with a cutter has the above-described melt viscosity. This suppresses drawdown of the molten resin lump, enables reliable holding by the conveying jig and supply to the compression mold, prevents formation of cutter marks on the molten resin lump, and damages the preform. Can be prevented. In addition, when the molten resin mass is compressed in the compression mold, the molten resin spreads in the space formed by the female mold and the male mold with good fluidity, and it becomes possible to mold the preform without leaving molding distortion. is there.

(ポリエステル樹脂)
本発明に用いるポリエステル樹脂は、温度265℃における剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/m、特に110乃至190Ns/mである点を除けば、従来公知のジカルボン酸成分及びジオール成分から成るポリエステル樹脂を用いることができる。
ジカルボン酸成分としては、ジカルボン酸成分の50%以上、特に80%がテレフタル酸であることが機械的性質や熱的性質から好ましいが、テレフタル酸以外のカルボン酸成分を含有することも勿論できる。テレフタル酸以外のカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、p−β−オキシエトキシ安息香酸、ビフェニル−4,4’−ジカルボン酸、ジフェノキシエタン−4,4’−ジカルボン酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸等を挙げることができる。
(Polyester resin)
The polyester resin used in the present invention is conventionally known except that the melt viscosity at a shear rate of 2000 (1 / sec) at a temperature of 265 ° C. is 100 to 200 Ns / m 2 , particularly 110 to 190 Ns / m 2 . A polyester resin comprising a dicarboxylic acid component and a diol component can be used.
As the dicarboxylic acid component, 50% or more, particularly 80% of the dicarboxylic acid component is preferably terephthalic acid from the viewpoint of mechanical properties and thermal properties, but it is of course possible to contain a carboxylic acid component other than terephthalic acid. Examples of carboxylic acid components other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, p-β-oxyethoxybenzoic acid, biphenyl-4,4′-dicarboxylic acid, diphenoxyethane-4,4′-dicarboxylic acid, 5- Examples thereof include sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid and the like.

ジオール成分としては、ジオール成分の50%以上、特に80%以上がエチレングリコールであることが、機械的性質や熱的性質から好ましく、エチレングリコール以外のジオール成分としては、1,4−ブタンジオール、プロピレングリコール、ネオペンチルグリコール、1,6−へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、グリセロール、トリメチロールプロパン等を挙げることができる。   As the diol component, 50% or more, particularly 80% or more of the diol component is preferably ethylene glycol in view of mechanical properties and thermal properties. As diol components other than ethylene glycol, 1,4-butanediol, Examples thereof include propylene glycol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexane dimethanol, an ethylene oxide adduct of bisphenol A, glycerol, and trimethylolpropane.

また上記ジカルボン酸成分及び時オール成分には、三官能以上の多塩基酸及び多価アルコールを含んでいてもよく、例えば、トリメリット酸、ピロメリット酸、ヘミメリット酸,1,1,2,2−エタンテトラカルボン酸、1,1,2−エタントリカルボン酸、1,3,5−ペンタントリカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、ビフェニル−3,4,3’,4’−テトラカルボン酸等の多塩基酸や、ペンタエリスリトール、グリセロール、トリメチロールプロパン、1,2,6−ヘキサントリオール、ソルビトール、1,1,4,4−テトラキス(ヒドロキシメチル)シクロヘキサン等の多価アルコールが挙げられる。   In addition, the dicarboxylic acid component and the all-time component may contain a tribasic or higher polybasic acid and a polyhydric alcohol. For example, trimellitic acid, pyromellitic acid, hemimellitic acid, 1,1,2, 2-ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid, 1,3,5-pentanetricarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, biphenyl-3,4,3 ′, Polybasic acids such as 4′-tetracarboxylic acid, and polybasic acids such as pentaerythritol, glycerol, trimethylolpropane, 1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl) cyclohexane And monohydric alcohols.

本発明のポリエステル樹脂は、溶融押出し時のドローダウンを抑制して圧縮成形工程までの搬送性を向上すると共に、溶融ポリエステル樹脂を切断してドロップを得る際の糸引き、圧縮金型内における正立安定をも向上させると共に、アセトアルデヒド除去の観点から、重量比1:1のフェノール/テトラクロロエタン混合溶媒を用い、30℃にて測定した固有粘度が、0.60乃至0.75dL/g、特に0.67乃至0.73dL/gの範囲にあることが好ましい。
更に、プリフォーム又はポリエステル容器の耐熱性、加工性等を満足するため、250℃未満、特に220乃至245℃の融点(Tm)を有することが好ましい。またガラス転移点は、30℃以上、特に50乃至120℃の範囲であることが好ましい。
The polyester resin of the present invention suppresses drawdown during melt extrusion to improve the transportability up to the compression molding process, and also performs stringing when cutting the molten polyester resin to obtain a drop, and the correctness in the compression mold. In addition to improving the standing stability and from the viewpoint of removing acetaldehyde, the inherent viscosity measured at 30 ° C. using a phenol / tetrachloroethane mixed solvent with a weight ratio of 1: 1 is 0.60 to 0.75 dL / g, particularly It is preferably in the range of 0.67 to 0.73 dL / g.
Furthermore, in order to satisfy the heat resistance and workability of the preform or polyester container, it is preferable to have a melting point (Tm) of less than 250 ° C., particularly 220 to 245 ° C. The glass transition point is preferably 30 ° C. or higher, particularly 50 to 120 ° C.

本発明のポリエステル樹脂には、それ自体公知の樹脂用配合剤、例えば着色剤、抗酸化剤、安定剤、各種帯電防止剤、離型剤、滑剤、核剤等を最終成形品の品質を損なわない範囲で公知の処方に従って配合することができる。   The polyester resin of the present invention contains known compounding agents for resins such as colorants, antioxidants, stabilizers, various antistatic agents, mold release agents, lubricants, nucleating agents, etc. It can mix | blend according to a well-known prescription in the range which is not.

(プリフォーム)
本発明のプリフォームは、上記圧縮成形用ポリエステル樹脂を圧縮成形することにより得られるものであるが、上記圧縮成形用ポリエステル樹脂のみからなる単層のものは勿論、上記圧縮成形用ポリエステル樹脂から成る層に他の熱可塑性樹脂から成る層を有する多層プリフォームであってもよい。
上記ポリエステル樹脂以外の熱可塑性樹脂としては、延伸ブロー成形及び熱結晶化可能な樹脂であれば任意のものを使用でき、これに限定されないが、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ビニルアルコール共重合体、環状オレフィン重合体などのオレフィン系樹脂や、キシリレン基含有ポリアミドなどのポリアミド樹脂等を挙げることができる。また、キシリレン基含有ポリアミドにジエン系化合物、遷移金属系触媒を配合した酸素吸収性ガスバリヤー樹脂組成物や、リサイクルポリエステル(PCR(使用済みボトルを再生した樹脂)、SCR(生産工場内で発生した樹脂)又はそれらの混合物)等も用いることができる。これらのリサイクルポリエステル樹脂は、前述した方法で測定した固有粘度(IV)が0.60乃至0.75dL/gの範囲にあることが好ましい。
(preform)
The preform of the present invention is obtained by compression-molding the above-mentioned compression-molding polyester resin, but it is made of the above-mentioned compression-molding polyester resin as well as a single layer composed only of the above-mentioned compression-molding polyester resin. A multilayer preform having a layer made of another thermoplastic resin in the layer may be used.
As the thermoplastic resin other than the polyester resin, any resin can be used as long as it is a resin that can be stretch blow molded and thermally crystallized, and is not limited thereto. However, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene- Examples thereof include olefin resins such as vinyl alcohol copolymers and cyclic olefin polymers, and polyamide resins such as xylylene group-containing polyamide. In addition, oxygen-absorbing gas barrier resin compositions containing diene compounds and transition metal catalysts in polyamides containing xylylene groups, recycled polyesters (PCR (resin that recycles used bottles), SCRs (generated in production plants) Resin) or a mixture thereof) can also be used. These recycled polyester resins preferably have an intrinsic viscosity (IV) measured by the method described above in the range of 0.60 to 0.75 dL / g.

リサイクルポリエステルは、単独で使用することもできるし、バージンのポリエステルとのブレンド物として用いることもできる。リサイクルポリエステルが低下した固有粘度を有する場合には、バージンのポリエステルとブレンドして用いることが好ましく、この場合、リサイクルポリエステル:バージンのポリエステルの配合比は、1:5乃至5:1の重量比にあることが好ましい。
また内層又は外層と中間層を接着させるために、接着性樹脂を介在させることもできる。接着性樹脂としては、マレイン酸などをグラフト重合した酸変性オレフィン系樹脂や非晶性のポリエステル系樹脂やポリアミド系樹脂等を使用することができる。
また、上記ポリエステル樹脂以外の熱可塑性樹脂にも、上記圧縮成形用ポリエステル樹脂と同様に各種樹脂用添加剤を配合できる。
The recycled polyester can be used alone or as a blend with virgin polyester. When the recycled polyester has a reduced intrinsic viscosity, it is preferably used by blending with the virgin polyester. In this case, the ratio of the recycled polyester: virgin polyester is 1: 5 to 5: 1. Preferably there is.
Moreover, in order to adhere | attach an inner layer or an outer layer, and an intermediate | middle layer, adhesive resin can also be interposed. As the adhesive resin, an acid-modified olefin resin obtained by graft polymerization of maleic acid or the like, an amorphous polyester resin, a polyamide resin, or the like can be used.
Moreover, various additives for resin can be mix | blended with thermoplastic resins other than the said polyester resin similarly to the said polyester resin for compression molding.

本発明の多層プリフォームの層構成は、これに限定されないが、以下のものを例示できる。尚、以下の多層構造における略号は、PET:本発明の圧縮成形用ポリエステル樹脂、GBR:ガスバリヤー性樹脂、PCR:リサイクルポリエステル樹脂、ADR:接着性樹脂、OAR:酸素吸収性樹脂組成物、COC:環状オレフィン共重合体である。
三層構造:PET/GBR/PET、PET/PCR/PET
PET/(PET+PCR)/PET
四層構造:PET/GBR/PCR/PET、
PET/GBR/OAR/PET、
PET/GBR/COC/PET
五層構造:PET/ADR/GBR/ADR/PET
PET/ADR/OAR/ADR/PET
PET/GBR/PCR/GBR/PET
PET/ADR/(GBR+OAR)/ADR/PET
六層構造:PET/ADR/GBR/AR/PCR/PET
PET/ADR/OAR/ADR/PCR/PET
七層構造:PET/PCR/ADR/GBR/ADR/PCR/PET
PET/ADR/GBR/ADR/OAR/ADR/PET
Although the layer structure of the multilayer preform of the present invention is not limited to this, the following can be exemplified. The following abbreviations in the multilayer structure are: PET: polyester resin for compression molding of the present invention, GBR: gas barrier resin, PCR: recycled polyester resin, ADR: adhesive resin, OAR: oxygen-absorbing resin composition, COC : Cyclic olefin copolymer.
Three-layer structure: PET / GBR / PET, PET / PCR / PET
PET / (PET + PCR) / PET
Four-layer structure: PET / GBR / PCR / PET,
PET / GBR / OAR / PET,
PET / GBR / COC / PET
Five-layer structure: PET / ADR / GBR / ADR / PET
PET / ADR / OAR / ADR / PET
PET / GBR / PCR / GBR / PET
PET / ADR / (GBR + OAR) / ADR / PET
Six-layer structure: PET / ADR / GBR / AR / PCR / PET
PET / ADR / OAR / ADR / PCR / PET
Seven-layer structure: PET / PCR / ADR / GBR / ADR / PCR / PET
PET / ADR / GBR / ADR / OAR / ADR / PET

(プリフォームの成形)
本発明のプリフォームは、前述した通り、上記圧縮成形用ポリエステル樹脂を従来公知の圧縮成形法により成形することができる。
圧縮成形では、樹脂の滞留時間が短いので、射出成形のような樹脂の熱劣化が少ないため、汎用樹脂を用いることもできる。また、射出成形のように底部に底部の白化原因となるゲート部が形成されることがなく、しかもプリフォームの底部に樹脂の流動配向が生じにくく、該底部に流動配向による残留歪みが生じることがないので、成形品の物性に影響が少ないという利点もある。
(Preform molding)
As described above, the preform of the present invention can be molded from the compression molding polyester resin by a conventionally known compression molding method.
In compression molding, since the residence time of the resin is short, there is little thermal deterioration of the resin as in injection molding, so that a general-purpose resin can also be used. In addition, the gate part that causes whitening of the bottom is not formed at the bottom as in the case of injection molding, and the flow orientation of the resin hardly occurs at the bottom of the preform, and the residual strain due to the fluid orientation occurs at the bottom. Therefore, there is an advantage that the physical properties of the molded product are less affected.

本発明のプリフォームにおいては、本発明の圧縮成形用ポリエステル樹脂を用いる限り、従来公知の圧縮成形法により成形できる。
すなわち押出機により、溶融物を連続的に押し出すと共に、これを切断して、溶融状態にあるプリフォーム用の前駆成形体である溶融樹脂塊(ドロップ)を製造し、この溶融樹脂塊を圧縮成形機のキャビティ型に投入し、これをコア型で圧縮成形する。この際前述した通り、溶融樹脂塊が温度265℃における剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/m、特に110乃至190Ns/mの範囲にあることが溶融樹脂塊の搬送性及び流動性の点で好ましい。
また圧縮成形金型を回転ターレット上に周状に多数配置させると、間欠的ではあるが連続に近い状態で、プリフォームを高能率で成形することが可能となる。
The preform of the present invention can be molded by a conventionally known compression molding method as long as the polyester resin for compression molding of the present invention is used.
That is, the extruder continuously extrudes the melt and cuts it to produce a molten resin lump (drop) that is a preformed preform for a preform in a molten state. The molten resin lump is compression molded. It is put into the cavity mold of the machine, and this is compression molded with the core mold. At this time, as described above, the molten resin has a melt viscosity of 100 to 200 Ns / m 2 , particularly 110 to 190 Ns / m 2 when the molten resin mass has a shear rate of 2000 (1 / sec) at a temperature of 265 ° C. It is preferable in terms of lump transportability and fluidity.
Further, when a large number of compression molding dies are arranged circumferentially on the rotating turret, the preform can be molded with high efficiency in an intermittent but nearly continuous state.

本発明のプリフォームの製法においては、溶融ポリエステル樹脂の溶融押出温度が、ポリエステル樹脂の融点(Tm)を基準として、Tm+5℃乃至Tm+40℃、特にTm+10℃乃至Tm+30℃の範囲であることが好ましく、上記温度よりも低い温度では、剪断速度が大きくなりすぎて一様な溶融押出物を形成することが困難になる場合があり、一方上記範囲よりも高温では、樹脂の熱劣化の程度が大きくなったり、或いはドローダウンが大きくなりすぎ、上述した特性を有するプリフォームを成形することが困難になる。   In the preform production method of the present invention, the melt extrusion temperature of the molten polyester resin is preferably in the range of Tm + 5 ° C. to Tm + 40 ° C., particularly Tm + 10 ° C. to Tm + 30 ° C., based on the melting point (Tm) of the polyester resin. At a temperature lower than the above temperature, the shear rate becomes too high, and it may be difficult to form a uniform melt extrudate. On the other hand, at a temperature higher than the above range, the degree of thermal degradation of the resin increases. Or the drawdown becomes too large, and it becomes difficult to form a preform having the above-mentioned characteristics.

図1は、本発明の圧縮成形用ポリエステル樹脂を用いて多層プリフォームを成形する際の圧縮成形装置を示す説明図であり、全体を1で示す圧縮成形装置は、本発明の圧縮成形用ポリステル樹脂から成る内外層用樹脂Aを主押出機2から連続的に供給し、ガスバリヤー性樹脂等の中間層用樹脂Bを副押出機3から間欠的に供給して、多層ダイ4内で合流させて樹脂Aが樹脂Bを封入するように多層ダイ4の下方に設けられたノズル5から溶融押出しを行い、水平方向に移動可能な切断手段6によって押出された複合溶融樹脂7を中間層の存在しない部分で所定寸法に切断する。この切断された複合溶融樹脂塊8は、切断直後に治具に挟んで雌型9及び雄型10から構成される圧縮成形装置の雌型9内に搬送する。雌型9内にある複合溶融樹脂塊8を雄型10で圧縮成形して中間層が内層及び外層で封入された多層プリフォームが成形される。   FIG. 1 is an explanatory view showing a compression molding apparatus when a multilayer preform is molded using the polyester resin for compression molding of the present invention. The compression molding apparatus generally indicated by 1 is a polyester for compression molding of the present invention. The resin A for inner and outer layers made of resin is continuously supplied from the main extruder 2 and the resin B for intermediate layer such as gas barrier resin is intermittently supplied from the sub-extruder 3 to join in the multilayer die 4. Then, the resin A is melt-extruded from the nozzle 5 provided below the multilayer die 4 so as to enclose the resin B, and the composite molten resin 7 extruded by the cutting means 6 movable in the horizontal direction is used as the intermediate layer. Cut to a predetermined dimension at the non-existing part. The cut composite molten resin lump 8 is conveyed into a female mold 9 of a compression molding apparatus composed of a female mold 9 and a male mold 10 immediately after cutting, sandwiched between jigs. The composite molten resin mass 8 in the female mold 9 is compression-molded by the male mold 10 to form a multilayer preform in which the intermediate layer is sealed with the inner layer and the outer layer.

図2は、本発明のプリフォームの内、多層プリフォームの一例の断面図である。全体を20で示す多層プリフォームは、口頚部21、胴部22及び底部23から成っている。図に示す具体例では、底部にゲート部のない圧縮成形により成形されたプリフォームであり、また口頚部21の端部21aを除く部分は、内層24、中間層25及び外層26の3層同構造になっている。   FIG. 2 is a cross-sectional view of an example of a multilayer preform among the preforms of the present invention. The multi-layer preform indicated as a whole by 20 consists of a mouth-and-neck part 21, a trunk part 22 and a bottom part 23. In the specific example shown in the figure, the preform is formed by compression molding having no gate portion at the bottom, and the portion excluding the end portion 21a of the mouth and neck portion 21 is the same as the three layers of the inner layer 24, the intermediate layer 25 and the outer layer 26. It has a structure.

(ポリエステル容器)
本発明のポリエステル容器は、上記プリフォームを延伸成形することにより得ることができる。
延伸ブロー成形においては、本発明のプリフォームを延伸温度に加熱し、このプリフォームを軸方向に延伸すると共に周方向に二軸延伸ブロー成形して二軸延伸容器を製造する。
尚、プリフォームの成形とその延伸ブロー成形とは、コールドパリソン方式の他、プリフォームを完全に冷却しないで延伸ブロー成形を行うホットパリソン方式にも適用できる。
延伸ブローに先立って、必要により、プリフォームを熱風、赤外線ヒーター、高周波誘導加熱等の手段で延伸適正温度まで予備加熱する。その温度範囲はポリエステルの場合85乃至120℃、特に95乃至110℃の範囲にあるのがよい。
(Polyester container)
The polyester container of the present invention can be obtained by stretching the preform.
In the stretch blow molding, the preform of the present invention is heated to a stretching temperature, the preform is stretched in the axial direction, and biaxial stretch blow molding is performed in the circumferential direction to produce a biaxially stretched container.
The preform molding and the stretch blow molding can be applied to a hot parison system in which stretch blow molding is performed without completely cooling the preform, in addition to the cold parison system.
Prior to stretching blow, if necessary, the preform is preheated to an appropriate stretching temperature by means of hot air, an infrared heater, high frequency induction heating or the like. In the case of polyester, the temperature range is 85 to 120 ° C., particularly 95 to 110 ° C.

このプリフォームをそれ自体公知の延伸ブロー成形機中に供給し、金型内にセットして、延伸棒の押し込みにより軸方向に引っ張り延伸すると共に、流体の吹込みにより周方向へ延伸成形する。金型温度は、一般に室温乃至190℃の範囲にあることが好ましいが、後述するようにワンモールド法で熱固定を行う場合は、金型温度を120乃至180℃に設定することが望ましい。
最終のポリエステル容器における延伸倍率は、面積倍率で1.5乃至25倍が適当であり、この中でも軸方向延伸倍率を1.2乃至6倍とし,周方向延伸倍率を1.2乃至4.5倍とするのが好ましい。
The preform is supplied into a publicly known stretch blow molding machine, set in a mold, stretched in the axial direction by pushing a stretching rod, and stretched in the circumferential direction by blowing a fluid. In general, the mold temperature is preferably in the range of room temperature to 190 ° C. However, as described later, when heat setting is performed by the one mold method, the mold temperature is preferably set to 120 to 180 ° C.
The draw ratio in the final polyester container is suitably 1.5 to 25 times in terms of area magnification. Among these, the axial draw ratio is 1.2 to 6 times, and the circumferential draw ratio is 1.2 to 4.5. It is preferable to double.

本発明のポリエステル容器は、それ自体公知の手段で熱固定することもできる。熱固定は、ブロー成形金型中で行うワンモールド法で行うこともできるし、ブロー成形金型とは別個の熱固定用の金型中で行うツーモールド法で行うこともできる。熱固定の温度は120乃至180℃の範囲が適当である。
また他の延伸ブロー成形方法として、本出願人にかかる特許第2917851号公報に例示されるように、プリフォームを、1次ブロー金型を用いて最終成形品よりも大きい寸法の1次ブロー成形体とし、次いでこの1次ブロー成形体を加熱収縮させた後、2次ブロー金型を用いて延伸ブロー成形を行って最終成形品とする二段ブロー成形法を採用してもよい。
The polyester container of the present invention can be heat-set by a means known per se. The heat setting can be performed by a one-mold method performed in a blow molding die, or can be performed by a two-mold method performed in a heat fixing die separate from the blow molding die. The temperature for heat setting is suitably in the range of 120 to 180 ° C.
As another stretch blow molding method, as illustrated in Japanese Patent No. 29178851 of the present applicant, a preform is subjected to primary blow molding having a size larger than that of a final molded product using a primary blow mold. A two-stage blow molding method may be employed in which the primary blow molded body is heated and shrunk, and then stretch blow molding is performed using a secondary blow mold to obtain a final molded product.

本発明のポリエステル容器のうち、多層構造の一例を図3に示す。この図3において、全体を40で示す二軸延伸容器はボトル形状で、口部41、胴部42及び底部43からなっており、胴部42及び底部43は、内層44a外層44b及びこれらの間に内封された中間層45からなっている。口部41は、上述した多層プリフォームと同様に内外層樹脂のみで形成されている。   An example of the multilayer structure of the polyester container of the present invention is shown in FIG. In FIG. 3, the biaxially stretched container generally indicated by 40 has a bottle shape and is composed of a mouth part 41, a body part 42 and a bottom part 43. The body part 42 and the bottom part 43 are composed of an inner layer 44a and an outer layer 44b. It consists of the intermediate | middle layer 45 enclosed in. The mouth portion 41 is formed of only the inner and outer layer resins as in the multilayer preform described above.

[実施例1]
温度265℃、剪断速度2000(1/sec)における溶融粘度が102Ns/mであるホモのポリエチレンテレフタレート樹脂を押出機ホッパーに供給し、ダイ温度270℃、樹脂圧力70kgf/cmの条件で押出し、溶融樹脂塊に切断した。この溶融樹脂塊を20℃の圧縮金型内にセットして、型締め圧力100kgf/cmの条件で圧縮成形を行い単層プリフォームを成形したところ、圧縮成形時の耐ドローダウン性、搬送性は良好であり、また成形したプリフォームにカッターマークは観測されなかった。得られたプリフォームを延伸温度である110℃に加熱し、25℃の金型内で二軸延伸ブロー成形を行ったところ、重量が25g、容量が530mlである外観特性に優れた単層PETボトルを得ることができた。
[Example 1]
A homopolyethylene terephthalate resin having a melt viscosity of 102 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec) is supplied to an extruder hopper and extruded under conditions of a die temperature of 270 ° C. and a resin pressure of 70 kgf / cm 2. And cut into molten resin mass. When this molten resin mass was set in a compression mold at 20 ° C. and compression molding was performed under the condition of a clamping pressure of 100 kgf / cm 2, a single layer preform was molded. In addition, the cutter mark was not observed on the molded preform. The obtained preform was heated to a stretching temperature of 110 ° C. and biaxially stretched and blow-molded in a mold at 25 ° C., and a single-layer PET excellent in appearance characteristics having a weight of 25 g and a capacity of 530 ml. Could get a bottle.

[実施例2]
ポリエチレンテレフタレート樹脂を内外層用押出機に供給し、メタキシリレンアジパミド樹脂(東洋紡(株)社製T600)を中間層用ベント付き押出機に供給して、ポリエチレンテレフタレート樹脂がメタキシリレンアジパミド樹脂を封入するように共押出して溶融樹脂塊に切断したこと以外は実施例1と同様の成形を行い中間層の割合が3wt%である2種3層多層プリフォーム及びボトルを得た。圧縮成形時の耐ドローダウン性、搬送性は良好であり、またプリフォーム、ボトルのカッターマークも観測されなかった。
[Example 2]
Polyethylene terephthalate resin is supplied to an extruder for inner and outer layers, and metaxylylene adipamide resin (T600 manufactured by Toyobo Co., Ltd.) is supplied to an extruder with a vent for intermediate layer. Except that it was coextruded so as to enclose the amide resin and cut into a molten resin mass, the same molding as in Example 1 was carried out to obtain a two-type three-layer multilayer preform and a bottle having an intermediate layer ratio of 3 wt%. . The drawdown resistance and the transportability during compression molding were good, and neither preform nor bottle cutter marks were observed.

[実施例3]
温度265℃、剪断速度2000(1/sec)における溶融粘度が150Ns/mであるホモのポリエチレンテレフタレート樹脂を用いた以外は実施例1と同様の成形を行い、単層のプリフォーム及びボトルを得た。圧縮成形時の耐ドローダウン性、搬送性は良好であり、またプリフォーム、ボトルのカッターマークも観測されなかった。
[Example 3]
Except for using a homopolyethylene terephthalate resin having a melt viscosity of 150 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec), the same molding as in Example 1 was performed. Obtained. The drawdown resistance and the transportability during compression molding were good, and neither preform nor bottle cutter marks were observed.

[実施例4]
温度265℃、剪断速度2000(1/sec)における溶融粘度が195Ns/mであるホモのポリエチレンテレフタレート樹脂を用いた以外は実施例1と同様の成形を行い、単層のプリフォーム及びボトルを得た。圧縮成形時の耐ドローダウン性、搬送性は良好であり、またプリフォーム、ボトルのカッターマークも観測されなかった。
[Example 4]
Except for using a homopolyethylene terephthalate resin having a melt viscosity of 195 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec), the same molding as in Example 1 was performed, and a single layer preform and bottle were formed. Obtained. The drawdown resistance and the transportability during compression molding were good, and neither preform nor bottle cutter marks were observed.

[比較例1]
温度265℃、剪断速度2000(1/sec)における溶融粘度が90Ns/mであるホモのポリエチレンテレフタレート樹脂を用いた以外は実施例1と同様に圧縮成形を行ったところ、ドローダウンにより樹脂の搬送が不安定であった。
[Comparative Example 1]
A compression molding was performed in the same manner as in Example 1 except that a homopolyethylene terephthalate resin having a melt viscosity of 90 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec) was used. The conveyance was unstable.

[比較例2]
温度265℃、剪断速度2000(1/sec)における溶融粘度が210Ns/mであるホモのポリエチレンテレフタレート樹脂を用いた以外は実施例1と同様に単層のプリフォーム及びボトルを成形したが、圧縮成形時のカッターマークがプリフォーム及びボトル壁面に残存していた。
[Comparative Example 2]
A single layer preform and bottle were molded in the same manner as in Example 1 except that a homopolyethylene terephthalate resin having a melt viscosity of 210 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec) was used. Cutter marks at the time of compression molding remained on the preform and the bottle wall surface.

[比較例3]
温度265℃、剪断速度2000(1/sec)における溶融粘度が300Ns/mであるホモのポリエチレンテレフタレート樹脂を用いた以外は実施例2と同様に圧縮成形を行ったが賦形性に劣るため良好なプリフォームが得られなかった。またカッターマークも残存していた。
[Comparative Example 3]
Although compression molding was carried out in the same manner as in Example 2 except that a homopolyethylene terephthalate resin having a melt viscosity of 300 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec) was used, it was inferior in formability. A good preform could not be obtained. Cutter marks also remained.

以上の実施例及び比較例の結果を表1に示す。   The results of the above examples and comparative examples are shown in Table 1.

Figure 2005171082
Figure 2005171082

本発明のプリフォームの成形に用いられる圧縮成形機の一例を示す図である。It is a figure which shows an example of the compression molding machine used for shaping | molding of the preform of this invention. 本発明のプリフォームの一例を示す図である。It is a figure which shows an example of the preform of this invention. 本発明のポリエステル容器の一例を示す図である。It is a figure which shows an example of the polyester container of this invention.

Claims (4)

温度265℃及び剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/mであることを特徴とする圧縮成形用ポリエステル樹脂。 A polyester resin for compression molding having a melt viscosity of 100 to 200 Ns / m 2 at a temperature of 265 ° C. and a shear rate of 2000 (1 / sec). ポリエステル樹脂から成る溶融樹脂塊を圧縮成形機に供給し、これを圧縮成形してプリフォームを製造する方法において、前記溶融樹脂塊が、温度265℃及び剪断速度2000(1/sec)のときの溶融粘度が100乃至200Ns/mであるポリエステル樹脂から成ることを特徴とするプリフォームの製造方法。 In the method of supplying a molten resin lump made of polyester resin to a compression molding machine and compression-molding it to produce a preform, the molten resin lump has a temperature of 265 ° C. and a shear rate of 2000 (1 / sec). A method for producing a preform, comprising a polyester resin having a melt viscosity of 100 to 200 Ns / m 2 . 請求項2記載のプリフォームの製造方法により製造されることを特徴とするプリフォーム。   A preform manufactured by the preform manufacturing method according to claim 2. 請求項3記載のプリフォームを延伸成形して成ることを特徴とするポリエステル容器。   A polyester container, wherein the preform according to claim 3 is stretch-molded.
JP2003413145A 2003-12-11 2003-12-11 Polyester resin for compression molding, and preform and polyester container composed of the same Pending JP2005171082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413145A JP2005171082A (en) 2003-12-11 2003-12-11 Polyester resin for compression molding, and preform and polyester container composed of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413145A JP2005171082A (en) 2003-12-11 2003-12-11 Polyester resin for compression molding, and preform and polyester container composed of the same

Publications (1)

Publication Number Publication Date
JP2005171082A true JP2005171082A (en) 2005-06-30

Family

ID=34733359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413145A Pending JP2005171082A (en) 2003-12-11 2003-12-11 Polyester resin for compression molding, and preform and polyester container composed of the same

Country Status (1)

Country Link
JP (1) JP2005171082A (en)

Similar Documents

Publication Publication Date Title
KR101154138B1 (en) Preform and blow molded container from the preform
US8808611B2 (en) Method of producing biaxially stretched polyester bottles
AU688899B2 (en) Polyethylene terephthalate-containing laminate
EP0109305B1 (en) Laminates and their use in making containers
JP2002103428A (en) Multilayered preform and multilayered bottle manufactured using the same
US20090317577A1 (en) Preform, method of producing the same, and biaxially drawn container made from the preform
EP2130782B1 (en) Pressure-resistant polyester container and process for producing the same
US20100206762A1 (en) Multilayer polyester container and process for producing the same
JP4265122B2 (en) Multilayer bottle
KR20040111477A (en) Heat resistant polyester container and process for producing the same
JP4186587B2 (en) Preform and biaxially stretched container manufactured using the same
JP4239436B2 (en) Multilayer preform and multilayer bottle using the same
JP2003127211A (en) Method and apparatus for molding preform
JP2002248675A (en) Multilayer preform and its manufacturing method
JP2005171082A (en) Polyester resin for compression molding, and preform and polyester container composed of the same
JP2005171081A (en) Polyester resin for compression molding, and preform and polyester container composed of the same
JP4232348B2 (en) Multilayer preform manufacturing method
JP2004168039A (en) Preform, its manufacturing method, and container produced by biaxially stretching the preform
JP2005171109A (en) Polyester resin for compression molding, manufacturing method of preform, preform and polyester container
JP2005193379A (en) Method for manufacturing polyester preform
JP2002001802A (en) Method for manufacturing biaxially stretched polyester container showing prevented whitening at bottom portion
JP2019072902A (en) Preform, plastic bottle and method for producing the same
JPS6089362A (en) Multilayer stretched polyester bottle and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027