JP2005171033A - Spherical composite cured melamine resin particle and its production method - Google Patents

Spherical composite cured melamine resin particle and its production method Download PDF

Info

Publication number
JP2005171033A
JP2005171033A JP2003411129A JP2003411129A JP2005171033A JP 2005171033 A JP2005171033 A JP 2005171033A JP 2003411129 A JP2003411129 A JP 2003411129A JP 2003411129 A JP2003411129 A JP 2003411129A JP 2005171033 A JP2005171033 A JP 2005171033A
Authority
JP
Japan
Prior art keywords
melamine resin
core
shell
melamine
colloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003411129A
Other languages
Japanese (ja)
Other versions
JP4243848B2 (en
Inventor
Masaaki Ozawa
雅昭 小澤
Katsumi Chikama
克己 近間
Akira Yoshida
章 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2003411129A priority Critical patent/JP4243848B2/en
Publication of JP2005171033A publication Critical patent/JP2005171033A/en
Application granted granted Critical
Publication of JP4243848B2 publication Critical patent/JP4243848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core-shell type spherical composite cured melamine resin particle whose shell layer thickness is larger than those of conventional particles to improve the light-scattering characteristic and light-reflecting characteristic of the particle for visible light, and further to provide a method for producing the resin particle. <P>SOLUTION: This core-shell type spherical composite cured melamine resin particle whose core comprises a melamine-based resin, whose shell comprises a melamine-based resin-silica composite layer tightly filled with colloidal silica having an average particle diameter of 5 to 70 nm, and which has a shell layer thickness of 80 to 400 nm, and its production method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コア−シェル型の球状複合硬化メラミン樹脂粒子およびその製造方法に関するものである。   The present invention relates to a core-shell type spherical composite cured melamine resin particle and a method for producing the same.

本発明のコア−シェル型の球状複合硬化メラミン樹脂粒子は、特に可視光に対する光散乱特性や光反射特性を改良でき、さらに耐水性、耐溶剤性、耐熱性も良好で、粒子径分布が狭いという特徴を有し、塗料、インキ、各種研磨剤、各種分析試薬、診断試薬、印刷材料、トナーおよびトナー用外添剤、艶消し剤、樹脂フィラー、樹脂フィルムの滑り性向上剤、クロマト充填剤、耐磨耗剤、液晶ディスプレイ用スペーサー、光拡散シートの光拡散剤、デジタルペーパーなどの電気泳動表示装置用顔料、タッチパネル用ハードコート剤、光学材料、磁性材料、導電材料、難燃剤、製紙材料、繊維処理材料などとして好適に利用される。   The core-shell type spherical composite cured melamine resin particles of the present invention can improve light scattering characteristics and light reflection characteristics especially for visible light, and also have good water resistance, solvent resistance, heat resistance, and narrow particle size distribution. Paints, inks, various abrasives, various analytical reagents, diagnostic reagents, printing materials, toners and external additives for toners, matting agents, resin fillers, resin film slipperiness improvers, chromatographic fillers , Anti-wear agent, liquid crystal display spacer, light diffusion sheet light diffusion agent, pigment for electrophoretic display devices such as digital paper, hard coat agent for touch panel, optical material, magnetic material, conductive material, flame retardant, papermaking material It is preferably used as a fiber processing material.

従来より、光散乱、隠蔽性、光反射防止などの光特性や耐熱性などを改良するために、コア−シェル型粒子が提案されている。メラミン系樹脂をコアとしたコア−シェル型粒子の製造方法としては、水性媒体中で塩基性触媒とフッ化カルシウム、フッ化マグネシウム及びフッ化ストロンチウムからなる群より選ばれた少なくとも1種の実質的に水に不溶性の無機塩類の懸濁下でメラミンとアルデヒド化合物を反応させる方法が開示されている。(特許文献1参照。)この方法では粒子表面が実質的に水に不溶な無機塩類で被覆された硬化メラミン樹脂粒子が得られるが、無機塩類の層厚みについての記載はない。   Conventionally, core-shell type particles have been proposed in order to improve light characteristics such as light scattering, concealability, and light reflection prevention and heat resistance. As a method for producing core-shell type particles having a melamine resin core, at least one substance selected from the group consisting of a basic catalyst, calcium fluoride, magnesium fluoride and strontium fluoride in an aqueous medium is used. Discloses a method of reacting melamine with an aldehyde compound in a suspension of inorganic salts insoluble in water. (See Patent Document 1.) In this method, cured melamine resin particles whose particle surfaces are coated with inorganic salts that are substantially insoluble in water are obtained, but there is no description about the layer thickness of the inorganic salts.

また5〜70nmの平均粒子径を有するコロイダルシリカの懸濁下でメラミン化合物とアルデヒド化合物の初期縮合物の水溶液を生成させ、この水溶液に酸触媒を加えて球状複合硬化メラミン樹脂粒子を析出させる方法が開示されている。(特許文献2参照)この方法で得られる球状複合硬化メラミン樹脂粒子は、コロイダルシリカが粒子表面付近のメラミン系硬化樹脂内に埋め込まれているか、又は粒子表面上に固着した状態で存在しており、シェル層に相当するメラミン樹脂−シリカ複合層の厚みは50nm以下であった。シェルの層厚みが50nm以下であると可視光はシェル層を通過してしまうので、光特性においてシェル層の存在は無関係であった。   Also, a method of forming an aqueous solution of an initial condensate of a melamine compound and an aldehyde compound under a suspension of colloidal silica having an average particle diameter of 5 to 70 nm and adding an acid catalyst to the aqueous solution to precipitate spherical composite cured melamine resin particles Is disclosed. (See Patent Document 2) The spherical composite cured melamine resin particles obtained by this method are present in a state where colloidal silica is embedded in the melamine cured resin near the particle surface or fixed on the particle surface. The thickness of the melamine resin-silica composite layer corresponding to the shell layer was 50 nm or less. Since visible light passes through the shell layer when the thickness of the shell layer is 50 nm or less, the presence of the shell layer is irrelevant in optical characteristics.

特に可視光に対する粒子の光散乱特性や光反射特性を改良するために、従来のものよりシェルの層厚みを厚くしたコア−シェル型の球状複合硬化メラミン樹脂粒子を製造する方法の開発が望まれている。
特開昭62−10126号公報(特許請求の範囲) 特開2002−327036号公報(特許請求の範囲)
In particular, in order to improve the light scattering characteristics and light reflection characteristics of particles with respect to visible light, it is desired to develop a method for producing core-shell type spherical composite cured melamine resin particles having a thicker shell layer than conventional ones. ing.
Japanese Patent Laid-Open No. 62-10126 (Claims) JP 2002-327036 A (Claims)

上述のように、従来のメラミン系樹脂をコアとしたコア−シェル型粒子は、シェルの層厚みが50nm以下であるので特に可視光に対する粒子の光散乱特性や光反射特性を改良することにおいて課題がある。   As described above, the core-shell type particles having the conventional melamine resin as the core have a shell layer thickness of 50 nm or less, and thus there is a problem in improving the light scattering characteristics and light reflection characteristics of the particles particularly for visible light. There is.

従って、本発明の目的は、従来よりシェルの層厚みを厚くした、具体的にはコアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、該シェルの層厚みが80〜400nmであるコア−シェル型の球状複合硬化メラミン樹脂粒子を提供する。そして、コア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法を提供する。   Accordingly, an object of the present invention is to increase the shell thickness of the shell, more specifically, a melamine in which the core is made of a melamine resin and the shell is closely packed with colloidal silica having an average particle diameter of 5 to 70 nm. Provided is a core-shell type spherical composite cured melamine resin particle having a shell layer thickness of 80 to 400 nm, comprising a resin-silica composite layer. And the manufacturing method of a core-shell type spherical composite hardening melamine resin particle is provided.

本発明の目的は、以下の手段によって達成される。   The object of the present invention is achieved by the following means.

本発明の第一観点は、コアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、80〜400nmの該シェルの層厚みを有する、コア−シェル型の球状複合硬化メラミン樹脂粒子である。   The first aspect of the present invention is that the core is made of a melamine-based resin, and the shell is made of a melamine-based resin-silica composite layer in which colloidal silica having an average particle diameter of 5 to 70 nm is densely packed. These are core-shell type spherical composite cured melamine resin particles having a shell layer thickness.

次に本発明の第二観点は、下記の工程(a)及び(b)を含む、コアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、80〜400nmの該シェルの層厚みを有する、コア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法である。   Next, the second aspect of the present invention includes the following steps (a) and (b), wherein the core is made of a melamine resin, and the shell is densely filled with colloidal silica having an average particle diameter of 5 to 70 nm. This is a method for producing core-shell type spherical composite cured melamine resin particles having a shell thickness of 80 to 400 nm, comprising a melamine resin-silica composite layer.

(a):無機酸のアルカリ金属塩を溶解した水性媒体中、5〜70nmの平均粒子径を有するコロイダルシリカの懸濁下で、メラミン化合物とアルデヒド化合物を塩基性条件下で反応させて、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる工程、及び
(b):(a)工程で得られた水溶液に酸触媒を加えて、球状複合硬化メラミン樹脂粒子を析出させる工程。
(A): A melamine compound and an aldehyde compound are reacted under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm in an aqueous medium in which an alkali metal salt of an inorganic acid is dissolved, and water A step of forming an aqueous solution of an initial condensate of melamine-based resin that is soluble in the solution, and (b): a step of adding an acid catalyst to the aqueous solution obtained in the step (a) to precipitate spherical composite cured melamine resin particles.

その好ましい態様は、以下の通りである。   The preferable aspect is as follows.

(a)工程において、無機酸のアルカリ金属塩の添加量が、メラミン化合物100質量部に対して0.1〜20質量部であること。   (A) In process, the addition amount of the alkali metal salt of an inorganic acid is 0.1-20 mass parts with respect to 100 mass parts of melamine compounds.

(a)工程において、コロイダルシリカの添加量が、メラミン化合物100質量部に対して3.0〜100質量部であること。   (A) In process, the addition amount of colloidal silica is 3.0-100 mass parts with respect to 100 mass parts of melamine compounds.

コロイダルシリカが水性シリカゾルであること。   Colloidal silica is an aqueous silica sol.

特に可視光に対する粒子の光散乱特性や光反射特性を改良するために、コアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、該シェルの層厚みが80〜400nmであるコア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法を確立し、該粒子を提供することを可能にした。   In particular, in order to improve light scattering characteristics and light reflection characteristics of particles with respect to visible light, a melamine resin in which a core is made of a melamine resin and a shell is closely packed with colloidal silica having an average particle diameter of 5 to 70 nm. The manufacturing method of the core-shell type spherical composite cured melamine resin particles having a shell layer thickness of 80 to 400 nm composed of a silica composite layer has been established, and the particles can be provided.

まず(a)工程について具体的に説明する。(a)工程で使用されるメラミン化合物としては、メラミン、メラミンのアミノ基の水素をアルキル基、アルケニル基、フェニル基で置換した置換メラミン化合物[米国特許第5,998,573号明細書(対応日本特許:特開平9−143238号公報)に記載されている。]、そしてメラミンのアミノ基の水素をヒドロキシアルキル基、ヒドロキシアルキル(オキサアルキル)n基、アミノアルキル基で置換した置換メラミン化合物[米国特許第5,322,915号明細書(対応日本特許:特開平5−202157号公報)に記載されている。]などが使用できる。この中では安価なメラミンが最も好ましい。   First, the step (a) will be specifically described. As the melamine compound used in the step (a), melamine, a substituted melamine compound in which the hydrogen of the amino group of melamine is substituted with an alkyl group, an alkenyl group, or a phenyl group [US Pat. No. 5,998,573 (corresponding) (Japanese Patent: JP-A-9-143238). And a substituted melamine compound in which the hydrogen of the amino group of melamine is substituted with a hydroxyalkyl group, a hydroxyalkyl (oxaalkyl) n group or an aminoalkyl group [US Pat. No. 5,322,915 (corresponding Japanese Patent: Special (Kaihei 5-202157). ] Can be used. Of these, inexpensive melamine is most preferred.

またメラミン化合物とメラミン化合物の一部を尿素、チオ尿素、エチレン尿素などの尿素類、ベンゾグアナミン、アセトグアナミンなどのグアナミン類、フェノール、クレゾール、アルキルフェノール、レゾルシン、ハイドロキノン、ピロガロールなどのフェノール類、アニリンで置き換えて混合物として使用することもできる。   Also, melamine compounds and some of the melamine compounds are replaced with ureas such as urea, thiourea and ethylene urea, guanamines such as benzoguanamine and acetoguanamine, phenols such as phenol, cresol, alkylphenol, resorcin, hydroquinone and pyrogallol, and aniline. Can also be used as a mixture.

アルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、フルフラールなどが挙げられるが、安価でメラミン化合物との反応性が良いホルムアルデヒドやパラホルムアルデヒドが好ましい。アルデヒド化合物はメラミン化合物1モルに対して有効アルデヒド基当たり1.1〜6.0モル、特に1.2〜4.0モルをとなるアルデヒド化合物を使用することが好ましい。   Examples of the aldehyde compound include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, furfural and the like, but formaldehyde and paraformaldehyde which are inexpensive and have good reactivity with the melamine compound are preferable. As the aldehyde compound, it is preferable to use an aldehyde compound having an amount of 1.1 to 6.0 mol, particularly 1.2 to 4.0 mol, per effective aldehyde group with respect to 1 mol of the melamine compound.

本発明の(a)工程で使用する媒体としては水が最も好ましい。また水の一部を、水に可溶する有機溶媒に置き換えた混合溶液も使用でき、この場合メラミン樹脂の初期縮合物や無機酸のアルカリ金属塩を溶解することが可能な有機溶媒を選択すると良い。好ましい有機溶媒としては、メタノール、エタノール、イソプロパノール、プロパノールなどのアルコール類、ジオキサン、テトラヒドロフラン、1,2−ジメトキシエタンなどのエーテル類、ジメチルホルムアミド、ジメチルスルオキシドなどの極性溶媒が挙げられる。   Water is most preferable as the medium used in the step (a) of the present invention. In addition, a mixed solution in which a part of water is replaced with an organic solvent soluble in water can be used. In this case, if an organic solvent capable of dissolving an initial condensate of melamine resin or an alkali metal salt of an inorganic acid is selected. good. Preferable organic solvents include alcohols such as methanol, ethanol, isopropanol and propanol, ethers such as dioxane, tetrahydrofuran and 1,2-dimethoxyethane, and polar solvents such as dimethylformamide and dimethyl sulfoxide.

無機酸のアルカリ金属塩は、水溶性のものが使用できる。具体例として、塩酸、硫酸、硝酸、リン酸などのリチウム塩、ナトリウム塩、カリウム塩が挙げられる。無機酸のアルカリ金属塩の添加量は、メラミン化合物100質量部に対して0.1〜20質量部存在させることが好ましい。0.1質量部未満ではメラミン系樹脂−シリカ複合層からなるシェルの層厚みが80nm未満になり好ましくない。   A water-soluble alkali metal salt of an inorganic acid can be used. Specific examples include lithium salts such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, sodium salts, and potassium salts. The addition amount of the alkali metal salt of the inorganic acid is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the melamine compound. If it is less than 0.1 part by mass, the thickness of the shell composed of the melamine resin-silica composite layer is less than 80 nm, which is not preferable.

コロイダルシリカは、5〜70nmの平均粒子径を有するものが使用される。   Colloidal silica having an average particle diameter of 5 to 70 nm is used.

ここでコロイダルシリカの平均粒子径は、窒素吸着法(BET法)により測定して得られる比表面積径である。平均粒子径(比表面積径)(Dnm)は、窒素吸着法で測定して、比表面積Sm/gから、D=2720/Sの式によって与えられる。沈降性シリカパウダー、気相法シリカパウダーなどのパウダー状のコロイダルシリカを使用することもできるが、好ましくは媒体中で一次粒子レベルまで安定分散させたコロイダルシリカのゾルを使用すると良い。コロイダルシリカのゾルとしては水性シリカゾルとオルガノシリカゾルがありどちらも適用可能であるが、メラミン樹脂の製造に水性媒体を用いるため、コロイダルシリカのゾルの分散安定性の面から水性シリカゾルを使用することが最も好ましい。コロイダルシリカのゾル中のシリカ濃度(Si02濃度)は5〜50質量%のものが一般に市販されており、容易に入手できて好ましい。 Here, the average particle diameter of colloidal silica is a specific surface area diameter obtained by measurement by a nitrogen adsorption method (BET method). The average particle diameter (specific surface area diameter) (Dnm) is given by the formula D = 2720 / S from the specific surface area Sm 2 / g as measured by the nitrogen adsorption method. Although powdered colloidal silica such as precipitated silica powder and vapor phase method silica powder can be used, it is preferable to use a colloidal silica sol stably dispersed to the primary particle level in a medium. There are two types of colloidal silica sols: aqueous silica sol and organosilica sol, both of which can be used. However, since an aqueous medium is used for the production of melamine resin, aqueous silica sol can be used from the viewpoint of dispersion stability of colloidal silica sol. Most preferred. Silica concentration in the sol of colloidal silica (Si0 2 concentration) are generally commercially available include the 5 to 50 mass%, preferably with readily available.

コロイダルシリカの平均粒子径が70nmを超える場合は、後の(b)工程で析出する複合硬化メラミン樹脂は球状粒子になり難くなる。球状複合硬化メラミン樹脂粒子の平均粒子径は、一般的にメラミン系樹脂濃度が低いほど、またコロイダルシリカの平均粒子径が小さいほど小さくなる傾向にある。   When the average particle diameter of colloidal silica exceeds 70 nm, the composite cured melamine resin that precipitates in the subsequent step (b) is difficult to become spherical particles. In general, the average particle diameter of the spherical composite cured melamine resin particles tends to be smaller as the melamine resin concentration is lower and the average particle diameter of the colloidal silica is smaller.

コロイダルシリカの添加量は、メラミン化合物100質量部に対して3.0〜100質量部、特に5.0〜50質量部存在させることが好ましい。3.0質量部未満ではシェルの層厚みが80〜400nmである、コア−シェル型の球状複合硬化メラミン樹脂粒子を得ることが困難になり、シェルの層厚みが80nm未満になりやすい。また100質量部を超えてもコア−シェル型の球状複合硬化メラミン樹脂粒子が得られるが、球状ではなく、球状複合硬化メラミン樹脂粒子に比べ微小な凝集粒子が副生するので好ましくない。   The amount of colloidal silica added is preferably 3.0 to 100 parts by mass, more preferably 5.0 to 50 parts by mass with respect to 100 parts by mass of the melamine compound. If it is less than 3.0 parts by mass, it becomes difficult to obtain core-shell type spherical composite cured melamine resin particles having a shell layer thickness of 80 to 400 nm, and the shell layer thickness tends to be less than 80 nm. If the amount exceeds 100 parts by mass, the core-shell type spherical composite cured melamine resin particles can be obtained, but it is not preferable because it is not spherical, and fine aggregated particles are by-produced compared to the spherical composite cured melamine resin particles.

本発明の(a)工程において、メラミン化合物とアルデヒド化合物の反応は塩基性条件下で行われる。一般的なメラミン樹脂に使用される塩基性触媒を使用し、反応液のpHを7〜10に調整して反応を行うことが好ましい。塩基性触媒としては、例えば水酸化ナトリウム、水酸化カリウム、アンモニア水などが好適に使用できる。反応は、通常50〜80℃で行えばよく、分子量200〜700程度の水に可溶なメラミン樹脂の初期縮合物の水溶液が調製される。   In the step (a) of the present invention, the reaction between the melamine compound and the aldehyde compound is performed under basic conditions. It is preferable to carry out the reaction by using a basic catalyst used for a general melamine resin and adjusting the pH of the reaction solution to 7 to 10. As the basic catalyst, for example, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be suitably used. The reaction may be usually performed at 50 to 80 ° C., and an aqueous solution of an initial condensate of melamine resin soluble in water having a molecular weight of about 200 to 700 is prepared.

次に(b)工程について説明する。(b)工程の硬化反応で使用する酸触媒としては特に制限はなく、塩酸、硫酸、硝酸、リン酸や、メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、アルキルベンゼンスルホン酸、スルファミン酸などのスルホン酸類、ギ酸、シュウ酸、安息香酸、フタル酸などの有機酸などが挙げられる。   Next, step (b) will be described. (B) There is no restriction | limiting in particular as an acid catalyst used by hardening reaction of a process, such as hydrochloric acid, a sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, alkylbenzenesulfonic acid, sulfamic acid, etc. Examples include sulfonic acids, formic acid, oxalic acid, benzoic acid, and organic acids such as phthalic acid.

(b)工程において、(a)工程で得られた初期縮合物の水溶液に酸触媒を加えて硬化反応を行うが、通常は酸触媒添加後、数分でコア−シェル型の硬化メラミン樹脂粒子が析出する。硬化反応は、反応液のpHを酸触媒により3〜7に調整して、70〜100℃で行うことが好ましい。   In the step (b), an acid catalyst is added to the aqueous solution of the initial condensate obtained in the step (a) to perform a curing reaction. Usually, the core-shell type cured melamine resin particles are added within a few minutes after the addition of the acid catalyst. Precipitates. The curing reaction is preferably performed at 70 to 100 ° C. by adjusting the pH of the reaction solution to 3 to 7 with an acid catalyst.

また本発明において、(a)工程および/または(b)工程で、蛍光染料や水溶性染料を添加することにより、コアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、シェルの層厚みが80〜400nmである、着色されたコア−シェル型の球状複合硬化メラミン樹脂粒子を製造することができる。   Further, in the present invention, a colloidal having a core made of melamine resin and a shell having an average particle diameter of 5 to 70 nm by adding a fluorescent dye or a water-soluble dye in step (a) and / or (b). Colored core-shell type spherical composite cured melamine resin particles having a shell layer thickness of 80 to 400 nm, which is composed of a melamine-based resin-silica composite layer densely filled with silica, can be produced.

蛍光染料としては、公知の蛍光染料や蛍光増白染料を使用できる。メラミン樹脂の製造に水性媒体を使用するため、水溶性の蛍光染料を使用することが好ましく、酸性染料でも塩基性染料でもどちらでも使用できる。また蛍光染料と蛍光を有さない通常の染料を組み合わせて使用することもできる。蛍光染料としては、キサンテン系、ベンゾキサンテン系、ベンゾチオキサンテン系、クマリン系、ペリレン系、ナフタルイミド系、アクリジン系、チオフラビン系、ジアミノスチルベン系、イミダゾール系、チアゾール系、オキサゾール系、ピラゾリン系などがあり、具体的には、ウラニン(C.I.45350)、ベーシックイエロー1(C.I.49005)、アクリジンイエロー(C.I.46025)、エオシンY(C.I.45380)、エオシンB(C.I.45400)、ローダミンB(C.I.45170)、ローダミン6G(C.I.45160)、ブリリアントブルーFCF(C.I.42090)、ブリリアントブルー6B(C.I.24410)、アシッドブルー92(C.I.13390)、ナフトールグリーンB(C.I.10020)、ブリリアントグリーン(C.I.42040)、アリザリングリーン(C.I.42100)などが挙げられる。   Known fluorescent dyes and fluorescent whitening dyes can be used as the fluorescent dye. Since an aqueous medium is used for the production of the melamine resin, it is preferable to use a water-soluble fluorescent dye, and either an acid dye or a basic dye can be used. Moreover, it can also be used combining the fluorescent dye and the normal dye which does not have fluorescence. Fluorescent dyes include xanthene, benzoxanthene, benzothioxanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole, pyrazoline, etc. Specifically, uranin (C.I. 45350), basic yellow 1 (C.I. 49005), acridine yellow (C.I. 46025), eosin Y (C.I. 45380), eosin B ( CI. 45400), Rhodamine B (C.I. 45170), Rhodamine 6G (C.I. 45160), Brilliant Blue FCF (C.I. 42090), Brilliant Blue 6B (C.I. 24410), Acid Blue 92 (C.I. 13390), naphthol green (C.I.10020), brilliant green (C.I.42040), alizarin green (C.I.42100) and the like.

水溶性染料としては、公知の酸性染料や塩基性染料を使用できる。例えば、ベンゾキノン系、ナフトキノン系、アントラキノン系、アゾ系、フタロシアニン系、インジゴイド系、フェニルメタン系、ニトロ系、ニトロソ系、アジン系、キノリン系、メチン系などが挙げられ、具体的には、タートラジン(C.I.19140)、メタニルイエロー(C.I.13065)、ニューコクシン(C.I.16255)、ファストレッドS(C.I.15620)、アシッドブルー41(C.I.62130)、アシッドブルー45(C.I.63010)、インジゴカルミン(C.I.73015)、アルファズリンFG(C.I.42090)、アシッドグリーン3(C.I.42085)、アシッドグリーン5(C.I.42095)、ファストグリーンFCF(C.I.42053)、ナフトールブルーブラック(C.I.20470)などが挙げられる。
蛍光染料や水溶性染料の添加は、(a)工程でも(b)工程でもどちらでもよく、また(a)工程と(b)工程でそれぞれ分割して添加してもよい。(b)工程で加える場合は、コア−シェル型の硬化メラミン樹脂粒子が析出した後に加えてもよいが、通常析出後30分以内に加えることが好ましい。コア−シェル型の硬化メラミン樹脂粒子の析出後30分以上経過してから加えると、着色の程度が不十分になりやすい。
As the water-soluble dye, known acid dyes and basic dyes can be used. Examples include benzoquinone, naphthoquinone, anthraquinone, azo, phthalocyanine, indigoid, phenylmethane, nitro, nitroso, azine, quinoline, methine, and the like. Specifically, tartrazine ( CI 19140), Methanil Yellow (C.I. 13065), New Coxin (C.I. 16255), Fast Red S (C.I. 15620), Acid Blue 41 (C.I. 62130) Acid Blue 45 (C.I. 63010), Indigo Carmine (C.I. 73015), Alphazurin FG (C.I. 42090), Acid Green 3 (C.I. 42085), Acid Green 5 (C I.42095), Fast Green FCF (C.I.42053), Naphthol Blue Click (C.I.20470) and the like.
The fluorescent dye or water-soluble dye may be added in either step (a) or step (b), or may be added separately in steps (a) and (b). When adding in the step (b), it may be added after the core-shell type cured melamine resin particles are precipitated, but it is usually preferable to add within 30 minutes after the precipitation. If added after 30 minutes or more after the deposition of the core-shell type cured melamine resin particles, the degree of coloring tends to be insufficient.

蛍光染料や水溶性染料の添加量は、メラミン化合物100質量部に対して0.01〜20質量部、特に0.05〜10質量部存在させることが好ましい。0.01質量部未満では着色の程度が不十分であり、20質量部を超えると(b)工程で塊状ゲル化を起こしやすくなり、安定的に着色されたコア−シェル型の球状複合硬化メラミン樹脂粒子を得ることが困難になる。   The addition amount of the fluorescent dye or the water-soluble dye is preferably 0.01 to 20 parts by mass, particularly 0.05 to 10 parts by mass with respect to 100 parts by mass of the melamine compound. If the amount is less than 0.01 parts by weight, the degree of coloring is insufficient, and if it exceeds 20 parts by weight, it becomes easy to cause massive gelation in the step (b), and the core-shell type spherical composite cured melamine is colored stably. It becomes difficult to obtain resin particles.

本発明ではさらに紫外線吸収剤を添加することができる。紫外線吸収剤としては、ヒドロキシベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、ヒンダードアミン系などの公知の紫外線吸収剤を使用できる。メラミン樹脂の製造に水性媒体を使用するため、水溶性の紫外線吸収剤を使用することが好ましい。   In the present invention, an ultraviolet absorber can be further added. As the ultraviolet absorber, known ultraviolet absorbers such as hydroxybenzophenone, benzotriazole, salicylate, and hindered amine can be used. Since an aqueous medium is used for production of the melamine resin, it is preferable to use a water-soluble ultraviolet absorber.

紫外線吸収剤の添加は、(a)工程でも(b)工程でもどちらでもよく、また(a)工程と(b)工程でそれぞれ分割して添加してもよい。(b)工程で加える場合は、硬化メラミン樹脂粒子が析出した後に加えてもよいが、通常析出後30分以内に加えることが好ましい。   The ultraviolet absorber may be added in either step (a) or step (b), or may be added separately in steps (a) and (b). In the case of adding in the step (b), it may be added after the cured melamine resin particles are precipitated, but it is usually preferably added within 30 minutes after the precipitation.

紫外線吸収剤の添加量は、メラミン化合物100質量部に対して0.01〜20質量部、特に0.05〜10質量部存在させることが好ましい。20質量部を超えると(b)工程で塊状ゲル化を起こしやすくなり、安定的に着色されたコア−シェル型の球状複合硬化メラミン樹脂粒子を得ることが困難になる。   The addition amount of the ultraviolet absorber is preferably 0.01 to 20 parts by mass, particularly 0.05 to 10 parts by mass with respect to 100 parts by mass of the melamine compound. When it exceeds 20 parts by mass, it becomes easy to cause bulk gelation in the step (b), and it becomes difficult to obtain core-shell type spherical composite cured melamine resin particles that are stably colored.

本発明で得られるコア−シェル型の球状複合硬化メラミン樹脂粒子は、一般的な濾過又は遠心分離した固形分を乾燥するか、又は樹脂粒子の水分散スラリーを直接噴霧乾燥することにより、粉末状の粒子として得ることができる。乾燥条件は、温度が50℃から250℃、時間は0.01時間から50時間行うことが好ましい。乾燥された粉末状の粒子が粒子間凝集している場合は、ホモミキサー、ヘンシェルミキサー、レーディゲミキサーなどの剪断力を有する混合機や、ピンディスクミル、パルベライザー、イノマイザー、カウンタージェットミルなどの粉砕機で適切に処理すれば、球状粒子を破壊することなく粒子間凝集をほぐすことができる。   The core-shell type spherical composite cured melamine resin particles obtained in the present invention are in a powder form by drying a solid content obtained by general filtration or centrifugation, or by directly spray-drying an aqueous dispersion slurry of resin particles. It can be obtained as particles. The drying conditions are preferably a temperature of 50 ° C. to 250 ° C. and a time of 0.01 hours to 50 hours. If the dried powder particles are aggregated between particles, use a mixer with shearing force such as a homomixer, Henschel mixer, or Laedige mixer, or a pin disc mill, pulverizer, inomizer, counter jet mill, etc. When appropriately treated with a pulverizer, interparticle aggregation can be loosened without destroying the spherical particles.

本発明で得られるコア−シェル型の球状複合硬化メラミン樹脂粒子は、平均粒子径が0.5〜100μmである。ここでコア−シェル型の球状複合硬化メラミン樹脂粒子の平均粒子径(μm)は、Mie理論に基づくレーザー回折・散乱法により測定して得られる50%体積径(メジアン径)である。   The core-shell type spherical composite cured melamine resin particles obtained in the present invention have an average particle size of 0.5 to 100 μm. The average particle diameter (μm) of the core-shell type spherical composite cured melamine resin particles is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction / scattering method based on the Mie theory.

本発明のコア−シェル型の球状複合硬化メラミン樹脂粒子の製造において、コロイダルシリカの作用機構は明らかではないが、おそらくメラミン系樹脂中のアミノ基とコロイダルシリカ粒子表面に存在するシラノール基が水素結合的に作用するために、メラミン系硬化樹脂粒子の析出時にコロイダルシリカが界面活性剤としての役割を果たしていると考えられる。
さらに無機酸のアルカリ金属塩は、コロイダルシリカの粒子表面特性に影響を与え、コア−シェル型の球状複合硬化メラミン樹脂粒子の表面でコロイダルシリカが数層から数十層に積層させる役目を果たしていると考えられる。そのため、通常コロイダルシリカをメラミン化合物に対して所定量より多く添加した場合は、球状ではなく球状複合硬化メラミン樹脂粒子に比べ微小な凝集粒子が副生する傾向にあるが、無機酸のアルカリ金属塩を使用した場合はメラミン化合物に対してコロイダルシリカを所定量より多く添加しても微小な凝集粒子が副生し難く、結果としてコロイダルシリカを多く添加することができ、シリカからなるシェル層を厚くすることが可能になると考えられる。
In the production of the core-shell type spherical composite cured melamine resin particles of the present invention, the mechanism of action of the colloidal silica is not clear, but the amino groups in the melamine resin and the silanol groups present on the surface of the colloidal silica particles are probably hydrogen bonds. Therefore, it is considered that colloidal silica plays a role as a surfactant during precipitation of melamine-based cured resin particles.
Furthermore, the alkali metal salt of an inorganic acid affects the particle surface properties of colloidal silica, and plays a role in laminating colloidal silica into several to several tens of layers on the surface of core-shell type spherical composite cured melamine resin particles. it is conceivable that. Therefore, usually when colloidal silica is added in a larger amount than the predetermined amount with respect to the melamine compound, there is a tendency that fine agglomerated particles are produced as a by-product as compared to spherical composite cured melamine resin particles instead of spherical particles. When a larger amount of colloidal silica is added to the melamine compound than a predetermined amount, fine agglomerated particles are hardly produced as a by-product, and as a result, a large amount of colloidal silica can be added, resulting in a thicker silica shell layer. It will be possible to do this.

本発明で得られるコアがメラミン系樹脂、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなり、該シェルの層厚みが80〜400nmである、コア−シェル型球状複合硬化メラミン樹脂粒子とは、一次粒子が球状で独立しており、空孔は有しておらず、シェル層はコロイダルシリカがメラミン系硬化樹脂内で密に充填された状態で存在していることを意味している。コロイダルシリカは粒子表面付近のメラミン系硬化樹脂内に埋め込まれていたり、粒子表面上に固着した状態で存在する。このような形態は、コア−シェル型の球状複合硬化メラミン樹脂粒子のスライス片を、電子顕微鏡を用いた撮影写真などによって容易に観察することができる。   The core obtained in the present invention is composed of a melamine-based resin, a shell is a melamine-based resin-silica composite layer in which colloidal silica having an average particle diameter of 5 to 70 nm is closely packed, and the shell has a layer thickness of 80 to 400 nm. Some core-shell type spherical composite cured melamine resin particles have primary particles that are spherical and independent, do not have pores, and the shell layer is closely packed with colloidal silica in the melamine-based cured resin. It means that it exists in the state. Colloidal silica is embedded in a melamine-based cured resin near the particle surface or is fixed on the particle surface. In such a form, a slice of core-shell type spherical composite cured melamine resin particles can be easily observed by a photograph taken using an electron microscope.

本発明で得られるコアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、該シェルの層厚みが80〜400nmである、コア−シェル型球状複合硬化メラミン樹脂粒子は、メラミン樹脂の屈折率(n)が約1.65で、コロイダルシリカの屈折率(n)が約1.46であり、コアとシェル間で屈折率差を有するため、可視光が照射されると粒子の最表面とコア−シェル界面の両方で反射するので、光散乱特性や光反射特性を改良することができる。 The core obtained in the present invention is composed of a melamine-based resin, and the shell is composed of a melamine-based resin-silica composite layer in which colloidal silica having an average particle diameter of 5 to 70 nm is closely packed. The core-shell type spherical composite cured melamine resin particle having a thickness of 400 nm has a refractive index (n D ) of melamine resin of about 1.65 and a refractive index (n D ) of colloidal silica of about 1.46. Therefore, when the visible light is irradiated, the light is reflected at both the outermost surface of the particle and the core-shell interface, so that the light scattering characteristics and the light reflection characteristics can be improved.

以下に実施例、比較例をもって本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

シェルの層厚みの測定は以下のようにして行った。   The thickness of the shell layer was measured as follows.

包埋用ボードに包埋用エポキシ樹脂と本発明の粒子と硬化剤を入れて十分に混ぜ、温度60℃のオーブン中で一晩硬化させた。硬化物をミクロトーム[ULTRACUT N(商品名)Reichert−Nissen製]で薄片化して、粒子のスライス片を透過型電子顕微鏡(TEM)にて撮影した。TEM写真よりシェルの層厚みを実測した。   The embedding board was filled with the embedding epoxy resin, the particles of the present invention and the curing agent, and was cured in an oven at a temperature of 60 ° C. overnight. The cured product was sliced with a microtome [ULTRACUT N (trade name) manufactured by Reichert-Nissen], and a slice of the particle was photographed with a transmission electron microscope (TEM). The thickness of the shell layer was measured from a TEM photograph.

実施例1
撹拌機、還流コンデンサー及び温度計を装備した2Lの反応フラスコに、メラミン80.0g、37%ホルマリン154.4g、水性シリカゾル[日産化学工業(株)製 スノーテックスO−40(商品名):Si02濃度40.7質量%、pH2.4、平均粒子径23.0nm]16.8g、硫酸ナトリウム1.0g、水683gを仕込み、25%アンモニア水にてpHを8.5に調整した。その後、上記混合物を撹拌しながら昇温して、温度を70℃に保ち、30分反応させてメラミン樹脂の初期縮合物の水溶液を調製した。この時点でのメラミン樹脂の分子量は、GPC法(ポリスチレン換算)にて測定したところ290であった。次に温度を70℃に維持したまま、得られた初期縮合物の水溶液にパラトルエンスルホン酸・一水和物の10質量%水溶液を添加してpHを5.1に調整した。約5分後に反応系内が白濁して硬化メラミン樹脂粒子が析出した。その後、温度を90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥し、ピンディスクミルで粉砕することにより白色の硬化メラミン樹脂粒子を得た。平均粒子径はレーザー回折・散乱式粒度分布測定装置[マスターサイザー2000(商品名)マルバーン社製]で測定したところ、4.5μmであった。この硬化樹脂粒子をそのままの状態で走査型電子顕微鏡(SEM)にて観察したところ、球状粒子のみが観察された。またこの球状粒子をスライス片の状態で透過型電子顕微鏡−エネルギー分散型X線分析(TEM−EDX)にて観察したところ、コアがメラミン樹脂、シェルが23nmの粒子径を有するコロイダルシリカが密に充填されたメラミン樹脂−シリカ複合層からなり、そのシェルの層厚みは150nmであることが確認された。
Example 1
In a 2 L reaction flask equipped with a stirrer, a reflux condenser and a thermometer, melamine 80.0 g, 37% formalin 154.4 g, aqueous silica sol [Nissan Chemical Industry Co., Ltd. Snowtex O-40 (trade name): Si0 2 Concentration 40.7% by mass, pH 2.4, average particle diameter 23.0 nm] 16.8 g, sodium sulfate 1.0 g, and water 683 g were charged, and the pH was adjusted to 8.5 with 25% aqueous ammonia. Thereafter, the temperature of the mixture was increased while stirring, the temperature was maintained at 70 ° C., and the mixture was reacted for 30 minutes to prepare an aqueous solution of an initial condensate of melamine resin. The molecular weight of the melamine resin at this point was 290 as measured by GPC method (polystyrene conversion). Next, while maintaining the temperature at 70 ° C., a 10% by mass aqueous solution of paratoluenesulfonic acid monohydrate was added to the obtained aqueous solution of the initial condensate to adjust the pH to 5.1. About 5 minutes later, the reaction system became cloudy and cured melamine resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the obtained reaction solution was filtered, dried, and pulverized with a pin disc mill to obtain white cured melamine resin particles. The average particle size was 4.5 μm as measured by a laser diffraction / scattering type particle size distribution analyzer [Mastersizer 2000 (trade name) manufactured by Malvern, Inc.]. When the cured resin particles were observed as they were with a scanning electron microscope (SEM), only spherical particles were observed. The spherical particles were observed in the form of slices by transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX). The core was melamine resin and the shell was densely colloidal silica having a particle diameter of 23 nm. It was confirmed to be composed of a filled melamine resin-silica composite layer, and the layer thickness of the shell was 150 nm.

実施例2
撹拌機、還流コンデンサー及び温度計を装備した2Lの反応フラスコに、メラミン80.0g、37%ホルマリン154.4g、水性シリカゾル[日産化学工業(株)製 スノーテックスO−40(商品名):Si02濃度40.7質量%、pH2.4、平均粒子径23.0nm]13.4g、硫酸ナトリウム0.5g、水683gを仕込み、25%アンモニア水にてpHを8.5に調整した。その後、上記混合物を撹拌しながら昇温し、温度を70℃に保ち、30分反応させてメラミン樹脂の初期縮合物の水溶液を調製した。この時点でのメラミン樹脂の分子量は、GPC法(ポリスチレン換算)にて測定したところ280であった。次に温度を70℃に維持したまま、得られた初期縮合物の水溶液にパラトルエンスルホン酸・一水和物の10質量%水溶液を添加してpHを5.0に調整した。約5分後に反応系内が白濁して硬化メラミン樹脂粒子が析出した。その後、温度を90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥し、ピンディスクミルで粉砕することにより白色の硬化メラミン樹脂粒子を得た。平均粒子径はレーザー回折・散乱式粒度分布測定装置[マスターサイザー2000(商品名)マルバーン社製]で測定したところ、4.4μmであった。この硬化樹脂粒子をそのままの状態で走査型電子顕微鏡(SEM)にて観察したところ、球状粒子のみが観察された。またこの球状粒子をスライス片の状態で透過型電子顕微鏡−エネルギー分散型X線分析(TEM−EDX)にて観察したところ、コアがメラミン樹脂、シェルが23nmの粒子径を有するコロイダルシリカが密に充填されたメラミン樹脂−シリカ複合層からなり、そのシェルの層厚みは90nmであることが確認された。
Example 2
In a 2 L reaction flask equipped with a stirrer, a reflux condenser and a thermometer, melamine 80.0 g, 37% formalin 154.4 g, aqueous silica sol [Nissan Chemical Industry Co., Ltd. Snowtex O-40 (trade name): Si0 2 concentration 40.7 mass%, pH 2.4, average particle diameter 23.0 nm] 13.4 g, sodium sulfate 0.5 g, and water 683 g were charged, and the pH was adjusted to 8.5 with 25% aqueous ammonia. Thereafter, the temperature of the mixture was increased while stirring, the temperature was kept at 70 ° C., and the mixture was reacted for 30 minutes to prepare an aqueous solution of an initial condensate of melamine resin. The molecular weight of the melamine resin at this time was 280 as measured by GPC method (polystyrene conversion). Next, while maintaining the temperature at 70 ° C., a 10% by mass aqueous solution of paratoluenesulfonic acid monohydrate was added to the obtained aqueous solution of the initial condensate to adjust the pH to 5.0. About 5 minutes later, the reaction system became cloudy and cured melamine resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the obtained reaction solution was filtered, dried, and pulverized with a pin disc mill to obtain white cured melamine resin particles. The average particle size was 4.4 μm as measured by a laser diffraction / scattering type particle size distribution analyzer [Mastersizer 2000 (trade name) manufactured by Malvern, Inc.]. When the cured resin particles were observed as they were with a scanning electron microscope (SEM), only spherical particles were observed. The spherical particles were observed in the form of slices by transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX). The core was melamine resin and the shell was densely colloidal silica having a particle diameter of 23 nm. It consisted of the filled melamine resin-silica composite layer, and the layer thickness of the shell was confirmed to be 90 nm.

実施例3
撹拌機、還流コンデンサー及び温度計を装備した2Lの反応フラスコに、メラミン80.0g、37%ホルマリン154.4g、水性シリカゾル[日産化学工業(株)製 スノーテックスO−40(商品名):Si02濃度40.7質量%、pH2.4、平均粒子径23.0nm]18.0g、硫酸ナトリウム1.0g、水683gを仕込み、25%アンモニア水にてpHを8.5に調整した。その後、上記混合物を撹拌しながら昇温して、温度を70℃に保ち、30分反応させてメラミン樹脂の初期縮合物の水溶液を調製した。この時点でのメラミン樹脂の分子量は、GPC法(ポリスチレン換算)にて測定したところ290であった。次に温度を70℃に維持したまま、得られた初期縮合物の水溶液にパラトルエンスルホン酸・一水和物の10質量%水溶液を添加してpHを5.1に調整した。約5分後に反応系内が白濁して硬化メラミン樹脂粒子が析出した。その後、温度を90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥し、ピンディスクミルで粉砕することにより白色の硬化メラミン樹脂粒子を得た。平均粒子径はレーザー回折・散乱式粒度分布測定装置[マスターサイザー2000(商品名)マルバーン社製]で測定したところ、4.6μmであった。この硬化樹脂粒子をそのままの状態で走査型電子顕微鏡(SEM)にて観察したところ、球状粒子のみが観察された。またこの球状粒子をスライス片の状態で透過型電子顕微鏡−エネルギー分散型X線分析(TEM−EDX)にて観察したところ、コアがメラミン樹脂、シェルが23nmの粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなり、そのシェルの層厚みは220nmであることが確認された。
Example 3
In a 2 L reaction flask equipped with a stirrer, a reflux condenser and a thermometer, melamine 80.0 g, 37% formalin 154.4 g, aqueous silica sol [Nissan Chemical Industry Co., Ltd. Snowtex O-40 (trade name): Si0 2 Concentration 40.7% by mass, pH 2.4, average particle size 23.0 nm] 18.0 g, sodium sulfate 1.0 g, and water 683 g were charged, and the pH was adjusted to 8.5 with 25% aqueous ammonia. Thereafter, the temperature of the mixture was increased while stirring, the temperature was maintained at 70 ° C., and the mixture was reacted for 30 minutes to prepare an aqueous solution of an initial condensate of melamine resin. The molecular weight of the melamine resin at this point was 290 as measured by GPC method (polystyrene conversion). Next, while maintaining the temperature at 70 ° C., a 10% by mass aqueous solution of paratoluenesulfonic acid monohydrate was added to the obtained aqueous solution of the initial condensate to adjust the pH to 5.1. About 5 minutes later, the reaction system became cloudy and cured melamine resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the obtained reaction solution was filtered, dried, and pulverized with a pin disc mill to obtain white cured melamine resin particles. The average particle size was 4.6 μm as measured by a laser diffraction / scattering type particle size distribution analyzer [Mastersizer 2000 (trade name) manufactured by Malvern, Inc.]. When the cured resin particles were observed as they were with a scanning electron microscope (SEM), only spherical particles were observed. The spherical particles were observed in the form of slices by transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX). The core was melamine resin and the shell was densely colloidal silica having a particle diameter of 23 nm. It was confirmed to be composed of a filled melamine-based resin-silica composite layer, and the layer thickness of the shell was 220 nm.

実施例4
撹拌機、還流コンデンサー及び温度計を装備した2Lの反応フラスコに、メラミン80.0g、37%ホルマリン154.4g、水性シリカゾル[日産化学工業(株)製 スノーテックスO−40(商品名):Si02濃度40.7質量%、pH2.4、平均粒子径23.0nm]18.0g、塩化ナトリウム1.0g、水683gを仕込み、25%アンモニア水にてpHを8.5に調整した。その後、上記混合物を撹拌しながら昇温して、温度を70℃に保ち、30分反応させてメラミン樹脂の初期縮合物の水溶液を調製した。この時点でのメラミン樹脂の分子量は、GPC法(ポリスチレン換算)にて測定したところ280であった。次に温度を70℃に維持したまま、得られた初期縮合物の水溶液にパラトルエンスルホン酸・一水和物の10質量%水溶液を添加してpHを5.1に調整した。約4分後に反応系内が白濁して硬化メラミン樹脂粒子が析出した。その後、温度を90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥し、ピンディスクミルで粉砕することにより白色の硬化メラミン樹脂粒子を得た。平均粒子径はレーザー回折・散乱式粒度分布測定装置[マスターサイザー2000(商品名)マルバーン社製]で測定したところ、3.6μmであった。この硬化樹脂粒子をそのままの状態で走査型電子顕微鏡(SEM)にて観察したところ、球状粒子のみが観察された。またこの球状粒子をスライス片の状態で透過型電子顕微鏡−エネルギー分散型X線分析(TEM−EDX)にて観察したところ、コアがメラミン樹脂、シェルが23nmの粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなり、そのシェルの層厚みは120nmであることが確認された。
Example 4
In a 2 L reaction flask equipped with a stirrer, a reflux condenser and a thermometer, melamine 80.0 g, 37% formalin 154.4 g, aqueous silica sol [Nissan Chemical Industry Co., Ltd. Snowtex O-40 (trade name): Si0 2 Concentration 40.7% by mass, pH 2.4, average particle diameter 23.0 nm] 18.0 g, sodium chloride 1.0 g, and water 683 g were charged, and the pH was adjusted to 8.5 with 25% aqueous ammonia. Thereafter, the temperature of the mixture was increased while stirring, the temperature was maintained at 70 ° C., and the mixture was reacted for 30 minutes to prepare an aqueous solution of an initial condensate of melamine resin. The molecular weight of the melamine resin at this time was 280 as measured by GPC method (polystyrene conversion). Next, while maintaining the temperature at 70 ° C., a 10% by mass aqueous solution of paratoluenesulfonic acid monohydrate was added to the obtained aqueous solution of the initial condensate to adjust the pH to 5.1. After about 4 minutes, the reaction system was clouded and cured melamine resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the obtained reaction solution was filtered, dried, and pulverized with a pin disc mill to obtain white cured melamine resin particles. The average particle size was 3.6 μm as measured by a laser diffraction / scattering type particle size distribution analyzer [Mastersizer 2000 (trade name), manufactured by Malvern, Inc.]. When the cured resin particles were observed as they were with a scanning electron microscope (SEM), only spherical particles were observed. The spherical particles were observed in the form of slices by transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX). The core was melamine resin and the shell was densely colloidal silica having a particle diameter of 23 nm. It consisted of the filled melamine resin-silica composite layer, and it was confirmed that the layer thickness of the shell was 120 nm.

比較例1
硫酸ナトリウムを使用しなかったほかは、実施例1と同様に行った。得られた反応液を濾過、乾燥し、ピンディスクミルで粉砕することにより白色の硬化メラミン樹脂粒子を得た。平均粒子径はレーザー回折・散乱式粒度分布測定装置[マスターサイザー2000(商品名)マルバーン社製]で測定したところ、4.0μmであった。この硬化樹脂粒子をそのままの状態で走査型電子顕微鏡(SEM)にて観察したところ、球状粒子以外に球状でない微小な凝集粒子が副生していた。またこの球状粒子をスライス片の状態で透過型電子顕微鏡−エネルギー分散型X線分析(TEM−EDX)にて観察したところ、コアがメラミン樹脂、シェルが23nmの粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなり、そのシェルの層厚みは40nmであった。
Comparative Example 1
The same procedure as in Example 1 was performed except that sodium sulfate was not used. The obtained reaction solution was filtered, dried, and pulverized with a pin disc mill to obtain white cured melamine resin particles. The average particle size was 4.0 μm as measured by a laser diffraction / scattering type particle size distribution analyzer [Mastersizer 2000 (trade name) manufactured by Malvern, Inc.]. When the cured resin particles were observed as they were with a scanning electron microscope (SEM), fine non-spherical aggregated particles other than spherical particles were by-produced. The spherical particles were observed in the form of slices by transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX). The core was melamine resin and the shell was densely colloidal silica having a particle diameter of 23 nm. It was composed of a filled melamine-based resin-silica composite layer, and the shell layer thickness was 40 nm.

比較例2
硫酸ナトリウムを使用せず、水性シリカゾル[日産化学工業(株)製 スノーテックスO−40(商品名):Si02濃度40.7質量%、pH2.4、平均粒子径23.0nm]を10.3gに減らしたほかは、実施例1と同様に行った。得られた反応液を濾過、乾燥し、ピンディスクミルで粉砕することにより白色の硬化メラミン樹脂粒子を得た。平均粒子径はレーザー回折・散乱式粒度分布測定装置[マスターサイザー2000(商品名)マルバーン社製]で測定したところ、4.5μmであった。この硬化樹脂粒子をそのままの状態で走査型電子顕微鏡(SEM)にて観察したところ、球状粒子のみが観察された。またこの球状粒子をスライス片の状態で透過型電子顕微鏡−エネルギー分散型X線分析(TEM−EDX)にて観察したところ、コアがメラミン樹脂、シェルが23nmの粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなり、そのシェルの層厚みは40nmであった。
Comparative Example 2
Sodium sulfate is not used, and an aqueous silica sol [Snowtex O-40 (trade name) manufactured by Nissan Chemical Industries, Ltd .: SiO 2 concentration 40.7 mass%, pH 2.4, average particle size 23.0 nm] is used. The procedure was the same as Example 1 except that the amount was reduced to 3 g. The obtained reaction solution was filtered, dried, and pulverized with a pin disc mill to obtain white cured melamine resin particles. The average particle size was 4.5 μm as measured by a laser diffraction / scattering type particle size distribution analyzer [Mastersizer 2000 (trade name) manufactured by Malvern, Inc.]. When the cured resin particles were observed as they were with a scanning electron microscope (SEM), only spherical particles were observed. The spherical particles were observed in the form of slices by transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX). The core was melamine resin and the shell was densely colloidal silica having a particle diameter of 23 nm. It was composed of a filled melamine-based resin-silica composite layer, and the shell layer thickness was 40 nm.

実施例1で得られたコア−シェル型の球状複合硬化メラミン樹脂粒子のスライス片の状態で透過型電子顕微鏡写真である。2 is a transmission electron micrograph in the state of a slice of core-shell type spherical composite cured melamine resin particles obtained in Example 1. FIG. 比較例2で得られたコア−シェル型の球状複合硬化メラミン樹脂粒子のスライス片の状態で透過型電子顕微鏡写真である。4 is a transmission electron micrograph in the state of a slice of core-shell type spherical composite cured melamine resin particles obtained in Comparative Example 2. FIG.

Claims (5)

コアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂-シリカ複合層からなる、80〜400nmの該シェルの層厚みを有する、コア−シェル型の球状複合硬化メラミン樹脂粒子。 A core having a layer thickness of 80 to 400 nm, wherein the core is made of a melamine resin and a shell is made of a melamine resin-silica composite layer closely packed with colloidal silica having an average particle diameter of 5 to 70 nm; -Shell-type spherical composite cured melamine resin particles. 下記の工程(a)及び(b)を含む、コアがメラミン系樹脂からなり、シェルが5〜70nmの平均粒子径を有するコロイダルシリカが密に充填されたメラミン系樹脂−シリカ複合層からなる、80〜400nmの該シェルの層厚みを有する、コア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法。
(a):無機酸のアルカリ金属塩を溶解した水性媒体中、5〜70nmの平均粒子径を有するコロイダルシリカの懸濁下で、メラミン化合物とアルデヒド化合物を塩基性条件下で反応させて、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる工程、及び
(b):(a)工程で得られた水溶液に酸触媒を加えて、球状複合硬化メラミン樹脂粒子を析出させる工程。
Including the following steps (a) and (b), the core is composed of a melamine resin, and the shell is composed of a melamine resin-silica composite layer in which colloidal silica having an average particle diameter of 5 to 70 nm is closely packed, A method for producing core-shell type spherical composite cured melamine resin particles having a shell layer thickness of 80 to 400 nm.
(A): A melamine compound and an aldehyde compound are reacted under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm in an aqueous medium in which an alkali metal salt of an inorganic acid is dissolved, and water A step of forming an aqueous solution of an initial condensate of melamine-based resin that is soluble in the solution, and (b): a step of adding an acid catalyst to the aqueous solution obtained in the step (a) to precipitate spherical composite cured melamine resin particles.
(a)工程において、無機酸のアルカリ金属塩の添加量が、メラミン化合物100質量部に対して0.1〜20質量部である請求項2に記載のコア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法。 The core-shell type spherical composite cured melamine resin according to claim 2, wherein in the step (a), the addition amount of the alkali metal salt of the inorganic acid is 0.1 to 20 parts by mass with respect to 100 parts by mass of the melamine compound. Particle production method. (a)工程において、コロイダルシリカの添加量が、メラミン化合物100質量部に対して、3.0〜100質量部である請求項2又は3に記載のコア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法。 In the step (a), the amount of colloidal silica added is 3.0 to 100 parts by mass with respect to 100 parts by mass of the melamine compound. Core-shell type spherical composite cured melamine resin particles according to claim 2 or 3 Manufacturing method. コロイダルシリカが水性シリカゾルである請求項2、3又は4に記載のコア−シェル型の球状複合硬化メラミン樹脂粒子の製造方法。

The method for producing core-shell type spherical composite cured melamine resin particles according to claim 2, 3 or 4, wherein the colloidal silica is an aqueous silica sol.

JP2003411129A 2003-12-10 2003-12-10 Method for producing spherical composite cured melamine resin particles Expired - Lifetime JP4243848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411129A JP4243848B2 (en) 2003-12-10 2003-12-10 Method for producing spherical composite cured melamine resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411129A JP4243848B2 (en) 2003-12-10 2003-12-10 Method for producing spherical composite cured melamine resin particles

Publications (2)

Publication Number Publication Date
JP2005171033A true JP2005171033A (en) 2005-06-30
JP4243848B2 JP4243848B2 (en) 2009-03-25

Family

ID=34731957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411129A Expired - Lifetime JP4243848B2 (en) 2003-12-10 2003-12-10 Method for producing spherical composite cured melamine resin particles

Country Status (1)

Country Link
JP (1) JP4243848B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026883A (en) * 2006-06-19 2008-02-07 Fujifilm Corp Optical film
JP2010527045A (en) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド Anti-glare film composition and anti-glare film produced using the same
JP2013147623A (en) * 2012-01-23 2013-08-01 Nippon Carbide Ind Co Inc Resin composition for coating
JP2014118510A (en) * 2012-12-18 2014-06-30 Unimatec Co Ltd Fluororubber composition
US10494553B2 (en) 2014-11-19 2019-12-03 The Yokohama Rubber Co., Ltd. Two-component urethane-based adhesive composition
CN113614944A (en) * 2019-03-26 2021-11-05 日本瑞翁株式会社 Composite particle for electrochemical element functional layer, binder composition for electrochemical element functional layer, conductive material paste for electrode composite layer, slurry for electrode composite layer, electrode for electrochemical element, and electrochemical element
CN114008821A (en) * 2019-06-28 2022-02-01 日本瑞翁株式会社 Composite particle for electrochemical element and method for producing same, binder composition for electrochemical element functional layer and method for producing same, conductive material paste for electrode composite layer and method for producing same, slurry for electrode composite layer, electrode for electrochemical element, and electrochemical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039752A1 (en) * 2019-10-02 2022-08-10 Unimatec Co., Ltd. Fluororubber composition and seal material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026883A (en) * 2006-06-19 2008-02-07 Fujifilm Corp Optical film
JP2010527045A (en) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド Anti-glare film composition and anti-glare film produced using the same
JP2013147623A (en) * 2012-01-23 2013-08-01 Nippon Carbide Ind Co Inc Resin composition for coating
JP2014118510A (en) * 2012-12-18 2014-06-30 Unimatec Co Ltd Fluororubber composition
US10494553B2 (en) 2014-11-19 2019-12-03 The Yokohama Rubber Co., Ltd. Two-component urethane-based adhesive composition
CN113614944A (en) * 2019-03-26 2021-11-05 日本瑞翁株式会社 Composite particle for electrochemical element functional layer, binder composition for electrochemical element functional layer, conductive material paste for electrode composite layer, slurry for electrode composite layer, electrode for electrochemical element, and electrochemical element
EP3951924A4 (en) * 2019-03-26 2023-02-22 Zeon Corporation Composite particles for electrochemical element functional layers, binder composition for electrochemical element functional layers, conductive material paste for electrode mixture layers, slurry for electrode mixture layers, electrode for electrochemical elements, and electrochemical element
CN114008821A (en) * 2019-06-28 2022-02-01 日本瑞翁株式会社 Composite particle for electrochemical element and method for producing same, binder composition for electrochemical element functional layer and method for producing same, conductive material paste for electrode composite layer and method for producing same, slurry for electrode composite layer, electrode for electrochemical element, and electrochemical element
EP3993094A4 (en) * 2019-06-28 2023-12-20 Zeon Corporation Composite particle for electrochemical element and production method therefor, binder composition for electrochemical element functional layer and production method therefor, conductive material paste for electrode mixture layer and production method therefor, slurry for electrode mixture layer, electrode for electrochemical element, and electrochemical element

Also Published As

Publication number Publication date
JP4243848B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP3903809B2 (en) Method for producing spherical composite cured melamine resin particles
Su et al. Preparation and characterization of polyurethane microcapsules containing n‐octadecane with styrene‐maleic anhydride as a surfactant by interfacial polycondensation
JP5135021B2 (en) Low temperature fixing toner and method for producing the same
JP4243848B2 (en) Method for producing spherical composite cured melamine resin particles
KR100950853B1 (en) Titania sol chelated with an organic complex, a method thereof, and a composition including said titania sol for forming medium, high, super-high refractive index coating layer
JP4631016B2 (en) Surface-treated cured amino resin particles and method for producing the same
CN104749914B (en) Electrophoto-graphic toner
JP4126546B2 (en) Method for producing colored spherical composite cured melamine resin particles
JP5421141B2 (en) Amino resin crosslinked particles and process for producing the same
JP6040773B2 (en) Thermosetting resin softening particles
JP4002541B2 (en) Light diffusing agent
JP6679323B2 (en) Method for producing toner particles
JP4436054B2 (en) Amino resin crosslinked pulverized particles and method for producing amino resin crosslinked pulverized particles
JP4139180B2 (en) Novel cross-linked amino resin particles
JP4699419B2 (en) Method for producing amino resin crosslinked particles
JP3961389B2 (en) Method for producing amino resin crosslinked particles
JP2008101040A (en) Cured amino resin particle and method for treating the surface thereof
JP7566666B2 (en) Toner and image reading method
JP6233600B2 (en) Method for producing cured amino resin particles
Achelle et al. New poly (phenylenevinylene)‐methyl methacrylate‐based photonic crystals
JP2003306521A (en) Method of manufacturing fine particle of thermosetting resin
JP7307862B1 (en) Core-shell nanoparticles with gold nanoshells and method for producing the same
RU2808573C2 (en) Composition of microparticles containing organic ir radiation absorbing pigment
JPH01207314A (en) Cured fine particle having excellent light resistance
JP2022122678A (en) Toner, manufacturing method of toner and image reading method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081223

R151 Written notification of patent or utility model registration

Ref document number: 4243848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term