JP2005170869A - Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound - Google Patents

Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound Download PDF

Info

Publication number
JP2005170869A
JP2005170869A JP2003414365A JP2003414365A JP2005170869A JP 2005170869 A JP2005170869 A JP 2005170869A JP 2003414365 A JP2003414365 A JP 2003414365A JP 2003414365 A JP2003414365 A JP 2003414365A JP 2005170869 A JP2005170869 A JP 2005170869A
Authority
JP
Japan
Prior art keywords
film
raw material
compound
silicon
solution raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414365A
Other languages
Japanese (ja)
Inventor
Atsushi Sai
篤 齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003414365A priority Critical patent/JP2005170869A/en
Publication of JP2005170869A publication Critical patent/JP2005170869A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organosilicon compound having excellent evaporation stability and a high film-forming rate, and enabling the film to be grown at a temperature lower than that by a conventional organosilicon compound; to provide a solution raw material of the compound; and to provide a method for producing a silicon-containing film by using the compound. <P>SOLUTION: The organosilicon compound is represented by formula (1) (wherein, R is hydrogen or a 1-4C straight-chain or branched alkyl group). The solution raw material is obtained by dissolving the organosilicon compound represented by formula (1) in an organic solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)により成膜されるSiO2膜、Si-N膜、Hf-Si-O膜及びHf-Si-O-N膜等のシリコン含有膜の原料として好適な有機シリコン化合物及びその溶液原料並びに該化合物を用いたシリコン含有膜の形成方法に関するものである。 The present invention relates to an SiO 2 film, Si—N film, Hf—Si—O film, and Hf—Si— film formed by metal organic chemical vapor deposition (hereinafter referred to as MOCVD method). The present invention relates to an organic silicon compound suitable as a raw material for a silicon-containing film such as an O—N film, a solution raw material thereof, and a method for forming a silicon-containing film using the compound.

高誘電体ゲート絶縁膜としてシリコン酸化膜が使用されているが、近年LSIの高集積化に伴って、シリコン酸化膜の薄膜化が進んでいる。膜厚が100nm以下の薄さとなった薄膜にはトンネル電流が流れて絶縁効果が低下してしまうため、シリコン酸化膜でのこれ以上の薄膜化は限界となっている。
そのためシリコン酸化膜に代わるゲート絶縁膜が要望されており、候補としてシリコン含有薄膜、具体的にはSi-N膜やHf-Si-O膜、Hf-Si-O-N膜等が注目されている。これら薄膜の製造方法としては、スパッタリング、イオンプレーティング、塗布熱分解、ゾルゲル等のMOD(Metal Organic Deposition)が挙げられるが、組成制御性、段差被覆性に優れること、半導体製造プロセスとの整合性等からMOCVD法が最適な薄膜製造プロセスとして検討されている。
Although a silicon oxide film is used as the high dielectric gate insulating film, in recent years, the silicon oxide film is becoming thinner as the LSI is highly integrated. Since a tunnel current flows through a thin film having a thickness of 100 nm or less and the insulation effect is lowered, further reduction in the thickness of the silicon oxide film is limited.
Therefore, there is a demand for a gate insulating film that replaces the silicon oxide film, and silicon-containing thin films, specifically, Si—N films, Hf—Si—O films, Hf—Si—O—N films, etc. are attracting attention as candidates. Yes. These thin film manufacturing methods include MOD (Metal Organic Deposition) such as sputtering, ion plating, coating pyrolysis, sol-gel, etc., but excellent composition controllability and step coverage, and consistency with semiconductor manufacturing processes. Therefore, the MOCVD method has been studied as an optimum thin film manufacturing process.

Si-N膜やHf-O-Si膜等のシリコン含有膜を成膜するための材料には、ヘキサクロロジシラン(以下、Si2Cl6という。)が一般的に使用されている。例えばSi34膜を形成する場合では、Si2Cl6とNH3とを加熱、反応させることにより得られる。この反応生成物であるSi34は、その全てが基板上に付着するわけではなく、その一部は成膜装置の排気管等に付着する。そのため付着物が付着した状態で膜の形成処理を行うと、やがて付着物が剥離してパーティクルが発生する。このパーティクルはシリコン基板等に付着すると、製品の歩留まりを低下させてしまうおそれがある。このため、成膜装置内をフッ酸系溶液等により洗浄して付着物を除去するメンテナンス作業が定期的に行われている。 As a material for forming a silicon-containing film such as an Si—N film or an Hf—O—Si film, hexachlorodisilane (hereinafter referred to as Si 2 Cl 6 ) is generally used. For example, in the case of forming a Si 3 N 4 film, it can be obtained by heating and reacting Si 2 Cl 6 and NH 3 . This reaction product, Si 3 N 4 , does not all adhere to the substrate, but part of it adheres to the exhaust pipe of the film forming apparatus. For this reason, when the film formation process is performed in a state in which the attached matter is attached, the attached matter is eventually peeled off to generate particles. If these particles adhere to a silicon substrate or the like, the yield of the product may be reduced. For this reason, a maintenance operation is periodically performed in which the inside of the film forming apparatus is washed with a hydrofluoric acid-based solution or the like to remove deposits.

このSi2Cl6とNH3とを加熱、反応させると、Si-Nだけでなく、Si-Cl-N-Hから構成された化合物が反応中間体として生成される。反応中間体は排気管を通過する排ガスや付着物に含まれる。この反応中間体は容易に加水分解し、塩酸と反応熱を放出して加水分解物を生成する。従って、メンテナンス作業において、この反応中間体が付着した状態で排気管を取外すと、反応中間体が大気中の水分と加水分解を起こし、塩酸ガスが発生してしまう問題があった。 When this Si 2 Cl 6 and NH 3 are heated and reacted, not only Si—N but also a compound composed of Si—Cl—N—H is produced as a reaction intermediate. The reaction intermediate is contained in exhaust gas and deposits passing through the exhaust pipe. This reaction intermediate is easily hydrolyzed, releasing hydrochloric acid and heat of reaction to form a hydrolyzate. Therefore, in the maintenance work, if the exhaust pipe is removed while the reaction intermediate is adhered, there is a problem that the reaction intermediate causes hydrolysis with moisture in the atmosphere, and hydrochloric acid gas is generated.

このような上記問題を解決する方策として、反応室に被処理体を収容し、反応室に接続された排気管から反応室内のガスを排気させるとともに、反応室にSi2Cl6及びNH3を供給して被処理体にSi-N膜を形成する方法であって、排気管をNH4Clが気化可能な温度に加熱するとともに、排気管にNH3を供給する、ことを特徴とする方法が開示されている(例えば、特許文献1参照。)。上記文献1では排気管にNH3を供給することで、反応時に生成した反応中間体をNH3と反応させ、塩酸ガスが発生し難いSi−N−Hから構成された化合物にすることで有毒ガスの発生を抑制している。
特開2002−334869号公報(請求項5、段落[0043])
As a measure for solving the above problem, the object to be processed is accommodated in the reaction chamber, the gas in the reaction chamber is exhausted from the exhaust pipe connected to the reaction chamber, and Si 2 Cl 6 and NH 3 are exhausted in the reaction chamber. A method for supplying and forming a Si—N film on an object to be processed, wherein the exhaust pipe is heated to a temperature at which NH 4 Cl can be vaporized, and NH 3 is supplied to the exhaust pipe. Is disclosed (for example, see Patent Document 1). In the above literature 1, NH 3 is supplied to the exhaust pipe so that the reaction intermediate produced during the reaction reacts with NH 3 to form a compound composed of Si—N—H that hardly generates hydrochloric acid gas. The generation of poisonous gas is suppressed.
JP 2002-334869 A (Claim 5, paragraph [0043])

しかし、上記特許文献1に示されるSi2Cl6のような含塩素Si-Si化合物を用いて熱CVD法により成膜する場合、先ずSi-Si結合が切断されてSi-Cl結合を有するラジカル種が形成されるが、このSi-Cl結合は700℃のような高温での成膜条件においても結合が切断しにくく、形成する膜中にClが入り込んでいた。この膜中に入り込んだClは、成膜温度により発生する応力を増大させて膜にクラックを生じさせ、歩留まりを低下させる原因となっていた。
また700℃以下の低温条件において成膜することで、成膜温度により生じる応力を抑制し、クラックの発生を低減させても、低温条件での成膜のため、膜中に入り込むCl量が増加し、膜中に入り込んだCl量が増加することで膜強度も弱まり、フラットな膜を形成し難い問題があった。
更に、このSi2Cl6は空気中において発火性があり、その取扱いには危険性が伴うため、代替化合物が求められていた。
However, when a film is formed by a thermal CVD method using a chlorine-containing Si—Si compound such as Si 2 Cl 6 disclosed in Patent Document 1, a radical having a Si—Cl bond is first cut off from the Si—Si bond. Although seeds are formed, the Si—Cl bond is difficult to break even under film forming conditions at a high temperature such as 700 ° C., and Cl has entered the film to be formed. The Cl that has entered the film increases the stress generated by the film formation temperature, causes cracks in the film, and decreases the yield.
In addition, by forming the film under a low temperature condition of 700 ° C. or lower, even if the stress caused by the film forming temperature is suppressed and the generation of cracks is reduced, the amount of Cl entering the film increases due to the film formation under the low temperature condition. However, when the amount of Cl that has entered the film increases, the film strength also weakens, and it is difficult to form a flat film.
Further, since this Si 2 Cl 6 is ignitable in the air and handling thereof involves danger, an alternative compound has been demanded.

本発明の目的は、気化安定性に優れ、高い成膜速度を有する有機シリコン化合物及びその溶液原料並びに該化合物を用いたシリコン含有膜の形成方法を提供することにある。
本発明の別の目的は、従来の有機シリコン化合物よりも低温での膜成長が可能な有機シリコン化合物及びその溶液原料並びに該化合物を用いたシリコン含有膜の形成方法を提供することにある。
An object of the present invention is to provide an organic silicon compound having excellent vaporization stability and a high film formation rate, a solution raw material thereof, and a method for forming a silicon-containing film using the compound.
Another object of the present invention is to provide an organic silicon compound capable of growing a film at a lower temperature than conventional organic silicon compounds, a solution raw material thereof, and a method for forming a silicon-containing film using the compound.

請求項1に係る発明は、次の式(1)に示される有機シリコン化合物である。   The invention according to claim 1 is an organosilicon compound represented by the following formula (1).

Figure 2005170869
但し、式中のRは水素又は炭素数が1〜4の直鎖又は分岐状アルキル基を示す。
Figure 2005170869
However, R in a formula shows hydrogen or a C1-C4 linear or branched alkyl group.

請求項1に係る化合物では、シリコン原子にシクロペンタジエニル基(以下、Cp基という。)又はアルキルシクロペンタジエニル基(以下、アルキルCp基という。)が2つπ結合した不安定な構造をとるため、従来の有機シリコン化合物に比べて低い温度で分解する。この化合物を用いてシリコン含有膜を成膜する場合、従来の有機シリコン化合物を用いた場合の成膜温度よりも低い温度、具体的には300〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度でシリコン含有膜を形成することができる。   In the compound according to claim 1, an unstable structure in which two cyclopentadienyl groups (hereinafter referred to as Cp groups) or alkylcyclopentadienyl groups (hereinafter referred to as alkyl Cp groups) are π-bonded to a silicon atom. Therefore, it decomposes at a lower temperature than conventional organic silicon compounds. When a silicon-containing film is formed using this compound, it can be formed at a temperature lower than the film formation temperature when a conventional organic silicon compound is used, specifically, a temperature of about 300 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the silicon-containing film can be formed at a high film formation rate.

請求項2に係る発明は、請求項1記載の式(1)に示される有機シリコン化合物のRが炭素数が1〜4の直鎖又は分岐状アルキル基であって、有機シリコン化合物単体からなるシリコン含有膜形成用溶液原料である。
請求項2に係る溶液原料では、式(1)のRが炭素数1〜4の直鎖又は分岐状アルキル基で表される有機シリコン化合物は室温で液体として存在するため、これらの化合物単体でシリコン含有膜形成用溶液原料として使用できる。
In the invention according to claim 2, R of the organic silicon compound represented by the formula (1) according to claim 1 is a linear or branched alkyl group having 1 to 4 carbon atoms, and consists of a single organic silicon compound. A solution raw material for forming a silicon-containing film.
In the solution raw material according to claim 2, since the organic silicon compound in which R in the formula (1) is a linear or branched alkyl group having 1 to 4 carbon atoms exists as a liquid at room temperature, It can be used as a solution raw material for forming a silicon-containing film.

請求項3に係る発明は、請求項1記載の有機シリコン化合物を有機溶媒に溶解したことを特徴とするシリコン含有膜形成用溶液原料である。
請求項4に係る発明は、請求項3に係る発明であって、有機溶媒がテトラヒドロフラン、メチルテトラヒドロフラン、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒である溶液原料である。
請求項3又は4に係る溶液原料では、本発明の有機シリコン化合物を上記列挙した有機溶媒に溶解した溶液原料は、有機シリコン化合物をより安定して気化室や成膜室まで送込むことができるため、結果としてMOCVDにおける薄膜の成長速度が促進される。
The invention according to claim 3 is a solution raw material for forming a silicon-containing film, wherein the organic silicon compound according to claim 1 is dissolved in an organic solvent.
The invention according to claim 4 is the invention according to claim 3, wherein the organic solvent is tetrahydrofuran, methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine, lutidine, butyl acetate, acetic acid. The solution raw material is one or more solvents selected from the group consisting of amyl, methyl acetate and ethyl acetate.
In the solution raw material according to claim 3 or 4, the solution raw material in which the organic silicon compound of the present invention is dissolved in the above-described organic solvent can send the organic silicon compound to the vaporization chamber or the film formation chamber more stably. As a result, the growth rate of the thin film in MOCVD is promoted.

請求項5に係る発明は、請求項1記載の有機シリコン化合物、又は請求項2ないし4いずれか1項に記載の溶液原料を用いて成膜することを特徴とするシリコン含有膜の形成方法である。
請求項5に係る形成方法では、上記式(1)に示される本発明の有機シリコン化合物又はこの化合物を含む溶液原料を用いてシリコン含有膜を形成することで、従来の有機シリコン化合物を用いた場合の成膜温度よりも低い300〜400℃程度の成膜温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度でシリコン含有膜を形成することができる。
請求項6に係る発明は、請求項5に係る発明であって、MOCVD法により成膜するシリコン含有膜の形成方法である。
The invention according to claim 5 is a method for forming a silicon-containing film, characterized in that the silicon-containing film is formed using the organosilicon compound according to claim 1 or the solution raw material according to any one of claims 2 to 4. is there.
In the forming method according to claim 5, a conventional organic silicon compound is used by forming a silicon-containing film using the organic silicon compound of the present invention represented by the above formula (1) or a solution raw material containing this compound. Since the film can be formed at a film formation temperature of about 300 to 400 ° C. lower than the film formation temperature in the case, the substrate on which the film is formed is not damaged. Moreover, it is excellent in vaporization stability, and a silicon-containing film can be formed at a high film formation rate.
The invention according to claim 6 is the invention according to claim 5, wherein the silicon-containing film is formed by MOCVD.

以上述べたように、本発明の有機シリコン化合物は、シリコン原子にπ配位のシクロペンタジエニル基又はアルキルシクロペンタジエニル基が2つ結合した不安定な構造をとるため、従来の有機シリコン化合物に比べて低い温度で分解する。この化合物又はこの化合物を含む溶液原料を用いてシリコン含有膜を成膜する場合、従来の有機シリコン化合物を用いた場合の成膜温度よりも低い温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度でシリコン含有膜を形成することができる。   As described above, the organosilicon compound of the present invention has an unstable structure in which two π-coordinate cyclopentadienyl groups or alkylcyclopentadienyl groups are bonded to a silicon atom. Decomposes at a lower temperature than the compound. When a silicon-containing film is formed using this compound or a solution raw material containing this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organic silicon compound is used. Does not damage the board. Moreover, it is excellent in vaporization stability, and a silicon-containing film can be formed at a high film formation rate.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明の有機シリコン化合物は、次の式(1)に示される化合物である。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The organosilicon compound of the present invention is a compound represented by the following formula (1).

Figure 2005170869
但し、式中のRは水素又は炭素数が1〜4の直鎖又は分岐状アルキル基を示す。
Figure 2005170869
However, R in a formula shows hydrogen or a C1-C4 linear or branched alkyl group.

上記式(1)に示される化合物では、シリコン原子にCp基又はアルキルCp基が2つπ結合した不安定な構造をとるため、従来の有機シリコン化合物に比べて低い温度で分解する。この化合物を用いてシリコン含有膜を成膜する場合、従来の有機シリコン化合物を用いた場合の成膜温度よりも低い温度、具体的には300〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度でシリコン含有膜を形成することができる。   Since the compound represented by the above formula (1) has an unstable structure in which two Cp groups or alkyl Cp groups are π-bonded to a silicon atom, it decomposes at a lower temperature than conventional organic silicon compounds. When a silicon-containing film is formed using this compound, it can be formed at a temperature lower than the film formation temperature when a conventional organic silicon compound is used, specifically, a temperature of about 300 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged. Moreover, it is excellent in vaporization stability, and a silicon-containing film can be formed at a high film formation rate.

次に本発明の有機シリコン化合物のうち、上記式(1)中のRが水素のSi(Cp)2の製造方法について説明する。
先ず、出発原料としてSiCl4を10g用意する。次いで、1.0モル濃度のt-ブチルリチウムのヘキサン溶液200mlを氷冷下にまで冷却しながら不活性ガスの気流下に保持したSiCl4にゆっくり添加して直接反応させる。ヘキサン溶液を添加した後、溶液を1時間攪拌し続けて沈殿物を生成させる。攪拌した後は、ヘキサン溶液中に生成した沈殿物をろ別する。次に、沈殿物をろ別したろ液にジシクロペンタジエン5mlとステアリン酸アルミニウム2gを加え、40℃程度に加温しながら約24時間攪拌し続ける。攪拌した液は懸濁液となっており、この懸濁液をろ別して溶液を取り分ける。次に、ろ別した溶液を−45℃にまで冷却し、冷却した溶液にAr及びH2を含む混合ガスを24時間バブリングし続ける。混合ガスとしてはAr100mlに対してH2を2mlの割合で調製したガスが使用される。バブリング後は溶液中に含まれるヘキサンを除去することによりSi(Cp)2の粗生成物が得られる。更に、粗生成物を展開溶媒に溶解して溶解液を調製する。展開溶媒としてはヘキサン200mlが使用される。この溶解液をアルミナカラム等に通過させることにより、本発明のSi(Cp)2の精製物を約3g得ることができる。
Next, among the organosilicon compounds of the present invention, a method for producing Si (Cp) 2 in which R in the formula (1) is hydrogen will be described.
First, 10 g of SiCl 4 is prepared as a starting material. Next, 200 ml of a 1.0 molar tert-butyllithium hexane solution is slowly added to SiCl 4 kept under an inert gas stream while being cooled to ice cooling, and directly reacted. After the hexane solution is added, the solution is kept stirring for 1 hour to produce a precipitate. After stirring, the precipitate formed in the hexane solution is filtered off. Next, 5 ml of dicyclopentadiene and 2 g of aluminum stearate are added to the filtrate obtained by filtering the precipitate, and stirring is continued for about 24 hours while heating to about 40 ° C. The stirred liquid is a suspension, and the suspension is filtered to separate the solution. Next, the filtered solution is cooled to −45 ° C., and a mixed gas containing Ar and H 2 is continuously bubbled into the cooled solution for 24 hours. As the mixed gas, a gas prepared by adding H 2 at a ratio of 2 ml to 100 ml of Ar is used. After bubbling, hexane contained in the solution is removed to obtain a crude product of Si (Cp) 2 . Further, the crude product is dissolved in a developing solvent to prepare a solution. As a developing solvent, 200 ml of hexane is used. By passing this solution through an alumina column or the like, about 3 g of the purified product of Si (Cp) 2 of the present invention can be obtained.

本発明の有機シリコン化合物のRが炭素数が1〜4の直鎖又は分岐状アルキル基であるとき、有機シリコン化合物単体でシリコン含有膜形成用溶液原料として用いることができる。上記式(1)のRが炭素数1〜4の直鎖又は分岐状アルキル基で表される有機シリコン化合物は室温で液体として存在するため、これらの化合物単体でシリコン含有膜形成用溶液原料として使用できる。
また本発明の有機シリコン化合物を有機溶媒に溶解して本発明の溶液原料としてもよい。本発明の有機シリコン化合物を有機溶媒に溶解した溶液原料は、有機シリコン化合物をより安定して気化室や成膜室まで送込むことができるため、結果としてMOCVDにおける薄膜の成長速度が促進される。有機溶媒としてはテトラヒドロフラン、メチルテトラヒドロフラン、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒が挙げられる。
When R of the organic silicon compound of the present invention is a linear or branched alkyl group having 1 to 4 carbon atoms, the organic silicon compound alone can be used as a solution raw material for forming a silicon-containing film. Since the organic silicon compound in which R in the above formula (1) is a linear or branched alkyl group having 1 to 4 carbon atoms exists as a liquid at room temperature, these compounds are used alone as a solution raw material for forming a silicon-containing film. Can be used.
Further, the organic silicon compound of the present invention may be dissolved in an organic solvent to form the solution raw material of the present invention. The solution raw material in which the organosilicon compound of the present invention is dissolved in an organic solvent can send the organosilicon compound more stably to the vaporization chamber and the film formation chamber, and as a result, the growth rate of the thin film in MOCVD is promoted. . As the organic solvent, one selected from the group consisting of tetrahydrofuran, methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine, lutidine, butyl acetate, amyl acetate, methyl acetate and ethyl acetate or Two or more solvents can be mentioned.

室温で固体の有機シリコン化合物をそのまま減圧下で加熱して気化させる固体昇華法では、装置内の配管全てを加熱しておく必要があり、加熱されていない部分があると配管内で析出してしまい、配管が閉塞するおそれがある。また、加熱された状態で長時間保存されるため、材質の変質が起こって気化しにくくなり、原料の供給量が減少して成膜速度が低減する問題も生じる。一方、有機シリコン化合物を有機溶媒に溶解して溶液原料とした場合は、室温で気化室まで原料を供給できるため配管の閉塞がなくなり、原料が加熱されている時間が短くなるので原料の変質が抑制でき、安定して原料が供給されるので成膜速度が促進する。   In the solid sublimation method in which a solid organic silicon compound is vaporized by heating under reduced pressure as it is at room temperature, it is necessary to heat all the pipes in the apparatus, and if there are unheated parts, they will precipitate in the pipes. As a result, the piping may be blocked. In addition, since the material is stored for a long time in a heated state, the material is changed in quality and is difficult to be vaporized. On the other hand, when the organic silicon compound is dissolved in an organic solvent and used as a solution raw material, the raw material can be supplied to the vaporization chamber at room temperature, so there is no blockage of the piping, and the time during which the raw material is heated is shortened. Since the raw material can be supplied stably, the film formation rate is accelerated.

本発明のシリコン含有膜の形成方法では、本発明の有機シリコン化合物、又は本発明の溶液原料を用いて成膜することを特徴とする。本発明の有機シリコン化合物又はこの化合物を含む溶液原料を用いてシリコン含有膜を形成することで、従来の有機シリコン化合物を用いた場合の成膜温度よりも低い温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度でシリコン含有膜を形成することができる。
このようにして得られた有機シリコン化合物は、MOCVD法を用いて基体上、例えばシリコン基板上にシリコン含有膜を形成する。上記式(1)に示される有機シリコン化合物のうち、Rが炭素数1〜4の直鎖又は分岐状アルキル基であるときは室温で液体であるため、熱CVD法が好適である。
The method for forming a silicon-containing film of the present invention is characterized by forming a film using the organosilicon compound of the present invention or the solution raw material of the present invention. By forming a silicon-containing film using the organic silicon compound of the present invention or a solution raw material containing this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organic silicon compound is used. The substrate on which the film is formed is not damaged. Moreover, it is excellent in vaporization stability, and a silicon-containing film can be formed at a high film formation rate.
The organic silicon compound thus obtained forms a silicon-containing film on a substrate, for example, a silicon substrate, using MOCVD. Among the organosilicon compounds represented by the above formula (1), when R is a linear or branched alkyl group having 1 to 4 carbon atoms, since it is liquid at room temperature, a thermal CVD method is suitable.

次に、有機シリコン化合物を用いたシリコン含有膜の形成方法をMOCVD法を用いてSi-N膜を形成する方法を例にとって説明する。
図1に示すように、MOCVD装置は、成膜室10と蒸気発生装置11を備える。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力センサー14、コールドトラップ15及びニードルバルブ16を備える配管17により真空引きされる。成膜室10にはニードルバルブ36、ガス流量調節装置34を介してNH3ガス導入管37が接続される。ここで成膜される膜がSiO2膜のような酸素を含有する薄膜である場合、ガス導入管37からはO2ガスが導入される。蒸気発生装置11には、本発明の有機シリコン化合物又は溶液原料を貯留する原料容器18が備えられる。原料容器18にはガス流量調節装置19を介して加圧用不活性ガス導入管21が接続され、また原料容器18には供給管22が接続される。供給管22にはニードルバルブ23及び流量調節装置24が設けられ、供給管22は気化室26に接続される。気化室26にはニードルバルブ31、ガス流量調節装置28を介してキャリアガス導入管29が接続される。気化室26は更に配管27により成膜室10に接続される。また気化室26には、ガスドレイン32及びドレイン33がそれぞれ接続される。
この装置では、加圧用不活性ガスが導入管21から原料容器18内に導入され、原料容器18に貯蔵されている原料液を供給管22により気化室26に搬送する。気化室26で気化されて蒸気となった有機シリコン化合物は、更にキャリアガス導入管29から気化室26へ導入されたキャリアガスにより配管27を経て成膜室10内に供給される。加圧用不活性ガス、キャリアガスには、アルゴン、ヘリウム、窒素等が使用される。成膜室10内において、有機シリコン化合物の蒸気を熱分解させ、NH3ガス導入管37より導入されたNH3ガスと反応させることにより、生成したSi-Nを加熱された基板13上に堆積させてSi-N膜を形成する。本発明の有機シリコン化合物は従来の有機シリコン化合物よりも低温で熱分解するため、低温での膜成長が可能である。また本発明の有機シリコン化合物は、気化安定性に優れており、高い成膜速度を有する。
Next, a method for forming a silicon-containing film using an organic silicon compound will be described using a method for forming a Si—N film using MOCVD as an example.
As shown in FIG. 1, the MOCVD apparatus includes a film formation chamber 10 and a vapor generator 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 including a pressure sensor 14, a cold trap 15 and a needle valve 16. An NH 3 gas introduction pipe 37 is connected to the film forming chamber 10 via a needle valve 36 and a gas flow rate adjusting device 34. When the film formed here is a thin film containing oxygen such as a SiO 2 film, O 2 gas is introduced from the gas introduction pipe 37. The steam generator 11 is provided with a raw material container 18 for storing the organosilicon compound or solution raw material of the present invention. A pressurizing inert gas introduction pipe 21 is connected to the raw material container 18 via a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material container 18. The supply pipe 22 is provided with a needle valve 23 and a flow rate adjusting device 24, and the supply pipe 22 is connected to the vaporization chamber 26. A carrier gas introduction pipe 29 is connected to the vaporizing chamber 26 via a needle valve 31 and a gas flow rate adjusting device 28. The vaporizing chamber 26 is further connected to the film forming chamber 10 by a pipe 27. A gas drain 32 and a drain 33 are connected to the vaporizing chamber 26, respectively.
In this apparatus, an inert gas for pressurization is introduced into the raw material container 18 from the introduction pipe 21, and the raw material liquid stored in the raw material container 18 is conveyed to the vaporization chamber 26 through the supply pipe 22. The organosilicon compound that has been vaporized in the vaporizing chamber 26 to become vapor is further supplied into the film forming chamber 10 through the pipe 27 by the carrier gas introduced into the vaporizing chamber 26 from the carrier gas introduction pipe 29. Argon, helium, nitrogen, or the like is used as the inert gas for pressurization and the carrier gas. In the film forming chamber 10, the vapor of the organic silicon compound is thermally decomposed and reacted with NH 3 gas introduced from the NH 3 gas inlet tube 37, deposited on the substrate 13 which is heated and the resulting Si-N Thus, a Si—N film is formed. Since the organic silicon compound of the present invention is thermally decomposed at a lower temperature than conventional organic silicon compounds, film growth at a low temperature is possible. The organosilicon compound of the present invention is excellent in vaporization stability and has a high film formation rate.

また、Hf-Si-O膜を形成する方法を例にとって説明する。
図2に示すように、図1のMOCVD装置の蒸気発生装置11内に、本発明の有機シリコン化合物とは異なる、例えば有機ハフニウム化合物を含む溶液原料を貯留する原料容器38が備えられ、原料容器38にはガス流量調節装置39を介して加圧用不活性ガス導入管41が接続され、また原料容器38には供給管42が接続される。供給管42にはニードルバルブ43及び流量調節装置44が設けられ、供給管42は気化室26に接続される。このように有機シリコン化合物を貯留する原料容器18に接続された配管と同様の配置で接続され、ガス導入管37からはO2ガスが導入される。
Further, a method for forming a Hf—Si—O film will be described as an example.
As shown in FIG. 2, a raw material container 38 for storing a solution raw material containing, for example, an organic hafnium compound, different from the organic silicon compound of the present invention, is provided in the vapor generating apparatus 11 of the MOCVD apparatus of FIG. 38 is connected to an inert gas introduction pipe 41 for pressurization via a gas flow rate control device 39, and a supply pipe 42 is connected to the raw material container 38. The supply pipe 42 is provided with a needle valve 43 and a flow rate adjusting device 44, and the supply pipe 42 is connected to the vaporization chamber 26. In this way, the connection is made in the same arrangement as the pipe connected to the raw material container 18 for storing the organic silicon compound, and O 2 gas is introduced from the gas introduction pipe 37.

この装置では、原料容器18,38からそれぞれ気化室に搬送されて蒸気となった有機シリコン化合物と有機ハフニウム化合物とが成膜室10内に供給され、成膜室10内において、有機シリコン化合物及び有機ハフニウム化合物の蒸気を熱分解させ、O2ガス導入管37より導入されたO2と反応させることにより、生成したHf-Si-Oを加熱された基板13上に堆積させてHf-Si-O薄膜を形成する。 In this apparatus, the organic silicon compound and the organic hafnium compound, which are respectively transferred from the raw material containers 18 and 38 to the vaporization chamber and become vapor, are supplied into the film formation chamber 10. The vapor of the organic hafnium compound is thermally decomposed and reacted with O 2 introduced from the O 2 gas introduction pipe 37 to deposit the generated Hf—Si—O on the heated substrate 13 to form Hf—Si—. An O thin film is formed.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、出発原料としてSiCl4を用意し、1.0モル濃度のt-ブチルリチウムのヘキサン溶液を氷冷下にまで冷却しながら不活性ガスの気流下に保持したSiCl4にゆっくり添加して直接反応させた。次いで、反応液を1時間攪拌し続けて沈殿物を生成させた。ヘキサン溶液中に生成した沈殿物をろ別し、ろ液にジシクロペンタジエンとステアリン酸アルミニウムを加え、40℃程度に加温しながら約24時間攪拌し続けた。次に、懸濁液となった攪拌液をろ別して溶液を取り分け、ろ別した溶液を−45℃にまで冷却して、溶液にAr及びH2を含む混合ガスを24時間バブリングし続けた。バブリング後は溶液中に含まれるヘキサンを除去することにより粗生成物を得た。更に、粗生成物を展開溶媒に溶解して溶解液を調製し、この溶解液をアルミナカラム等に通過させることにより精製物を得た。得られた精製物を1H-NMR(C66)により測定した結果では、δ=1.3ppm(C−H)及びδ=2.3ppm(C−H)であった。上記分析結果より得られた化合物はSi(Cp)2であると同定された。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, SiCl 4 is prepared as a starting material, and a hexane solution of 1.0 molar t-butyllithium is slowly added to SiCl 4 kept under an inert gas stream while cooling to ice cooling. Reacted. Subsequently, the reaction solution was continuously stirred for 1 hour to form a precipitate. The precipitate formed in the hexane solution was filtered, dicyclopentadiene and aluminum stearate were added to the filtrate, and the mixture was stirred for about 24 hours while being heated to about 40 ° C. Next, the stirred stirring liquid was filtered to separate the solution, the filtered solution was cooled to −45 ° C., and a mixed gas containing Ar and H 2 was continuously bubbled into the solution for 24 hours. After bubbling, hexane contained in the solution was removed to obtain a crude product. Further, the crude product was dissolved in a developing solvent to prepare a solution, and the solution was passed through an alumina column or the like to obtain a purified product. The obtained purified product was measured by 1 H-NMR (C 6 D 6 ) and found to be δ = 1.3 ppm (C—H) and δ = 2.3 ppm (C—H). The compound obtained from the above analysis results was identified as Si (Cp) 2 .

<実施例2>
ジシクロペンタジエンに代えてメチルジシクロペンタジエンを用いた以外は実施例1と同様にして反応を行い、Si(MeCp)2を得た。
<実施例3>
ジシクロペンタジエンに代えてエチルジシクロペンタジエンを用いた以外は実施例1と同様にして合成を行い、Si(EtCp)2を得た。
<実施例4>
ジシクロペンタジエンに代えてn−プロピルジシクロペンタジエンを用いた以外は実施例1と同様にして合成を行い、Si(n-PrCp)2を得た。
<実施例5>
ジシクロペンタジエンに代えてi−プロピルジシクロペンタジエンを用いた以外は実施例1と同様にして合成を行い、Si(i-PrCp)2を得た。
<実施例6>
ジシクロペンタジエンに代えてn−ブチルジシクロペンタジエンを用いた以外は実施例1と同様にして合成を行い、Si(n-BuCp)2を得た。
<実施例7>
ジシクロペンタジエンに代えてt−ブチルジシクロペンタジエンを用いた以外は実施例1と同様にして合成を行い、Si(t-BuCp)2を得た。
<Example 2>
A reaction was carried out in the same manner as in Example 1 except that methyldicyclopentadiene was used in place of dicyclopentadiene to obtain Si (MeCp) 2 .
<Example 3>
Synthesis was carried out in the same manner as in Example 1 except that ethyldicyclopentadiene was used in place of dicyclopentadiene to obtain Si (EtCp) 2 .
<Example 4>
Synthesis was performed in the same manner as in Example 1 except that n-propyldicyclopentadiene was used in place of dicyclopentadiene to obtain Si (n-PrCp) 2 .
<Example 5>
Synthesis was performed in the same manner as in Example 1 except that i-propyldicyclopentadiene was used in place of dicyclopentadiene to obtain Si (i-PrCp) 2 .
<Example 6>
Synthesis was performed in the same manner as in Example 1 except that n-butyldicyclopentadiene was used in place of dicyclopentadiene to obtain Si (n-BuCp) 2 .
<Example 7>
Synthesis was performed in the same manner as in Example 1 except that t-butyldicyclopentadiene was used in place of dicyclopentadiene to obtain Si (t-BuCp) 2 .

<比較例1>
Si2Cl6を用意し、この化合物をそのまま有機シリコン化合物として用いた。
<比較例2>
Me(NEt2)2Si-Si(NEt2)2Meを用意し、この化合物を有機シリコン化合物として用いた。
<Comparative Example 1>
Si 2 Cl 6 was prepared, and this compound was used as an organic silicon compound as it was.
<Comparative example 2>
Me (NEt 2 ) 2 Si—Si (NEt 2 ) 2 Me was prepared, and this compound was used as an organosilicon compound.

<比較評価1>
実施例2〜7でそれぞれ得られた有機シリコン化合物単体をそのまま溶液原料とした。また実施例1〜7及び比較例1,2の有機シリコン化合物を次の表1に示す有機溶媒にそれぞれ溶解して0.1mol/Lの溶液原料を調製した。これらの溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板としてシリコン基板を5枚ずつ用意し、基板を図1に示すMOCVD装置の成膜室に設置した。次いで、基板温度を450℃、気化温度を100℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてNH3ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合でそれぞれ供給し、成膜時間が1分、2分、3分、4分及び5分となったときにそれぞれ1枚ずつ成膜室より取出した。
・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のSi-N薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
<評価>
得られた成膜時間あたりの膜厚結果を表1にそれぞれ示す。
<Comparison evaluation 1>
The organic silicon compound simple substance obtained in each of Examples 2 to 7 was directly used as a solution raw material. Moreover, the organic silicon compounds of Examples 1 to 7 and Comparative Examples 1 and 2 were dissolved in the organic solvents shown in Table 1 below to prepare 0.1 mol / L solution raw materials. A film thickness test per film formation time was performed using these solution raw materials.
First, five silicon substrates were prepared as substrates, and the substrates were placed in the film formation chamber of the MOCVD apparatus shown in FIG. Subsequently, the substrate temperature was set to 450 ° C., the vaporization temperature was set to 100 ° C., and the pressure was set to about 266 Pa (2 Torr). NH 3 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas is used as a carrier gas, and solution raw materials are respectively supplied at a rate of 0.05 cc / min. When the film formation time is 1 minute, 2 minutes, 3 minutes, 4 minutes and 5 minutes, respectively. One sheet was taken out from the film forming chamber.
-Film thickness test per film formation time The film thickness of the Si-N thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
<Evaluation>
The obtained film thickness results per film formation time are shown in Table 1, respectively.

Figure 2005170869
Figure 2005170869

表1より明らかなように、比較例1及び2の有機シリコン化合物を用いた溶液原料では、時間が進んでもSi-N膜の膜厚が厚くならず、成膜の安定性が悪いことが判る。これに対して実施例1〜7の有機シリコン化合物を用いた溶液原料では、成膜時間あたりの膜厚が均等になっており、成膜安定性が高い結果が得られた。また比較例1及び2で形成した膜に比べて厚い膜が形成されていることから成膜速度が非常に高いことが判った。   As is clear from Table 1, it can be seen that the solution raw materials using the organic silicon compounds of Comparative Examples 1 and 2 do not increase the film thickness of the Si—N film even with time, and the film formation stability is poor. . On the other hand, in the solution raw material using the organic silicon compounds of Examples 1 to 7, the film thickness per film formation time was uniform, and the film formation stability was high. Further, it was found that the film formation rate was very high because a thick film was formed as compared with the films formed in Comparative Examples 1 and 2.

<比較評価2>
実施例3及び比較例2でそれぞれ得られた有機シリコン化合物単体をそのまま溶液原料として用意した。また、実施例3及び比較例2の有機シリコン化合物をTHFに溶解して0.1mol/LのTHF溶液を調製した。これらの溶液原料を用いて熱安定性試験を行った。
先ず、SUS316製バルブ付きフランジ真空容器を用意し、この容器内に25℃に保持した溶液原料を導入し、容器を密封した。続いて密封容器内の空隙部分をアスピレータにより減圧して容器内部の圧力を約2.66×103Pa(20Torr)に調節した。次いで、密封容器を加熱して内部の溶液原料を25℃から100℃へと昇温した後、再び25℃に降温する動作を温度変動の1サイクルとし、この熱サイクルを4サイクル行った。次に、このサイクル後に容器内部の圧力を約2.66×102Pa(2Torr)に調節し、100℃にまで昇温して溶液原料を加熱蒸発させた。溶液原料を加熱蒸発させた後、密封容器のバルブを開けてArガスを容器内部に導入し、容器内部の圧力をほぼ大気圧(約1013hPa(760Torr))にまで戻した後、容器のフランジを開けて蒸発せずに容器底部に残る残渣を電子天秤で測定した。容器内部に導入した有機シリコン化合物を100重量%としたときの残渣量を表2にそれぞれ示す。
<Comparison evaluation 2>
The organic silicon compound simple substance obtained in Example 3 and Comparative Example 2 was prepared as a solution raw material as it was. Moreover, the organosilicon compound of Example 3 and Comparative Example 2 was dissolved in THF to prepare a 0.1 mol / L THF solution. A thermal stability test was conducted using these solution raw materials.
First, a flanged vacuum vessel with a valve made of SUS316 was prepared, and a solution raw material maintained at 25 ° C. was introduced into the vessel, and the vessel was sealed. Subsequently, the space inside the sealed container was decompressed by an aspirator, and the pressure inside the container was adjusted to about 2.66 × 10 3 Pa (20 Torr). Then, after the sealed container was heated to raise the temperature of the solution material inside from 25 ° C. to 100 ° C., the operation of lowering the temperature again to 25 ° C. was defined as one cycle of temperature fluctuation, and this thermal cycle was performed for 4 cycles. Next, after this cycle, the pressure inside the container was adjusted to about 2.66 × 10 2 Pa (2 Torr), the temperature was raised to 100 ° C., and the solution raw material was heated and evaporated. After the solution raw material is evaporated by heating, the valve of the sealed container is opened, Ar gas is introduced into the container, and the pressure inside the container is returned to almost atmospheric pressure (about 1013 hPa (760 Torr)). The residue remaining on the bottom of the container without opening and evaporating was measured with an electronic balance. Table 2 shows the amounts of residues when the organosilicon compound introduced into the container is 100% by weight.

Figure 2005170869
Figure 2005170869

表2から明らかなように、比較例2の溶液原料では多くの残渣が生じており、熱安定性が悪い結果が得られた。このように熱安定性が悪いサンプルを用いてシリコン含有膜を成膜した場合、高品質の膜が得られないおそれがある。これに対して実施例3の溶液原料はほとんど残渣を生じておらず、高い熱安定性が得られていることが判った。また有機溶媒に溶解した溶液原料と、有機シリコン化合物単体からなる溶液原料を比べると、実施例3及び比較例2の溶液原料ではともに、有機溶媒に溶解した溶液原料の方が残渣量が少なく熱安定性に優れることも判った。   As is apparent from Table 2, many residues were generated in the solution raw material of Comparative Example 2, and a result with poor thermal stability was obtained. When a silicon-containing film is formed using a sample having such poor thermal stability, a high-quality film may not be obtained. On the other hand, it was found that the solution raw material of Example 3 produced almost no residue and high thermal stability was obtained. Further, when comparing the solution raw material dissolved in the organic solvent with the solution raw material consisting of the organic silicon compound alone, the solution raw material dissolved in the organic solvent has less residue and less heat in both the solution raw materials of Example 3 and Comparative Example 2. It was also found to be excellent in stability.

<比較評価3>
比較評価1で用いた溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板としてシリコン基板を5枚ずつ用意し、基板を図2に示すMOCVD装置の成膜室に設置した。次いで、基板温度を450℃、気化温度を140℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合で、有機ハフニウム化合物としてHf(Et2N)4を0.05cc/分の割合でそれぞれ供給し、成膜時間が1分、5分、10分、20分及び30分となったときにそれぞれ1枚ずつ成膜室より取出した。
・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のHf-Si-O薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
<評価>
得られた成膜時間あたりの膜厚結果を表3にそれぞれ示す。
<Comparison evaluation 3>
Using the solution raw material used in Comparative Evaluation 1, a film thickness test per film formation time was performed.
First, five silicon substrates were prepared as substrates, and the substrates were placed in the film formation chamber of the MOCVD apparatus shown in FIG. Next, the substrate temperature was set to 450 ° C., the vaporization temperature was set to 140 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas is used as a carrier gas, a solution raw material is supplied at a rate of 0.05 cc / min, and Hf (Et 2 N) 4 is supplied as an organic hafnium compound at a rate of 0.05 cc / min. Was taken out from the film forming chamber one by one when the time became 1, 5, 10, 20, and 30 minutes.
-Film thickness test per film formation time The film thickness of the Hf-Si-O thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
<Evaluation>
Table 3 shows the obtained film thickness results per film formation time.

Figure 2005170869
Figure 2005170869

表3より明らかなように、比較例1及び2の有機シリコン化合物を用いた溶液原料では、時間が進んでもHf-Si-O膜の膜厚が厚くならず、成膜の安定性が悪いことが判る。これに対して実施例1〜7の有機シリコン化合物を用いた溶液原料では、成膜時間あたりの膜厚が均等になっており、成膜安定性が高い結果が得られた。また比較例1及び2で形成した膜に比べて厚い膜が形成されていることから成膜速度が非常に高いことが判った。   As is apparent from Table 3, the solution raw materials using the organic silicon compounds of Comparative Examples 1 and 2 do not increase the thickness of the Hf—Si—O film even with time, and the film formation stability is poor. I understand. On the other hand, in the solution raw material using the organic silicon compounds of Examples 1 to 7, the film thickness per film formation time was uniform, and the film formation stability was high. Further, it was found that the film formation rate was very high because a thick film was formed as compared with the films formed in Comparative Examples 1 and 2.

MOCVD装置の概略図。Schematic of the MOCVD apparatus. 別の構造を有するMOCVD装置の概略図。The schematic of the MOCVD apparatus which has another structure.

Claims (6)

次の式(1)に示される有機シリコン化合物。
Figure 2005170869
但し、式中のRは水素又は炭素数が1〜4の直鎖又は分岐状アルキル基を示す。
An organosilicon compound represented by the following formula (1).
Figure 2005170869
However, R in a formula shows hydrogen or a C1-C4 linear or branched alkyl group.
請求項1記載の式(1)に示される有機シリコン化合物のRが炭素数が1〜4の直鎖又は分岐状アルキル基であって、
前記有機シリコン化合物単体からなるシリコン含有膜形成用溶液原料。
R of the organosilicon compound represented by formula (1) according to claim 1 is a linear or branched alkyl group having 1 to 4 carbon atoms,
A solution raw material for forming a silicon-containing film comprising the organic silicon compound alone.
請求項1記載の有機シリコン化合物を有機溶媒に溶解したことを特徴とするシリコン含有膜形成用溶液原料。   A solution raw material for forming a silicon-containing film, wherein the organosilicon compound according to claim 1 is dissolved in an organic solvent. 有機溶媒がテトラヒドロフラン、メチルテトラヒドロフラン、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒である請求項3記載の溶液原料。   One or two organic solvents selected from the group consisting of tetrahydrofuran, methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine, lutidine, butyl acetate, amyl acetate, methyl acetate and ethyl acetate The solution raw material according to claim 3, wherein the solution raw material is a seed or more solvent. 請求項1記載の有機シリコン化合物、又は請求項2ないし4いずれか1項に記載の溶液原料を用いて成膜することを特徴とするシリコン含有膜の形成方法。   A method for forming a silicon-containing film, comprising forming a film using the organosilicon compound according to claim 1 or the solution raw material according to any one of claims 2 to 4. 有機金属化学気相成長法により成膜する請求項5記載のシリコン含有膜の形成方法。
6. The method for forming a silicon-containing film according to claim 5, wherein the film is formed by metal organic chemical vapor deposition.
JP2003414365A 2003-12-12 2003-12-12 Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound Pending JP2005170869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414365A JP2005170869A (en) 2003-12-12 2003-12-12 Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414365A JP2005170869A (en) 2003-12-12 2003-12-12 Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound

Publications (1)

Publication Number Publication Date
JP2005170869A true JP2005170869A (en) 2005-06-30

Family

ID=34734183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414365A Pending JP2005170869A (en) 2003-12-12 2003-12-12 Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound

Country Status (1)

Country Link
JP (1) JP2005170869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018077684A1 (en) 2016-10-25 2018-05-03 Basf Se Process for the generation of thin silicon-containing films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018077684A1 (en) 2016-10-25 2018-05-03 Basf Se Process for the generation of thin silicon-containing films
CN109890997A (en) * 2016-10-25 2019-06-14 巴斯夫欧洲公司 The method for generating thin silicon-containing film
US11149349B2 (en) 2016-10-25 2021-10-19 Basf Se Process for the generation of thin silicon-containing films

Similar Documents

Publication Publication Date Title
TWI464291B (en) Methods of preparing thin films by atomic layer deposition using titanium-based precursors
US7906668B2 (en) Imide complex, method for producing the same, metal-containing thin film and method for producing the same
TWI510495B (en) Ruthenium compound with excellent step coverage, and thin film formed by depositing the same
JP4517565B2 (en) Ruthenium complex, method for producing the same, and method for producing the thin film
JP4265409B2 (en) Method for forming Si-containing thin film using organic Si-containing compound having Si-Si bond
JP2006096675A (en) New amino-disilane and method for forming silicon carbonitride film
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
JP2005252238A (en) Film forming material containing metal and film containing metal prepared of same
JP5096016B2 (en) Tantalum compound and method for producing the same, tantalum-containing thin film using the same and method for forming the same
KR19990012189A (en) New Amadoido Allan Precursor for Aluminum Chemical Vapor Deposition
JP5732772B2 (en) Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof
JP2005170869A (en) Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound
JP2003155566A (en) Method of producing thin film, and raw material for chemical vapor deposition
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP2010215982A (en) Method for producing ruthenium-containing film using ruthenium complex organic solvent solution, and ruthenium-containing film
JP3180616B2 (en) Organic iridium compounds
JPH0853468A (en) Organocopper compound for copper thin film formation by chemical vapor deposition of high-vapor pressure organometal
JP2006013267A (en) Organic lanthanum compound and manufacturing method of lanthanum-containing film using it
JP2005187356A (en) Organic metal compound and its solution raw material and method for forming metal-containing film using the compound
JP2005306861A (en) Organic aluminum compound and production method for aluminum-containing film using the compound
JP2005225855A (en) Organic iridium compound, method for producing the compound and method for producing film
WO2005017950A2 (en) Organoiridium compound, process for producing the same, and process for producing film
JP2003257889A (en) SOLUTION MATERIAL FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CONTAINING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM FORMED USING THE SAME
JP2003252823A (en) Organocopper compound for metal organic chemical vapor deposition and copper thin film prepared by using the same
JPH1018036A (en) Forming method for high purity platinum thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A02