JP3180616B2 - Organic iridium compounds - Google Patents

Organic iridium compounds

Info

Publication number
JP3180616B2
JP3180616B2 JP10954195A JP10954195A JP3180616B2 JP 3180616 B2 JP3180616 B2 JP 3180616B2 JP 10954195 A JP10954195 A JP 10954195A JP 10954195 A JP10954195 A JP 10954195A JP 3180616 B2 JP3180616 B2 JP 3180616B2
Authority
JP
Japan
Prior art keywords
iridium
organic iridium
compound
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10954195A
Other languages
Japanese (ja)
Other versions
JPH08306627A (en
Inventor
寛人 内田
篤 齋
正光 佐藤
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10954195A priority Critical patent/JP3180616B2/en
Publication of JPH08306627A publication Critical patent/JPH08306627A/en
Application granted granted Critical
Publication of JP3180616B2 publication Critical patent/JP3180616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイリジウム薄膜又はイリ
ジウム酸化物薄膜を形成するための有機イリジウム化合
物に係り、特に、半導体装置の配線材料等として有用な
イリジウム薄膜又はイリジウム酸化物薄膜を有機金属化
学蒸着法(Metalorganic Chemical Vapor Deposition:
以下「MOCVD法」と称す。)により形成するに際し
て、蒸着原料として用いるのに適した有機イリジウム化
合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic iridium compound for forming an iridium thin film or an iridium oxide thin film, and more particularly to an iridium thin film or an iridium oxide thin film useful as a wiring material for a semiconductor device. Metalorganic Chemical Vapor Deposition:
Hereinafter, it is referred to as “MOCVD method”. The present invention relates to an organic iridium compound that is suitable for use as a vapor deposition material when formed according to (1).

【0002】[0002]

【従来の技術】従来、半導体装置の配線材料等の各種イ
リジウム薄膜をMOCVD法により形成するに際して用
いられるイリジウム蒸着原料としては、下記構造式(I
I)で表される(メチルシクロペンタジエニル)(1,
5−シクロオクタジエン)イリジウム(I)からなる有
機イリジウム化合物が知られている。
2. Description of the Related Art Conventionally, iridium vapor deposition raw materials used for forming various iridium thin films such as wiring materials for semiconductor devices by MOCVD are represented by the following structural formula (I).
(Methylcyclopentadienyl) (1, 1)
An organic iridium compound comprising (5-cyclooctadiene) iridium (I) is known.

【0003】[0003]

【化2】 Embedded image

【0004】このような蒸着原料を用いてMOCVD法
によりイリジウム薄膜を形成するには、例えば、図1の
概略説明図に示す如く、反応炉8内に設けたヒーター7
上に基板6を置き、一方、この反応炉8と連接して設け
た加熱炉3内で、気化容器2内の上記有機イリジウム化
合物からなる蒸着原料1を気化させ、得られた蒸気を配
管4から導入されるAr,N2 等のキャリアガスで反応
炉8内に送給して拡散させ、また、反応ガスとして水素
ガス等の還元性ガスを、配管5から反応炉8に導入する
ことにより、各々、イリジウムを加熱基板6上に析出さ
せる。図中、9は真空引配管、Pは圧力計、M1 ,M2
は流量制御器である。この方法は熱分解型MOCVD法
と称される。
In order to form an iridium thin film by the MOCVD method using such a deposition material, for example, as shown in a schematic explanatory view of FIG.
The substrate 6 is placed on the upper surface. On the other hand, in the heating furnace 3 provided in connection with the reaction furnace 8, the vapor deposition raw material 1 made of the organic iridium compound in the vaporization vessel 2 is vaporized. The carrier gas is introduced into the reaction furnace 8 and diffused by a carrier gas such as Ar or N 2 introduced from the reactor, and a reducing gas such as hydrogen gas is introduced into the reaction furnace 8 from the pipe 5 as a reaction gas. Then, iridium is deposited on the heating substrate 6. In the figure, 9 is a vacuum pipe, P is a pressure gauge, M 1 and M 2
Is a flow controller. This method is called a thermal decomposition type MOCVD method.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の熱分解
型MOCVD法に蒸着原料として従来用いられている前
記構造式(II)で示される有機イリジウム化合物は、融
点が38.5〜40℃で、室温では固体であり、液体マ
スフローコントローラーを用いた原料の供給を行うため
には、加熱が必要である。室温で固体の蒸着原料を図1
に示す気化容器2内で気化させる場合には、気化速度の
正確な制御が困難であり、基板表面上に形成されるイリ
ジウム又はイリジウム酸化物薄膜の堆積速度が不均一と
なる。また、上記従来の有機イリジウム化合物は、気化
における加熱の際に、気化容器2内にて気化の他に熱分
解反応を起こすなど、熱安定性にも問題がある。
However, the organic iridium compound represented by the structural formula (II), which is conventionally used as a vapor deposition material in the above-mentioned thermal decomposition type MOCVD method, has a melting point of 38.5 to 40 ° C. In addition, heating is necessary in order to supply a raw material using a liquid mass flow controller because it is solid at room temperature. Figure 1 shows the deposition material that is solid at room temperature.
In the case of vaporization in the vaporization container 2 shown in (1), it is difficult to accurately control the vaporization rate, and the deposition rate of the iridium or iridium oxide thin film formed on the substrate surface becomes uneven. Further, the above-mentioned conventional organic iridium compound also has a problem in thermal stability, such as causing a thermal decomposition reaction in the vaporization container 2 in addition to vaporization during heating in vaporization.

【0006】近年、半導体装置の高集積化から、これに
適用されるイリジウム又はイリジウム酸化物薄膜は増々
薄膜化される傾向にあるが、上述の如く、従来の有機イ
リジウム化合物では、この薄膜化に対応する均一かつ緻
密な膜厚の制御が困難であることから、その改良が望ま
れている。
[0006] In recent years, iridium or iridium oxide thin films applied thereto have been increasingly thinned due to high integration of semiconductor devices. However, as described above, conventional organic iridium compounds have been used in such thin films. Since it is difficult to control the corresponding uniform and dense film thickness, improvement thereof is desired.

【0007】本発明は上記従来の問題点を解決し、熱分
解型MOCVD法等のMOCVD法によるイリジウム薄
膜及びイリジウム酸化物薄膜の形成に際し、気化速度が
均一で、気化の際の熱安定性に優れ、しかも、室温で液
体の、高純度イリジウム薄膜及びイリジウム酸化物薄膜
形成用有機イリジウム化合物を提供することを目的とす
る。
[0007] The present invention solves the above-mentioned conventional problems, and when forming an iridium thin film and an iridium oxide thin film by a MOCVD method such as a thermal decomposition type MOCVD method, the vaporization rate is uniform and the thermal stability during vaporization is improved. An object of the present invention is to provide an organic iridium compound for forming a high-purity iridium thin film and an iridium oxide thin film which is excellent and is liquid at room temperature.

【0008】[0008]

【課題を解決するための手段】本発明の有機イリジウム
化合物は、下記構造式(I)で表される(メチルシクロ
ペンタジエニル)(1,5−ジメチル−1,5−シクロ
オクタジエン)イリジウム(I)である。
The organic iridium compound of the present invention is represented by the following structural formula (I): (methylcyclopentadienyl) (1,5-dimethyl-1,5-cyclooctadiene) iridium. (I).

【0009】[0009]

【化3】 Embedded image

【0010】即ち、本発明者らは上述の観点から、熱分
解型MOCVD法を含め、その他のMOCVD法により
イリジウム薄膜及びイリジウム酸化物薄膜を作製するに
際して、気化速度が均一で、かつ気化の際の熱安定性に
優れ、しかも、室温で液体の、高純度なイリジウム薄膜
及びイリジウム酸化物薄膜形成用蒸着原料を見出すべく
研究を行った結果、上記構造式(I)で表される有機ジ
イリジウム化合物は室温で液体であり、しかも、この有
機イリジウム化合物を蒸着原料として用いると、前記構
造式(II)で表される従来の有機イリジウム化合物に比
べて、安定した気化速度を得ることが可能になると共
に、優れた揮発性及び熱安定性を示すという知見を得、
本発明を完成させた。
That is, from the above-mentioned viewpoints, the present inventors have found that when producing iridium thin films and iridium oxide thin films by other MOCVD methods including the pyrolysis type MOCVD method, the vaporization rate is uniform and the Of organic diiridium represented by the above structural formula (I) as a result of studying to find a high-purity iridium thin film and an iridium oxide thin film deposition material which is excellent in thermal stability and liquid at room temperature. The compound is a liquid at room temperature, and when this organic iridium compound is used as a deposition material, a stable vaporization rate can be obtained as compared with the conventional organic iridium compound represented by the structural formula (II). With the knowledge that it exhibits excellent volatility and thermal stability,
The present invention has been completed.

【0011】本発明に係る有機イリジウム化合物は、例
えば、後掲の実施例に示されるように、1,5−ジメチ
ル−1,5−シクロオクタジエンイリジウムクロライド
2量化物と、ナトリウムメチルシクロペンタジエニドと
を反応させることにより合成することができる。
The organic iridium compound according to the present invention is, for example, as shown in Examples described later, 1,5-dimethyl-1,5-cyclooctadiene iridium chloride dimer and sodium methylcyclopentadiene. It can be synthesized by reacting with an enide.

【0012】このような本発明の有機イリジウム化合物
は、従来の有機イリジウム化合物と同様の操作で熱分解
型MOCVD法等のMOCVD法による蒸着原料として
用いることができる。このMOCVD法による成膜に当
り、原料ガスと同時に送給する反応ガスとして、前述の
如く、水素等の還元性ガスを用いた場合にはイリジウム
薄膜を、また、酸素等の酸化性ガスを用いた場合には、
イリジウム酸化物薄膜を形成することができる。
Such an organic iridium compound of the present invention can be used as a vapor deposition material by MOCVD such as thermal decomposition type MOCVD by the same operation as a conventional organic iridium compound. In the film formation by the MOCVD method, as described above, when a reducing gas such as hydrogen is used as the reaction gas to be supplied at the same time as the source gas, an iridium thin film is used, and an oxidizing gas such as oxygen is used. If you have
An iridium oxide thin film can be formed.

【0013】[0013]

【作用】前記構造式(I)で表される有機イリジウム化
合物は室温付近で液体である。また、この有機イリジウ
ム化合物は、配位子の1つとして用いる1,5−ジメチ
ル−1,5−シクロオクタジエン配位子が、立体障害の
大きなメチル基をシクロオクタジエン環上に有し、これ
により、イリジウム金属への分解反応を抑えているため
に、従来の有機イリジウム化合物よりも、安定した気化
速度を得ることが可能になると共に、優れた揮発性及び
熱安定性を示す。
The organic iridium compound represented by the structural formula (I) is a liquid at around room temperature. In this organic iridium compound, the 1,5-dimethyl-1,5-cyclooctadiene ligand used as one of the ligands has a methyl group having a large steric hindrance on the cyclooctadiene ring, Thereby, since the decomposition reaction to iridium metal is suppressed, it is possible to obtain a more stable vaporization rate than the conventional organic iridium compound, and it shows excellent volatility and thermal stability.

【0014】[0014]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0015】実施例1 [有機イリジウム化合物の合成] [(1,5−ジメチル−1,5−シクロオクタジエン)
Ir(μ−Cl)] 10g(13.74mmol)に十分に窒素脱気を行っ
た乾燥テトラヒドロフラン500mlを注ぎ−78℃に
冷却した。反応系を−78℃に冷却したままナトリウム
メチルシクロペンタジエニド3.1g(30.36mm
ol)のテトラヒドロフラン溶液を激しく撹拌しながら
1滴づつ滴下ロートより滴下した。反応系を室温に戻し
30分間撹拌した後、アルゴン気流下で濾過し、濾液を
35℃の減圧下で留去し、黄色の液体を得た。精製は、
ペンタンで抽出後、減圧下で蒸留を行い、明黄色の液体
である前記構造式(I)で示される本発明有機イリジウ
ム化合物:(メチルシクロペンタジエニル)(1,5−
ジメチル−1,5−シクロオクタジエン)イリジウム
(I)を6.2g得た。
Example 1 [Synthesis of organic iridium compound] [(1,5-dimethyl-1,5-cyclooctadiene)]
[Ir (μ-Cl)] 2 500 g (13.74 mmol) of dry tetrahydrofuran sufficiently degassed with nitrogen was poured into the mixture and cooled to -78 ° C. While cooling the reaction system to -78 ° C, 3.1 g of sodium methylcyclopentadienide (30.36 mm
ol) was dropped from the dropping funnel drop by drop with vigorous stirring. The reaction system was returned to room temperature, stirred for 30 minutes, filtered under an argon stream, and the filtrate was distilled off under reduced pressure at 35 ° C. to obtain a yellow liquid. Purification is
After extraction with pentane, distillation was performed under reduced pressure to obtain a light yellow liquid of the present organic iridium compound represented by the structural formula (I): (methylcyclopentadienyl) (1,5-
6.2 g of dimethyl-1,5-cyclooctadiene) iridium (I) was obtained.

【0016】得られた有機イリジウム化合物の同定は、
NMR、マススペクトル分析及び元素分析により行っ
た。
The identification of the obtained organic iridium compound is as follows.
The analysis was performed by NMR, mass spectrum analysis and elemental analysis.

【0017】1H−NMR(CDCl ):δH=
5.01(t,2H,CH)、5.20(br,2H,
CH)、1.82(s,3H,CH3 )、1.9(m,
4H,CH2 )、1.75(m,4H,CH2 )、3.
62(br,2H,CH2 )、1.2(s,3H,CH
3 ) MS(El=30eV):M/Z=407、M/Z=3
28、M/Z=271元素分析:Ir 47.2%(理
論値47.16%)、C 47.1%(理論値47.1
5%)、H 5.7%(理論値5.69%) また、比較の目的で1,5−ジメチル−1,5−シクロ
オクタジエン化合物の代わりに、1,5−シクロオクタ
ジエン化合物を用いたこと以外は同一の条件で、前記構
造式(II)に示される従来の有機イリジウム化合物を合
成した。
1H-NMR (CDCl 3 ): δH =
5.01 (t, 2H, CH), 5.20 (br, 2H, CH)
CH), 1.82 (s, 3H , CH 3), 1.9 (m,
4H, CH 2), 1.75 ( m, 4H, CH 2), 3.
62 (br, 2H, CH 2 ), 1.2 (s, 3H, CH
3 ) MS (El = 30 eV): M / Z = 407, M / Z = 3
28, M / Z = 271 Elemental analysis: Ir 47.2% (theoretical 47.16%), C 47.1% (theoretical 47.1)
5%), H 5.7% (theory, 5.69%) For comparison purposes, instead of the 1,5-dimethyl-1,5-cyclooctadiene compound, a 1,5-cyclooctadiene compound was used. A conventional organic iridium compound represented by the above structural formula (II) was synthesized under the same conditions except that it was used.

【0018】得られた本発明有機イリジウム化合物及び
従来有機イリジウム化合物の気化特性を評価する目的で
熱重量曲線(昇温速度10℃/min,乾燥アルゴン雰
囲気)を図2,3に示した。
FIGS. 2 and 3 show thermogravimetric curves (temperature rising rate: 10 ° C./min, dry argon atmosphere) for evaluating the vaporization characteristics of the obtained organic iridium compound of the present invention and the conventional organic iridium compound.

【0019】[イリジウム薄膜の蒸着]本発明有機イリ
ジウム化合物及び従来有機イリジウム化合物を各々用い
て、図1に示す装置により、熱分解型MOCVD法に従
って、下記条件にてイリジウム薄膜の作製を行い、10
分毎の膜厚を測定した。膜厚は、膜の断面SEM像から
測定した。この測定結果を表1に示した。なお、得られ
たイリジウム膜中の酸素量は<1%、炭素量は<1%と
高純度なイリジウム膜であった。
[Evaporation of Iridium Thin Film] Using the organic iridium compound of the present invention and the conventional organic iridium compound, an iridium thin film was prepared by the apparatus shown in FIG.
The film thickness was measured every minute. The film thickness was measured from a cross-sectional SEM image of the film. The measurement results are shown in Table 1. The obtained iridium film was a highly pure iridium film having an oxygen content of <1% and a carbon content of <1%.

【0020】基板;25mm角のSi基板上にTiNを
100nm厚さにスパッタ法により蒸着したもの 基板温度;240℃ 気化温度;90℃ 圧力;1.5torr キャリアガスの流量;80ccmのAr 反応ガスの流量;50ccmのH2
Substrate; 25 nm square Si substrate with TiN deposited by sputtering to a thickness of 100 nm Substrate temperature; 240 ° C. Vaporization temperature; 90 ° C. Pressure; 1.5 torr Carrier gas flow rate; 80 ccm Ar reaction gas Flow rate: 50 ccm H 2

【0021】[0021]

【表1】 [Table 1]

【0022】[イリジウム酸化物薄膜の蒸着]本発明の
有機イリジウム化合物を用い、反応ガスを水素から酸素
に変え、下記条件としたこと以外は、前述のイリジウム
薄膜の蒸着と同様に行って、上記イリジウム膜の成膜に
より、200nm厚さにイリジウム薄膜を形成した基板
上に、酸化イリジウム膜の作製を行い、オージェ分光法
により膜の分析を行ったところ、酸化イリジウム膜中の
炭素量は<1%と高純度な酸化イリジウム膜であった。
[Evaporation of Iridium Oxide Thin Film] The same procedure as in the above-mentioned evaporation of an iridium thin film was carried out except that the organic iridium compound of the present invention was used and the reaction gas was changed from hydrogen to oxygen, and the following conditions were used. An iridium oxide film was formed on a substrate on which an iridium thin film was formed to a thickness of 200 nm by forming an iridium film, and the film was analyzed by Auger spectroscopy. The amount of carbon in the iridium oxide film was <1. % Of the iridium oxide film having high purity.

【0023】基板;Ir(膜厚200nm)/スパッタ
TiN(膜厚100nm)/Si基板 基板温度;350℃ 気化温度;90℃ 圧力;1.5torr キャリアガスの流量;80ccmのAr 反応ガスの流量;50ccmのO2 [考察]図2,3に示される結果から次のことが明らか
である。即ち、本発明有機イリジウム化合物は室温から
約165℃までの温度で完全に気化させることが可能で
あるが、一方、従来有機イリジウム化合物は気化終了の
際、約8%程の残留物が生成している。このことから、
本発明有機イリジウム化合物は、気化の際の熱安定性に
優れることが明らかである。
Substrate: Ir (thickness: 200 nm) / sputtered TiN (thickness: 100 nm) / Si substrate Substrate temperature: 350 ° C. Vaporization temperature: 90 ° C. Pressure: 1.5 torr Carrier gas flow rate: 80 ccm Ar reaction gas flow rate 50 ccm O 2 [Discussion] The following is clear from the results shown in FIGS. That is, the organic iridium compound of the present invention can be completely vaporized at a temperature from room temperature to about 165 ° C. On the other hand, when the vaporization of the conventional organic iridium compound is completed, about 8% of a residue is generated. ing. From this,
It is clear that the organic iridium compound of the present invention has excellent thermal stability during vaporization.

【0024】また、表1より、次のことが明らかであ
る。即ち、本発明有機イリジウム化合物は、成膜時間に
対しほぼ一定の割合で膜厚が増加し、かつ、その成膜速
度も従来有機イリジウム化合物に比べて速いのに対し、
従来有機イリジウム化合物の場合は、成膜時間において
30分を超えた頃から成膜量の減少傾向が顕著になる。
From Table 1, the following is clear. That is, the organic iridium compound of the present invention has a film thickness that increases at a substantially constant rate with respect to the film formation time, and its film formation rate is faster than that of the conventional organic iridium compound.
In the case of the conventional organic iridium compound, the tendency to decrease the film formation amount becomes remarkable from the time when the film formation time exceeds 30 minutes.

【0025】なお、本発明有機イリジウム化合物を用い
た場合は、図1に示す装置の気化容器内には分解イリジ
ウムの生成が見られなかったのに対し、従来有機イリジ
ウム化合物の場合には分解イリジウムの生成が認められ
た。これより、本発明有機イリジウム化合物は、気化容
器内で分解することなしに成膜時間に対し一定の速度で
気化し、また、従来有機イリジウム化合物より気化の際
の熱安定性、揮発性に優れた有機イリジウム化合物であ
ることがわかる。
When the organic iridium compound of the present invention was used, no decomposed iridium was generated in the vaporization vessel of the apparatus shown in FIG. 1, whereas in the case of the conventional organic iridium compound, the decomposed iridium was not used. Was found. Thus, the organic iridium compound of the present invention is vaporized at a constant rate with respect to the film formation time without being decomposed in the vaporization vessel, and is more excellent in thermal stability and volatility during vaporization than the conventional organic iridium compound. It can be seen that this is an organic iridium compound.

【0026】本発明の有機イリジウム化合物であれば、
成膜に当り、反応ガスとして水素を用いた時には、高純
度なイリジウム膜を形成でき、また、反応ガスとして酸
素を用いた場合には高純度な酸化イリジウム膜を形成で
きるため、反応ガスの選択を行うことにより、容易に、
イリジウム又はイリジウム酸化物の単層膜のみならず、
イリジウム薄膜又は酸化イリジウム薄膜の積層膜を基板
上に成膜することができる。
In the organic iridium compound of the present invention,
When hydrogen is used as a reaction gas in forming a film, a high-purity iridium film can be formed, and when oxygen is used as a reaction gas, a high-purity iridium oxide film can be formed. By doing, easily,
Not only a single-layer film of iridium or iridium oxide,
A stacked film of an iridium thin film or an iridium oxide thin film can be formed over a substrate.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明の蒸気圧の高
い有機金属化学蒸着によるイリジウム薄膜及びイリジウ
ム酸化物薄膜形成用有機イリジウム化合物は、室温で液
体であるため、MOCVD法による成膜に当り、液体供
給方式により、容易に、蒸着原料の定量供給を行うこと
ができる。しかも、安定な気化速度を有し、かつ気化の
際の熱安定性に優れているため、MOCVD法により、
半導体装置の配線材料等として有用な、均一かつ緻密な
高純度イリジウム薄膜又は酸化イリジウム薄膜を効率的
に製造することができる。
As described in detail above, the iridium thin film and the organic iridium compound for forming an iridium oxide thin film formed by metalorganic chemical vapor deposition having a high vapor pressure according to the present invention are liquid at room temperature. The fixed amount of the vapor deposition material can be easily supplied by the liquid supply method. Moreover, since it has a stable vaporization rate and excellent thermal stability during vaporization, the MOCVD method
A uniform and dense high-purity iridium oxide thin film or iridium oxide thin film useful as a wiring material of a semiconductor device or the like can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱分解型MOCVD法を説明する装置の概略断
面図である。
FIG. 1 is a schematic sectional view of an apparatus for explaining a thermal decomposition type MOCVD method.

【図2】本発明有機イリジウム化合物の熱重量曲線を示
すグラフである。
FIG. 2 is a graph showing a thermogravimetric curve of the organic iridium compound of the present invention.

【図3】従来有機イリジウム化合物の熱重量曲線を示す
グラフである。
FIG. 3 is a graph showing a thermogravimetric curve of a conventional organic iridium compound.

【符号の説明】[Explanation of symbols]

1 蒸着原料 2 気化容器 3 加熱炉 4 キャリアガス導入配管 5 反応ガス導入配管 6 基板 7 ヒーター 8 反応炉 9 真空引配管 DESCRIPTION OF SYMBOLS 1 Deposition raw material 2 Vaporization container 3 Heating furnace 4 Carrier gas introduction pipe 5 Reaction gas introduction pipe 6 Substrate 7 Heater 8 Reaction furnace 9 Vacuum piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小木 勝実 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社中央研究所内 (56)参考文献 特開 平8−260148(JP,A) 特開 平8−20870(JP,A) 特開 平4−221058(JP,A) 特開 平3−235373(JP,A) 特開 平6−290789(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C07F 15/00 C23C 16/18 H01L 21/285 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Katsumi Ogi 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture, Central Research Laboratory of Mitsubishi Materials Corporation (56) References JP-A-8-260148 (JP, A) JP JP-A-8-20870 (JP, A) JP-A-4-2211058 (JP, A) JP-A-3-235373 (JP, A) JP-A-6-290789 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01L 21/205 C07F 15/00 C23C 16/18 H01L 21/285

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 化学蒸着によってイリジウム又はイリジ
ウム酸化物の薄膜を形成するための有機イリジウム化合
物であって、下記構造式(I)で表わされる有機イリジ
ウム化合物。 【化1】
1. An organic iridium compound for forming a thin film of iridium or iridium oxide by chemical vapor deposition, wherein the organic iridium compound is represented by the following structural formula (I). Embedded image
JP10954195A 1995-05-08 1995-05-08 Organic iridium compounds Expired - Fee Related JP3180616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10954195A JP3180616B2 (en) 1995-05-08 1995-05-08 Organic iridium compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10954195A JP3180616B2 (en) 1995-05-08 1995-05-08 Organic iridium compounds

Publications (2)

Publication Number Publication Date
JPH08306627A JPH08306627A (en) 1996-11-22
JP3180616B2 true JP3180616B2 (en) 2001-06-25

Family

ID=14512874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10954195A Expired - Fee Related JP3180616B2 (en) 1995-05-08 1995-05-08 Organic iridium compounds

Country Status (1)

Country Link
JP (1) JP3180616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018065A (en) 1997-11-10 2000-01-25 Advanced Technology Materials, Inc. Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor
JP3334605B2 (en) 1998-05-07 2002-10-15 三菱電機株式会社 Electrode-forming CVD raw material, and capacitor electrode and wiring film formed using the same

Also Published As

Publication number Publication date
JPH08306627A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JPH1135589A (en) Production of bis(alkylcyclopentadienyl) ruthenium complex and production of ruthenium-containing thin film using the same
KR20080031935A (en) Metal-containing compound, process for producing the same, metal-containing thin film, and method of forming the same
JP2002523634A (en) Precursor chemistry for chemical vapor deposition of ruthenium or ruthenium oxide.
JP4517565B2 (en) Ruthenium complex, method for producing the same, and method for producing the thin film
JP3321729B2 (en) Trimethyl (ethylcyclopentadienyl) platinum, method for producing the same, and method for producing platinum-containing thin film using the same
US5441766A (en) Method for the production of highly pure copper thin films by chemical vapor deposition
KR100582619B1 (en) Organocopper Precursors for Chemical Vapor Deposition
JP3180616B2 (en) Organic iridium compounds
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
KR101770438B1 (en) Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
JP3282392B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP2876980B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP2785694B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP3284779B2 (en) Copper thin film forming method
KR20040079978A (en) Copper complexes and process for formation of copper-containing thin films by using the same
JP2768250B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
JP3284689B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP3106898B2 (en) Method for forming bismuth-containing film
JP2762905B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2757762B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2005225855A (en) Organic iridium compound, method for producing the compound and method for producing film
JP2005170869A (en) Organosilicon compound, solution raw material thereof and method for forming silicon-containing film by using the compound
JPH08301880A (en) Organic silver compound for formation of silver thin film by chemical deposition of organic metal
JPH0770163A (en) Organic copper compound for forming copper with film by chemical vacuum deposition of organic metal high in vapor pressure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees