JP2003257889A - SOLUTION MATERIAL FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CONTAINING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM FORMED USING THE SAME - Google Patents

SOLUTION MATERIAL FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CONTAINING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM FORMED USING THE SAME

Info

Publication number
JP2003257889A
JP2003257889A JP2002053411A JP2002053411A JP2003257889A JP 2003257889 A JP2003257889 A JP 2003257889A JP 2002053411 A JP2002053411 A JP 2002053411A JP 2002053411 A JP2002053411 A JP 2002053411A JP 2003257889 A JP2003257889 A JP 2003257889A
Authority
JP
Japan
Prior art keywords
copper
raw material
solution raw
group
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053411A
Other languages
Japanese (ja)
Other versions
JP4218247B2 (en
Inventor
Atsushi Sai
篤 齋
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002053411A priority Critical patent/JP4218247B2/en
Publication of JP2003257889A publication Critical patent/JP2003257889A/en
Application granted granted Critical
Publication of JP4218247B2 publication Critical patent/JP4218247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply a material stably at the time of film deposition and to obtain a high purity copper thin film exhibiting excellent thermal stability in which the lifetime is prolonged by retarding decomposition under preservation state, and to obtain an MOCVD process in which an MOCVD system is not corroded easily, treatment of exhaust gas is not complicated and adhesion to an underlying film is enhanced. <P>SOLUTION: In the solution material for metal-organic CVD produced by dissolving β-diketonate complex of copper (II) in an organic solvent, the organic solvent is one kind or more than one kind of compound selected from a group of n-methyl-2-pyrrolidone, dimethylaniline, di-t-butylaniline, di-n-butylaniline, diisopropylaniline, tri-t-butylaniline, and triisopropylaniline. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の配線
に用いられる銅(Cu)薄膜を有機金属化学蒸着(Meta
l Organic Chemical Vapor Deposition、以下、MOC
VDという。)法により作製するための銅(II)のβ-ジ
ケトネート錯体を含むMOCVD法用溶液原料及びそれ
を用いて作製された銅薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a copper (Cu) thin film used for wiring of a semiconductor device by metalorganic chemical vapor deposition (Meta
l Organic Chemical Vapor Deposition, MOC
It is called VD. And a copper (II) β-diketonate complex-containing solution raw material for the MOCVD method and a copper thin film produced using the same.

【0002】[0002]

【従来の技術】銅及び銅系合金は、高い導電性、エレク
トロマイグレーション耐性からLSIの配線材料として
応用されている。また、銅を含む複合金属酸化物は、高
温超伝導体等の機能性セラミックス材料として応用され
ている。これら銅、銅を含む合金、銅を含む複合金属酸
化物等の銅系薄膜の製造方法としては、スパッタリング
法、イオンプレーティング法、塗布熱分解法等が挙げら
れるが、加工寸法が微細になるに従い、組成制御性、段
差被覆性、段差埋め込み性に優れること、LSIプロセ
スとの適合性等からCVD法、有機金属化合物を用いた
MOCVD法が最適な薄膜製造プロセスとして検討され
ている。
2. Description of the Related Art Copper and copper-based alloys are used as wiring materials for LSIs because of their high conductivity and resistance to electromigration. Moreover, the composite metal oxide containing copper is applied as a functional ceramic material such as a high temperature superconductor. As a method for producing a copper-based thin film such as copper, an alloy containing copper, and a complex metal oxide containing copper, a sputtering method, an ion plating method, a coating pyrolysis method, or the like can be given; Accordingly, the CVD method and the MOCVD method using an organometallic compound have been studied as the optimum thin film manufacturing processes because of their excellent composition controllability, step coverage, step embedding properties, compatibility with LSI processes, and the like.

【0003】このMOCVD法により銅をIC基板及び
表面に付与させる有機銅化合物としては、これまでCu
(II)(hfac)2錯体即ち銅(II)ヘキサフルオロアセチ
ルアセトネート錯体が使用されてきた。しかし、このC
u(II)(hfac)2錯体は、堆積された銅内に汚染物を
残すこと、錯体を分解して銅を形成するために比較的高
い温度を用いる必要があるため実用的ではなく、十分な
特性を有しているものではなかった。
As the organic copper compound for imparting copper to the IC substrate and the surface by the MOCVD method, Cu has hitherto been used.
The (II) (hfac) 2 complex or copper (II) hexafluoroacetylacetonate complex has been used. But this C
The u (II) (hfac) 2 complex is not practical because it leaves contaminants in the deposited copper and requires the use of relatively high temperatures to decompose the complex to form copper. It did not have such characteristics.

【0004】そこで1価のCu(I)(hfac)錯体を
用いることが検討され、例えば、室温で液体のCu(I)
tmvs・hfac錯体即ち銅(I)ヘキサフルオロアセ
チルアセトネートトリメチルビニルシラン錯体が開示さ
れている(米国特許第5,322,712号)。このC
u(I)tmvs・hfac錯体は比較的低い温度、約2
00℃で使用することができるため非常に有用である。
しかしこの錯体は非常に高価であり、更に大気中で非常
に不安定なため極めて安定性に欠け、室温で容易に分解
し、金属銅の析出と副生成物のCu(II)(hfac)2
変化し劣化が著しい。そのため、この銅錯体は成膜時に
安定して供給することが難しく、成膜の再現性にも劣
る。また配位子であるhfacはフッ素(F)を含むた
め、MOCVD装置が腐食しやすく、またMOCVD工
程における排ガス処理が複雑になる問題もあった。更
に、hfacのようなフッ素を含む有機銅化合物を用い
てMOCVD法により銅の成膜を行った場合、所望の銅
薄膜を形成したとき、銅薄膜中にフッ素が不純物として
取り込まれるだけでなく、ウェーハの下地界面にフッ素
が残留し、下地との密着性を低下させるという問題があ
る。
Therefore, the use of a monovalent Cu (I) (hfac) complex has been studied. For example, Cu (I) which is liquid at room temperature is investigated.
A tmvs.hfac complex, a copper (I) hexafluoroacetylacetonate trimethylvinylsilane complex, has been disclosed (US Pat. No. 5,322,712). This C
The u (I) tmvs.hfac complex has a relatively low temperature of about 2
It is very useful because it can be used at 00 ° C.
However, this complex is very expensive, and is extremely unstable in the atmosphere, so that it lacks in stability, easily decomposes at room temperature, precipitates metallic copper and produces a by-product Cu (II) (hfac) 2 Changes significantly and the deterioration is remarkable. Therefore, it is difficult to stably supply this copper complex during film formation, and the reproducibility of film formation is poor. Further, since the ligand hfac contains fluorine (F), the MOCVD apparatus is easily corroded, and the exhaust gas treatment in the MOCVD process is complicated. Further, when a copper film is formed by MOCVD using an organocopper compound containing fluorine such as hfac, when a desired copper thin film is formed, not only fluorine is taken into the copper thin film as an impurity, but also There is a problem that fluorine remains on the underlayer interface of the wafer and the adhesion with the underlayer is reduced.

【0005】このような上記課題を解決するため、下記
式(8)で示される銅(II)のβ−ジケトネート錯体から
なる化学気相成長用原料が開示されている(特開200
1−181840)。
In order to solve the above-mentioned problems, a raw material for chemical vapor deposition comprising a β-diketonate complex of copper (II) represented by the following formula (8) is disclosed (JP-A-200).
1-181840).

【0006】[0006]

【化8】 (式中、Rはイソプロピル基又は第三ブチル基を表し、
1はメチル基又はエチル基を表し、R2はプロピル基又
はブチル基を表す。) この銅原料は室温で液体であり、分子内にハロゲン元素
や窒素元素等の薄膜製造時に影響を及ぼすと考えられる
元素を含んでいないため、各種CVD法に適し、更に、
既存の固体である銅(II)錯体からなるCVD用銅原料と
同等の熱的、化学的安定性を有する。
[Chemical 8] (In the formula, R represents an isopropyl group or a tert-butyl group,
R 1 represents a methyl group or an ethyl group, and R 2 represents a propyl group or a butyl group. ) Since this copper raw material is a liquid at room temperature and does not contain elements such as halogen element and nitrogen element which are considered to have an influence on thin film production in the molecule, it is suitable for various CVD methods.
It has the same thermal and chemical stability as the existing copper raw material for CVD consisting of a solid copper (II) complex.

【0007】[0007]

【発明が解決しようとする課題】しかし特開2001−
181840号公報の上記式(8)で示される銅原料は
常温で液体であるが、その粘性は非常に高く、この銅原
料をMOCVD装置に供給するには高圧で供給しなけれ
ばならないため、成膜性に問題があった。またこの銅原
料を溶液に溶解して溶液原料としてMOCVD装置に供
給しても、この銅原料の分解温度は約450℃であり、
従来より一般的に用いられている有機銅化合物の分解温
度に比べて非常に高いため、成膜し難い問題もあった。
またこの上記式(8)で示される銅原料は極端に分子構
造が偏ったバランスの悪い構造を有しているため、成膜
時に安定して原料を供給することが難しく、十分な成膜
安定性が得られているとはいえなかった。
However, Japanese Patent Laid-Open No. 2001-2001
The copper raw material represented by the above-mentioned formula (8) of 181840 gazette is a liquid at normal temperature, but its viscosity is very high, and it is necessary to supply this copper raw material at a high pressure to supply it to the MOCVD apparatus. There was a problem with the film properties. Even if this copper raw material is dissolved in a solution and supplied as a solution raw material to a MOCVD apparatus, the decomposition temperature of this copper raw material is about 450 ° C.,
Since the decomposition temperature of an organic copper compound which has been generally used conventionally is extremely high, there is a problem that it is difficult to form a film.
Further, since the copper raw material represented by the above formula (8) has an unbalanced structure in which the molecular structure is extremely biased, it is difficult to stably supply the raw material during film formation, and sufficient film formation stability is obtained. It could not be said that the sex was obtained.

【0008】本発明の目的は、成膜時に安定した原料供
給ができ、かつ高純度の銅薄膜が得られる銅(II)のβ-
ジケトネート錯体を含む有機金属化学蒸着法用溶液原料
を提供することにある。本発明の別の目的は、熱安定性
に優れ、保存状態で分解しにくく寿命が長い銅(II)のβ
-ジケトネート錯体を含む有機金属化学蒸着法用溶液原
料を提供することにある。本発明の別の目的は、MOC
VD装置が腐食しにくくMOCVD工程における排ガス
処理を複雑にしない銅(II)のβ-ジケトネート錯体を含
む有機金属化学蒸着法用溶液原料を提供することにあ
る。本発明の更に別の目的は、下地膜と堅牢に密着する
高純度の銅薄膜を提供することにある。
The object of the present invention is to provide a stable supply of raw materials during film formation, and to obtain a high-purity copper thin film.
It is intended to provide a solution raw material for a metalorganic chemical vapor deposition method containing a diketonate complex. Another object of the present invention is excellent thermal stability, β (2) of copper (II) which is hard to decompose in storage and has a long life.
-To provide a solution raw material for a metalorganic chemical vapor deposition method containing a diketonate complex. Another object of the invention is the MOC.
It is an object of the present invention to provide a solution raw material for a metal organic chemical vapor deposition method containing a copper (II) β-diketonate complex which does not easily corrode a VD device and does not complicate exhaust gas treatment in a MOCVD process. Still another object of the present invention is to provide a high-purity copper thin film that firmly adheres to a base film.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
銅(II)のβ-ジケトネート錯体を有機溶媒に溶解した有
機金属化学蒸着法用溶液原料において、有機溶媒がアミ
ン系溶媒であることを特徴とする有機金属化学蒸着法用
溶液原料である。請求項1に係る発明では、有機溶媒に
アミン系溶媒を用いたMOCVD用溶液原料を用いるこ
とにより、成膜時に安定した原料供給ができ、更に、こ
の溶液原料を用いて銅薄膜を作製するとアミン系溶媒の
高い還元性により、高純度の銅薄膜が得られる。
The invention according to claim 1 is
A solution raw material for a metal organic chemical vapor deposition method in which a β-diketonate complex of copper (II) is dissolved in an organic solvent, wherein the organic solvent is an amine solvent. In the invention according to claim 1, by using a solution raw material for MOCVD using an amine-based solvent as an organic solvent, a stable raw material can be supplied at the time of film formation. Due to the high reducibility of the system solvent, a high purity copper thin film can be obtained.

【0010】請求項2に係る発明は、請求項1に係る発
明であって、アミン系溶媒がn-メチル-2-ピロリド
ン、ジメチルアニリン(以下、DMAという。)、ジ-
t-ブチルアニリン(以下、DTBAという。)、ジ-n
-ブチルアニリン(以下、DNBAという。)、ジイソ
プロピルアニリン(以下、DIPAという。)、トリ-
t-ブチルアニリン(以下、TTBAという。)及びト
リイソプロピルアニリン(以下、TIPAという。)か
らなる群より選ばれた1種又は2種以上の化合物である
溶液原料である。請求項3に係る発明は、請求項1に係
る発明であって、銅(II)のβ-ジケトネート錯体が次の
式(1)で示される溶液原料である。
The invention according to claim 2 is the invention according to claim 1, wherein the amine solvent is n-methyl-2-pyrrolidone, dimethylaniline (hereinafter referred to as DMA), and di-.
t-butylaniline (hereinafter referred to as DTBA), di-n
-Butylaniline (hereinafter referred to as DNBA), diisopropylaniline (hereinafter referred to as DIPA), tri-
A solution raw material which is one or more compounds selected from the group consisting of t-butylaniline (hereinafter referred to as TTBA) and triisopropylaniline (hereinafter referred to as TIPA). The invention according to claim 3 is the invention according to claim 1, wherein the β-diketonate complex of copper (II) is a solution raw material represented by the following formula (1).

【0011】[0011]

【化9】 但し、Rはイソプロピル基である。[Chemical 9] However, R is an isopropyl group.

【0012】請求項3に係る発明では、基本骨格から分
岐した2つの原子団にそれぞれイソプロピル基を形成し
た配位子を配位させた銅錯体(以下、Cu(II)(DMH
D)2という。)は構造安定性が高く、この銅錯体をアミ
ン系溶媒に溶解させた溶液原料は長期保存に優れる。
In the invention according to claim 3, a copper complex in which a ligand having an isopropyl group is coordinated to two atomic groups branched from the basic skeleton (hereinafter referred to as Cu (II) (DMH)
D) 2 ) Has high structural stability, and a solution raw material obtained by dissolving this copper complex in an amine solvent is excellent in long-term storage.

【0013】請求項4に係る発明は、請求項1に係る発
明であって、銅(II)のβ-ジケトネート錯体が次の式
(2)で示される溶液原料である。
The invention according to claim 4 is the invention according to claim 1, wherein the β-diketonate complex of copper (II) is a solution raw material represented by the following formula (2).

【0014】[0014]

【化10】 但し、R1及びR'1がそれぞれエチル基であって、R2
びR'2がそれぞれイソプロピル基であるか、又はR'1
びR2がイソプロピル基であって、R1及びR'2がそれぞ
れエチル基であるか、又はR1及びR'1がそれぞれメチ
ル基であって、R2及びR'2がそれぞれn-ブチル基であ
るか、或いはR'1及びR2がそれぞれn-ブチル基であっ
て、R1及びR'2がそれぞれメチル基である。
[Chemical 10] Provided that R 1 and R ′ 1 are each an ethyl group, R 2 and R ′ 2 are each an isopropyl group, or R ′ 1 and R 2 are an isopropyl group, and R 1 and R ′ 2 Are each an ethyl group, or R 1 and R ′ 1 are each a methyl group, R 2 and R ′ 2 are each an n-butyl group, or R ′ 1 and R 2 are each an n- It is a butyl group, and R 1 and R ′ 2 are each a methyl group.

【0015】請求項5に係る発明は、請求項4に係る発
明であって、銅(II)のβ-ジケトネート錯体が次の式
(3)で示される化合物と、次の式(4)で示される化
合物の混合体である溶液原料である。
The invention according to claim 5 is the invention according to claim 4, wherein the β-diketonate complex of copper (II) is a compound represented by the following formula (3) and a compound represented by the following formula (4): It is a solution raw material which is a mixture of the compounds shown.

【0016】[0016]

【化11】 但し、R3及びR'3がそれぞれエチル基であって、R4
びR'4がそれぞれイソプロピル基である。
[Chemical 11] However, R 3 and R ′ 3 are each an ethyl group, and R 4 and R ′ 4 are each an isopropyl group.

【0017】[0017]

【化12】 但し、R'5及びR6がイソプロピル基であって、R5及び
R'6がそれぞれエチル基である。
[Chemical 12] However, R ′ 5 and R 6 are isopropyl groups, and R 5 and R ′ 6 are ethyl groups, respectively.

【0018】請求項6に係る発明は、請求項4に係る発
明であって、銅(II)のβ-ジケトネート錯体が次の式
(5)で示される化合物と、次の式(6)で示される化
合物の混合体である溶液原料である。
The invention according to claim 6 is the invention according to claim 4, wherein the β-diketonate complex of copper (II) is a compound represented by the following formula (5) and a compound represented by the following formula (6): It is a solution raw material which is a mixture of the compounds shown.

【0019】[0019]

【化13】 但し、R7及びR'7がそれぞれメチル基であって、R8
びR'8がそれぞれn-ブチル基である。
[Chemical 13] However, R 7 and R ′ 7 are each a methyl group, and R 8 and R ′ 8 are each an n-butyl group.

【0020】[0020]

【化14】 但し、R'9及びR10がそれぞれn-ブチル基であって、R
9及びR'10がそれぞれメチル基である。
[Chemical 14] Provided that R ′ 9 and R 10 are each an n-butyl group,
9 and R '10 are each a methyl group.

【0021】請求項4ないし6いずれかに係る発明で
は、基本骨格から分岐した2つの原子団にそれぞれエチ
ル基、イソプロピル基を形成した配位子を配位させた銅
錯体(以下、Cu(II)(EP)2という。)又はメチル
基、n-ブチル基を形成した配位子を配位させた銅錯体
(以下、Cu(II)(OD)2という。)は、銅原子上の電
子密度がリッチ補充され、基本的に問題となる他化合物
と内部構造の相互作用による多量体化を抑制しているた
め、構造安定性が高く、この銅錯体をアミン系溶媒に溶
解させた溶液原料は長期保存に優れる。
In the invention according to any one of claims 4 to 6, a copper complex (hereinafter referred to as Cu (II) ) (EP) 2 ) or a copper complex coordinated with a ligand forming a methyl group or an n-butyl group (hereinafter referred to as Cu (II) (OD) 2 ) is an electron on a copper atom. Since the density is richly replenished and the multimerization due to the interaction of the internal structure with other compounds, which is basically a problem, is suppressed, the structural stability is high, and this copper complex is a solution raw material in which this copper complex is dissolved in an amine solvent. Is excellent for long-term storage.

【0022】請求項7に係る発明は、請求項1に係る発
明であって、銅(II)のβ-ジケトネート錯体が次の式
(7)で示される溶液原料である。
The invention according to claim 7 is the invention according to claim 1, wherein the β-diketonate complex of copper (II) is a solution raw material represented by the following formula (7).

【0023】[0023]

【化15】 但し、R1はイソプロピル基であり、R2はエチル基であ
る。
[Chemical 15] However, R 1 is an isopropyl group and R 2 is an ethyl group.

【0024】請求項7に係る発明では、基本骨格から分
岐した2つの原子団にそれぞれエチル基を形成した配位
子とそれぞれイソプロピル基を形成した配位子をそれぞ
れ配位させた銅錯体(以下、Cu(II)(EIP)2とい
う。)は、銅原子上の電子密度がリッチ補充され、基本
的に問題となる他化合物と内部構造の相互作用による多
量体化を抑制しているため、構造安定性が高く、この銅
錯体を有機溶媒に溶解させた溶液原料は長期保存に優れ
る。
In the invention according to claim 7, a copper complex in which a ligand having an ethyl group and a ligand having an isopropyl group are respectively coordinated to two atomic groups branched from the basic skeleton (hereinafter , Cu (II) (EIP) 2 ) is richly replenished with electron density on the copper atom, and basically suppresses multimerization due to interaction between other compounds and internal structure, which is a problem. The structural stability is high, and the solution raw material in which this copper complex is dissolved in an organic solvent is excellent in long-term storage.

【0025】請求項8に係る発明は、請求項1ないし7
いずれか記載の溶液原料を用いて有機金属化学蒸着法に
より作製された銅薄膜である。請求項1ないし7いずれ
か記載の溶液原料を用いて作製された銅薄膜は、アミン
系溶媒の高い還元性により下地膜と堅牢に密着すること
ができ、溶液原料にフッ素が含有していないので剥離し
にくい高純度の膜となる。
The invention according to claim 8 relates to claims 1 to 7.
It is a copper thin film produced by a metal organic chemical vapor deposition method using any of the solution raw materials. The copper thin film produced by using the solution raw material according to any one of claims 1 to 7 can firmly adhere to the base film due to the high reducing property of the amine solvent, and since the solution raw material does not contain fluorine. A high-purity film that is difficult to peel off.

【0026】[0026]

【発明の実施の形態】次に本発明の実施の形態を説明す
る。本発明の溶液原料は、銅(II)のβ-ジケトネート錯
体を有機溶媒に溶解したMOCVD用溶液原料の改良で
あり、その特徴ある構成は、有機溶媒がアミン系溶媒で
あるところにある。この銅(II)のβ-ジケトネート錯体
とアミン系溶媒の配合比は任意であり、その使用用途
や、アミン系溶媒の種類によって適宜調製することが好
ましい。本発明の溶液原料には、n-メチル-2-ピロリ
ドン、DMA、DTBA、DNBA、DIPA、TTB
A及びTIPAからなる群より選ばれた1種又は2種以
上の化合物がアミン系溶媒として使用される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. The solution raw material of the present invention is an improvement of the solution raw material for MOCVD in which a β-diketonate complex of copper (II) is dissolved in an organic solvent, and a characteristic feature thereof is that the organic solvent is an amine solvent. The compounding ratio of the copper (II) β-diketonate complex and the amine solvent is arbitrary, and it is preferable to appropriately prepare the compound according to the intended use and the type of the amine solvent. The solution raw material of the present invention includes n-methyl-2-pyrrolidone, DMA, DTBA, DNBA, DIPA, TTB.
One or more compounds selected from the group consisting of A and TIPA are used as the amine solvent.

【0027】銅(II)のβ-ジケトネート錯体は前述した
式(1)に示されるCu(II)(DMHD)2錯体、前述し
た式(2)を一般式とするCu(II)(EP)2錯体、Cu
(II)(OD)2錯体、前述した式(7)に示されるCu(I
I)(EIP)2錯体が挙げられる。式(2)を一般式とす
る錯体のうち、Cu(II)(EP)2錯体は、次の式(9)
に示される錯体、式(10)に示される錯体、式(9)
で示される錯体と式(10)で示される錯体の混合体が
挙げられる。またCu(II)(OD)2錯体は、次の式(1
1)に示される錯体、式(12)に示される錯体、式
(11)で示される錯体と式(12)で示される錯体の
混合体が挙げられる。なお、式(9)と式(10)でそ
れぞれ示されるCu(II)(EP)2錯体は配位子異性の関
係であり、式(11)と式(12)でそれぞれ示される
Cu(II)(OD)2錯体も配位子異性の関係である。
The β-diketonate complex of copper (II) is a Cu (II) (DMHD) 2 complex represented by the above-mentioned formula (1), and Cu (II) (EP) having the above-mentioned formula (2) as a general formula. 2 complex, Cu
(II) (OD) 2 complex, Cu (I) represented by the above formula (7)
I) (EIP) 2 complex. Among the complexes having the general formula (2), the Cu (II) (EP) 2 complex has the following formula (9):
A complex represented by Formula (10), a complex represented by Formula (10),
A mixture of the complex represented by and the complex represented by the formula (10) can be mentioned. The Cu (II) (OD) 2 complex has the following formula (1
Examples thereof include the complex represented by 1), the complex represented by the formula (12), and a mixture of the complex represented by the formula (11) and the complex represented by the formula (12). The Cu (II) (EP) 2 complexes represented by the formulas (9) and (10) have a relationship of ligand isomerism, and Cu (II) represented by the formulas (11) and (12), respectively. ) (OD) 2 complex also has a relationship of ligand isomerism.

【0028】[0028]

【化16】 [Chemical 16]

【0029】[0029]

【化17】 [Chemical 17]

【0030】[0030]

【化18】 [Chemical 18]

【0031】[0031]

【化19】 [Chemical 19]

【0032】本発明の溶液原料には、更に安定化剤を含
むことにより、より保存安定性の高い溶液原料として使
用することができる。安定化剤としては、エチレングリ
コールエーテル類、クラウンエーテル類、ポリアミン
類、環状ポリアミン類、β-ケトエステル類及びβ-ジケ
トン類からなる群より選ばれた1種又は2種以上の化合
物が用いられる。具体的には、エチレングリコールエー
テル類としては、グライム、ジグライム、トリグライム
及びテトラグライムからなる群より選ばれた1種又は2
種以上の化合物が挙げられる。クラウンエーテル類とし
ては、18-クラウン-6、ジシクロヘキシル-18-クラ
ウン-6、24-クラウン-8、ジシクロヘキシル-24-
クラウン-8及びジベンゾ-24-クラウン-8からなる群
より選ばれた1種又は2種以上の化合物が挙げられる。
ポリアミン類としては、エチレンジアミン、N,N’-テ
トラメチルメチレンジアミン、ジエチレントリアミン、
トリメチレンテトラミン、テトラエチレンペンタミン、
ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメ
チルジエチレントリアミン及び1,1,4,7,10,10-
ヘキサメチルトリエチレンテトラミンからなる群より選
ばれた1種又は2種以上の化合物が挙げられる。環状ポ
リアミン類としては、サイクラム及びサイクレンからな
る群より選ばれた1種又は2種の化合物が挙げられる。
β-ケトエステル類又はβ-ジケトン類としては、アセト
酢酸メチル、アセト酢酸エチル及びアセト酢酸-2-メト
キシエチルからなる群より選ばれた1種又は2種以上の
化合物が挙げられる。
The solution raw material of the present invention can be used as a solution raw material having higher storage stability by further containing a stabilizer. As the stabilizer, one or more compounds selected from the group consisting of ethylene glycol ethers, crown ethers, polyamines, cyclic polyamines, β-ketoesters and β-diketones are used. Specifically, the ethylene glycol ethers include one or two selected from the group consisting of glyme, diglyme, triglyme and tetraglyme.
One or more compounds may be mentioned. Crown ethers include 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-
One or more compounds selected from the group consisting of crown-8 and dibenzo-24-crown-8 can be mentioned.
Polyamines include ethylenediamine, N, N'-tetramethylmethylenediamine, diethylenetriamine,
Trimethylenetetramine, tetraethylenepentamine,
Pentaethylenehexamine, 1,1,4,7,7-pentamethyldiethylenetriamine and 1,1,4,7,10,10-
One or more compounds selected from the group consisting of hexamethyltriethylenetetramine may be mentioned. Examples of the cyclic polyamines include one or two compounds selected from the group consisting of cyclam and cyclen.
Examples of β-ketoesters or β-diketones include one or more compounds selected from the group consisting of methyl acetoacetate, ethyl acetoacetate and 2-methoxyethyl acetoacetate.

【0033】本実施の形態では、MOCVD法には、各
溶液を加熱された気化器に供給し、ここで各溶液原料を
瞬時に気化させ、成膜室に送る溶液気化CVD法を用い
る。図1に示すように、MOCVD装置は、成膜室10
と蒸気発生装置11を備える。成膜室10の内部にはヒ
ータ12が設けられ、ヒータ12上には基板13が保持
される。この成膜室10の内部は圧力センサー14、コ
ールドトラップ15及びニードルバルブ16を備える配
管17により真空引きされる。蒸気発生装置11は原料
容器18を備え、この原料容器18は溶液原料を貯蔵す
る。原料容器18にはガス流量調節装置19を介してキ
ャリアガス導入管21が接続され、また原料容器18に
は供給管22が接続される。供給管22にはニードルバ
ルブ23及び溶液流量調節装置24が設けられ、供給管
22は気化器26に接続される。気化器26にはニード
ルバルブ31、ガス流量調節装置28を介してキャリア
ガス導入管29が接続される。気化器26は更に配管2
7により成膜室10に接続される。また気化器26に
は、ガスドレイン32及びドレイン33がそれぞれ接続
される。この装置では、N2、He、Ar等の不活性ガ
スからなるキャリアガスがキャリアガス導入管21から
原料容器18内に導入され、原料容器18に貯蔵されて
いる溶液原料を供給管22により気化器26に搬送す
る。気化器26で気化されて蒸気となった銅錯体は、更
にキャリアガス導入管28から気化器26へ導入された
キャリアガスにより配管27を経て成膜室10内に供給
される。成膜室10内において、銅錯体の蒸気を熱分解
させ、これにより生成した銅又は銅合金を加熱された基
板13上に堆積させて銅薄膜を形成する。
In the present embodiment, the MOCVD method uses a solution vaporization CVD method in which each solution is supplied to a heated vaporizer, where each solution raw material is instantly vaporized and sent to the film forming chamber. As shown in FIG. 1, the MOCVD apparatus includes a film forming chamber 10
And a steam generator 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 including a pressure sensor 14, a cold trap 15 and a needle valve 16. The steam generator 11 includes a raw material container 18, and the raw material container 18 stores a solution raw material. A carrier gas introduction pipe 21 is connected to the raw material container 18 via a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material container 18. The supply pipe 22 is provided with a needle valve 23 and a solution flow controller 24, and the supply pipe 22 is connected to a vaporizer 26. A carrier gas introducing pipe 29 is connected to the vaporizer 26 via a needle valve 31 and a gas flow rate adjusting device 28. The carburetor 26 is further provided with a pipe 2
It is connected to the film forming chamber 10 by 7. A gas drain 32 and a drain 33 are connected to the vaporizer 26, respectively. In this apparatus, a carrier gas composed of an inert gas such as N 2 , He, Ar is introduced into the raw material container 18 from the carrier gas introduction pipe 21, and the solution raw material stored in the raw material container 18 is vaporized by the supply pipe 22. It is conveyed to the container 26. The copper complex vaporized in the vaporizer 26 to become vapor is further supplied into the film forming chamber 10 through the pipe 27 by the carrier gas introduced into the vaporizer 26 from the carrier gas introduction pipe 28. In the film forming chamber 10, the vapor of the copper complex is thermally decomposed, and the copper or copper alloy produced thereby is deposited on the heated substrate 13 to form a copper thin film.

【0034】本発明の溶液原料を用いて作製された銅薄
膜は、下地膜と堅牢に密着し、高純度である特長を有す
る。この銅薄膜は、例えばシリコン基板表面のSiO2
膜上にスパッタリング法又はMOCVD法により形成さ
れたTiN膜又はTaN膜上にMOCVD法により形成
される。なお、本発明の基板はその種類を特に限定され
るものではない。
The copper thin film produced by using the solution raw material of the present invention is characterized by being firmly adhered to the base film and having high purity. This copper thin film is, for example, SiO 2 on the surface of a silicon substrate.
The TiN film or the TaN film formed on the film by the sputtering method or the MOCVD method is formed by the MOCVD method. The type of the substrate of the present invention is not particularly limited.

【0035】[0035]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>先ず、塩化銅(I)150gをn-ヘキサン1
00ccを注ぎ、懸濁液とした。この懸濁液に2,6-ジ
メチル-3,5-ヘプタンジオン50gをゆっくり滴下
し、30分間室温で攪拌した。次いで、反応液を70℃
で加熱還流した後、反応液を濾過した。得られた濾液を
20トールに減圧して30分間保持することにより溶媒
を留去した。溶媒の留去により残った残渣をn-ヘキサン
100ccで再結晶することによりCu(II)(DMHD)
2を得た。次に、得られたCu(II)(DMHD)2を有機溶
媒であるn-メチル-2-ピロリドンに溶解してMOCV
D法用溶液原料を調製した。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. Example 1 First, 150 g of copper (I) chloride was added to n-hexane 1
00cc was poured to make a suspension. 50 g of 2,6-dimethyl-3,5-heptanedione was slowly added dropwise to this suspension, and the mixture was stirred at room temperature for 30 minutes. Next, the reaction solution is heated to 70 ° C.
After heating to reflux with, the reaction solution was filtered. The solvent was distilled off by reducing the pressure of the obtained filtrate to 20 torr and holding it for 30 minutes. The residue remaining after the solvent was distilled off was recrystallized from 100 cc of n-hexane to obtain Cu (II) (DMHD).
Got 2 Next, the obtained Cu (II) (DMHD) 2 was dissolved in an organic solvent, n-methyl-2-pyrrolidone, to obtain MOCV.
A solution raw material for Method D was prepared.

【0036】<実施例2>有機溶媒をDMAにした以外
は実施例1と同様にしてMOCVD用溶液原料を調製し
た。 <実施例3>有機溶媒をDTBAにした以外は実施例1
と同様にしてMOCVD用溶液原料を調製した。 <実施例4>有機溶媒をDNBAにした以外は実施例1
と同様にしてMOCVD用溶液原料を調製した。
Example 2 A MOCVD solution raw material was prepared in the same manner as in Example 1 except that the organic solvent was DMA. <Example 3> Example 1 except that DTBA was used as the organic solvent.
A solution raw material for MOCVD was prepared in the same manner as. <Example 4> Example 1 except that the organic solvent was DNBA.
A solution raw material for MOCVD was prepared in the same manner as.

【0037】<実施例5>有機溶媒をTTBAにした以
外は実施例1と同様にしてMOCVD用溶液原料を調製
した。 <実施例6>有機溶媒をDIPAにした以外は実施例1
と同様にしてMOCVD用溶液原料を調製した。 <実施例7>有機溶媒をTIPAにした以外は実施例1
と同様にしてMOCVD用溶液原料を調製した。
<Example 5> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that TTBA was used as the organic solvent. <Example 6> Example 1 except that DIPA was used as the organic solvent.
A solution raw material for MOCVD was prepared in the same manner as. <Example 7> Example 1 except that TIPA was used as the organic solvent.
A solution raw material for MOCVD was prepared in the same manner as.

【0038】<実施例8>先ず、塩化銅(I)150gをn
-ヘキサン100ccを注ぎ、懸濁液とした。この懸濁
液に2-メチル-ヘプタンジオン50gをゆっくり滴下
し、30分間室温で攪拌した。次いで、反応液を70℃
で加熱還流した後、反応液を濾過した。得られた濾液を
20トールに減圧して30分間保持することにより溶媒
を留去した。溶媒の留去により残った残渣をn-ヘキサン
100ccで再結晶することによりCu(II)(EP)2
得た。次に、得られたCu(II)(EP)2を有機溶媒であ
るn-メチル-2-ピロリドンに溶解してMOCVD法用
溶液原料を調製した。
Example 8 First, 150 g of copper (I) chloride was added to n.
-Pour 100 cc of hexane into a suspension. 2-Methyl-heptanedione (50 g) was slowly added dropwise to this suspension, and the mixture was stirred at room temperature for 30 minutes. Next, the reaction solution is heated to 70 ° C.
After heating to reflux with, the reaction solution was filtered. The solvent was distilled off by reducing the pressure of the obtained filtrate to 20 torr and holding it for 30 minutes. The residue remaining after the solvent was distilled off was recrystallized from 100 cc of n-hexane to obtain Cu (II) (EP) 2 . Next, the obtained Cu (II) (EP) 2 was dissolved in n-methyl-2-pyrrolidone as an organic solvent to prepare a solution raw material for MOCVD method.

【0039】<実施例9>有機溶媒をDMAにした以外
は実施例8と同様にしてMOCVD用溶液原料を調製し
た。 <実施例10>有機溶媒をDTBAにした以外は実施例
8と同様にしてMOCVD用溶液原料を調製した。 <実施例11>有機溶媒をDNBAにした以外は実施例
8と同様にしてMOCVD用溶液原料を調製した。
<Example 9> A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was DMA. <Example 10> A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that DTBA was used as the organic solvent. <Example 11> A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that DNBA was used as the organic solvent.

【0040】<実施例12>有機溶媒をTTBAにした
以外は実施例8と同様にしてMOCVD用溶液原料を調
製した。 <実施例13>有機溶媒をDIPAにした以外は実施例
8と同様にしてMOCVD用溶液原料を調製した。 <実施例14>有機溶媒をTIPAにした以外は実施例
8と同様にしてMOCVD用溶液原料を調製した。
<Example 12> A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that TTBA was used as the organic solvent. <Example 13> A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that DIPA was used as the organic solvent. <Example 14> A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that TIPA was used as the organic solvent.

【0041】<実施例15>銅錯体をCu(II)(OD)2
にした以外は実施例1と同様にしてMOCVD用溶液原
料を調製した。 <実施例16>有機溶媒をDMAにした以外は実施例1
5と同様にしてMOCVD用溶液原料を調製した。 <実施例17>有機溶媒をDTBAにした以外は実施例
15と同様にしてMOCVD用溶液原料を調製した。 <実施例18>有機溶媒をDNBAにした以外は実施例
15と同様にしてMOCVD用溶液原料を調製した。
Example 15 A copper complex was added to Cu (II) (OD) 2
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the above was used. <Example 16> Example 1 except that the organic solvent was DMA.
A solution raw material for MOCVD was prepared in the same manner as in 5. <Example 17> A solution raw material for MOCVD was prepared in the same manner as in Example 15 except that DTBA was used as the organic solvent. <Example 18> A solution raw material for MOCVD was prepared in the same manner as in Example 15 except that DNBA was used as the organic solvent.

【0042】<実施例19>有機溶媒をTTBAにした
以外は実施例15と同様にしてMOCVD用溶液原料を
調製した。 <実施例20>有機溶媒をDIPAにした以外は実施例
15と同様にしてMOCVD用溶液原料を調製した。 <実施例21>有機溶媒をTIPAにした以外は実施例
15と同様にしてMOCVD用溶液原料を調製した。
<Example 19> A solution raw material for MOCVD was prepared in the same manner as in Example 15 except that TTBA was used as the organic solvent. <Example 20> A solution raw material for MOCVD was prepared in the same manner as in Example 15 except that DIPA was used as the organic solvent. <Example 21> A solution raw material for MOCVD was prepared in the same manner as in Example 15 except that TIPA was used as the organic solvent.

【0043】<実施例22>先ず、塩化銅(I)150g
をn-ヘキサン100ccを注ぎ、懸濁液とした。この懸
濁液に2,6-ジメチル-3,5-ヘプタンジオン25g
とヘプタンジオン25gとをゆっくり滴下し、30分間
室温で攪拌した。次いで、反応液を70℃で加熱還流し
た後、反応液を濾過した。得られた濾液を20トールに
減圧して30分間保持することにより溶媒を留去した。
溶媒の留去により残った残渣をn-ヘキサン100ccで
再結晶することによりCu(II)(EIP)2を得た。次
に、得られたCu(II)(EIP)2を有機溶媒であるn-メ
チル-2-ピロリドンに溶解してMOCVD法用溶液原料
を調製した。
Example 22 First, 150 g of copper (I) chloride
N-hexane (100 cc) was poured to obtain a suspension. 25 g of 2,6-dimethyl-3,5-heptanedione was added to this suspension.
And 25 g of heptanedione were slowly added dropwise, and the mixture was stirred at room temperature for 30 minutes. Then, the reaction solution was heated to 70 ° C. under reflux, and then the reaction solution was filtered. The solvent was distilled off by reducing the pressure of the obtained filtrate to 20 torr and holding it for 30 minutes.
Cu (II) (EIP) 2 was obtained by recrystallizing the residue remaining after distilling off the solvent with 100 cc of n-hexane. Next, the obtained Cu (II) (EIP) 2 was dissolved in n-methyl-2-pyrrolidone which is an organic solvent to prepare a solution raw material for the MOCVD method.

【0044】<実施例23>有機溶媒をDMAにした以
外は実施例22と同様にしてMOCVD用溶液原料を調
製した。 <実施例24>有機溶媒をDTBAにした以外は実施例
22と同様にしてMOCVD用溶液原料を調製した。 <実施例25>有機溶媒をDNBAにした以外は実施例
22と同様にしてMOCVD用溶液原料を調製した。
<Example 23> A solution raw material for MOCVD was prepared in the same manner as in Example 22 except that DMA was used as the organic solvent. <Example 24> A solution raw material for MOCVD was prepared in the same manner as in Example 22 except that DTBA was used as the organic solvent. <Example 25> A solution raw material for MOCVD was prepared in the same manner as in Example 22 except that DNBA was used as the organic solvent.

【0045】<実施例26>有機溶媒をTTBAにした
以外は実施例22と同様にしてMOCVD用溶液原料を
調製した。 <実施例27>有機溶媒をDIPAにした以外は実施例
22と同様にしてMOCVD用溶液原料を調製した。 <実施例28>有機溶媒をTIPAにした以外は実施例
23と同様にしてMOCVD用溶液原料を調製した。
<Example 26> A solution raw material for MOCVD was prepared in the same manner as in Example 22 except that TTBA was used as the organic solvent. <Example 27> A solution raw material for MOCVD was prepared in the same manner as in Example 22 except that DIPA was used as the organic solvent. <Example 28> A solution raw material for MOCVD was prepared in the same manner as in Example 23 except that TIPA was used as the organic solvent.

【0046】<比較例1>銅錯体をCu(II)(hfac)
2にし、有機溶媒をイソプロピルアルコールにした以外
は実施例1と同様にしてMOCVD用溶液原料を調製し
た。 <比較例2>有機溶媒をエタノールにした以外は比較例
1と同様にしてMOCVD用溶液原料を調製した。 <比較例3>有機溶媒を酢酸ブチルにした以外は比較例
1と同様にしてMOCVD用溶液原料を調製した。
<Comparative Example 1> A copper complex was added to Cu (II) (hfac)
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that 2 was used and isopropyl alcohol was used as the organic solvent. <Comparative Example 2> A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that ethanol was used as the organic solvent. <Comparative Example 3> A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that butyl acetate was used as the organic solvent.

【0047】<比較例4>有機溶媒を酢酸エチルにした
以外は比較例1と同様にしてMOCVD用溶液原料を調
製した。 <比較例5>銅錯体をCu(II)(DPM)2とし、有機溶
媒は用いずに、この銅錯体をそのままMOCVD用溶液
原料とした。
Comparative Example 4 A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that ethyl acetate was used as the organic solvent. <Comparative Example 5> Cu (II) (DPM) 2 was used as the copper complex, and this copper complex was directly used as a MOCVD solution raw material without using an organic solvent.

【0048】<比較試験>実施例1〜28及び比較例1
〜5で得られた溶液原料に含まれる銅錯体の濃度をそれ
ぞれ0.1モル濃度に調整し、それぞれ5種類用意し
た。基板として、基板表面のSiO2膜(厚さ5000
Å)上にスパッタリング法によりTiN膜(厚さ30n
m)を形成したシリコン基板を用意した。用意した基板
を図1に示すMOCVD装置の成膜室に設置し、基板温
度を180℃とした。気化温度を70℃、圧力を5to
rr即ち約665Paにそれぞれ設定した。キャリアガ
スとしてArガスを用い、その流量を100ccmとし
た。溶液原料を0.5cc/分の割合で供給し、1、
5、10、20及び30分となったときにそれぞれ1種
類ごとに成膜室より取り出し、基板上に成膜された銅薄
膜について以下に示す試験を行った。
<Comparative Test> Examples 1 to 28 and Comparative Example 1
The concentration of the copper complex contained in each of the solution raw materials obtained in Examples 1 to 5 was adjusted to 0.1 molar, and 5 types were prepared. As a substrate, a SiO 2 film (thickness 5000
Å) TiN film (thickness 30n
A silicon substrate having m) formed thereon was prepared. The prepared substrate was placed in the film forming chamber of the MOCVD apparatus shown in FIG. 1 and the substrate temperature was set to 180 ° C. Vaporization temperature 70 ℃, pressure 5to
rr, that is, about 665 Pa, respectively. Ar gas was used as a carrier gas and the flow rate was 100 ccm. Supply the solution raw material at a rate of 0.5 cc / min, and
At 5, 10, 20 and 30 minutes, each type was taken out from the film forming chamber and the copper thin film formed on the substrate was subjected to the following test.

【0049】 膜厚測定 成膜を終えた基板上の銅薄膜を断面SEM(走査型電子
顕微鏡)像から膜厚を測定した。 剥離試験 各成膜時間で取り出した銅薄膜を形成した基板に対して
剥離試験(JIS K5600−5−6)を行った。具
体的には、先ず、基板上の銅薄膜にこの膜を貫通するよ
うに縦横それぞれ6本づつ等間隔に切込みを入れて格子
パターンを基板に形成した。次に、形成した格子パター
ンの双方の対角線に沿って柔らかいはけを用いて前後に
ブラッシングした。
Film Thickness Measurement The film thickness of the copper thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image. Peeling Test A peeling test (JIS K5600-5-6) was performed on the substrate on which the copper thin film was formed and taken out at each film forming time. Specifically, first, a lattice pattern was formed on the substrate by making 6 incisions in the copper thin film on the substrate so as to penetrate the film at equal intervals in the vertical and horizontal directions. Then brushed back and forth with a soft brush along both diagonals of the formed grid pattern.

【0050】 熱安定性評価試験 図2に示す試験装置を用いて以下の試験を行った。この
図2に示す装置は、図1に示すMOCVD装置の成膜室
を取り除いた構成を有する。先ず、室温で70℃に加熱
した気化器26まで溶液原料を搬送し、5Torrの減
圧下で70℃に加熱して溶液原料を気化させ、その後に
気化器26下段のポンプ側に設けられたコールドトラッ
プ15にて気化後の化合物を捕獲した。装置内に投入し
た原料に対する捕獲量からトラップ回収率を算出した。
また、圧力センサーにより気化器内部における圧力上昇
を測定した。例えば、表中の数値が60%閉塞ならば、
5Torrの1.60倍の圧力が気化器内で生じている
ことを表す。
Thermal Stability Evaluation Test The following test was conducted using the test apparatus shown in FIG. The apparatus shown in FIG. 2 has a structure in which the film forming chamber of the MOCVD apparatus shown in FIG. 1 is removed. First, the solution raw material is conveyed to the vaporizer 26 heated to 70 ° C. at room temperature, heated to 70 ° C. under a reduced pressure of 5 Torr to vaporize the solution raw material, and then the cold side provided on the pump side of the lower stage of the vaporizer 26. The compound after vaporization was captured by the trap 15. The trap recovery rate was calculated from the trapped amount of the raw material charged into the apparatus.
Further, the pressure sensor measured the pressure rise inside the vaporizer. For example, if the value in the table is 60% occlusion,
This means that a pressure of 1.60 times 5 Torr is generated in the vaporizer.

【0051】実施例1〜8を表1に、実施例9〜16を
表2に、実施例17〜24を表3に、実施例25〜28
及び比較例1〜4を表4に、比較例5を表5にそれぞれ
得られた試験結果を示す。
Examples 1 to 8 are shown in Table 1, Examples 9 to 16 are shown in Table 2, Examples 17 to 24 are shown in Table 3, and Examples 25 to 28 are shown.
Table 4 shows Comparative Examples 1 to 4 and Table 5 shows Comparative Example 5, respectively.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【表5】 [Table 5]

【0057】表1〜表5より明らかなように、比較例1
〜5の溶液原料を用いて成膜された銅薄膜は成膜時間当
たりの膜厚にばらつきがあり、成膜再現性が悪いことが
判る。また成膜速度も非常に遅い。また密着性評価試験
では、殆どのサンプルにおいて基板表面から銅薄膜が剥
離してしまっていた。熱安定性評価試験では、トラップ
回収率が低く、大部分が装置内部に付着してしまったと
考えられる。また気化器内部の圧力上昇値も成膜時間が
長くなるにつれて上昇しており、分解物が気化器内部や
配管内部に付着して圧力上昇したと考えられる。これに
対して実施例1〜28の溶液原料を用いて作製された銅
薄膜は、成膜時間が進むに従って膜厚も厚くなってお
り、成膜安定性が高いことが判る。密着性評価試験で
は、100回中95〜99回と、どの実施例においても
殆どの銅薄膜が剥離せず、非常に密着性が高いことが判
る。熱安定性評価試験では、58〜68%範囲内の高い
トラップ回収率を示し、気化器内部の圧力上昇値も1%
程度と殆ど閉塞するおそれがない。
As is clear from Tables 1 to 5, Comparative Example 1
It can be seen that the copper thin films formed by using the solution raw materials Nos. 5 to 5 have variations in film thickness per film forming time, and the film forming reproducibility is poor. In addition, the film formation rate is also very slow. Moreover, in the adhesion evaluation test, the copper thin film was peeled from the substrate surface in most of the samples. In the thermal stability evaluation test, the trap recovery rate is low, and it is considered that most of the trap adhered to the inside of the device. Further, the pressure rise value inside the vaporizer also rises as the film forming time becomes longer, and it is considered that the decomposition product adhered to the inside of the vaporizer and the inside of the pipe to raise the pressure. On the other hand, the copper thin films produced using the solution raw materials of Examples 1 to 28 have a larger film thickness as the film forming time progresses, and it can be seen that the film forming stability is high. In the adhesion evaluation test, 95 to 99 times out of 100 times, most of the copper thin films did not peel off in any of the examples, and it was found that the adhesion was very high. In the thermal stability evaluation test, it showed a high trap recovery rate within the range of 58 to 68%, and the pressure rise value inside the vaporizer was also 1%.
There is almost no risk of blockage.

【0058】[0058]

【発明の効果】以上述べたように、銅(II)のβ-ジケト
ネート錯体をアミン系溶媒に溶解した本発明のMOCV
D用溶液原料は、成膜時に安定した原料供給ができ、更
に、この溶液原料を用いて銅薄膜を作製するとアミン系
溶媒の高い還元性により、高純度の銅薄膜が得られる。
また熱安定性に優れ、保存状態で分解しにくく寿命が長
い。更に、銅錯体の配位子がC、H、Oよりなり、hf
acのようにF(フッ素)を含まないため、MOCVD
装置が腐食しにくくMOCVD工程における排ガス処理
を複雑にしない。本発明の溶液原料を用いてMOCVD
法により作製された銅薄膜は、下地膜と堅牢に密着する
高純度の膜となる。
As described above, the MOCV of the present invention in which the β-diketonate complex of copper (II) is dissolved in an amine solvent.
The solution raw material for D can be stably supplied during film formation, and when a copper thin film is prepared using this solution raw material, a high purity copper thin film can be obtained due to the high reducing property of the amine solvent.
It also has excellent thermal stability and is resistant to decomposition during storage and has a long life. Further, the ligand of the copper complex is composed of C, H and O, and hf
Since it does not contain F (fluorine) like ac, MOCVD
The equipment is not easily corroded, and the exhaust gas treatment in the MOCVD process is not complicated. MOCVD using the solution raw material of the present invention
The copper thin film produced by the method becomes a high-purity film that firmly adheres to the base film.

【図面の簡単な説明】[Brief description of drawings]

【図1】MOCVD装置の概略図。FIG. 1 is a schematic diagram of a MOCVD apparatus.

【図2】本発明の実施例に使用される装置を示す概略
図。
FIG. 2 is a schematic diagram showing an apparatus used in an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小木 勝実 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 Fターム(参考) 4H006 AA03 AB78 AB80 AB91 4H048 AA03 AB78 AB91 VA22 VA56 VB10 4K030 AA11 BA01 FA10 4M104 BB04 DD45    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsumi Ogi             1002 Mukayama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 14 Mitsubishi             Materials Research Laboratories Naka Research Center             In the center F-term (reference) 4H006 AA03 AB78 AB80 AB91                 4H048 AA03 AB78 AB91 VA22 VA56                       VB10                 4K030 AA11 BA01 FA10                 4M104 BB04 DD45

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 銅(II)のβ-ジケトネート錯体を有機溶
媒に溶解した有機金属化学蒸着法用溶液原料において、 前記有機溶媒がアミン系溶媒であることを特徴とする有
機金属化学蒸着法用溶液原料。
1. A solution raw material for a metal organic chemical vapor deposition method in which a β-diketonate complex of copper (II) is dissolved in an organic solvent, wherein the organic solvent is an amine solvent. Solution raw material.
【請求項2】 アミン系溶媒がn-メチル-2-ピロリド
ン、ジメチルアニリン、ジ-t-ブチルアニリン、ジ-n-
ブチルアニリン、ジイソプロピルアニリン、トリ-t-ブ
チルアニリン及びトリイソプロピルアニリンからなる群
より選ばれた1種又は2種以上の化合物である請求項1
記載の溶液原料。
2. The amine solvent is n-methyl-2-pyrrolidone, dimethylaniline, di-t-butylaniline, di-n-.
The compound is one or more compounds selected from the group consisting of butylaniline, diisopropylaniline, tri-t-butylaniline and triisopropylaniline.
The solution raw material described.
【請求項3】 銅(II)のβ-ジケトネート錯体が次の式
(1)で示される請求項1記載の溶液原料。 【化1】 但し、Rはイソプロピル基である。
3. The solution raw material according to claim 1, wherein the β-diketonate complex of copper (II) is represented by the following formula (1). [Chemical 1] However, R is an isopropyl group.
【請求項4】 銅(II)のβ-ジケトネート錯体が次の式
(2)で示される請求項1記載の溶液原料。 【化2】 但し、R1及びR'1がそれぞれエチル基であって、R2
びR'2がそれぞれイソプロピル基であるか、又はR'1
びR2がイソプロピル基であって、R1及びR'2がそれぞ
れエチル基であるか、又はR1及びR'1がそれぞれメチ
ル基であって、R2及びR'2がそれぞれn-ブチル基であ
るか、或いはR'1及びR2がそれぞれn-ブチル基であっ
て、R1及びR'2がそれぞれメチル基である。
4. The solution raw material according to claim 1, wherein the β-diketonate complex of copper (II) is represented by the following formula (2). [Chemical 2] Provided that R 1 and R ′ 1 are each an ethyl group, R 2 and R ′ 2 are each an isopropyl group, or R ′ 1 and R 2 are an isopropyl group, and R 1 and R ′ 2 Are each an ethyl group, or R 1 and R ′ 1 are each a methyl group, R 2 and R ′ 2 are each an n-butyl group, or R ′ 1 and R 2 are each an n- It is a butyl group, and R 1 and R ′ 2 are each a methyl group.
【請求項5】 銅(II)のβ-ジケトネート錯体が次の式
(3)で示される化合物と、次の式(4)で示される化
合物の混合体である請求項4記載の溶液原料。 【化3】 但し、R3及びR'3がそれぞれエチル基であって、R4
びR'4がそれぞれイソプロピル基である。 【化4】 但し、R'5及びR6がイソプロピル基であって、R5及び
R'6がそれぞれエチル基である。
5. The solution raw material according to claim 4, wherein the β-diketonate complex of copper (II) is a mixture of a compound represented by the following formula (3) and a compound represented by the following formula (4). [Chemical 3] However, R 3 and R ′ 3 are each an ethyl group, and R 4 and R ′ 4 are each an isopropyl group. [Chemical 4] However, R ′ 5 and R 6 are isopropyl groups, and R 5 and R ′ 6 are ethyl groups, respectively.
【請求項6】 銅(II)のβ-ジケトネート錯体が次の式
(5)で示される化合物と、次の式(6)で示される化
合物の混合体である請求項4記載の溶液原料。 【化5】 但し、R7及びR'7がそれぞれメチル基であって、R8
びR'8がそれぞれn-ブチル基である。 【化6】 但し、R'9及びR10がそれぞれn-ブチル基であって、R
9及びR'10がそれぞれメチル基である。
6. The solution raw material according to claim 4, wherein the β-diketonate complex of copper (II) is a mixture of a compound represented by the following formula (5) and a compound represented by the following formula (6). [Chemical 5] However, R 7 and R ′ 7 are each a methyl group, and R 8 and R ′ 8 are each an n-butyl group. [Chemical 6] Provided that R ′ 9 and R 10 are each an n-butyl group,
9 and R '10 are each a methyl group.
【請求項7】 銅(II)のβ-ジケトネート錯体が次の式
(7)で示される請求項1記載の溶液原料。 【化7】 但し、R1はイソプロピル基であり、R2はエチル基であ
る。
7. The solution raw material according to claim 1, wherein the β-diketonate complex of copper (II) is represented by the following formula (7). [Chemical 7] However, R 1 is an isopropyl group and R 2 is an ethyl group.
【請求項8】 請求項1ないし7いずれか記載の溶液原
料を用いて有機金属化学蒸着法により作製された銅薄
膜。
8. A copper thin film produced by a metal organic chemical vapor deposition method using the solution raw material according to claim 1.
JP2002053411A 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II) Expired - Fee Related JP4218247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053411A JP4218247B2 (en) 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053411A JP4218247B2 (en) 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)

Publications (2)

Publication Number Publication Date
JP2003257889A true JP2003257889A (en) 2003-09-12
JP4218247B2 JP4218247B2 (en) 2009-02-04

Family

ID=28664848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053411A Expired - Fee Related JP4218247B2 (en) 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)

Country Status (1)

Country Link
JP (1) JP4218247B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015914A1 (en) * 2006-07-31 2008-02-07 Tokyo Electron Limited Cvd film forming method and cvd film forming apparatus
EP1983073A1 (en) * 2007-04-16 2008-10-22 Air Products and Chemicals, Inc. Metal precursor solutions for chemical vapor deposition
JP2021114468A (en) * 2015-10-09 2021-08-05 メルク パテント ゲーエムベーハー Formulations containing n,n-dialkylaniline solvents

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015914A1 (en) * 2006-07-31 2008-02-07 Tokyo Electron Limited Cvd film forming method and cvd film forming apparatus
JP2008031541A (en) * 2006-07-31 2008-02-14 Tokyo Electron Ltd Cvd film deposition process and cvd film deposition system
EP1983073A1 (en) * 2007-04-16 2008-10-22 Air Products and Chemicals, Inc. Metal precursor solutions for chemical vapor deposition
JP2009001896A (en) * 2007-04-16 2009-01-08 Air Products & Chemicals Inc Metal precursor solution for chemical vapor deposition
JP2021114468A (en) * 2015-10-09 2021-08-05 メルク パテント ゲーエムベーハー Formulations containing n,n-dialkylaniline solvents

Also Published As

Publication number Publication date
JP4218247B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
TWI426154B (en) New cobalt precursors for semiconductor applications
US9121093B2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof
EP3312187A1 (en) Method for manufacturing novel compound, raw material for thin film formation, and thin film
JP3844292B2 (en) Method for depositing high adhesion copper thin film on metal nitride substrate and copper metal precursor mixture
TW201311702A (en) Heteroleptic (allyl) (pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
JP2007023388A (en) Production method and use of zirconium nitride coating film
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
US6538147B1 (en) Organocopper precursors for chemical vapor deposition
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
JP4218247B2 (en) Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)
WO2018042871A1 (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
JP4187373B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
EP2520690A1 (en) Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
TWI717159B (en) Cobalt precursor, method of preparing same and method of manufacturing thin film using same
JP3931965B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
JP4363383B2 (en) Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
JP3931963B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
JP2003252823A (en) Organocopper compound for metal organic chemical vapor deposition and copper thin film prepared by using the same
JP2003206288A (en) COPPER COMPLEX, SOLUTION RAW MATERIAL FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION COMPRISING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM PREPARED BY USING THE SAME
JP3894010B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
KR102415479B1 (en) Alkoxide compound, thin film-forming starting material, thin film formation method and alcohol compound
JP3894016B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
TWI740541B (en) Raw material for chemical vapor deposition including organomanganese compound and chemical vapor deposition method using the raw material for chemical vapor deposition
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees