JP4218247B2 - Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II) - Google Patents

Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II) Download PDF

Info

Publication number
JP4218247B2
JP4218247B2 JP2002053411A JP2002053411A JP4218247B2 JP 4218247 B2 JP4218247 B2 JP 4218247B2 JP 2002053411 A JP2002053411 A JP 2002053411A JP 2002053411 A JP2002053411 A JP 2002053411A JP 4218247 B2 JP4218247 B2 JP 4218247B2
Authority
JP
Japan
Prior art keywords
raw material
copper
solution raw
mocvd
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053411A
Other languages
Japanese (ja)
Other versions
JP2003257889A (en
Inventor
篤 齋
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002053411A priority Critical patent/JP4218247B2/en
Publication of JP2003257889A publication Critical patent/JP2003257889A/en
Application granted granted Critical
Publication of JP4218247B2 publication Critical patent/JP4218247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の配線に用いられる銅(Cu)薄膜を有機金属化学蒸着(Metal Organic Chemical Vapor Deposition、以下、MOCVDという。)法により作製するための銅(II)のβ-ジケトネート錯体を含むMOCVD法用溶液原料に関するものである。
【0002】
【従来の技術】
銅及び銅系合金は、高い導電性、エレクトロマイグレーション耐性からLSIの配線材料として応用されている。また、銅を含む複合金属酸化物は、高温超伝導体等の機能性セラミックス材料として応用されている。これら銅、銅を含む合金、銅を含む複合金属酸化物等の銅系薄膜の製造方法としては、スパッタリング法、イオンプレーティング法、塗布熱分解法等が挙げられるが、加工寸法が微細になるに従い、組成制御性、段差被覆性、段差埋め込み性に優れること、LSIプロセスとの適合性等からCVD法、有機金属化合物を用いたMOCVD法が最適な薄膜製造プロセスとして検討されている。
【0003】
このMOCVD法により銅をIC基板及び表面に付与させる有機銅化合物としては、これまでCu(II)(hfac)2錯体即ち銅(II)ヘキサフルオロアセチルアセトネート錯体が使用されてきた。しかし、このCu(II)(hfac)2錯体は、堆積された銅内に汚染物を残すこと、錯体を分解して銅を形成するために比較的高い温度を用いる必要があるため実用的ではなく、十分な特性を有しているものではなかった。
【0004】
そこで1価のCu(I)(hfac)錯体を用いることが検討され、例えば、室温で液体のCu(I)tmvs・hfac錯体即ち銅(I)ヘキサフルオロアセチルアセトネートトリメチルビニルシラン錯体が開示されている(米国特許第5,322,712号)。このCu(I)tmvs・hfac錯体は比較的低い温度、約200℃で使用することができるため非常に有用である。しかしこの錯体は非常に高価であり、更に大気中で非常に不安定なため極めて安定性に欠け、室温で容易に分解し、金属銅の析出と副生成物のCu(II)(hfac)2に変化し劣化が著しい。そのため、この銅錯体は成膜時に安定して供給することが難しく、成膜の再現性にも劣る。
また配位子であるhfacはフッ素(F)を含むため、MOCVD装置が腐食しやすく、またMOCVD工程における排ガス処理が複雑になる問題もあった。更に、hfacのようなフッ素を含む有機銅化合物を用いてMOCVD法により銅の成膜を行った場合、所望の銅薄膜を形成したとき、銅薄膜中にフッ素が不純物として取り込まれるだけでなく、ウェーハの下地界面にフッ素が残留し、下地との密着性を低下させるという問題がある。
【0005】
このような上記課題を解決するため、下記式()で示される銅(II)のβ−ジケトネート錯体からなる化学気相成長用原料が開示されている(特開2001−181840)。
【0006】
【化

Figure 0004218247
(式中、Rはイソプロピル基又は第三ブチル基を表し、R1はメチル基又はエチル基を表し、R2はプロピル基又はブチル基を表す。)
この銅原料は室温で液体であり、分子内にハロゲン元素や窒素元素等の薄膜製造時に影響を及ぼすと考えられる元素を含んでいないため、各種CVD法に適し、更に、既存の固体である銅(II)錯体からなるCVD用銅原料と同等の熱的、化学的安定性を有する。
【0007】
【発明が解決しようとする課題】
しかし特開2001−181840号公報の上記式()で示される銅原料は常温で液体であるが、その粘性は非常に高く、この銅原料をMOCVD装置に供給するには高圧で供給しなければならないため、成膜性に問題があった。またこの銅原料を溶液に溶解して溶液原料としてMOCVD装置に供給しても、この銅原料の分解温度は約450℃であり、従来より一般的に用いられている有機銅化合物の分解温度に比べて非常に高いため、成膜し難い問題もあった。またこの上記式()で示される銅原料は極端に分子構造が偏ったバランスの悪い構造を有しているため、成膜時に安定して原料を供給することが難しく、十分な成膜安定性が得られているとはいえなかった。
【0008】
本発明の目的は、成膜時に安定した原料供給ができ、かつ高純度の銅薄膜が得られる銅(II)のβ-ジケトネート錯体を含む有機金属化学蒸着法用溶液原料を提供することにある。
本発明の別の目的は、熱安定性に優れ、保存状態で分解しにくく寿命が長い銅(II)のβ-ジケトネート錯体を含む有機金属化学蒸着法用溶液原料を提供することにある。
本発明の別の目的は、MOCVD装置が腐食しにくくMOCVD工程における排ガス処理を複雑にしない銅(II)のβ-ジケトネート錯体を含む有機金属化学蒸着法用溶液原料を提供することにある
【0009】
【課題を解決するための手段】
請求項1に係る発明は、次の式(1)で示される銅(II)のβ-ジケトネート錯体を有機溶媒に溶解した有機金属化学蒸着法用溶液原料において、有機溶媒がアミン系溶媒であることを特徴とする有機金属化学蒸着法用溶液原料である。
【0010】
【化4】
Figure 0004218247
但し、R 1 及びR ' 1 がそれぞれメチル基であって、R 2 及びR ' 2 がそれぞれ n- ブチル基であるか、又はR ' 1 及びR 2 がそれぞれ n- ブチル基であって、R 1 及びR ' 2 がそれぞれメチル基である。
【0011】
請求項1に係る発明では、有機溶媒にアミン系溶媒を用いたMOCVD用溶液原料を用いることにより、成膜時に安定した原料供給ができ、更に、この溶液原料を用いて銅薄膜を作製するとアミン系溶媒の高い還元性により、高純度の銅薄膜が得られる。基本骨格から分岐した2つの原子団にそれぞれメチル基、 n- ブチル基を形成した配位子を配位させた銅錯体(以下、Cu (II)( OD ) 2 という。)は、銅原子上の電子密度がリッチ補充され、基本的に問題となる他化合物と内部構造の相互作用による多量体化を抑制しているため、構造安定性が高く、この銅錯体をアミン系溶媒に溶解させた溶液原料は長期保存に優れる。
【0012】
請求項2に係る発明は、次の式(2)で示される銅 (II) のβ - ジケトネート錯体を有機溶媒に溶解した有機金属化学蒸着法用溶液原料において、有機溶媒がアミン系溶媒であることを特徴とする有機金属化学蒸着法用溶液原料である。
【0013】
【化5】
Figure 0004218247
但し、R 3 はイソプロピル基であり、R 4 はエチル基である。
【0014】
請求項2に係る発明では、有機溶媒にアミン系溶媒を用いたMOCVD用溶液原料を用いることにより、成膜時に安定した原料供給ができ、更に、この溶液原料を用いて銅薄膜を作製するとアミン系溶媒の高い還元性により、高純度の銅薄膜が得られる。基本骨格から分岐した2つの原子団にそれぞれエチル基を形成した配位子とそれぞれイソプロピル基 を形成した配位子をそれぞれ配位させた銅錯体(以下、Cu (II)( EIP ) 2 という。)は、銅原子上の電子密度がリッチ補充され、基本的に問題となる他化合物と内部構造の相互作用による多量体化を抑制しているため、構造安定性が高く、この銅錯体を有機溶媒に溶解させた溶液原料は長期保存に優れる。
【0015】
請求項に係る発明は、請求項1又は2に係る発明であって、アミン系溶媒がn-メチル-2-ピロリドン、ジメチルアニリン(以下、DMAという。)、ジ-t-ブチルアニリン(以下、DTBAという。)、ジ-n-ブチルアニリン(以下、DNBAという。)、ジイソプロピルアニリン(以下、DIPAという。)、トリ-t-ブチルアニリン(以下、TTBAという。)及びトリイソプロピルアニリン(以下、TIPAという。)からなる群より選ばれた1種又は2種以上の化合物である溶液原料である
【0016】
【発明の実施の形態】
次に本発明の実施の形態を説明する。
本発明の溶液原料は、銅(II)のβ-ジケトネート錯体を有機溶媒に溶解したMOCVD用溶液原料の改良であり、その特徴ある構成は、有機溶媒がアミン系溶媒であるところにある。この銅(II)のβ-ジケトネート錯体とアミン系溶媒の配合比は任意であり、その使用用途や、アミン系溶媒の種類によって適宜調製することが好ましい。本発明の溶液原料には、n-メチル-2-ピロリドン、DMA、DTBA、DNBA、DIPA、TTBA及びTIPAからなる群より選ばれた1種又は2種以上の化合物がアミン系溶媒として使用される。
【0017】
銅(II)のβ-ジケトネート錯体は前述した前述した式()を一般式とするCu(II)(OD)2錯体、前述した式()に示されるCu(II)(EIP)2錯体が挙げられる。式()を一般式とする錯体のうち、Cu(II)(OD)2錯体は、次の式()に示される錯体、式()に示される錯体が挙げられる。なお、式)と式()でそれぞれ示されるCu(II)(OD)2錯体配位子異性の関係である。
【0018】
【化
Figure 0004218247
【0019】
【化
Figure 0004218247
【0020】
本発明の溶液原料には、更に安定化剤を含むことにより、より保存安定性の高い溶液原料として使用することができる。安定化剤としては、エチレングリコールエーテル類、クラウンエーテル類、ポリアミン類、環状ポリアミン類、β-ケトエステル類及びβ-ジケトン類からなる群より選ばれた1種又は2種以上の化合物が用いられる。具体的には、エチレングリコールエーテル類としては、グライム、ジグライム、トリグライム及びテトラグライムからなる群より選ばれた1種又は2種以上の化合物が挙げられる。クラウンエーテル類としては、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8及びジベンゾ-24-クラウン-8からなる群より選ばれた1種又は2種以上の化合物が挙げられる。ポリアミン類としては、エチレンジアミン、N,N’-テトラメチルメチレンジアミン、ジエチレントリアミン、トリメチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン及び1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミンからなる群より選ばれた1種又は2種以上の化合物が挙げられる。環状ポリアミン類としては、サイクラム及びサイクレンからなる群より選ばれた1種又は2種の化合物が挙げられる。β-ケトエステル類又はβ-ジケトン類としては、アセト酢酸メチル、アセト酢酸エチル及びアセト酢酸-2-メトキシエチルからなる群より選ばれた1種又は2種以上の化合物が挙げられる。
【0021】
本実施の形態では、MOCVD法には、各溶液を加熱された気化器に供給し、ここで各溶液原料を瞬時に気化させ、成膜室に送る溶液気化CVD法を用いる。
図1に示すように、MOCVD装置は、成膜室10と蒸気発生装置11を備える。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力センサー14、コールドトラップ15及びニードルバルブ16を備える配管17により真空引きされる。蒸気発生装置11は原料容器18を備え、この原料容器18は溶液原料を貯蔵する。原料容器18にはガス流量調節装置19を介してキャリアガス導入管21が接続され、また原料容器18には供給管22が接続される。供給管22にはニードルバルブ23及び溶液流量調節装置24が設けられ、供給管22は気化器26に接続される。気化器26にはニードルバルブ31、ガス流量調節装置28を介してキャリアガス導入管29が接続される。気化器26は更に配管27により成膜室10に接続される。また気化器26には、ガスドレイン32及びドレイン33がそれぞれ接続される。
この装置では、N2、He、Ar等の不活性ガスからなるキャリアガスがキャリアガス導入管21から原料容器18内に導入され、原料容器18に貯蔵されている溶液原料を供給管22により気化器26に搬送する。気化器26で気化されて蒸気となった銅錯体は、更にキャリアガス導入管28から気化器26へ導入されたキャリアガスにより配管27を経て成膜室10内に供給される。成膜室10内において、銅錯体の蒸気を熱分解させ、これにより生成した銅又は銅合金を加熱された基板13上に堆積させて銅薄膜を形成する。
【0022】
本発明の溶液原料を用いて作製された銅薄膜は、下地膜と堅牢に密着し、高純度である特長を有する。この銅薄膜は、例えばシリコン基板表面のSiO2膜上にスパッタリング法又はMOCVD法により形成されたTiN膜又はTaN膜上にMOCVD法により形成される。なお、本発明の基板はその種類を特に限定されるものではない。
【0023】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例
先ず、塩化銅 (I) 150gを n- ヘキサン100ccを注ぎ、懸濁液とした。この懸濁液に2 , - オクタンジオン50gをゆっくり滴下し、30分間室温で攪拌した。次いで、反応液を70℃で加熱還流した後、反応液を濾過した。得られた濾液を20トールに減圧して30分間保持することにより溶媒を留去した。溶媒の留去により残った残渣を n- ヘキサン100ccで再結晶することによりCu (II)( OD ) 2 を得た。次に、得られたCu (II)( OD ) 2 を有機溶媒であるn - メチル - - ピロリドンに溶解してMOCVD法用溶液原料を調製した。
【0024】
<実施例
有機溶媒をDMAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例
有機溶媒をDTBAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例
有機溶媒をDNBAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
【0025】
<実施例
有機溶媒をTTBAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例
有機溶媒をDIPAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例
有機溶媒をTIPAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
【0026】
<実施例
先ず、塩化銅(I)150gをn-ヘキサン100ccを注ぎ、懸濁液とした。この懸濁液に2,6-ジメチル-3,5-ヘプタンジオン25gとヘプタンジオン25gとをゆっくり滴下し、30分間室温で攪拌した。次いで、反応液を70℃で加熱還流した後、反応液を濾過した。得られた濾液を20トールに減圧して30分間保持することにより溶媒を留去した。溶媒の留去により残った残渣をn-ヘキサン100ccで再結晶することによりCu(II)(EIP)2を得た。次に、得られたCu(II)(EIP)2を有機溶媒であるn-メチル-2-ピロリドンに溶解してMOCVD法用溶液原料を調製した。
【0027】
<実施例
有機溶媒をDMAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例10
有機溶媒をDTBAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例11
有機溶媒をDNBAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
【0028】
<実施例12
有機溶媒をTTBAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例13
有機溶媒をDIPAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
<実施例14
有機溶媒をTIPAにした以外は実施例と同様にしてMOCVD用溶液原料を調製した。
【0029】
<比較例1>
銅錯体をCu(II)(hfac)2にし、有機溶媒をイソプロピルアルコールにした以外は実施例1と同様にしてMOCVD用溶液原料を調製した。
<比較例2>
有機溶媒をエタノールにした以外は比較例1と同様にしてMOCVD用溶液原料を調製した。
<比較例3>
有機溶媒を酢酸ブチルにした以外は比較例1と同様にしてMOCVD用溶液原料を調製した。
【0030】
<比較例4>
有機溶媒を酢酸エチルにした以外は比較例1と同様にしてMOCVD用溶液原料を調製した。
<比較例5>
銅錯体をCu(II)(DPM)2とし、有機溶媒は用いずに、この銅錯体をそのままMOCVD用溶液原料とした。
【0031】
<比較試験>
実施例1〜14及び比較例1〜5で得られた溶液原料に含まれる銅錯体の濃度をそれぞれ0.1モル濃度に調整し、それぞれ5種類用意した。基板として、基板表面のSiO2膜(厚さ5000Å)上にスパッタリング法によりTiN膜(厚さ30nm)を形成したシリコン基板を用意した。
用意した基板を図1に示すMOCVD装置の成膜室に設置し、基板温度を180℃とした。気化温度を70℃、圧力を5torr即ち約665Paにそれぞれ設定した。キャリアガスとしてArガスを用い、その流量を100ccmとした。溶液原料を0.5cc/分の割合で供給し、1、5、10、20及び30分となったときにそれぞれ1種類ごとに成膜室より取り出し、基板上に成膜された銅薄膜について以下に示す試験を行った。
【0032】
(1) 膜厚測定
成膜を終えた基板上の銅薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
(2) 剥離試験
各成膜時間で取り出した銅薄膜を形成した基板に対して剥離試験(JIS K 5600−5−6)を行った。具体的には、先ず、基板上の銅薄膜にこの膜を貫通するように縦横それぞれ6本づつ等間隔に切込みを入れて格子パターンを基板に形成した。次に、形成した格子パターンの双方の対角線に沿って柔らかいはけを用いて前後にブラッシングした。
【0033】
(3) 熱安定性評価試験
図2に示す試験装置を用いて以下の試験を行った。この図2に示す装置は、図1に示すMOCVD装置の成膜室を取り除いた構成を有する。
先ず、室温で70℃に加熱した気化器26まで溶液原料を搬送し、5Torrの減圧下で70℃に加熱して溶液原料を気化させ、その後に気化器26下段のポンプ側に設けられたコールドトラップ15にて気化後の化合物を捕獲した。装置内に投入した原料に対する捕獲量からトラップ回収率を算出した。また、圧力センサーにより気化器内部における圧力上昇を測定した。例えば、表中の数値が60%閉塞ならば、5Torrの1.60倍の圧力が気化器内で生じていることを表す。
【0034】
実施例1〜を表1に、実施例14を表2に、比較例1〜5を表3にそれぞれ得られた試験結果を示す。
【0035】
【表
Figure 0004218247
【0036】
【表
Figure 0004218247
【0037】
【表
Figure 0004218247
【0038】
表1〜表より明らかなように、比較例1〜5の溶液原料を用いて成膜された銅薄膜は成膜時間当たりの膜厚にばらつきがあり、成膜再現性が悪いことが判る。また成膜速度も非常に遅い。また密着性評価試験では、殆どのサンプルにおいて基板表面から銅薄膜が剥離してしまっていた。熱安定性評価試験では、トラップ回収率が低く、大部分が装置内部に付着してしまったと考えられる。また気化器内部の圧力上昇値も成膜時間が長くなるにつれて上昇しており、分解物が気化器内部や配管内部に付着して圧力上昇したと考えられる。これに対して実施例1〜14の溶液原料を用いて作製された銅薄膜は、成膜時間が進むに従って膜厚も厚くなっており、成膜安定性が高いことが判る。密着性評価試験では、100回中95〜99回と、どの実施例においても殆どの銅薄膜が剥離せず、非常に密着性が高いことが判る。熱安定性評価試験では、58〜66%範囲内の高いトラップ回収率を示し、気化器内部の圧力上昇値も1%程度と殆ど閉塞するおそれがない。
【0039】
【発明の効果】
以上述べたように、銅(II)のβ-ジケトネート錯体をアミン系溶媒に溶解した本発明のMOCVD用溶液原料は、成膜時に安定した原料供給ができ、更に、この溶液原料を用いて銅薄膜を作製するとアミン系溶媒の高い還元性により、高純度の銅薄膜が得られる。また熱安定性に優れ、保存状態で分解しにくく寿命が長い。更に、銅錯体の配位子がC、H、Oよりなり、hfacのようにF(フッ素)を含まないため、MOCVD装置が腐食しにくくMOCVD工程における排ガス処理を複雑にしない。本発明の溶液原料を用いてMOCVD法により作製された銅薄膜は、下地膜と堅牢に密着する高純度の膜となる。
【図面の簡単な説明】
【図1】 MOCVD装置の概略図。
【図2】 本発明の実施例に使用される装置を示す概略図。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a copper (II) β-diketonate complex for producing a copper (Cu) thin film used for wiring of a semiconductor device by a metal organic chemical vapor deposition (hereinafter referred to as MOCVD) method. it relates to the MOCVD method for the solution of raw materials, including.
[0002]
[Prior art]
Copper and copper-based alloys are applied as LSI wiring materials because of their high electrical conductivity and electromigration resistance. Moreover, the composite metal oxide containing copper is applied as a functional ceramic material such as a high-temperature superconductor. Examples of methods for producing copper-based thin films such as copper, copper-containing alloys, and copper-containing composite metal oxides include sputtering, ion plating, and coating pyrolysis, but the processing dimensions become fine. Accordingly, the CVD method and the MOCVD method using an organometallic compound have been studied as the optimum thin film manufacturing process because of excellent composition controllability, step coverage, and step embedding property, and compatibility with an LSI process.
[0003]
Cu (II) (hfac) 2 complex, that is, copper (II) hexafluoroacetylacetonate complex has been used as an organic copper compound for imparting copper to the IC substrate and the surface by this MOCVD method. However, this Cu (II) (hfac) 2 complex is not practical because it leaves contaminants in the deposited copper and it is necessary to use a relatively high temperature to decompose the complex to form copper. And it did not have sufficient characteristics.
[0004]
Therefore, the use of a monovalent Cu (I) (hfac) complex has been studied. For example, a Cu (I) tmvs · hfac complex which is liquid at room temperature, that is, a copper (I) hexafluoroacetylacetonate trimethylvinylsilane complex is disclosed. (US Pat. No. 5,322,712). This Cu (I) tmvs · hfac complex is very useful because it can be used at a relatively low temperature of about 200 ° C. However, this complex is very expensive, and is very unstable in the atmosphere, so it is very unstable and easily decomposes at room temperature, resulting in precipitation of copper metal and by-product Cu (II) (hfac) 2 Deterioration is remarkable. For this reason, it is difficult to stably supply this copper complex at the time of film formation, and the reproducibility of film formation is also poor.
In addition, since hfac, which is a ligand, contains fluorine (F), the MOCVD apparatus is easily corroded and exhaust gas treatment in the MOCVD process is complicated. Furthermore, when a copper film is formed by MOCVD using an organic copper compound containing fluorine such as hfac, when a desired copper thin film is formed, not only fluorine is taken into the copper thin film as an impurity, There is a problem in that fluorine remains on the underlayer interface of the wafer, thereby reducing the adhesion to the underlayer.
[0005]
In order to solve the above-described problems, a chemical vapor deposition material comprising a β-diketonate complex of copper (II) represented by the following formula ( 3 ) is disclosed (Japanese Patent Laid-Open No. 2001-181840).
[0006]
[Chemical 3 ]
Figure 0004218247
(In the formula, R represents an isopropyl group or a tertiary butyl group, R 1 represents a methyl group or an ethyl group, and R 2 represents a propyl group or a butyl group.)
This copper raw material is liquid at room temperature and does not contain any elements that may affect the production of thin films such as halogen elements and nitrogen elements in the molecule, so it is suitable for various CVD methods, and is also an existing solid copper (II) It has the same thermal and chemical stability as a copper raw material for CVD comprising a complex.
[0007]
[Problems to be solved by the invention]
However, the copper raw material represented by the above formula ( 3 ) in Japanese Patent Application Laid-Open No. 2001-181840 is liquid at room temperature, but its viscosity is very high. To supply this copper raw material to the MOCVD apparatus, it must be supplied at a high pressure. Therefore, there was a problem in film forming property. Moreover, even if this copper raw material is dissolved in a solution and supplied to the MOCVD apparatus as a solution raw material, the decomposition temperature of this copper raw material is about 450 ° C., which is the decomposition temperature of organic copper compounds that have been generally used conventionally. Since it is very high in comparison, there is a problem that it is difficult to form a film. Further, since the copper raw material represented by the above formula ( 3 ) has an unbalanced structure in which the molecular structure is extremely biased, it is difficult to stably supply the raw material at the time of film formation, and sufficient film formation stability It could not be said that sex was obtained.
[0008]
An object of the present invention is to provide a solution raw material for a metal organic chemical vapor deposition method containing a β-diketonate complex of copper (II), which can supply a raw material stably during film formation and obtain a high-purity copper thin film. .
Another object of the present invention is to provide a solution raw material for metal organic chemical vapor deposition containing a β-diketonate complex of copper (II) which is excellent in thermal stability and hardly decomposes in a stored state and has a long life.
Another object of the present invention is to provide a solution raw material for metal organic chemical vapor deposition containing a β-diketonate complex of copper (II) which does not easily corrode the MOCVD apparatus and does not complicate the exhaust gas treatment in the MOCVD process .
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a solution raw material for metalorganic chemical vapor deposition in which a β-diketonate complex of copper (II) represented by the following formula (1) is dissolved in an organic solvent, wherein the organic solvent is an amine solvent. This is a solution raw material for metal organic chemical vapor deposition.
[0010]
[Formula 4]
Figure 0004218247
Provided that R 1 and R 1 are each a methyl group and R 2 and R 2 are each an n- butyl group, or R 1 and R 2 are each an n- butyl group, and R 1 and R 2 are each a methyl group.
[0011]
In the invention according to claim 1, by using a solution raw material for MOCVD using an amine solvent as an organic solvent, a stable raw material supply can be performed at the time of film formation. Further, when a copper thin film is produced using this solution raw material, an amine is obtained. Due to the high reducibility of the system solvent, a high purity copper thin film can be obtained. Two atomic groups each methyl group branched from the basic skeleton, n- butyl group was formed ligands coordinated so the copper complex (hereinafter, Cu (II) (OD) 2 referred.) Is on the copper atom Since the electron density of the replenishment is rich and the multimerization due to the interaction between the internal structure and other compounds, which is basically a problem, is suppressed, the structural stability is high, and this copper complex was dissolved in an amine solvent. Solution raw materials are excellent for long-term storage.
[0012]
The invention according to claim 2 is a solution raw material for metal organic chemical vapor deposition method in which a β - diketonate complex of copper (II) represented by the following formula (2) is dissolved in an organic solvent, wherein the organic solvent is an amine solvent This is a solution raw material for metal organic chemical vapor deposition.
[0013]
[Chemical formula 5]
Figure 0004218247
However, R 3 is isopropyl, R 4 is an ethyl group.
[0014]
In the invention according to claim 2, by using a solution raw material for MOCVD using an amine solvent as an organic solvent, a stable raw material supply can be performed at the time of film formation. Further, when a copper thin film is produced using this solution raw material, an amine is obtained. Due to the high reducibility of the system solvent, a high purity copper thin film can be obtained. A copper complex (hereinafter referred to as Cu (II) ( EIP ) 2 ) in which a ligand having an ethyl group and a ligand having an isopropyl group are respectively coordinated to two atomic groups branched from the basic skeleton . ) Is supplemented with a rich electron density on the copper atom and suppresses multimerization due to the interaction between the internal structure and other compounds that are fundamentally problematic. The solution raw material dissolved in the solvent is excellent in long-term storage.
[0015]
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein the amine solvent is n-methyl-2-pyrrolidone, dimethylaniline (hereinafter referred to as DMA), di-t-butylaniline (hereinafter referred to as DMA). , DTBA), di-n-butylaniline (hereinafter referred to as DNBA), diisopropylaniline (hereinafter referred to as DIPA), tri-t-butylaniline (hereinafter referred to as TTBA) and triisopropylaniline (hereinafter referred to as DTBA). It is a solution raw material that is one or more compounds selected from the group consisting of TIPA .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
The solution raw material of the present invention is an improvement of a solution raw material for MOCVD in which a β-diketonate complex of copper (II) is dissolved in an organic solvent, and the characteristic configuration is that the organic solvent is an amine solvent. The compounding ratio of the copper (II) β-diketonate complex and the amine solvent is arbitrary, and it is preferably prepared as appropriate depending on the intended use and the type of the amine solvent. In the solution raw material of the present invention, one or more compounds selected from the group consisting of n-methyl-2-pyrrolidone, DMA, DTBA, DNBA, DIPA, TTBA and TIPA are used as amine solvents. .
[0017]
Copper (II) of β- diketonate complexes shall be the general formula formula (1) which is mentioned before the aforementioned C u (II) (OD) 2 complex, Cu represented by the formula (2) described above (II) (EIP) 2 complex. Of the complex having formula (1) and the general formula, C u (II) (OD) 2 complexes, complexes represented by the following formula (4), the complex body represented by formula (5) below. In addition , the Cu (II) (OD) 2 complex represented by each of the formula ( 4 ) and the formula ( 5 ) has a relation of ligand isomerism.
[0018]
[Chemical 6 ]
Figure 0004218247
[0019]
[Chemical 7 ]
Figure 0004218247
[0020]
The solution raw material of the present invention can be used as a solution raw material having higher storage stability by further containing a stabilizer. As the stabilizer, one or more compounds selected from the group consisting of ethylene glycol ethers, crown ethers, polyamines, cyclic polyamines, β-ketoesters and β-diketones are used. Specifically, ethylene glycol ethers include one or more compounds selected from the group consisting of glyme, diglyme, triglyme and tetraglyme. The crown ethers are one selected from the group consisting of 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-crown-8 and dibenzo-24-crown-8. Or 2 or more types of compounds are mentioned. Polyamines include ethylenediamine, N, N′-tetramethylmethylenediamine, diethylenetriamine, trimethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7-pentamethyldiethylenetriamine and 1,1,1,4. Examples thereof include one or more compounds selected from the group consisting of 4,7,10,10-hexamethyltriethylenetetramine. Examples of the cyclic polyamines include one or two compounds selected from the group consisting of cyclam and cyclen. Examples of β-ketoesters or β-diketones include one or more compounds selected from the group consisting of methyl acetoacetate, ethyl acetoacetate, and 2-methoxyethyl acetoacetate.
[0021]
In this embodiment, the MOCVD method uses a solution vaporization CVD method in which each solution is supplied to a heated vaporizer, where each solution raw material is instantaneously vaporized and sent to a film formation chamber.
As shown in FIG. 1, the MOCVD apparatus includes a film formation chamber 10 and a vapor generator 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 including a pressure sensor 14, a cold trap 15 and a needle valve 16. The steam generator 11 includes a raw material container 18, which stores the solution raw material. A carrier gas introduction pipe 21 is connected to the raw material container 18 through a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material container 18. The supply pipe 22 is provided with a needle valve 23 and a solution flow rate adjusting device 24, and the supply pipe 22 is connected to a vaporizer 26. A carrier gas introduction pipe 29 is connected to the vaporizer 26 via a needle valve 31 and a gas flow rate control device 28. The vaporizer 26 is further connected to the film forming chamber 10 by a pipe 27. A gas drain 32 and a drain 33 are connected to the vaporizer 26, respectively.
In this apparatus, a carrier gas composed of an inert gas such as N 2 , He, Ar is introduced into the raw material container 18 from the carrier gas introduction pipe 21, and the solution raw material stored in the raw material container 18 is vaporized by the supply pipe 22. To the container 26. The copper complex that has been vaporized by the vaporizer 26 to become vapor is further supplied into the film forming chamber 10 through the pipe 27 by the carrier gas introduced into the vaporizer 26 from the carrier gas introduction pipe 28. In the film forming chamber 10, the vapor of the copper complex is pyrolyzed, and the copper or copper alloy generated thereby is deposited on the heated substrate 13 to form a copper thin film.
[0022]
The copper thin film produced using the solution raw material of the present invention has a feature that it is firmly adhered to the base film and has high purity. This copper thin film is formed by, for example, MOCVD on a TiN film or TaN film formed by sputtering or MOCVD on a SiO 2 film on the surface of a silicon substrate. The type of the substrate of the present invention is not particularly limited.
[0023]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1 >
First, 100 g of n- hexane was poured into 150 g of copper (I) chloride to prepare a suspension. 2 to the suspension, 4 - slowly dropped octanedione 50 g, was stirred at room temperature for 30 minutes. Next, the reaction solution was heated to reflux at 70 ° C., and then the reaction solution was filtered. The resulting filtrate was depressurized to 20 torr and held for 30 minutes to distill off the solvent. Cu (II) ( OD ) 2 was obtained by recrystallizing the residue remaining after evaporation of the solvent with 100 cc of n- hexane . Next, the obtained Cu (II) ( OD ) 2 was dissolved in n - methyl - 2 - pyrrolidone as an organic solvent to prepare a solution raw material for MOCVD.
[0024]
<Example 2 >
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was changed to DMA.
<Example 3 >
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was DTBA.
<Example 4 >
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was DNBA.
[0025]
<Example 5 >
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that TTBA was used as the organic solvent.
<Example 6 >
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was DIPA.
<Example 7 >
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was TIPA.
[0026]
<Example 8 >
First, 150 g of copper (I) chloride was poured into 100 cc of n-hexane to prepare a suspension. To this suspension, 25 g of 2,6-dimethyl-3,5-heptanedione and 25 g of heptanedione were slowly added dropwise and stirred for 30 minutes at room temperature. Next, the reaction solution was heated to reflux at 70 ° C., and then the reaction solution was filtered. The resulting filtrate was depressurized to 20 torr and held for 30 minutes to distill off the solvent. Cu (II) (EIP) 2 was obtained by recrystallizing the residue remaining after evaporation of the solvent with 100 cc of n-hexane. Next, the obtained Cu (II) (EIP) 2 was dissolved in n-methyl-2-pyrrolidone which is an organic solvent to prepare a solution raw material for MOCVD.
[0027]
<Example 9 >
A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was changed to DMA.
<Example 10 >
A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was DTBA.
<Example 11 >
A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was DNBA.
[0028]
<Example 12 >
A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was changed to TTBA.
<Example 13 >
A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was DIPA.
<Example 14 >
A solution raw material for MOCVD was prepared in the same manner as in Example 8 except that the organic solvent was TIPA.
[0029]
<Comparative Example 1>
A solution material for MOCVD was prepared in the same manner as in Example 1 except that the copper complex was Cu (II) (hfac) 2 and the organic solvent was isopropyl alcohol.
<Comparative example 2>
A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that the organic solvent was ethanol.
<Comparative Example 3>
A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that the organic solvent was butyl acetate.
[0030]
<Comparative example 4>
A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that the organic solvent was ethyl acetate.
<Comparative Example 5>
The copper complex was Cu (II) (DPM) 2, and this copper complex was directly used as a solution raw material for MOCVD without using an organic solvent.
[0031]
<Comparison test>
The concentration of the copper complex contained in the solution raw materials obtained in Examples 1 to 14 and Comparative Examples 1 to 5 was adjusted to 0.1 molar concentration, and five types were prepared. As a substrate, a silicon substrate was prepared in which a TiN film (thickness 30 nm) was formed by sputtering on a SiO 2 film (thickness 5000 mm) on the substrate surface.
The prepared substrate was placed in the film formation chamber of the MOCVD apparatus shown in FIG. 1, and the substrate temperature was 180 ° C. The vaporization temperature was set to 70 ° C., and the pressure was set to 5 torr, that is, about 665 Pa. Ar gas was used as a carrier gas, and the flow rate was set to 100 ccm. Regarding the copper thin film formed on the substrate by supplying the solution raw material at a rate of 0.5 cc / min and taking it out from the film forming chamber one by one at 1, 5, 10, 20 and 30 minutes. The following tests were conducted.
[0032]
(1) Film thickness measurement The film thickness of the copper thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
(2) Peel test A peel test (JIS K 5600-5-6) was performed on the substrate on which the copper thin film taken out at each film formation time was formed. Specifically, first, a lattice pattern was formed on the substrate by cutting the copper thin film on the substrate at six equal intervals vertically and horizontally so as to penetrate the film. Next, brushing was performed back and forth using a soft brush along the diagonal lines of both of the formed lattice patterns.
[0033]
(3) Thermal stability evaluation test The following test was conducted using the test apparatus shown in FIG. The apparatus shown in FIG. 2 has a configuration in which the film formation chamber of the MOCVD apparatus shown in FIG. 1 is removed.
First, the solution raw material is transported to the vaporizer 26 heated to 70 ° C. at room temperature, heated to 70 ° C. under a reduced pressure of 5 Torr to vaporize the solution raw material, and then the cold provided on the lower pump side of the vaporizer 26 The vaporized compound was captured by the trap 15. The trap recovery rate was calculated from the amount of capture of the raw material charged into the apparatus. In addition, the pressure rise inside the vaporizer was measured with a pressure sensor. For example, if the numerical value in the table is 60% occluded, it represents that a pressure of 1.60 times 5 Torr is generated in the vaporizer.
[0034]
Test results obtained in Examples 1 to 7 are shown in Table 1, Examples 8 to 14 in Table 2, and Comparative Examples 1 to 5 in Table 3 .
[0035]
[Table 1 ]
Figure 0004218247
[0036]
[Table 2 ]
Figure 0004218247
[0037]
[Table 3 ]
Figure 0004218247
[0038]
As is clear from Tables 1 to 3, it can be seen that the copper thin films formed using the solution raw materials of Comparative Examples 1 to 5 have variations in film thickness per film formation time, and the film formation reproducibility is poor. . Also, the film formation rate is very slow. In the adhesion evaluation test, the copper thin film was peeled off from the substrate surface in most samples. In the thermal stability evaluation test, it is considered that the trap recovery rate is low and most of the trap has adhered to the inside of the apparatus. Further, the pressure increase value inside the vaporizer also increases as the film formation time becomes longer, and it is considered that the decomposition product adhered to the inside of the vaporizer and the inside of the pipe and the pressure increased. On the other hand, it can be seen that the copper thin films prepared using the solution raw materials of Examples 1 to 14 are thicker as the film formation time progresses and the film formation stability is higher. In the adhesion evaluation test, it can be seen that most of the copper thin film does not peel off in any of the examples, ie, 95 to 99 times out of 100, and the adhesion is very high. In the thermal stability evaluation test, a high trap recovery rate in the range of 58 to 66 % is shown, and the pressure increase value inside the vaporizer is almost 1%, and there is no possibility of clogging.
[0039]
【The invention's effect】
As described above, the solution raw material for MOCVD of the present invention in which a β-diketonate complex of copper (II) is dissolved in an amine solvent can supply a stable raw material during film formation. When a thin film is produced, a high purity copper thin film is obtained due to the high reducibility of the amine solvent. In addition, it has excellent thermal stability and is difficult to decompose in a stored state and has a long life. Further, since the ligand of the copper complex is made of C, H, and O and does not contain F (fluorine) like hfac, the MOCVD apparatus is hardly corroded and does not complicate the exhaust gas treatment in the MOCVD process. The copper thin film produced by the MOCVD method using the solution raw material of the present invention becomes a high-purity film that adheres firmly to the base film.
[Brief description of the drawings]
FIG. 1 is a schematic view of an MOCVD apparatus.
FIG. 2 is a schematic view showing an apparatus used in an embodiment of the present invention.

Claims (3)

次の式(1)で示される銅(II)のβ-ジケトネート錯体を有機溶媒に溶解した有機金属化学蒸着法用溶液原料において、
前記有機溶媒がアミン系溶媒であることを特徴とする有機金属化学蒸着法用溶液原料。
Figure 0004218247
但し、R 1 及びR ' 1 がそれぞれメチル基であって、R 2 及びR ' 2 がそれぞれ n- ブチル基であるか、又はR ' 1 及びR 2 がそれぞれ n- ブチル基であって、R 1 及びR ' 2 がそれぞれメチル基である。
In a solution raw material for metal organic chemical vapor deposition in which a β-diketonate complex of copper (II) represented by the following formula (1) is dissolved in an organic solvent,
A solution raw material for metal organic chemical vapor deposition, wherein the organic solvent is an amine solvent.
Figure 0004218247
Provided that R 1 and R 1 are each a methyl group and R 2 and R 2 are each an n- butyl group, or R 1 and R 2 are each an n- butyl group, and R 1 and R 2 are each a methyl group.
次の式(2)で示される銅Copper represented by the following formula (2) (II)(II) のβΒ -- ジケトネート錯体を有機溶媒に溶解した有機金属化学蒸着法用溶液原料において、In a solution raw material for metalorganic chemical vapor deposition in which a diketonate complex is dissolved in an organic solvent,
前記有機溶媒がアミン系溶媒であることを特徴とする有機金属化学蒸着法用溶液原料。  A solution raw material for metal organic chemical vapor deposition, wherein the organic solvent is an amine solvent.
Figure 0004218247
Figure 0004218247
但し、R  However, R 3Three はイソプロピル基であり、RIs an isopropyl group and R 4Four はエチル基である。Is an ethyl group.
アミン系溶媒がn-メチル-2-ピロリドン、ジメチルアニリン、ジ-t-ブチルアニリン、ジ-n-ブチルアニリン、ジイソプロピルアニリン、トリ-t-ブチルアニリン及びトリイソプロピルアニリンからなる群より選ばれた1種又は2種以上の化合物である請求項1又は2記載の溶液原料。1 wherein the amine solvent is selected from the group consisting of n-methyl-2-pyrrolidone, dimethylaniline, di-t-butylaniline, di-n-butylaniline, diisopropylaniline, tri-t-butylaniline and triisopropylaniline according to claim 1 or 2, wherein a solution feed are species or two or more compounds.
JP2002053411A 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II) Expired - Fee Related JP4218247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053411A JP4218247B2 (en) 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053411A JP4218247B2 (en) 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)

Publications (2)

Publication Number Publication Date
JP2003257889A JP2003257889A (en) 2003-09-12
JP4218247B2 true JP4218247B2 (en) 2009-02-04

Family

ID=28664848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053411A Expired - Fee Related JP4218247B2 (en) 2002-02-28 2002-02-28 Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)

Country Status (1)

Country Link
JP (1) JP4218247B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031541A (en) * 2006-07-31 2008-02-14 Tokyo Electron Ltd Cvd film deposition process and cvd film deposition system
US20080254218A1 (en) * 2007-04-16 2008-10-16 Air Products And Chemicals, Inc. Metal Precursor Solutions For Chemical Vapor Deposition
KR102655461B1 (en) * 2015-10-09 2024-04-05 메르크 파텐트 게엠베하 Formulations containing N,N-dialkylaniline solvent

Also Published As

Publication number Publication date
JP2003257889A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
TWI240970B (en) Process for atomic layer deposition of metal films
JP4414397B2 (en) Volatile metal β-ketoiminate complex
KR102441169B1 (en) Diazadienyl compound, raw material for forming thin film, method for producing thin film, and diazadiene compound
US9121093B2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof
JP2009510074A (en) Organometallic compounds and methods of use thereof
US9540284B2 (en) Tungsten nitrido precursors for the CVD of tungsten nitride, carbonitride, and oxide films
CN103755747A (en) Organometallic compounds, and methods of use thereof
JP7368372B2 (en) Method of manufacturing thin film
TW201311702A (en) Heteroleptic (allyl) (pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
DE102005033579A1 (en) Process for the preparation of thin hafnium or zirconium nitride layers
JP4218247B2 (en) Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
TW201908286A (en) Metal alkoxide compound, raw material for film formation, and method for producing film
WO2018042871A1 (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
JP3931965B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
JP4187373B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
JP3931963B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
JP2009019263A (en) Material and method for chemical vapor deposition
JP3894010B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
JP3894016B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
JP2003206288A (en) COPPER COMPLEX, SOLUTION RAW MATERIAL FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION COMPRISING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM PREPARED BY USING THE SAME
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
JP2003252823A (en) Organocopper compound for metal organic chemical vapor deposition and copper thin film prepared by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees