JP2005170756A - Dielectric ceramic composition for high frequency and electronic component using the same - Google Patents

Dielectric ceramic composition for high frequency and electronic component using the same Download PDF

Info

Publication number
JP2005170756A
JP2005170756A JP2003415458A JP2003415458A JP2005170756A JP 2005170756 A JP2005170756 A JP 2005170756A JP 2003415458 A JP2003415458 A JP 2003415458A JP 2003415458 A JP2003415458 A JP 2003415458A JP 2005170756 A JP2005170756 A JP 2005170756A
Authority
JP
Japan
Prior art keywords
high frequency
dielectric ceramic
ceramic
component
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415458A
Other languages
Japanese (ja)
Inventor
Yasutaka Sugimoto
安隆 杉本
Mizuki Kono
瑞希 河野
Tsutomu Tachikawa
勉 立川
Hitoshi Takagi
斉 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003415458A priority Critical patent/JP2005170756A/en
Publication of JP2005170756A publication Critical patent/JP2005170756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition for high frequency which can be sintered at a low temperature and co-fired with a low resistance electrode material, and which has excellent dielectric constant, Q-value and dielectric characteristics; and to provide an electronic component using the same. <P>SOLUTION: The dielectric ceramic composition for high frequency contains 60-99 wt.% ceramic component expressed by compositional formula: Ba<SB>1-X</SB>Sr<SB>X</SB>[Me<SB>1/3</SB>(Sb<SB>1-Y</SB>Nb<SB>Y</SB>)<SB>2/3</SB>]<SB>V</SB>O<SB>3</SB>(wherein, 0≤X≤0.3, 0≤Y≤0.9, 0.9≤V≤1.1, Me is Mg or a metal obtained by substituting a portion of Mg with at least one kind of Zn, Ni, Mn and Co) and 1-40 wt.% glass component. The glass component contains SiO<SB>2</SB>, B<SB>2</SB>O<SB>3</SB>, Al<SB>2</SB>O<SB>3</SB>, EO (wherein, E is at least one kind of metal selected from alkaline earth metals of Mg, Ca, Sr and Ba, and Zn) and A<SB>2</SB>O (wherein, A is at least one kind of alkaline metal selected from Li, Na and K). The weight ratio of each oxide satisfies following relation: 10≤SiO<SB>2</SB>≤60, 5≤B<SB>2</SB>O<SB>3</SB>≤40, 0≤Al<SB>2</SB>O<SB>3</SB>≤30, 20≤EO≤70, or 0≤A<SB>2</SB>O≤15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高周波用誘電体磁器組成物及びそれを用いた電子部品に関し、更に詳しくは、例えばマイクロ波やミリ波等の高周波領域で高いQ値及び対環境信頼性を有し、金属電極と共焼結することができる高周波用誘電体磁器組成物及びそれを用いた電子部品に関する。   The present invention relates to a dielectric ceramic composition for high frequency and an electronic component using the same, and more particularly, has a high Q value and environmental reliability in a high frequency region such as a microwave and a millimeter wave, The present invention relates to a dielectric ceramic composition for high frequency that can be co-sintered and an electronic component using the same.

従来のこの種の高周波用誘電体磁器組成物としては、例えば特許文献1において提案されたものが知られている。   As a conventional high frequency dielectric ceramic composition of this type, for example, the one proposed in Patent Document 1 is known.

特許文献1には、組成式、3(Ba1−xSr)O・(Zn1−yMg)O・(1‐z)Nb・zSb(式中、0.4<x<0.8、0<y<1、0<z<0.20である。)で表されるバリウム、ストロンチウム、亜鉛、マグネシウム、ニオブ、アンチモンおよび酸素からなる誘電体磁器組成物が提案されている。この誘電体磁器組成物は、0.1〜5GHz帯で使用される誘電体共振器材料として好適に使用することができ、高誘電率で、Q値が大きく、共振周波数の温度変化率の安定性が良い。 Patent Document 1 discloses a composition formula 3 (Ba 1-x Sr x ) O. (Zn 1-y Mg y ) O. (1-z) Nb 2 O 5 .zSb 2 O 5 (in the formula, 0. 4 <x <0.8, 0 <y <1, 0 <z <0.20.) A dielectric ceramic composition comprising barium, strontium, zinc, magnesium, niobium, antimony and oxygen is represented. Proposed. This dielectric ceramic composition can be suitably used as a dielectric resonator material used in the 0.1 to 5 GHz band, has a high dielectric constant, a large Q value, and a stable temperature change rate of the resonance frequency. Good sex.

また、高周波領域で用いられる共振器等の場合には、一般に、電極材料としてAg、Cu等の低抵抗で安価な金属を使用する必要があるため、誘電体磁器組成物はこれらの金属の融点より低い温度で焼成する必要がある。   In the case of a resonator used in a high frequency region, it is generally necessary to use a low-resistance and inexpensive metal such as Ag or Cu as an electrode material. Therefore, the dielectric ceramic composition has a melting point of these metals. It is necessary to fire at a lower temperature.

特開平号6−260031公報JP-A-6-260031

しかしながら、特許文献1に記載の誘電体磁器組成物は、その成形体を焼成する場合に空気雰囲気下において1500〜1650℃で焼成する必要があるが、Ag、Cu等の低抵抗電極材料は、融点が960〜1063℃で、上記誘電体磁器組成物の焼成温度より著しく低く、このような誘電体磁器組成物とは共焼結することができないという課題があった。   However, the dielectric ceramic composition described in Patent Document 1 needs to be fired at 1500 to 1650 ° C. in an air atmosphere when the molded body is fired, but low resistance electrode materials such as Ag and Cu are The melting point was 960 to 1063 ° C., which was significantly lower than the firing temperature of the dielectric ceramic composition, and there was a problem that it could not be co-sintered with such a dielectric ceramic composition.

本発明は、上記課題を解決するためになされたもので、低温焼結することができ、低抵抗電極材料との共焼成が可能で、しかも、誘電率、Q値及び誘電特性に優れた高周波用誘電体磁器組成物及びそれを用いた電子部品を提供することを目的としている。   The present invention has been made to solve the above-mentioned problems, and can be sintered at a low temperature, can be co-fired with a low-resistance electrode material, and has high dielectric constant, Q value, and excellent dielectric characteristics. It is an object to provide a dielectric ceramic composition for use and an electronic component using the same.

本発明の請求項1に記載の高周波用誘電体磁器組成物は、組成式がBa1−XSr〔Me1/3(Sb1−YNb2/3(但し、0≦X≦0.3、0≦Y≦0.9、0.9≦V≦1.1、MeはMgまたはMgの一部をZn、Ni、Mn及びCoのうち少なくとも一種で置換したもの)で表されるセラミック成分を60〜99重量%含み、ガラス成分を1〜40重量%含む高周波用誘電体磁器組成物であって、上記ガラス成分は、SiO、B、Al、EO(但し、EはMg、Ca、Sr、Baのアルカリ土類金属及びZnの少なくとも一種の金属)及びAO(但し、AはLi、Na及びKの少なくとも一種のアルカリ金属)を含み、且つ、上記各酸化物の含有量が重量比で、10≦SiO≦60、5≦B≦40、0≦Al≦30、20≦EO≦70、0≦AO≦15の関係を満足することを特徴とするものである。 The dielectric ceramic composition for high frequency according to claim 1 of the present invention has a composition formula of Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y ) 2/3 ] V O 3 (however, 0 ≦ X ≦ 0.3, 0 ≦ Y ≦ 0.9, 0.9 ≦ V ≦ 1.1, Me is Mg or a part of Mg substituted with at least one of Zn, Ni, Mn and Co ) -Containing dielectric ceramic composition containing 60 to 99% by weight of a ceramic component and 1 to 40% by weight of a glass component, wherein the glass components are SiO 2 , B 2 O 3 , Al 2. O 3 , EO (where E is an alkaline earth metal of Mg, Ca, Sr, Ba and at least one metal of Zn) and A 2 O (where A is at least one alkali metal of Li, Na and K) includes, and the content of each oxide in a weight ratio, 10 ≦ SiO And it is characterized in satisfying the relationship ≦ 60,5 ≦ B 2 O 3 ≦ 40,0 ≦ Al 2 O 3 ≦ 30,20 ≦ EO ≦ 70,0 ≦ A 2 O ≦ 15.

また、本発明の請求項2に記載の高周波用誘電体磁器組成物は、請求項1に記載の発明において、上記セラミック成分と上記ガラス成分との合計100重量部に対してTiOを0〜15重量部含むことを特徴とするものである。 The high frequency dielectric ceramic composition according to claim 2 of the present invention is characterized in that, in the invention according to claim 1, TiO 2 is added in an amount of 0 to 0 with respect to a total of 100 parts by weight of the ceramic component and the glass component. It contains 15 parts by weight.

本発明の請求項3に記載の高周波用誘電体磁器組成物は、請求項1に記載の発明において、上記セラミック成分及び上記ガラス成分との合計100重量部に対してCuOを0〜5重量部含むことを特徴とするものである。   The dielectric ceramic composition for high frequency according to claim 3 of the present invention is the invention according to claim 1, wherein 0 to 5 parts by weight of CuO is added to 100 parts by weight of the total of the ceramic component and the glass component. It is characterized by including.

また、本発明の請求項4に記載の電子部品は、高周波用誘電体磁器と、この高周波用誘電体磁器の内部に配設された導体とを有する電子部品であって、上記高周波用誘電体磁器は、請求項1〜請求項3のいずれか1項に記載の高周波用誘電体磁器組成物によって形成され、且つ、1000℃以下で焼成されてなることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided an electronic component comprising a high frequency dielectric ceramic and a conductor disposed in the high frequency dielectric ceramic, wherein the high frequency dielectric is the electronic component. The porcelain is formed of the dielectric ceramic composition for high frequency according to any one of claims 1 to 3 and is fired at 1000 ° C. or less.

本発明の請求項5に記載の電子部品は、請求項4に記載の発明において、上記高周波用誘電体磁器は、複数のセラミックシートを積層してなる積層体を焼成してなることを特徴とするものである。   An electronic component according to a fifth aspect of the present invention is the electronic component according to the fourth aspect, wherein the high frequency dielectric ceramic is formed by firing a laminated body in which a plurality of ceramic sheets are laminated. To do.

また、本発明の請求項6に記載の電子部品は、請求項5に記載の発明において、上記導体は、上記セラミックシート上に所定のパターンで塗布された導電体ペーストを焼成してなることを特徴とするものである。   The electronic component according to a sixth aspect of the present invention is the electronic component according to the fifth aspect, wherein the conductor is obtained by firing a conductive paste applied in a predetermined pattern on the ceramic sheet. It is a feature.

本発明の請求項7に記載の電子部品は、発明において、請求項4〜請求項6のいずれか1項に記載の上記導体は、AgまたはCuを主成分として含むことを特徴とするものである。   The electronic component according to claim 7 of the present invention is characterized in that, in the invention, the conductor according to any one of claims 4 to 6 contains Ag or Cu as a main component. is there.

また、本発明の請求項8に記載の電子部品は、請求項4〜請求項7のいずれか1項に記載の発明において、上記電子部品は、フィルタであることを特徴とするものである。   An electronic component according to an eighth aspect of the present invention is the electronic component according to any one of the fourth to seventh aspects, wherein the electronic component is a filter.

而して、本発明の高周波用誘電体磁器組成物を構成するセラミック成分は、組成式がBa1−XSr〔Me1/3(Sb1−YNb2/3で表される。このセラミック成分の組成式において、X、Y、Vは、それぞれ0≦X≦0.3、0≦Y≦0.9、0.9≦V≦1.1を満足する。組成式のXが0.3を超えると高周波誘電体磁器組成物としての共振周波数(約6GHz)の温度変化率τが大きくなり過ぎる。また、組成式のYが0.9を超えると上記共振周波数の温度変化率τが大きくなり過ぎる。更に、組成式のVが0.9未満、あるいは1.0を超えるとQ値が10000より低下する。 Thus, the ceramic component constituting the high frequency dielectric ceramic composition of the present invention has a composition formula of Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y ) 2/3 ] V O 3. It is represented by In the composition formula of the ceramic component, X, Y, and V satisfy 0 ≦ X ≦ 0.3, 0 ≦ Y ≦ 0.9, and 0.9 ≦ V ≦ 1.1, respectively. When X in the composition formula exceeds 0.3, the temperature change rate τ f of the resonance frequency (about 6 GHz) as the high frequency dielectric ceramic composition becomes too large. When Y in the composition formula exceeds 0.9, the temperature change rate τ f of the resonance frequency becomes too large. Further, when the V in the composition formula is less than 0.9 or exceeds 1.0, the Q value decreases from 10,000.

上記セラミック成分の組成式におけるMeは、MgまたはMgの一部をZn、Ni、Mn及びCoのうち少なくとも一種で置換したものである。MeがMgを含まず、Zn、Ni、Mn及びCoのいずれかのみからなるものは、セラミック成分が焼結しないため、Meとしては少なくともMgを含んでいることが必要である。MeとしてMgを含まないセラミック成分は焼結しない。   Me in the composition formula of the ceramic component is obtained by substituting Mg or a part of Mg with at least one of Zn, Ni, Mn, and Co. When Me does not contain Mg and only consists of Zn, Ni, Mn, and Co, the ceramic component does not sinter, so Me needs to contain at least Mg. Ceramic components not containing Mg as Me are not sintered.

上記ガラス成分は、SiO、B、Al、EO(但し、EはMg、Ca、Sr、Baのアルカリ土類金属及びZnの少なくとも一種の金属)及びAO(但し、AはLi、Na、Kの少なくとも一種のアルカリ金属)を含み、且つ、各酸化物の含有量が重量比で、10≦SiO≦60、5≦B≦40、0≦Al≦30、20≦EO≦70、0≦AO≦15の関係を満足する。SiOが重量比10未満では耐湿性が低下し、逆に重量比60を超えるとガラス成分の軟化温度が高くなり焼結性が低下し、1000℃以下の温度では焼結しなくなる。Bが重量比5未満ではガラス成分の軟化温度が高くなり焼結性が低下し、逆に重量比40を超えると耐湿性が低下する。また、Alが重量比30を超えるとガラス成分の軟化温度が高くなり焼結性が低下する。アルカリ土類金属の酸化物またはZnOが重量比20未満ではガラス成分の軟化温度が高くなり焼結性が低下し、逆に重量比70を超えると耐湿性が低下する。更に、アルカリ金属の酸化物は、低温焼結には有効であるが、重量比15を超えると耐湿性が低下する。尚、SiO、B、Al、EO及びAOのうち一種以上を酸化物の状態で添加しても良い。 The glass components include SiO 2 , B 2 O 3 , Al 2 O 3 , EO (where E is an alkaline earth metal of Mg, Ca, Sr, Ba and at least one metal of Zn) and A 2 O (provided that , A is at least one alkali metal of Li, Na, and K), and the content of each oxide is 10 ≦ SiO 2 ≦ 60, 5 ≦ B 2 O 3 ≦ 40, 0 ≦ Al. The relationship of 2 O 3 ≦ 30, 20 ≦ EO ≦ 70, and 0 ≦ A 2 O ≦ 15 is satisfied. When SiO 2 is less than 10 in weight ratio, the moisture resistance is lowered. Conversely, when the weight ratio exceeds 60, the softening temperature of the glass component is increased and the sinterability is lowered. When B 2 O 3 is less than 5 in weight ratio, the softening temperature of the glass component is increased and the sinterability is lowered. Conversely, when B 2 O 3 exceeds 40 weight ratio, moisture resistance is lowered. Further, Al 2 O 3 is the softening temperature of the glass component exceeds the weight ratio 30 becomes sinterability is lowered high. If the alkaline earth metal oxide or ZnO is less than 20 weight ratio, the softening temperature of the glass component is increased and the sinterability is lowered. Conversely, if the weight ratio is more than 70, moisture resistance is lowered. Furthermore, although alkali metal oxides are effective for low-temperature sintering, when the weight ratio exceeds 15, the moisture resistance decreases. One or more of SiO 2 , B 2 O 3 , Al 2 O 3 , EO and A 2 O may be added in the form of an oxide.

また、本発明の高周波用誘電体磁器組成物は、上記セラミック成分を60〜99重量%含むと共にガラス成分を1〜40重量%含んでいる。ガラス成分の添加量が1重量%未満では低温焼結効果を発揮せず、逆に40重量%を超えると比誘電率ε及びQ値がそれぞれ低下し、共振周波数の温度変化率τも大きくなる。 The high frequency dielectric ceramic composition of the present invention contains 60 to 99% by weight of the ceramic component and 1 to 40% by weight of a glass component. If the addition amount of the glass component is less than 1% by weight, the low-temperature sintering effect is not exhibited. Conversely, if it exceeds 40% by weight, the relative permittivity ε r and the Q value are decreased, and the temperature change rate τ f of the resonance frequency is also reduced. growing.

また、本発明の高周波用誘電体磁器組成物は、上記セラミック成分と上記ガラス成分との合計100重量部に対してTiOを0〜15重量部含んだものが好ましい。TiOはガラス結晶化促進剤として使用され、Q値を向上させる効果がある。TiOの添加量が15重量部を超えると焼結性が悪化する。 The high frequency dielectric ceramic composition of the present invention preferably contains 0 to 15 parts by weight of TiO 2 with respect to 100 parts by weight of the total of the ceramic component and the glass component. TiO 2 is used as a glass crystallization accelerator and has an effect of improving the Q value. When the added amount of TiO 2 exceeds 15 parts by weight, the sinterability deteriorates.

また、本発明の高周波用誘電体磁器組成物は、上記セラミック成分及び上記ガラス成分との合計100重量部に対してCuOを0〜5重量部含んだものが好ましい。CuOは焼結促進剤として使用され、低温焼結化の効果がある。CuOの添加量が5重量部を超えるとQ値が低下し、共振周波数の温度変化率τが大きくなる。 The high frequency dielectric ceramic composition of the present invention preferably contains 0 to 5 parts by weight of CuO with respect to 100 parts by weight in total of the ceramic component and the glass component. CuO is used as a sintering accelerator and has an effect of low-temperature sintering. When the added amount of CuO exceeds 5 parts by weight, the Q value decreases, and the temperature change rate τ f of the resonance frequency increases.

而して、本発明の高周波用誘電体磁器組成物を1000℃以下の低温で焼結することによって本発明の高周波用誘電体磁器を得ることができる。また、本発明の高周波用誘電体磁器組成物を焼成することによって本発明の電子部品を構成する高周波用誘電体磁器を得ることができる。本発明の電子部品としては、本発明の高周波用誘電体組成物から得られる高周波用誘電体磁器を適用できる電子部品であれば特に制限されないが、例えばLCフィルタが好ましい。   Thus, the high frequency dielectric ceramic composition of the present invention can be obtained by sintering the high frequency dielectric ceramic composition of the present invention at a low temperature of 1000 ° C. or lower. Moreover, the high frequency dielectric ceramic which comprises the electronic component of this invention can be obtained by baking the high frequency dielectric ceramic composition of this invention. The electronic component of the present invention is not particularly limited as long as it is an electronic component to which the high frequency dielectric ceramic obtained from the high frequency dielectric composition of the present invention can be applied. For example, an LC filter is preferable.

本発明の電子部品は、上記高周波用誘電体磁器と、この高周波用誘電体磁器の内部に配設された導体とを有している。高周波用誘電体磁器は、例えばセラミックグリーンシートを複数積層した積層体を焼結することによって得ることができる。また、導体は、所定のセラミックグリーンシート上に所定のパターンで塗布された導電性ペーストをセラミッククリーンシートと同時に焼結することによって得ることができる。この導体は、導電性ペーストのパターンによって例えばコイル導体やコンデンサ用内部電極として形成することができる。導電性ペーストとしては、AgまたはCuを主成分として含むものが好ましい。導電性ペーストは、Ag、Cuに制限されるものではなく、1000℃以下の低温で焼結できる導電性材料であれば良い。   The electronic component of the present invention includes the high frequency dielectric ceramic and a conductor disposed inside the high frequency dielectric ceramic. The high frequency dielectric ceramic can be obtained, for example, by sintering a laminated body in which a plurality of ceramic green sheets are laminated. The conductor can be obtained by sintering a conductive paste applied in a predetermined pattern on a predetermined ceramic green sheet simultaneously with the ceramic clean sheet. This conductor can be formed, for example, as a coil conductor or a capacitor internal electrode by a pattern of a conductive paste. As the conductive paste, a paste containing Ag or Cu as a main component is preferable. The conductive paste is not limited to Ag and Cu, and may be any conductive material that can be sintered at a low temperature of 1000 ° C. or lower.

本発明の請求項1〜請求項8に記載の発明によれば、低温焼結することができ、低抵抗電極材料との共焼成が可能で、しかも、誘電率、Q値及び誘電特性に優れた高周波用誘電体磁器組成物及びそれを用いた電子部品を提供することができる。   According to the invention described in claims 1 to 8 of the present invention, it can be sintered at a low temperature, can be co-fired with a low-resistance electrode material, and is excellent in dielectric constant, Q value and dielectric characteristics. In addition, a dielectric ceramic composition for high frequency and an electronic component using the same can be provided.

以下ではまず、本発明の高周波用誘電体磁器組成物を用いた本発明の電子部品の一実施形態である積層セラミック電子部品について図1〜図3を参照しながら説明し、次いで、本発明の高周波誘電体磁器組成物の具体的な実施例について説明する。尚、図1は本発明の電子部品の一実施形態の外観を示す斜視図、図2は図1に示す電子部品の回路図、図3は図1に示す電子部品を示す分解斜視図である。   In the following, first, a multilayer ceramic electronic component which is an embodiment of the electronic component of the present invention using the dielectric ceramic composition for high frequency of the present invention will be described with reference to FIGS. Specific examples of the high frequency dielectric ceramic composition will be described. 1 is a perspective view showing an appearance of an embodiment of the electronic component of the present invention, FIG. 2 is a circuit diagram of the electronic component shown in FIG. 1, and FIG. 3 is an exploded perspective view showing the electronic component shown in FIG. .

本実施形態の積層セラミック電子部品はLCフィルタである。本実施形態のLCフィルタ10は、例えば図1に示すように、高周波用誘電体磁器11と、この高周波用誘電体磁器11の内部に配設された導体とを有している。高周波用誘電体磁器11は、本発明の高周波用誘電体磁器組成物を後述のように焼成して得られたセラミック焼結体であり、また、導体は、高周波用誘電体磁器組成物と共に後述のように焼結されてセラミック焼結体の内部に形成されたコイル導体及びコンデンサ用の内部電極である。従って、以下では高周波用誘電体磁器11をセラミック焼結体11として説明する。   The multilayer ceramic electronic component of this embodiment is an LC filter. For example, as shown in FIG. 1, the LC filter 10 of the present embodiment includes a high-frequency dielectric ceramic 11 and a conductor disposed inside the high-frequency dielectric ceramic 11. The high-frequency dielectric ceramic 11 is a ceramic sintered body obtained by firing the high-frequency dielectric ceramic composition of the present invention as described later, and the conductor is described later together with the high-frequency dielectric ceramic composition. These are the coil conductor and the internal electrode for the capacitor that are sintered and formed inside the ceramic sintered body. Therefore, hereinafter, the high frequency dielectric ceramic 11 will be described as the ceramic sintered body 11.

セラミック焼結体11の表面には、図1に示すように第1外部電極12A、12B及び第2外部電極13A、13Bが形成されている。第1外部電極12A、12Bはそれぞれセラミック焼結体11内部のコイル導体に接続され、第2外部電極13A、13Bはそれぞれセラミック焼結体11内部のコンデンサ用の内部電極に接続されている。このLCフィルタ10は、図2に示すLC共振回路として構成されている。   As shown in FIG. 1, first external electrodes 12 </ b> A and 12 </ b> B and second external electrodes 13 </ b> A and 13 </ b> B are formed on the surface of the ceramic sintered body 11. The first external electrodes 12A and 12B are each connected to a coil conductor inside the ceramic sintered body 11, and the second external electrodes 13A and 13B are each connected to an internal electrode for a capacitor inside the ceramic sintered body 11. The LC filter 10 is configured as an LC resonance circuit shown in FIG.

次いで、図3を参照しながらセラミック焼結体11の製造方法をその内部構造と共に説明する。セラミック焼結体11を製造するにはまず、本発明の高周波用誘電体磁器組成物に有機ビヒクルを添加し、セラミックスラリーを調製する。その後、セラミックスラリーをドクターブレード法等の公知の手法を用いてセラミックグリーンシートを形成する。その後、このセラミックグリーンシートを乾燥し、図3に示すように所定の大きさに打ち抜いて矩形状のセラミックグリーンシート11A〜11Mを作製する。   Next, a method for manufacturing the ceramic sintered body 11 will be described together with its internal structure with reference to FIG. In order to manufacture the ceramic sintered body 11, first, an organic vehicle is added to the high frequency dielectric ceramic composition of the present invention to prepare a ceramic slurry. Thereafter, a ceramic green sheet is formed from the ceramic slurry using a known method such as a doctor blade method. Thereafter, this ceramic green sheet is dried and punched out to a predetermined size as shown in FIG. 3 to produce rectangular ceramic green sheets 11A to 11M.

引き続き、図3に示すようにセラミックグリーンシート11A〜11Mのうち、所定のセラミックグリーンシートに貫通孔をビアホールとして形成する。また、所定のセラミックグリーンシート上に導電性ペーストを所定のパターンでスクリーン印刷することによって、図3に示すように上方から下方に向けて、コイル導体14A、14B、コンデンサ用の内部電極15A、15B、15C、及びコイル導体14C、14Dをそれぞれ形成する一方、所定のセラミックグリーンシートに形成された貫通孔にビアホール導体用の導電性ペーストを充填する。このようにして得られたセラミックグリーンシート11A〜11Mを図3に示すように積層し、厚み方向に加圧して積層体を得る。この積層体を1000℃以下の低温で焼成してセラミック焼結体11を得る。その後、このセラミック焼結体11の表面に、図1に示すように第1外部電極12A、12B及び第2外部電極13A、13Bを形成してLCフィルタ10を得る。第1、第2外部電極12A、12B、13A、13Bを形成する方法としては、導電性ペーストを塗布して焼き付ける厚膜形成方法や、蒸着、メッキ、あるいはスパッタリング等の薄膜形成方法等の従来公知の方法を用いることができる。   Subsequently, through holes are formed as via holes in predetermined ceramic green sheets among the ceramic green sheets 11A to 11M as shown in FIG. Further, by conducting screen printing of a conductive paste in a predetermined pattern on a predetermined ceramic green sheet, the coil conductors 14A and 14B and the capacitor internal electrodes 15A and 15B are directed from the top to the bottom as shown in FIG. 15C and coil conductors 14C and 14D, respectively, and a through-hole formed in a predetermined ceramic green sheet is filled with a conductive paste for via-hole conductors. The ceramic green sheets 11A to 11M thus obtained are laminated as shown in FIG. 3 and pressed in the thickness direction to obtain a laminate. This laminated body is fired at a low temperature of 1000 ° C. or lower to obtain a ceramic sintered body 11. Thereafter, the first external electrodes 12A and 12B and the second external electrodes 13A and 13B are formed on the surface of the ceramic sintered body 11 as shown in FIG. Conventionally known methods for forming the first and second external electrodes 12A, 12B, 13A, and 13B include a thick film forming method in which a conductive paste is applied and baked, and a thin film forming method such as vapor deposition, plating, or sputtering. This method can be used.

図2に示すように、本実施形態のLCフィルタ10の場合には、セラミック焼結体11内のコイル導体14A、14BによってインダクタンスユニットLが形成され、コイル導体14C、14DによってインダクタンスユニットLが形成され、また、セラミック焼結体11内の内部電極15A、15B、15CによってコンデンサCが形成される。 As shown in FIG. 2, in the case of the LC filter 10 of the present embodiment, the coil conductor 14A in the ceramic sintered body 11, the inductance unit L 1 is formed by 14B, the inductance unit L 2 coil conductor 14C, the 14D In addition, the capacitor C is formed by the internal electrodes 15A, 15B, and 15C in the ceramic sintered body 11.

本実施形態のLCフィルタ10は、上述のようにセラミック焼結体11が本発明の高周波用誘電体磁器組成物によって形成されているため、1000℃以下の低温で焼成することができ、延いてはコイル導体及びコンデンサ用内部電極としてAg、Cu等の低融点金属を主成分として含む導電性ペーストを用いてもセラミックグリーンシートと同時に共焼結することができ、しかも効率の良いLCフィルタ10を得ることができると共に、比誘電率、Q値、共振周波数の温度係数πに優れ、高周波領域に適したLCフィルタ10を得ることができる。 The LC filter 10 of the present embodiment can be fired at a low temperature of 1000 ° C. or lower because the ceramic sintered body 11 is formed of the high frequency dielectric ceramic composition of the present invention as described above. Can be co-sintered at the same time as the ceramic green sheet even if a conductive paste containing a low melting point metal such as Ag or Cu as a main component is used as the coil conductor and capacitor internal electrode, and an efficient LC filter 10 can be obtained. It is possible to obtain the LC filter 10 that is excellent in the relative permittivity, the Q value, and the temperature coefficient π f of the resonance frequency and suitable for the high frequency region.

以上説明したようにLCフィルタ10に本発明の高周波用誘電体磁器組成物を適用することにより、優れた高周波特性を備えたLCフィルタ10を得ることができる。尚、本発明の高周波用誘電体磁器組成物は、LCフィルタに限らず、他の電子部品にも広く適用することができる。   As described above, by applying the high frequency dielectric ceramic composition of the present invention to the LC filter 10, the LC filter 10 having excellent high frequency characteristics can be obtained. The high-frequency dielectric ceramic composition of the present invention can be widely applied not only to LC filters but also to other electronic components.

次に、本発明の誘電体共振器等の電子部品を製造する場合に用いられる本発明の高周波用誘電体磁器組成物を実施例に基づいて説明する。   Next, the high-frequency dielectric ceramic composition of the present invention used when manufacturing electronic parts such as the dielectric resonator of the present invention will be described based on examples.

本実施例では、下記の手順で下記表1〜表6に示す試料No.0〜81の高周波誘電体磁器組成物を調製した。試料No.0〜21はセラミック成分の各元素の置換率(X、Y、V及びMe)の影響を観る試料であり、試料No.22〜70はガラス成分の各元素の含有量の影響を観る試料であり、試料No.71〜74はガラス成分の添加量の影響を観る試料であり、試料No.75〜81は添加物(TiO、CuO)の影響を観る試料である。次いで、これらの試料を用いて高周波誘電体磁器を作製し、これらの高周波誘電体磁器の下記表1〜表4に示す高周波特性をそれぞれ測定、評価し、その結果をそれぞれの表に示した。下記表5、表6はガラス成分の組成を示す。尚、下記表1〜表6において、*印を付した試料は本発明の範囲外のものである。 In this example, high frequency dielectric ceramic compositions of sample Nos. 0 to 81 shown in the following Tables 1 to 6 were prepared by the following procedure. Sample Nos. 0 to 21 are samples for observing the influence of the substitution rate (X, Y, V, and Me) of each element of the ceramic component, and Sample Nos. 22 to 70 show the influence of the content of each element of the glass component. Samples Nos. 71 to 74 are samples that observe the effect of the added amount of the glass component, and Samples Nos. 75 to 81 are samples that observe the effect of the additives (TiO 2 , CuO). Next, high frequency dielectric ceramics were prepared using these samples, and the high frequency characteristics shown in Tables 1 to 4 of these high frequency dielectric ceramics were measured and evaluated. The results are shown in the respective tables. Tables 5 and 6 below show the compositions of the glass components. In Tables 1 to 6 below, samples marked with * are outside the scope of the present invention.

(1)高周波誘電体磁器組成物の調製
まず、セラミック成分の出発原料として、炭酸バリウム(BaCO)、水酸化マグネシウム(Mg(OH))、酸化ニッケル(NiO)、炭酸コバルト(CoCO)、酸化亜鉛(ZnO)、炭酸マンガン(MnCO)、酸化アンチモン(Sb)、酸化ニオブ(Nb)を準備した。次いで、これらの原料粉末それぞれを下記表1〜表4に示すBa1−XSr〔Me1/3(Sb1−YNb2/3で表される組成物が得られるように秤量して調合した。その後、調合済みの原料粉末を、ボールミルを用いて16時間湿式混合した後、脱水、乾燥し、その後、1100〜1300℃で3時間仮焼した。そして、この仮焼粉末をボールミルで1μm未満まで粉砕し、下記表1〜表4に示す組成の仮焼粉を得た。
(1) Preparation of high-frequency dielectric ceramic composition First, as starting materials for ceramic components, barium carbonate (BaCO 3 ), magnesium hydroxide (Mg (OH) 2 ), nickel oxide (NiO), cobalt carbonate (CoCO 3 ) Zinc oxide (ZnO), manganese carbonate (MnCO 3 ), antimony oxide (Sb 2 O 3 ), and niobium oxide (Nb 2 O 5 ) were prepared. Next, a composition represented by Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y ) 2/3 ] V O 3 shown in Tables 1 to 4 below is obtained. Weighed and formulated as Thereafter, the prepared raw material powder was wet-mixed for 16 hours using a ball mill, dehydrated and dried, and then calcined at 1100 to 1300 ° C. for 3 hours. And this calcined powder was grind | pulverized to less than 1 micrometer with the ball mill, and the calcined powder of the composition shown in the following Table 1-Table 4 was obtained.

一方、ガラス成分の出発原料として、BaCO、炭酸ストロンチウム(SrCO)、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、ZnO、酸化アルミニウム(Al)、炭酸リチウム(LiCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、二酸化珪素(SiO)、酸化ホウ素(B)を準備した。次いで、これらの原料粉末それぞれを下記表5、及び表6に示すように組成比率で調合し、これらの原料粉末をPtRh坩堝中で1200〜1600℃で融解、急冷、粉砕して下記表5、表6に示すG1〜G50のガラス粉を調製した。 On the other hand, as starting materials for glass components, BaCO 3 , strontium carbonate (SrCO 3 ), calcium carbonate (CaCO 3 ), magnesium carbonate (MgCO 3 ), ZnO, aluminum oxide (Al 2 O 3 ), lithium carbonate (Li 2 CO) 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), silicon dioxide (SiO 2 ), and boron oxide (B 2 O 3 ) were prepared. Next, each of these raw material powders was prepared at a composition ratio as shown in Table 5 and Table 6 below, and these raw material powders were melted, quenched, and pulverized in a PtRh crucible at 1200 to 1600 ° C. G1-G50 glass powders shown in Table 6 were prepared.

(2)高周波用誘電体磁器の作製
次いで、(1)で得られた仮焼粉に対してガラス粉を下記表1〜表4に示す重量%で添加し、これらの混合物にバインダを加えた後、これらの混合物をボールミルで16時間、再度湿式粉砕することによって調整粉末を得た。そして、これらの調整粉末を2000kgf/cmの圧力下で、焼成後の寸法が直径10mm、厚さ5mmの円板になるようにプレス成形した。引き続き、これらの成形品を表1〜表4に示す焼成温度で2時間焼成して焼結体(高周波用誘電体磁器)を得た。
(2) Production of dielectric ceramic for high frequency Next, glass powder was added to the calcined powder obtained in (1) at a weight percentage shown in the following Tables 1 to 4, and a binder was added to these mixtures. Thereafter, these mixtures were wet pulverized again with a ball mill for 16 hours to obtain adjusted powder. These adjusted powders were press-molded under a pressure of 2000 kgf / cm 2 so that the size after firing was a disk having a diameter of 10 mm and a thickness of 5 mm. Subsequently, these molded articles were fired at the firing temperatures shown in Tables 1 to 2 for 2 hours to obtain sintered bodies (high frequency dielectric ceramics).

(3)高周波用誘電体磁器の評価
A)高周波用誘電体磁器のε、τ及びQ値の測定
試料No.0〜No.81について、室温(25℃)において誘電体共振法によってそれぞれの比誘電率ε及びQ値を6GHzで測定し、その結果を下記表1〜表4に示した。また、各試料について、誘電体共振法と同じ円柱試料を作製し、この試料をキャビティに入れ、TE011モードの共振ピークを恒温槽の中で25℃における共振周波数f25℃及び55℃における共振周波数f55℃を測定し、下記の式に基づいて共振周波数の温度変化率τを求め、その結果を下記表1〜表4に示した。
τ=(f55℃−f25℃)/f25℃
(3) Evaluation of high frequency dielectric porcelain A) Measurement of ε r , τ f and Q value of high frequency dielectric porcelain For samples No. 0 to No. 81, respectively, by a dielectric resonance method at room temperature (25 ° C.) The relative dielectric constant ε r and the Q value were measured at 6 GHz, and the results are shown in Tables 1 to 4 below. For each sample, the same cylindrical sample as in the dielectric resonance method is prepared, and this sample is put in a cavity, and the resonance peak of the TE011 mode is set to a resonance frequency f at 25 ° C. and a resonance frequency at 25 ° C. and 55 ° C. in a constant temperature bath. f 55 degreeC was measured, temperature change rate (tau) f of the resonant frequency was calculated | required based on the following formula, and the result was shown in the following Table 1-Table 4.
τ f = (f 55 ° C.− f 25 ° C. ) / f 25 ° C.

B)高周波用誘電体磁器の焼結性の評価
焼結性はインク浸透試験によって評価した。インク浸透試験は、インクに試料を浸漬し試料のセラミック内へのインクの浸透の有無によって評価する方法で、この評価結果を下記表1〜表4に示した。これらの表において、○はセラミック内にインクが浸透しなかった試料を示し、×はセラミック内にインクが浸透した試料を示す。
B) Evaluation of Sinterability of High Frequency Dielectric Porcelain Sinterability was evaluated by an ink penetration test. The ink penetration test is a method in which a sample is immersed in the ink and evaluated based on the presence or absence of ink penetration into the ceramic of the sample. The evaluation results are shown in Tables 1 to 4 below. In these tables, o indicates a sample in which the ink did not penetrate into the ceramic, and x represents a sample in which the ink has penetrated into the ceramic.

C)高周波用誘電体磁器の耐湿性の評価
30μmの試料を作製し、この試料に、温度85℃、相対湿度85%の雰囲気下で10Vの直流電圧を印加し、1000時間経過後のlogIRを求め、その結果を下記表1〜表4に示した。これらの表において、○はlogIRが9以上の試料を示し、×はlogIRが9未満の試料を示す。
C) Evaluation of moisture resistance of dielectric ceramic for high frequency A 30 μm sample was prepared, and a DC voltage of 10 V was applied to the sample in an atmosphere at a temperature of 85 ° C. and a relative humidity of 85%. The results are shown in Tables 1 to 4 below. In these tables, o indicates a sample having a log IR of 9 or more, and x indicates a sample having a log IR of less than 9.

Figure 2005170756
Figure 2005170756

Figure 2005170756
Figure 2005170756

Figure 2005170756
Figure 2005170756

Figure 2005170756
Figure 2005170756

Figure 2005170756
Figure 2005170756

Figure 2005170756
Figure 2005170756

(1)セラミック成分の組成の影響(試料No.0〜21)
上記表1に示す結果によれば、セラミック成分である組成式(Ba1−XSr〔Me1/3(Sb1−YNb2/3におけるYが本発明の範囲(0≦Y≦0.9)内にある本発明の試料No.0〜No.5は、900℃の低温で焼結するためAg、Cu等の低抵抗で安価な金属を共焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzで10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、高周波特性に優れているため高周波用共振器等として小型化することができ、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、Yが本発明の範囲外の試料No.6は、比誘電率εが20より大きく、共振周波数の温度変化率τが±20の範囲を超えることが判った。
(1) Influence of composition of ceramic component (Sample Nos. 0 to 21)
According to the results shown in Table 1, the range Y in the formula is a ceramic component (Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y) 2/3 ] V O 3 is the invention Samples No. 0 to No. 5 of the present invention within (0 ≦ Y ≦ 0.9) are sintered at a low temperature of 900 ° C., and thus co-sinter low-cost and inexpensive metals such as Ag and Cu. In addition, the relative dielectric constant ε r is in the range of 10 to 20, the Q value is as high as 10,000 or more at 6 GHz, the temperature change rate τ f of the resonance frequency is also small in the range of ± 20, and the high frequency characteristics As a result, it has been found that it can be miniaturized as a high-frequency resonator and the like, and has good sinterability and moisture resistance, and is excellent in environmental resistance, whereas Y is within the scope of the present invention. outside of the sample No.6 is the relative dielectric constant epsilon r is greater than 20, the temperature change rate tau f of resonance frequency is ± The range of 0 and it was found that more than.

上記表1に示す結果によれば、セラミック成分である組成式(Ba1−XSr〔Me1/3(Sb1−YNb2/3におけるVが本発明の範囲(0.9≦V≦1.1)内にある本発明の試料No.8、9は、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、Yが本発明の範囲外の試料No.7、10は、Q値がいずれも10000より低いことが判った。 According to the results shown in Table 1, the range V in the composition formula is a ceramic component (Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y) 2/3 ] V O 3 is the invention Sample Nos. 8 and 9 of the present invention within (0.9 ≦ V ≦ 1.1) can be sintered at a low temperature of 900 ° C., and the relative dielectric constant ε r is in the range of 10 to 20. The Q value is 6 GHz and both are as high as 10,000 or more, the temperature change rate τ f of the resonance frequency is small within a range of ± 20, and the sintering and moisture resistance are good and the environment is excellent. On the other hand, Samples Nos. 7 and 10 where Y is outside the range of the present invention were found to have a Q value lower than 10,000.

上記表1に示す結果によれば、セラミック成分である組成式(Ba1−XSr〔Me1/3(Sb1−YNb2/3において、MeとしてMgとNi、Co、Zn、Mnのいずれか一種とを含む本発明の試料No.11、13、15、17は、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、MeとしてMgを含まない試料No.12、14、16、18は、いずれも焼結しないことが判った。 According to the results shown in Table 1 above, in the composition formula (Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y ) 2/3 ] V O 3 ) which is a ceramic component, Me and Mg as Ni Sample Nos. 11, 13, 15, and 17 of the present invention containing any one of Co, Zn, and Mn can be sintered at a low temperature of 900 ° C. and have a relative dielectric constant ε r of 10 to 10. It is within the range of 20, the Q value is 6 GHz, both are as high as 10000 or more, the temperature change rate τ f of the resonance frequency is also small within the range of ± 20, and it has good sinterability and moisture resistance and is excellent in environmental resistance. On the other hand, it was found that none of the sample Nos. 12, 14, 16, and 18 containing no Mg as Me was sintered.

上記表1に示す結果によれば、セラミック成分である組成式(Ba1−XSr〔Me1/3(Sb1−YNb2/3におけるXが本発明の範囲(0≦X≦0.3)内にある本発明の試料No.19、20は、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、Xが本発明の範囲外の試料No.21は、共振周波数の温度変化率τが±20の範囲を超えることが判った。 According to the results shown in Table 1 above, X in the composition formula (Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y ) 2/3 ] V O 3 ), which is a ceramic component, is within the scope of the present invention. Sample Nos. 19 and 20 of the present invention within (0 ≦ X ≦ 0.3) can be sintered at a low temperature of 900 ° C., and the relative dielectric constant ε r is within the range of 10-20. Yes, the Q value is 6 GHz and both are as high as 10,000 or more, the temperature change rate τ f of the resonance frequency is small within the range of ± 20, and it has been found that it has good sinterability and moisture resistance and is excellent in environmental resistance. On the other hand, it was found that Sample No. 21 in which X is outside the range of the present invention has a temperature change rate τ f of the resonance frequency exceeding the range of ± 20.

(2)ガラス成分の組成の影響(試料No.22〜70)
上記表2、表3、表5及び表6に示す結果によれば、ガラス成分の各組成が本発明の範囲を満足する試料No.22、24、25、No.33〜40、No.43〜45、No.49〜58、No.64〜68は、いずれも、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。
(2) Effect of glass component composition (Sample Nos. 22 to 70)
According to the results shown in Table 2, Table 3, Table 5, and Table 6, Sample Nos. 22, 24, 25, Nos. 33 to 40, No. 43 in which each composition of the glass component satisfies the scope of the present invention. -45, No. 49-58, No. 64-68 can all be sintered at a low temperature of 900 ° C., and the relative dielectric constant ε r is in the range of 10-20, and the Q value It was found that the frequency was 6 GHz and both were as high as 10,000 or more, the temperature change rate τ f of the resonance frequency was small within the range of ± 20, and the sintering and moisture resistance were good and the environment was excellent.

これに対して、上記表2、表5に示す結果によれば、SiOの含有量が本発明の範囲(重量比で10≦SiO≦60)未満のガラス成分を含む試料No.23は、耐湿性が悪く対環境性に劣ることが判った。逆にSiOの含有量が本発明の範囲を超える試料No.31は、焼結しないことが判った。 On the other hand, according to the results shown in Tables 2 and 5 above, sample No. 23 containing a glass component whose SiO 2 content is less than the range of the present invention (weight ratio 10 ≦ SiO 2 ≦ 60) is It was found that the moisture resistance was poor and the environment was poor. Conversely, it was found that Sample No. 31 having a SiO 2 content exceeding the range of the present invention was not sintered.

また、上記表2、表3及び表5に示す結果によれば、EOの含有量が本発明の範囲(重量比で20≦EO≦70)未満のガラス成分を含む試料No.26〜31、42は、いずれも焼結しないことが判った。また、逆に、EOの含有量が本発明の範囲を超えるガラス成分を含む試料No.59〜63は、いずれも耐湿性が悪く対環境性に劣ることが判った。   Moreover, according to the result shown in the said Table 2, Table 3, and Table 5, sample No. 26-31 containing the glass component whose content of EO is less than the range (20 <= EO <= 70 by weight ratio) of this invention, No 42 was found to sinter. On the other hand, it was found that Sample Nos. 59 to 63 containing a glass component whose EO content exceeds the range of the present invention have poor moisture resistance and poor environmental resistance.

また、上記表2及び表5に示す結果によれば、Bの含有量が本発明の範囲(重量比で5≦B≦40)未満のガラス成分を含む試料No.32は、焼結しないことが判った。逆にBの含有量が本発明の範囲を超えるガラス成分を含む試料No.41は、耐湿性が悪く対環境性に劣ることが判った。 Further, according to the results shown in Table 2 and Table 5, the sample content of B 2 O 3 comprises a glass component is less than the scope of the present invention (5 ≦ B 2 O 3 ≦ 40 , by weight ratio) No.32 Was found not to sinter. Conversely, it was found that Sample No. 41 containing a glass component having a B 2 O 3 content exceeding the range of the present invention has poor moisture resistance and poor environmental resistance.

また、上記表3及び表5に示す結果によれば、AOの含有量が本発明の範囲(重量比で0≦AO≦15)を超えるガラス成分を含む試料No.46〜48は、いずれも耐湿性が悪く対環境性に劣ることが判った。 Further, according to the results shown in Table 3 and Table 5, the samples containing the glass component content of A 2 O is beyond the scope of the present invention (0 ≦ A 2 O ≦ 15 in a weight ratio) Nanba46~48 In both cases, the moisture resistance was poor and the environment was poor.

また、上記表3及び表5に示す結果によれば、Alの含有量が本発明の範囲(重量比で0≦Al≦30)を超えるガラス成分を含む試料No.70は、焼結しないことが判った。 Further, according to the results shown in Table 3 and Table 5, sample No.70 comprising a glass component Al 2 O 3 content is beyond the scope of the present invention (0 ≦ Al 2 O 3 ≦ 30 , by weight ratio) Was found not to sinter.

(3)セラミック成分の添加量の影響(試料No.71〜74)
上記表3及び表4に示す結果によれば、ガラス成分の含有量が本発明の範囲(1〜40重量%)内の試料No.72、73は、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、ガラス成分の含有量が本発明の範囲未満の試料No.71は、焼成温度を1000℃に上げても焼結しないことが判った。逆に、ガラス成分の含有量が本発明の範囲を超える試料No.74は、比誘電率εが10より小さく、Q値が10000より低く、しかも共振周波数の温度変化率τが±20の範囲を超えることが判った。
(3) Influence of added amount of ceramic component (Sample Nos. 71 to 74)
According to the results shown in Tables 3 and 4 above, sample Nos. 72 and 73 having a glass component content within the range of the present invention (1 to 40% by weight) can be sintered at a low temperature of 900 ° C. In addition, the relative dielectric constant ε r is in the range of 10 to 20, the Q value is 6 GHz and is high at 10000 or more, the temperature change rate τ f of the resonance frequency is also small in the range of ± 20, and It has been found that it has excellent caking and moisture resistance and is excellent in environmental resistance. On the other hand, it was found that Sample No. 71 having a glass component content less than the range of the present invention was not sintered even when the firing temperature was raised to 1000 ° C. In contrast, Sample No. 74 in which the glass component content exceeds the range of the present invention has a relative dielectric constant ε r of less than 10, a Q value of less than 10,000, and a temperature change rate τ f of the resonance frequency of ± 20. It was found that the range was exceeded.

(4)添加物(TiO、CuO)の影響(試料No.75〜81)
上記表4に示す結果によれば、セラミック成分とガラス成分との合計100重量部に対するTiOの添加量が本発明の範囲(0〜15重量部)内の試料No.75〜77は、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、TiOの添加量が20重量%で本発明の範囲を超える試料No.78は、焼結しないことが判った。
(4) Influence of additives (TiO 2 , CuO) (Sample Nos. 75 to 81)
According to the results shown in Table 4 above, sample Nos. 75 to 77 in which the addition amount of TiO 2 with respect to a total of 100 parts by weight of the ceramic component and the glass component is within the range of the present invention (0 to 15 parts by weight) are 900 It can be sintered at a low temperature of ° C., the relative dielectric constant ε r is in the range of 10 to 20, the Q value is as high as 10,000 or more at 6 GHz, and the temperature change rate τ f of the resonance frequency is ± It was found to be small in the range of 20 and excellent in sinterability and moisture resistance and environmental resistance. On the other hand, it was found that Sample No. 78 in which the added amount of TiO 2 was 20% by weight and exceeded the range of the present invention was not sintered.

上記表4に示す結果によれば、セラミック成分とガラス成分との合計100重量部に対するCuOの添加量が本発明の範囲(0〜5重量部)内の試料No.79、80は、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも±20の範囲内で小さく、しかも焼結性、耐湿性が良く対環境性に優れていることが判った。これに対して、CuOの添加量が本発明の範囲を超える試料No.81は、Q値が10000より低く、しかも共振周波数の温度変化率τが±20を超えることが判った。 According to the results shown in Table 4 above, sample Nos. 79 and 80 in which the amount of CuO added to the total of 100 parts by weight of the ceramic component and the glass component is within the range of the present invention (0 to 5 parts by weight) are 900 ° C. In addition, the relative dielectric constant ε r is in the range of 10 to 20, the Q value is as high as 10,000 or more at 6 GHz, and the temperature change rate τ f of the resonance frequency is ± 20. It was found that it was small within the range, and had good sinterability and moisture resistance and excellent environmental resistance. On the other hand, Sample No. 81 in which the amount of CuO added exceeds the range of the present invention was found to have a Q value lower than 10,000 and a temperature change rate τ f of the resonance frequency exceeding ± 20.

以上説明したように本実施例によれば、900℃の低温で焼結することができ、また、比誘電率εが10〜20の範囲内にあり、Q値が6GHzでいずれも10000以上と高く、共振周波数の温度変化率τも絶対値で20ppm/℃以下と小さく、しかも焼結性、耐湿性が良く対環境性に優れている高周波用誘電体磁器組成物及び高周波用誘電体磁器を得ることができた。従って、本実施例の高周波用誘電体磁器組成物によって上述のように高周波特性に優れた電子部品を得ることができる。 As described above, according to this example, sintering can be performed at a low temperature of 900 ° C., the relative dielectric constant ε r is in the range of 10 to 20, the Q value is 6 GHz, and all are 10,000 or more. The frequency change rate τ f of the resonance frequency is as small as 20 ppm / ° C. or less in absolute value, and also has good sinterability, moisture resistance, and environmental resistance, and a high frequency dielectric ceramic composition and a high frequency dielectric I was able to obtain porcelain. Therefore, an electronic component having excellent high frequency characteristics as described above can be obtained by using the dielectric ceramic composition for high frequency of this example.

尚、本発明は上記実施例に何等制限されるものでなく、本発明の条件を満たす限り、如何なる態様の高周波用誘電体磁器組成物及びそれを利用した電子部品であっても本発明に包含される。   It should be noted that the present invention is not limited to the above-described embodiments, and any high-frequency dielectric ceramic composition and electronic parts using the same are included in the present invention as long as the conditions of the present invention are satisfied. Is done.

本発明は、例えばマイクロ波やミリ波等の高周波領域で用いられる高周波用誘電体磁器組成物及びそれを用いた電子部品に好適に利用することができる。   The present invention can be suitably used for a dielectric ceramic composition for high frequency used in a high frequency region such as a microwave or a millimeter wave and an electronic component using the same.

本発明の電子部品の一実施形態の外観を示す斜視図である。It is a perspective view which shows the external appearance of one Embodiment of the electronic component of this invention. 図1に示す電子部品の回路図である。FIG. 2 is a circuit diagram of the electronic component shown in FIG. 1. 図1に示す電子部品を示す分解斜視図である。It is a disassembled perspective view which shows the electronic component shown in FIG.

符号の説明Explanation of symbols

10 LCフィルタ(電子部品)
11 セラミック焼結体(高周波用誘電体磁器)
11A〜11M セラミックグリーンシート
14A、14B、14C、14D コイル導体(導体)
15A、15B、15C コンデンサ用内部電極(導体)
10 LC filter (electronic parts)
11 Ceramic sintered body (high frequency dielectric ceramic)
11A to 11M Ceramic Green Sheet 14A, 14B, 14C, 14D Coil conductor (conductor)
15A, 15B, 15C Capacitor internal electrode (conductor)

Claims (8)

組成式がBa1−XSr〔Me1/3(Sb1−YNb2/3(但し、0≦X≦0.3、0≦Y≦0.9、0.9≦V≦1.1、MeはMgまたはMgの一部をZn、Ni、Mn及びCoのうち少なくとも一種で置換したもの)で表されるセラミック成分を60〜99重量%含み、ガラス成分を1〜40重量%含む高周波用誘電体磁器組成物であって、
上記ガラス成分は、SiO、B、Al、EO(但し、EはMg、Ca、Sr、Baのアルカリ土類金属及びZnの少なくとも一種の金属)及びAO(但し、AはLi、Na及びKの少なくとも一種のアルカリ金属)を含み、且つ、上記各酸化物の含有量が重量比で、
10≦SiO≦60、
5≦B≦40、
0≦Al≦30、
20≦EO≦70、
0≦AO≦15
の関係を満足することを特徴とする高周波用誘電体磁器組成物。
The composition formula is Ba 1-X Sr X [Me 1/3 (Sb 1-Y Nb Y ) 2/3 ] V O 3 (where 0 ≦ X ≦ 0.3, 0 ≦ Y ≦ 0.9, 0. 9 ≦ V ≦ 1.1, Me includes 60 to 99% by weight of a ceramic component represented by Mg or a part of Mg substituted with at least one of Zn, Ni, Mn, and Co), and a glass component. 1 to 40% by weight of a dielectric ceramic composition for high frequency,
The glass components include SiO 2 , B 2 O 3 , Al 2 O 3 , EO (where E is an alkaline earth metal of Mg, Ca, Sr, Ba and at least one metal of Zn) and A 2 O (provided that , A is at least one alkali metal of Li, Na, and K), and the content of each of the oxides is by weight,
10 ≦ SiO 2 ≦ 60,
5 ≦ B 2 O 3 ≦ 40,
0 ≦ Al 2 O 3 ≦ 30,
20 ≦ EO ≦ 70,
0 ≦ A 2 O ≦ 15
A dielectric ceramic composition for high frequency, which satisfies the following relationship:
上記セラミック成分と上記ガラス成分との合計100重量部に対してTiOを0〜15重量部含むことを特徴とする請求項1に記載の高周波用誘電体磁器組成物。 2. The dielectric ceramic composition for high frequency according to claim 1, comprising 0 to 15 parts by weight of TiO 2 with respect to 100 parts by weight of the total of the ceramic component and the glass component. 上記セラミック成分及び上記ガラス成分との合計100重量部に対してCuOを0〜5重量部含むことを特徴とする請求項1に記載の高周波用誘電体磁器組成物。   2. The dielectric ceramic composition for high frequency according to claim 1, comprising 0 to 5 parts by weight of CuO with respect to a total of 100 parts by weight of the ceramic component and the glass component. 高周波用誘電体磁器と、この高周波用誘電体磁器の内部に配設された導体とを有する電子部品であって、上記高周波用誘電体磁器は、請求項1〜請求項3のいずれか1項に記載の高周波用誘電体磁器組成物によって形成され、且つ、1000℃以下で焼成されてなることを特徴とする電子部品。   4. An electronic component having a high frequency dielectric ceramic and a conductor disposed inside the high frequency dielectric ceramic, wherein the high frequency dielectric ceramic is any one of claims 1 to 3. An electronic component formed of the dielectric ceramic composition for high frequency according to claim 1 and fired at 1000 ° C. or lower. 上記高周波用誘電体磁器は、複数のセラミックシートを積層してなる積層体を焼成してなることを特徴とする請求項4に記載の電子部品。   5. The electronic component according to claim 4, wherein the dielectric ceramic for high frequency is formed by firing a laminate formed by laminating a plurality of ceramic sheets. 上記導体は、上記セラミックシート上に所定のパターンで塗布された導電体ペーストを焼成してなることを特徴とする請求項5に記載の電子部品。   The electronic component according to claim 5, wherein the conductor is obtained by firing a conductive paste applied in a predetermined pattern on the ceramic sheet. 上記導体は、AgまたはCuを主成分として含むことを特徴とする請求項4〜請求項6のいずれか1項に記載の電子部品。   The electronic component according to claim 4, wherein the conductor contains Ag or Cu as a main component. 上記電子部品は、フィルタであることを特徴とする請求項4〜請求項7のいずれか1項に記載の電子部品。   The electronic component according to any one of claims 4 to 7, wherein the electronic component is a filter.
JP2003415458A 2003-12-12 2003-12-12 Dielectric ceramic composition for high frequency and electronic component using the same Pending JP2005170756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415458A JP2005170756A (en) 2003-12-12 2003-12-12 Dielectric ceramic composition for high frequency and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415458A JP2005170756A (en) 2003-12-12 2003-12-12 Dielectric ceramic composition for high frequency and electronic component using the same

Publications (1)

Publication Number Publication Date
JP2005170756A true JP2005170756A (en) 2005-06-30

Family

ID=34734949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415458A Pending JP2005170756A (en) 2003-12-12 2003-12-12 Dielectric ceramic composition for high frequency and electronic component using the same

Country Status (1)

Country Link
JP (1) JP2005170756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138193A (en) * 2020-01-03 2020-05-12 山东国瓷功能材料股份有限公司 Microwave dielectric ceramic material with medium dielectric constant and preparation method and application thereof
CN111153697A (en) * 2020-01-14 2020-05-15 西安工业大学 Wide-stability narrow-band potassium sodium niobate-based ferroelectric ceramic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138193A (en) * 2020-01-03 2020-05-12 山东国瓷功能材料股份有限公司 Microwave dielectric ceramic material with medium dielectric constant and preparation method and application thereof
CN111153697A (en) * 2020-01-14 2020-05-15 西安工业大学 Wide-stability narrow-band potassium sodium niobate-based ferroelectric ceramic material and preparation method thereof

Similar Documents

Publication Publication Date Title
US5248640A (en) Non-reducible dielectric ceramic composition
JP4868663B2 (en) Low temperature fired porcelain composition
US6472074B2 (en) Dielectric ceramic composition
EP2236478A1 (en) Dielectric Ceramic Composition
JP5040918B2 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JP5003683B2 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
US7265071B2 (en) Dielectric ceramic composition and multilayer ceramic part using the same
JP4482939B2 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
KR0162876B1 (en) Low firing dielectric ceramic composition for temperature compensating
US6528445B1 (en) Dielectric ceramic composition and method for manufacturing the same
US5629252A (en) Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP2003055043A (en) Dielectric ceramic composition
JP2005170756A (en) Dielectric ceramic composition for high frequency and electronic component using the same
US6649553B2 (en) Dielectric ceramic composition, dielectric ceramic compact and electronic component including the same
JP3940419B2 (en) Dielectric ceramic composition and manufacturing method thereof
JPH0676627A (en) Dielectric ceramic composition
JP2004026543A (en) Dielectric porcelain composition and laminated ceramic component using the same
JP4146152B2 (en) Dielectric ceramic composition and ceramic electronic component
JP2002326865A (en) Dielectric porcelain composition and dielectric device
JP2992197B2 (en) Dielectric porcelain material and method of manufacturing the same
KR100225881B1 (en) Compositions of ceramic dielectrics
JP3793550B2 (en) Dielectric porcelain and laminate
KR100635015B1 (en) Dielectric Ceramic Composition Capable of Co-Firing at Low Temperature