JP2005169344A - Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument - Google Patents

Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument Download PDF

Info

Publication number
JP2005169344A
JP2005169344A JP2003416452A JP2003416452A JP2005169344A JP 2005169344 A JP2005169344 A JP 2005169344A JP 2003416452 A JP2003416452 A JP 2003416452A JP 2003416452 A JP2003416452 A JP 2003416452A JP 2005169344 A JP2005169344 A JP 2005169344A
Authority
JP
Japan
Prior art keywords
oxygen
permeable membrane
thin film
oxygen permeable
lanthanum gallate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003416452A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Masaharu Yamada
雅治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003416452A priority Critical patent/JP2005169344A/en
Publication of JP2005169344A publication Critical patent/JP2005169344A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen permeable membrane which hardly produces a crack and is excellent in durability and reliability while securing desired amount of oxygen permeation under an ordinary temperature atmosphere and to provide a manufacturing method of the oxygen permeable membrane and an electrochemical cell for an oxygen enriching instrument using the oxygen permeable membrane. <P>SOLUTION: A thin film molding is formed by using a lanthanum gallate-series material and further a thick film molding which is thicker than the thin film molding and at a predetermined position of which a through hole is formed, is formed by using the lanthanum gallate series material. Then a laminated body is formed so as to hold the thin film molding between a pair of thick film moldings and the laminated body is fired to manufacture the oxygen permeable membrane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ランタンガレート系材料からなる酸素透過膜の製造方法、酸素透過膜およびこれを用いた酸素富化器用電気化学セルに関するものである。   The present invention relates to a method for producing an oxygen permeable membrane made of a lanthanum gallate material, an oxygen permeable membrane, and an electrochemical cell for an oxygen enricher using the same.

従来より、ペロブスカイト型結晶構造のランタンガレート系(LaGaO3系)材料は、高い酸化物イオン伝導性および電子伝導性を有する材料として一般に知られている。
このランタンガレート系材料からなる固体電解質においては、薄膜状に成形して、その両面に電極をそれぞれ設け、それら電極間に電圧を印加する外部回路を接続することによって、一方の面から他方の面に酸素を透過させる酸素透過膜として用いることが可能となっている。すなわち、固体電解質の一方の面に接したO2が、負極から電子を受け取って酸化物イオン(O2-)にイオン化されるとともに、この酸化物イオンが、固体電解質中を移動して他方の面に到達した後、この部分で、正極に電子を放出してO2となることにより、固体電解質の一方の面から他方の面に酸素が透過するようになっている。
Conventionally, lanthanum gallate (LaGaO 3 ) materials having a perovskite crystal structure are generally known as materials having high oxide ion conductivity and electron conductivity.
In the solid electrolyte made of this lanthanum gallate-based material, it is formed into a thin film, and electrodes are provided on both sides thereof, and an external circuit for applying a voltage is connected between the electrodes, so that one surface is connected to the other surface. It can be used as an oxygen permeable membrane that allows oxygen to pass through. That is, O 2 in contact with one surface of the solid electrolyte receives electrons from the negative electrode and is ionized into oxide ions (O 2− ), and the oxide ions move in the solid electrolyte and move to the other side. After reaching the surface, oxygen is permeated from one surface of the solid electrolyte to the other surface by emitting electrons to the positive electrode to become O 2 at this portion.

近年における健康志向の高まりから、一般の電気機器類においても、上記固体電解質の性質を利用して室内に簡易な酸素富化雰囲気を作る試みがなされている。
一方、上記酸素透過膜の酸素透過量は、温度が低くなるほど低下する傾向がある。このため、大掛かりな加熱装置を使用することなく、機器を構成するために400℃以下の温度で、上記要求を満足しうる程度の酸素透過量を得ようとすると、ランタンガレート系材料として、(La0.8・Sr0.2)(Ga0.8・Mg0.1・Co0.1)O3或いは(La0.8・Sr0.2)(Ga0.8・Mg0.1・Ni0.1)O3を用いた場合に、理論上は、当該酸素透過膜の厚さ寸法を50μm以下にする必要がある。
しかしながら、ランタンガレート系材料は、一般に機械的強度が低く、比較的割れ易い材料であることから、薄膜化するにしても限界があり、また仮に上記50μm以下の厚さ寸法の膜を得ることが可能であったとしても、これを周辺機器に取り付けることが困難であるという課題を有していた。
Due to the recent increase in health consciousness, attempts have been made to create a simple oxygen-enriched atmosphere in a general electric device using the properties of the solid electrolyte.
On the other hand, the oxygen permeation amount of the oxygen permeable membrane tends to decrease as the temperature decreases. For this reason, if an attempt is made to obtain an oxygen permeation amount that can satisfy the above requirements at a temperature of 400 ° C. or lower in order to constitute an apparatus without using a large heating device, as a lanthanum gallate-based material, ( Theoretically, when La 0.8 · Sr 0.2 ) (Ga 0.8 · Mg 0.1 · Co 0.1 ) O 3 or (La 0.8 · Sr 0.2 ) (Ga 0.8 · Mg 0.1 · Ni 0.1 ) O 3 is used, the oxygen The thickness dimension of the permeable membrane needs to be 50 μm or less.
However, since lanthanum gallate materials generally have low mechanical strength and are relatively easily cracked, there is a limit to reducing the thickness of the lanthanum gallate material, and it is possible to obtain a film with a thickness of 50 μm or less. Even if it was possible, it had the subject that it was difficult to attach this to a peripheral device.

本発明は、かかる事情に鑑みてなされたもので、常温雰囲気下において所望の酸素透過量を確保しつつも、割れが生じ難く、取り扱いが容易で、耐久性および信頼性に優れた酸素透過膜およびその製造方法、並びに当該酸素透過膜を用いた酸素富化器用電気化学セルを提供することを目的とする。   The present invention has been made in view of such circumstances, and while ensuring a desired oxygen permeation amount in a normal temperature atmosphere, it is difficult to crack, is easy to handle, and has excellent durability and reliability. Another object of the present invention is to provide an oxygen enrichment electrochemical cell using the oxygen permeable membrane.

請求項1に記載の本発明に係る酸素透過膜の製造方法は、ランタンガレート系材料を使用して薄膜成形体を成形するとともに、ランタンガレート系材料を使用して上記薄膜成形体よりも厚く所定位置に貫通孔が形成された厚膜成形体を成形し、その後、一対の上記厚膜成形体の間に上記薄膜成形体を挟むように積層体を形成して、当該積層体を焼成することにより酸素透過膜を製造することを特徴とするものである。
ここで、ランタンガレート系材料としては、例えば、(La0.8・Sr0.2)(Ga0.8・Mg0.1・Co0.1)O3、(La0.8・Sr0.2)(Ga0.8・Mg0.1・Ni0.1)O3などを好適に用いることが可能である。
The method for producing an oxygen permeable membrane according to the first aspect of the present invention is to form a thin film molded body using a lanthanum gallate-based material and to be thicker than the thin film molded body using a lanthanum gallate-based material. Forming a thick film molded body having a through-hole formed at a position, then forming the laminated body so as to sandwich the thin film molded body between a pair of the thick film molded bodies, and firing the laminated body Thus, an oxygen permeable membrane is manufactured.
Here, as the lanthanum gallate material, for example, (La 0.8 · Sr 0.2 ) (Ga 0.8 · Mg 0.1 · Co 0.1 ) O 3 , (La 0.8 · Sr 0.2 ) (Ga 0.8 · Mg 0.1 · Ni 0.1 ) O 3 or the like can be suitably used.

請求項2に記載の本発明に係る酸素透過膜は、ランタンガレート系材料からなる薄膜の両面に、当該薄膜よりも厚くランタンガレート系材料からなる厚膜を積層し、それら厚膜の各々に、上記薄膜に達する深さの穴部を、上記薄膜を介して互いに隣接する位置にそれぞれ設けたことを特徴とするものである。   The oxygen permeable membrane according to the present invention described in claim 2 is formed by laminating a thick film made of a lanthanum gallate material thicker than the thin film on both surfaces of a thin film made of a lanthanum gallate material, Holes having a depth reaching the thin film are provided at positions adjacent to each other through the thin film.

請求項3に記載の発明は、請求項2に記載の酸素透過膜において、上記厚膜の各々に、上記穴部をそれぞれ複数設けたことを特徴とするものである。   According to a third aspect of the present invention, in the oxygen permeable membrane according to the second aspect, a plurality of the hole portions are provided in each of the thick films.

請求項4に記載の発明は、請求項2または3に記載の酸素透過膜を用いた酸素富化器用電気化学セルであって、上記酸素透過膜の穴部内に、電極材料を充填して、多孔質体からなる電極を設けたことを特徴とするものである。   The invention described in claim 4 is an electrochemical cell for an oxygen enricher using the oxygen permeable membrane according to claim 2 or 3, wherein an electrode material is filled in the hole of the oxygen permeable membrane, An electrode made of a porous body is provided.

本発明によれば、ランタンガレート系材料からなる薄膜の両面に、当該薄膜よりも厚くランタンガレート系材料からなる厚膜を積層し、それら厚膜の各々に、薄膜に達する深さの穴部を、薄膜を介して互いに隣接する位置にそれぞれ設けるようにしたので、厚膜が薄膜の支持体として機能することとなって、これにより、酸素透過膜自体の強度を向上させることができ、常温雰囲気下において所望の酸素透過量を確保できる厚さに薄膜を形成した場合においても、酸素透過膜として十分な機械的強度が得られるようになる。また、薄膜と厚膜とが同質材料で形成されているため、薄膜と厚膜との間で収縮率に差異が生じる心配がなく、収縮率差に起因する剥離や亀裂等の発生を防止することができる。また、薄膜と厚膜との間で反応が生じる懸念もなく、反応生成物により酸素透過膜の性能が低下するといった不具合の発生を回避することもできる。さらに、酸素透過膜の穴部内に、電極材料を充填して、多孔質体からなる電極を設けるようにしたので、穴部底面の薄膜が電極により補強されることとなって、穴部底面の薄膜においても割れが生じ難くなる。
したがって、本発明によれば、常温雰囲気下において所望の酸素透過量を確保しつつも、割れが生じ難く、取り扱いが容易で、耐久性および信頼性に優れた酸素透過膜および酸素富化器用電気化学セルを提供することが可能となる。
According to the present invention, a thick film made of a lanthanum gallate material thicker than the thin film is laminated on both surfaces of a thin film made of a lanthanum gallate material, and a hole having a depth reaching the thin film is formed in each of the thick films. Since the thick film functions as a support for the thin film, the strength of the oxygen permeable film itself can be improved. Even when a thin film is formed to a thickness that can secure a desired oxygen permeation amount below, sufficient mechanical strength as an oxygen permeable membrane can be obtained. In addition, since the thin film and the thick film are made of the same material, there is no concern about the difference in shrinkage between the thin film and the thick film, preventing the occurrence of peeling or cracking due to the difference in shrinkage. be able to. Further, there is no concern that a reaction occurs between the thin film and the thick film, and it is possible to avoid the occurrence of a problem that the performance of the oxygen permeable membrane is deteriorated by the reaction product. Further, since the electrode material is filled in the hole portion of the oxygen permeable membrane and the porous electrode is provided, the thin film on the bottom surface of the hole portion is reinforced by the electrode, Cracks are less likely to occur in thin films.
Therefore, according to the present invention, an oxygen permeable membrane and an oxygen enrichment device that are easy to handle, easy to handle, excellent in durability and reliability, while ensuring a desired oxygen permeation amount in a normal temperature atmosphere. It becomes possible to provide a chemical cell.

図1および図2は、本発明に係る酸素透過膜の一実施形態を示す図である。この酸素透過膜10は、ペロブスカイト型結晶構造のランタンガレート系材料からなる薄膜11の両面に、当該薄膜11よりも厚くランタンガレート系材料からなる厚膜12を積層し、それら厚膜12の各々に、薄膜11に達する深さの穴部(薄膜11を底面とする穴部)13を、薄膜11を介して互いに隣接する位置(本実施形態では、積層面内における同一位置)にそれぞれ設けた構成となっている。すなわち、酸素透過膜10には、薄膜11の両面に厚膜12が配置されて厚くなっている部分と、穴部13が形成されて薄膜11のみとなっている薄い部分とが設けられ、この薄い部分が酸素を透過させる酸素透過部として機能するようになっている。   1 and 2 are diagrams showing an embodiment of an oxygen permeable membrane according to the present invention. The oxygen permeable membrane 10 is formed by laminating a thick film 12 made of a lanthanum gallate material thicker than the thin film 11 on both surfaces of a thin film 11 made of a lanthanum gallate material having a perovskite crystal structure. A structure in which holes 13 having a depth reaching the thin film 11 (holes having the thin film 11 as a bottom surface) 13 are provided at positions adjacent to each other via the thin film 11 (in the present embodiment, the same position in the laminated surface). It has become. That is, the oxygen permeable membrane 10 is provided with a thick portion where the thick film 12 is disposed on both surfaces of the thin film 11 and a thin portion where only the thin film 11 is formed with the hole 13. The thin part functions as an oxygen permeable part that allows oxygen to permeate.

具体的に、ペロブスカイト型結晶構造のランタンガレート系材料としては、例えば、(La0.8・Sr0.2)(Ga0.8・Mg0.1・Co0.1)O3或いは(La0.8・Sr0.2)(Ga0.8・Mg0.1・Ni0.1)O3を用いることが可能である。本実施形態では、薄膜11と厚膜12とで全く同じ材料を用いるようにしているが、薄膜11と厚膜12の収縮率がほぼ同じで、両者間で反応が生じる懸念がなければ、薄膜11と厚膜12とで組成比率の異なるランタンガレート系材料を使用することも可能である。
薄膜11の厚さは、酸素透過膜10を使用する際の温度条件と、その際に要求される酸素透過量に応じて決定されるものである。ここでは、300〜400℃において、0.2〜1ml/(cm2・min)の酸素透過量を確保すべく、薄膜11の厚さ寸法が、10〜60μmの範囲に設定されている。一方、厚膜12の厚さは、薄膜11の支持体として十分な機械的強度を発揮し得る厚さであればよく、ここでは、200〜600μmの範囲に設定されている。
Specifically, as the lanthanum gallate material having a perovskite crystal structure, for example, (La 0.8 · Sr 0.2 ) (Ga 0.8 · Mg 0.1 · Co 0.1 ) O 3 or (La 0.8 · Sr 0.2 ) (Ga 0.8 · Mg It is possible to use 0.1 · Ni 0.1 ) O 3 . In this embodiment, the same material is used for the thin film 11 and the thick film 12, but the shrinkage rate of the thin film 11 and the thick film 12 is almost the same, and there is no concern that a reaction will occur between the two. It is also possible to use lanthanum gallate materials having different composition ratios between the thick film 11 and the thick film 12.
The thickness of the thin film 11 is determined according to the temperature condition when using the oxygen permeable membrane 10 and the oxygen permeation amount required at that time. Here, the thickness dimension of the thin film 11 is set in a range of 10 to 60 μm in order to ensure an oxygen transmission amount of 0.2 to 1 ml / (cm 2 · min) at 300 to 400 ° C. On the other hand, the thickness of the thick film 12 may be a thickness that can exhibit sufficient mechanical strength as a support for the thin film 11, and is set in the range of 200 to 600 μm here.

また、穴部13の大きさおよび数量は、酸素透過膜10の面積や厚さ、形状等に応じて適宜に設定可能であり、例えば、図1に示すように、酸素透過膜10の各面の中央部に大径の穴部13aを一つずつ設けるようにしても、或いは図3に示すように、酸素透過膜10の全体に亘って小径の穴部13bを各面それぞれ複数設けるようにしてもよい。   Further, the size and quantity of the hole 13 can be appropriately set according to the area, thickness, shape, and the like of the oxygen permeable membrane 10. For example, as shown in FIG. Alternatively, one large-diameter hole 13a may be provided at the center of each of the two or a plurality of small-diameter holes 13b may be provided on each surface over the entire oxygen permeable membrane 10 as shown in FIG. May be.

上記構成からなる酸素透過膜10を製造するには、先ず、その原料粉末(上記ランタンガレート系材料の粉末)に溶媒やバインダ等を混練してスラリーを調製した後、これを公知のドクターブレード法等によりシート状に成形することにより、薄膜11に対応するグリーンシート(薄膜成形体)と厚膜12に対応するグリーンシート(厚膜成形体)とをそれぞれ成形する。この際に、厚膜成形体には、上記穴部13と対応する位置(所定位置)に、厚み方向に貫通する貫通孔を形成する。   In order to manufacture the oxygen permeable membrane 10 having the above-described configuration, first, a slurry is prepared by kneading a raw material powder (powder of the lanthanum gallate material) with a solvent, a binder, or the like, and then preparing this slurry using a known doctor blade method. The green sheet (thin film molded body) corresponding to the thin film 11 and the green sheet (thick film molded body) corresponding to the thick film 12 are respectively molded by forming into a sheet shape by the above. At this time, a through-hole penetrating in the thickness direction is formed in the thick film molded body at a position (predetermined position) corresponding to the hole 13.

次いで、薄膜成形体の両面に厚膜成形体をそれぞれ貼り合わせて、図2に示すように、一対の厚膜成形体の間に一枚の薄膜成形体を挟むように積層体を形成する。成形体どうしを貼り合わせる方法としては、例えば、接合面にエタノール等を塗布して貼り合わせる方法や、接合方向に加圧して圧着する方法などが挙げられる。
このように上記積層体を形成した後、これを焼結することにより、薄膜11と厚膜12とを一体化してなる酸素透過膜10を得ることができる。
Next, the thick film molded body is bonded to both surfaces of the thin film molded body, and as shown in FIG. 2, a laminate is formed so that one thin film molded body is sandwiched between the pair of thick film molded bodies. Examples of the method of bonding the molded bodies together include a method of applying and bonding ethanol or the like to the bonding surfaces, and a method of pressure bonding in the bonding direction.
Thus, after forming the said laminated body, the oxygen permeable film 10 formed by integrating the thin film 11 and the thick film 12 can be obtained by sintering this.

図4は、上記酸素透過膜10を用いた酸素富化器用電気化学セルの一実施形態を示す断面図である。この酸素富化器用の電気化学セルは、図4に示すように、上記酸素透過膜10の穴部13内に、多孔質焼結体からなる電極14を設けたもので、当該電極14により、穴部底面の薄膜11が覆われた状態となっている。
多孔質焼結体としては、例えば、(Sm0.5・Sr0.5)CoO3、(La0.5・Sr0.5)CoO3などを用いることが可能である。上記酸素透過膜10の穴部13内に電極14を形成するには、上記多孔質焼結体の粉末に溶剤やバインダ等を加えて混合することによりスラリーを調整し、これを各穴部13内に充填して焼結させることによって、穴部13内に電極14を形成することができる。
FIG. 4 is a cross-sectional view showing one embodiment of an electrochemical cell for an oxygen enricher using the oxygen permeable membrane 10. As shown in FIG. 4, the electrochemical cell for the oxygen enricher is provided with an electrode 14 made of a porous sintered body in the hole 13 of the oxygen permeable membrane 10. The thin film 11 on the bottom surface of the hole is covered.
As the porous sintered body, for example, (Sm 0.5 · Sr 0.5 ) CoO 3 , (La 0.5 · Sr 0.5 ) CoO 3 can be used. In order to form the electrode 14 in the hole 13 of the oxygen permeable membrane 10, a slurry is prepared by adding and mixing a solvent, a binder, or the like to the powder of the porous sintered body, and the slurry is adjusted to each hole 13. The electrode 14 can be formed in the hole 13 by filling and sintering the inside.

なお、図3に示すように、酸素透過膜10に複数の穴部13bを設けた場合には、例えば、図5に示すように、穴部13bの内部だけでなく厚膜12の表面全体を覆うように、上記多孔質焼結体からなる電極層14aを形成するようにしたり、或いは図6に示すように、穴部13bの底部に上記多孔質焼結体からなる電極層14bを形成して当該電極層14bの表面および厚膜12の表面全体を覆うように、銀、白金、銀合金等からなる導電性の多孔質層15を形成するようにしてもよい。   As shown in FIG. 3, when a plurality of holes 13b are provided in the oxygen permeable membrane 10, for example, as shown in FIG. 5, not only the inside of the holes 13b but also the entire surface of the thick film 12 is covered. The electrode layer 14a made of the porous sintered body is formed so as to cover, or the electrode layer 14b made of the porous sintered body is formed at the bottom of the hole 13b as shown in FIG. Alternatively, the conductive porous layer 15 made of silver, platinum, a silver alloy, or the like may be formed so as to cover the surface of the electrode layer 14b and the entire surface of the thick film 12.

上記構成からなる酸素富化器用電気化学セルにおいては、外部回路から延びるリード線16を各電極14または上記多孔質層15に接続して、電極14間に電圧を印加することにより、穴部底面の薄膜11の一方の面から他方の面に酸素のみを選択的に透過させることができ、これにより、上記他方の面側の空間における酸素濃度を高めることができる。   In the oxygen enrichment electrochemical cell having the above-described configuration, the lead wire 16 extending from the external circuit is connected to each electrode 14 or the porous layer 15, and a voltage is applied between the electrodes 14. It is possible to selectively transmit only oxygen from one surface of the thin film 11 to the other surface, thereby increasing the oxygen concentration in the space on the other surface side.

以上のように、本実施形態によれば、ランタンガレート系材料からなる薄膜11の両面に、当該薄膜11よりも厚くランタンガレート系材料からなる厚膜12を積層し、それら厚膜12の各々に、薄膜11に達する深さの穴部13を、薄膜11を介して互いに隣接する位置にそれぞれ設けるようにしたので、厚膜12が薄膜11の支持体として機能することとなって、これにより、酸素透過膜10自体の強度を向上させることができ、常温雰囲気下において所望の酸素透過量を確保できる厚さに薄膜11を形成した場合においても、酸素透過膜10として十分な機械的強度が得られるようになる。   As described above, according to the present embodiment, the thick film 12 made of the lanthanum gallate material that is thicker than the thin film 11 is laminated on both surfaces of the thin film 11 made of the lanthanum gallate material. Since the holes 13 having a depth reaching the thin film 11 are provided at positions adjacent to each other via the thin film 11, the thick film 12 functions as a support for the thin film 11, The strength of the oxygen permeable membrane 10 itself can be improved, and sufficient mechanical strength as the oxygen permeable membrane 10 can be obtained even when the thin film 11 is formed to a thickness that can secure a desired oxygen permeation amount in a room temperature atmosphere. Be able to.

また、薄膜11と厚膜12とが同質材料で形成されているため、薄膜11と厚膜12との間で収縮率に差異が生じる心配がなく、収縮率差に起因する剥離や亀裂等の発生を防止することができる。また、薄膜11と厚膜12との間で反応が生じる懸念もなく、反応生成物により酸素透過膜10の性能が低下するといった不具合の発生を回避することもできる。さらに、酸素透過膜10の穴部13内に、電極材料を充填して、多孔質体からなる電極14を設けるようにしたので、穴部底面の薄膜11が電極14により補強されることとなって、穴部底面の薄膜11において割れが生じ難くなる。
したがって、本実施形態によれば、常温雰囲気下において所望の酸素透過量を確保しながらも、割れが生じ難く、取り扱いが容易で、耐久性および信頼性に優れた酸素透過膜および酸素富化器用電気化学セルを提供することができる。
In addition, since the thin film 11 and the thick film 12 are formed of the same material, there is no fear that a difference in shrinkage rate occurs between the thin film 11 and the thick film 12, and peeling or cracking caused by the difference in shrinkage rate Occurrence can be prevented. Further, there is no concern that a reaction occurs between the thin film 11 and the thick film 12, and it is possible to avoid the occurrence of a problem that the performance of the oxygen permeable membrane 10 is lowered by the reaction product. Furthermore, since the electrode material 14 is filled in the hole 13 of the oxygen permeable membrane 10 and the electrode 14 made of a porous body is provided, the thin film 11 on the bottom surface of the hole is reinforced by the electrode 14. Thus, cracks are unlikely to occur in the thin film 11 on the bottom surface of the hole.
Therefore, according to the present embodiment, while ensuring a desired oxygen permeation amount in a normal temperature atmosphere, it is difficult to crack, is easy to handle, and has excellent durability and reliability. An electrochemical cell can be provided.

本発明に係る酸素透過膜の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the oxygen permeable film which concerns on this invention. 図1の酸素透過膜の分解斜視図である。It is a disassembled perspective view of the oxygen permeable film of FIG. 図1の酸素透過膜の変形例を示す斜視図である。It is a perspective view which shows the modification of the oxygen permeable film of FIG. 図1の酸素透過膜を用いた酸素富化器用電気化学セルの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electrochemical cell for oxygen enrichers using the oxygen permeable film of FIG. 図3の酸素透過膜を用いた酸素富化器用電気化学セルの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electrochemical cell for oxygen enrichers using the oxygen permeable film of FIG. 図5の酸素富化器用電気化学セルの変形例を示す断面図である。It is sectional drawing which shows the modification of the electrochemical cell for oxygen enrichers of FIG.

符号の説明Explanation of symbols

10 酸素透過膜
11 薄膜
12 厚膜
13 穴部
14 電極
10 Oxygen-permeable membrane 11 Thin film 12 Thick film 13 Hole 14 Electrode

Claims (4)

ランタンガレート系材料を使用して薄膜成形体を成形するとともに、ランタンガレート系材料を使用して上記薄膜成形体よりも厚く所定位置に貫通孔が形成された厚膜成形体を成形し、その後、一対の上記厚膜成形体の間に上記薄膜成形体を挟むように積層体を形成して、当該積層体を焼成することにより酸素透過膜を製造することを特徴とする酸素透過膜の製造方法。   A lanthanum gallate-based material is used to form a thin film molded body, and a lanthanum gallate-based material is used to form a thick film molded body that is thicker than the thin film molded body and has a through-hole formed at a predetermined position. A method for producing an oxygen permeable film, comprising: forming a laminate so as to sandwich the thin film molded body between a pair of the thick film molded bodies; and firing the laminate to produce an oxygen permeable film. . ランタンガレート系材料からなる薄膜の両面に、当該薄膜よりも厚くランタンガレート系材料からなる厚膜を積層し、それら厚膜の各々に、上記薄膜に達する深さの穴部を、上記薄膜を介して互いに隣接する位置にそれぞれ設けたことを特徴とする酸素透過膜。   A thick film made of a lanthanum gallate material thicker than the thin film is laminated on both surfaces of the thin film made of a lanthanum gallate material, and a hole having a depth reaching the thin film is formed in each of the thick films via the thin film. And an oxygen permeable membrane provided at positions adjacent to each other. 上記厚膜の各々に、上記穴部をそれぞれ複数設けたことを特徴とする請求項2に記載の酸素透過膜。   The oxygen permeable membrane according to claim 2, wherein a plurality of the hole portions are provided in each of the thick films. 請求項2または3に記載の酸素透過膜を用いた酸素富化器用電気化学セルであって、
上記酸素透過膜の穴部内に、電極材料を充填して、多孔質体からなる電極を設けたことを特徴とする酸素富化器用電気化学セル。
An electrochemical cell for an oxygen enricher using the oxygen permeable membrane according to claim 2 or 3,
An electrochemical cell for an oxygen enricher, wherein an electrode made of a porous material is provided by filling an electrode material in the hole of the oxygen permeable membrane.
JP2003416452A 2003-12-15 2003-12-15 Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument Pending JP2005169344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416452A JP2005169344A (en) 2003-12-15 2003-12-15 Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416452A JP2005169344A (en) 2003-12-15 2003-12-15 Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument

Publications (1)

Publication Number Publication Date
JP2005169344A true JP2005169344A (en) 2005-06-30

Family

ID=34735644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416452A Pending JP2005169344A (en) 2003-12-15 2003-12-15 Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument

Country Status (1)

Country Link
JP (1) JP2005169344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094655A (en) * 2008-10-20 2010-04-30 Ngk Spark Plug Co Ltd Hydrogen separation apparatus
CN105188893A (en) * 2013-04-26 2015-12-23 科廷科技大学 Channeled articles and methods for their manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094655A (en) * 2008-10-20 2010-04-30 Ngk Spark Plug Co Ltd Hydrogen separation apparatus
CN105188893A (en) * 2013-04-26 2015-12-23 科廷科技大学 Channeled articles and methods for their manufacture
JP2016522081A (en) * 2013-04-26 2016-07-28 カーティン ユニバーシティ オブ テクノロジーCurtin University Of Technology Channel body and manufacturing method thereof
US9999860B2 (en) 2013-04-26 2018-06-19 Curtin University Of Technology Channeled articles and methods for their manufacture

Similar Documents

Publication Publication Date Title
JP5122458B2 (en) Reversible solid oxide fuel cell stack and method for preparing the same
AU2009226760B2 (en) An all ceramics solid oxide fuel cell
JPH08509570A (en) Refractory fuel cell with improved solid electrolyte / electrode interface and method of making the interface
KR20050101561A (en) Porous electrode, solid oxide fuel cell, and method of producing the same
JP6591877B2 (en) Cell, cell stack device, module, and module housing device
US20140010953A1 (en) SINTERING ADDITIVES FOR CERAMIC DEVICES OBTAINABLE IN A LOW pO2 ATMOSPHERE
AU2005306525A1 (en) Electrically conductive fuel cell contact materials
JP2016031933A (en) Proton-conducting laminate structure
JP2008186665A (en) Unit cell of fuel cell, cell stack and fuel cell
JP2006302643A (en) Porous material, fuel cell, and fuel battery
JPWO2009001739A1 (en) High temperature structural material and solid oxide fuel cell separator
JP2008135272A (en) Inter-connector of planar fuel cell, manufacturing method thereof, planar fuel cell, planar fuel cell stack, and manufacturing method thereof
JP5122777B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP4815815B2 (en) Single-chamber solid oxide fuel cell
JP7245036B2 (en) Fuel cell stack and manufacturing method thereof
JP2006068721A (en) Oxygen enrichment apparatus
JP2015037004A (en) Fuel cell
JP2005169344A (en) Manufacturing method of oxygen permeable membrane, oxygen permeable membrane and electrochemical cell for oxygen enriching instrument
JP2013157132A (en) Solid oxide fuel cell, fuel cell module, and fuel cell device
JP2011192635A (en) Fuel cell
JP2013182678A (en) Solid oxide fuel battery cell and fuel battery module and fuel battery device
JP7330689B2 (en) Fuel cells and fuel cell stacks
JP4925574B2 (en) Fuel cell and fuel cell
JP5711093B2 (en) Gas separation material for solid oxide fuel cell and solid oxide fuel cell
JP6381493B2 (en) Solid oxide electrochemical cell, solid oxide fuel cell, and high temperature steam electrolyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721