JP2005169264A - Pulverizing method - Google Patents

Pulverizing method Download PDF

Info

Publication number
JP2005169264A
JP2005169264A JP2003412895A JP2003412895A JP2005169264A JP 2005169264 A JP2005169264 A JP 2005169264A JP 2003412895 A JP2003412895 A JP 2003412895A JP 2003412895 A JP2003412895 A JP 2003412895A JP 2005169264 A JP2005169264 A JP 2005169264A
Authority
JP
Japan
Prior art keywords
particle size
slurry
curve
powder
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003412895A
Other languages
Japanese (ja)
Inventor
Ryosuke Sugiura
良介 杉浦
Akihiko Arai
章彦 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Asahi Techno Glass Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Techno Glass Corp filed Critical Asahi Techno Glass Corp
Priority to JP2003412895A priority Critical patent/JP2005169264A/en
Publication of JP2005169264A publication Critical patent/JP2005169264A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crushing And Grinding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pulverizing a solid powder such as glass, ceramics and the like in wet pulverization so that the D90% particle size becomes less than 1 μm without generating the coagulation, and to provide a pulverized material. <P>SOLUTION: The pulverizing method comprises slurrying the solid powder of the glass powder, ceramics powder and the like by a liquid such as water, an alcohol, a hydrocarbon and the like and pulverizing the solid powder while keeping a temperature of the slurry 50°C or lower, thereby satisfying the relation of (D90% particle size)-(D50% particle size)≤0.30 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガラス、セラミックス等の固形粉末の微粉砕技術に関し、特に、凝集を防ぐ微粉砕技術に関するものである。本発明でD50%粒径とは累積分布50%(平均粒子径)の値であり、D90%粒径とは累積分布90%の値である。   The present invention relates to a pulverization technique for solid powders such as glass and ceramics, and more particularly to a pulverization technique for preventing aggregation. In the present invention, the D50% particle size is a value of 50% cumulative distribution (average particle size), and the D90% particle size is a value of 90% cumulative distribution.

従来、固形粉末の粉砕は、乾燥状態の粉砕原料を粉砕媒体で粉砕する乾式粉砕と、粉砕原料を水などの液体と混合してスラリー状としたものを粉砕媒体で粉砕する湿式粉砕とが行われていた。乾式粉砕は粉体の乾燥等の工程がなくコスト的にメリットがあるが、粉砕原料の微粉化に伴い粉砕媒体の衝突エネルギーが粉砕に使われるエネルギーに十分使われなくなり、粉砕のエネルギー効率が著しく低下するため、D90%粒径を1μm未満にすることは困難であった。   Conventionally, solid powder is pulverized by dry pulverization of a pulverized raw material in a dry state with a pulverizing medium and wet pulverization of a pulverized raw material mixed with a liquid such as water and then pulverized with a pulverizing medium. It was broken. Dry pulverization has a cost advantage because there is no process such as powder drying, but as the pulverized raw material becomes finer, the collision energy of the pulverization medium is not fully used for the energy used for pulverization, and the energy efficiency of pulverization is remarkably high. Due to the decrease, it was difficult to make the D90% particle size less than 1 μm.

近年のエレクトロニクスの発展に伴い、電子部品の小型化、薄型化が急速に進行し、それに用いられる材料も微粉化が要求されて、D90%粒径で1μm未満の粉体が望まれるようになってきた。そこで、生産コストが高いが、より微粉化できる湿式粉砕が用いられるようになり、特に、スラリーを循環させながら粉砕を行う、「循環式媒体撹拌型粉砕機」による粉砕が用いられていた。 With the recent development of electronics, electronic components are rapidly becoming smaller and thinner, and the materials used therefor are required to be finely pulverized, and a powder having a D90% particle size of less than 1 μm is desired. I came. In view of this, wet pulverization, which has a high production cost but can be made finer, has been used. In particular, pulverization by a “circulating medium stirring pulverizer” that pulverizes while circulating the slurry has been used.

このような循環式媒体撹拌粉砕機は、粉砕を行うにしたがってスラリーの温度が上昇しスラリーの粘度が上がるので、スラリーの粘度を上げないために、粉砕室を冷却しスラリーを間接的に冷却する方法(特許文献1)や、スラリーに冷却装置により冷却された水を注入する方法(特許文献2)が行われていた。 In such a circulating medium agitator and pulverizer, as the pulverization is performed, the temperature of the slurry increases and the viscosity of the slurry increases. Therefore, in order not to increase the viscosity of the slurry, the pulverization chamber is cooled and the slurry is indirectly cooled. The method (patent document 1) and the method (patent document 2) which inject | poured the water cooled with the cooling device into the slurry were performed.

特開平3−249958号公報JP-A-3-249958 特開昭63−39646号公報JP 63-39646 A

しかし、最も微粉化できる循環式媒体撹拌型粉砕機で、ガラスやセラミックス等の固形粉末をスラリー状として、スラリーの粘度を管理しながら粉砕しても、D90%粒径が1μm未満とならないバッチが生じていた。   However, there is a batch in which the D90% particle size does not become less than 1 μm even if it is pulverized while controlling the viscosity of the slurry by making a solid powder such as glass or ceramics into a slurry state with a circulating medium stirring type pulverizer that can be most finely divided It was happening.

本発明者がこの原因を調査したところ、凝集が発生していることを突き止めた。そこで、この凝集の要因を鋭意研究したところ、スラリーを形成する溶媒が水であっても、メタノール、エタノールおよびイソプロピルアルコールなどのアルコール類やノナンやドデカンなどの炭化水素類等の非水系のものであっても凝集が生じ、そのデータを詳細に解析すると、スラリー温度が高くなるほど到達平均粒径が上昇していることが分かった。また、粘度とD90%粒径との関係は同じ粘度のスラリーであっても、スラリー温度が高いほどD90%粒径の値は高くなっていることも分かった。   The present inventor investigated this cause and found out that aggregation occurred. As a result of earnest research on the cause of this aggregation, even if the solvent forming the slurry is water, it is non-aqueous such as alcohols such as methanol, ethanol and isopropyl alcohol, and hydrocarbons such as nonane and dodecane. Aggregation occurred even if there was, and when the data was analyzed in detail, it was found that the reached average particle size increased as the slurry temperature increased. It was also found that the relationship between the viscosity and the D90% particle size was a slurry having the same viscosity, and that the value of the D90% particle size was higher as the slurry temperature was higher.

したがって、本発明はガラス、セラミックス等の固形粉末の湿式粉砕において、凝集が発生せずD90%粒径が1μm未満となる粉砕方法および粉砕物を提供することを目的とする。   Accordingly, an object of the present invention is to provide a pulverization method and a pulverized product in which agglomeration does not occur and a D90% particle size is less than 1 μm in wet pulverization of a solid powder such as glass and ceramics.

上記課題を解決するために、本発明の請求項1に対応する発明は、ガラス粉末やセラミックス粉末等の固形粉末の粉砕方法において、固形粉末を液体によりスラリー化し、このスラリーの温度を50℃以下に保ちながら前記固形粉末を粉砕する。このように、スラリー温度を50℃以下とすることによって、水系や非水系のどのような液体でスラリーを形成しても、固形粉末のD90%粒径を1μm未満とすることができる。好ましくは45℃以下、さらに好ましくは40℃以下である。   In order to solve the above problems, the invention corresponding to claim 1 of the present invention is a method for pulverizing a solid powder such as a glass powder or a ceramic powder. The solid powder is slurried with a liquid, and the temperature of the slurry is 50 ° C. or less. The solid powder is pulverized while maintaining at a low temperature. Thus, by setting the slurry temperature to 50 ° C. or lower, the D90% particle size of the solid powder can be less than 1 μm, regardless of whether the slurry is formed with any aqueous or non-aqueous liquid. Preferably it is 45 degrees C or less, More preferably, it is 40 degrees C or less.

固形粉末の凝集の主な要因は、ファン・デル・ワールス力によるものである。このファン・デル・ワールス力は粒子間での作用力(引力)のことであり、比相互作用力は粒径の二乗に反比例して大きくなる。したがって、粉砕を行ない粒径が小さくなるにしたがい比相互作用力が大きくなり凝集が発生しやすくなる。また、粒子の表面が活性化されることも凝集の要因となるので、スラリー温度を下げることによって、活性化エネルギーを下げ凝集の一因を抑えている。 The main factor of solid powder agglomeration is due to van der Waals forces. This van der Waals force is an acting force (attraction) between particles, and the specific interaction force increases in inverse proportion to the square of the particle size. Therefore, as the particle size is reduced by pulverization, the specific interaction force increases and aggregation tends to occur. In addition, since the activation of the particle surface also causes aggregation, lowering the slurry temperature reduces the activation energy and suppresses one cause of aggregation.

請求項2に対応する発明は、請求項1に対応する固形粉末の粉砕方法において、ガラス粉末やセラミックス粉末等の固形粉末をスラリーとする液体を水、アルコール類、炭化水素類とした。水を用いて、固体粉末をスラリー状とする場合には、固体粉末の成分に水に溶出する可能性のあるアルカリ金属元素(Li、Na、K)、アルカリ土類金属元素(Mg、Ca、Sr、Ba)およびホウ素が含まれていないものが好ましい。これは溶出によって固形粉末の成分組成が変化するためであるが、凝集に影響を与えるものではなかった。すなわち、あらかじめ上記成分の水に対する溶出量を把握しておけば、組成変化は低く抑えることができる。一方、アルコール類や炭化水素類を用いてスラリーを形成する場合には、溶出しやすい成分はほとんどなかった。   The invention corresponding to claim 2 is the solid powder pulverization method corresponding to claim 1, wherein the liquid in which the solid powder such as glass powder or ceramic powder is used as slurry is water, alcohols, or hydrocarbons. When the solid powder is made into a slurry using water, alkali metal elements (Li, Na, K) and alkaline earth metal elements (Mg, Ca, Those containing no Sr, Ba) and boron are preferred. This is because the component composition of the solid powder changes due to elution, but it did not affect the aggregation. That is, if the elution amount with respect to the water of the said component is grasped | ascertained beforehand, a composition change can be suppressed low. On the other hand, when a slurry was formed using alcohols or hydrocarbons, there were almost no easily eluted components.

請求項3に対応する発明は、固形粉末を微粉砕した粉砕物において、ガラス粉末およびセラミックス粉末のいずれかの固形粉末を、水、アルコール類および炭化水素類のいずれかの液体によりスラリー化し、このスラリーの温度を50℃以下に保ちながら前記固形粉末を微粉砕した粉砕物のD90%粒径とD50%粒径とが、(D90%粒径)−(D50%粒径)≦0.30μmの関係を満足するものとした。この関係を満たす粉砕物の粒度分布曲線は、凝集と思われるピークがほとんど見られない正規分布曲線が得られる。さらに、(D90%粒径)−(D50%粒径)≦0.20μmの関係を満足する粉砕物の粒度分布曲線は、凝集と思われるピークのない正規分布曲線を得ることができる。   In the invention corresponding to claim 3, in the pulverized product obtained by finely pulverizing the solid powder, either the glass powder or the ceramic powder is slurried with a liquid of any one of water, alcohols and hydrocarbons. The D90% particle size and D50% particle size of the pulverized product obtained by finely pulverizing the solid powder while maintaining the slurry temperature at 50 ° C. or less are (D90% particle size) − (D50% particle size) ≦ 0.30 μm. The relationship was satisfied. The particle size distribution curve of the pulverized product satisfying this relationship provides a normal distribution curve in which almost no peaks that are considered to be aggregated are observed. Furthermore, the particle size distribution curve of the pulverized product satisfying the relationship of (D90% particle size) − (D50% particle size) ≦ 0.20 μm can obtain a normal distribution curve having no peak that seems to be agglomerated.

本発明によれば、固形粉末が含まれるスラリー温度を50℃以下としたことにより、粉砕物の凝集を抑えることができ、固形粉末のD90%粒径を1μm未満とすることができる。   According to the present invention, by setting the slurry temperature in which the solid powder is contained to 50 ° C. or less, aggregation of the pulverized product can be suppressed, and the D90% particle size of the solid powder can be less than 1 μm.

図1を参照して本発明の実施例を説明する。図1は、循環式媒体撹拌型粉砕機の概念図で0.1〜1mmφの粉砕媒体が導入可能でアジテータが備えられた粉砕室1と、粉砕室1から排出されるスラリーの温度を測定する側温部2と、この側温部2をとおってスラリー温度を調節するための熱交換器3と、この熱交換器3から排出されたスラリーを溜めるホールディングタンク4と、このホールディングタンク4から排出されるスラリーを粉砕室1へ送り出すポンプ5から形成されている。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram of a circulating medium agitation type pulverizer, and measures the temperature of a pulverization chamber 1 in which a pulverization medium of 0.1 to 1 mmφ can be introduced and an agitator is provided, and the slurry discharged from the pulverization chamber 1. A side temperature section 2, a heat exchanger 3 for adjusting the slurry temperature through the side temperature section 2, a holding tank 4 for storing the slurry discharged from the heat exchanger 3, and a discharge from the holding tank 4 It is formed from a pump 5 that feeds the slurry to be pulverized into the crushing chamber 1.

固形粉末の微粉砕は、特定粒径以下に調整した固形粉末に水又は非水系の液体を混合しスラリーとしたものをホールディングタンク4に投入して、ポンプ5を用いてスラリーを循環させると同時に粉砕室1でアジテータと粉砕媒体により固形粉末を微粉化している。   The fine pulverization of the solid powder is performed by mixing a solid powder adjusted to a specific particle size or less with water or a non-aqueous liquid into a holding tank 4 and circulating the slurry using the pump 5. In the pulverizing chamber 1, the solid powder is pulverized with an agitator and a pulverizing medium.

この実施例は図1の循環式媒体撹拌型粉砕機を使用し、粉砕する固形粉末の原料と混合する液体の種類を変化させたときの例である。   This embodiment is an example when the type of liquid mixed with the raw material of the solid powder to be pulverized is changed using the circulating medium agitating pulverizer of FIG.

まず、固形粉末はSiO2−CaO−BaO系、SiO2−CaO−BaO−Li2O系およびB23−ZnO−SiO2系の3種類のガラス粉末を用いた。このガラス粉末は、目開き45μmの篩を通過する粗粉砕品である。このガラス粉末と混合してスラリーとするための液体は、水、エタノールおよびイソプロピルアルコールの3種類を用いた。 First, three kinds of glass powders of SiO 2 —CaO—BaO, SiO 2 —CaO—BaO—Li 2 O, and B 2 O 3 —ZnO—SiO 2 were used as the solid powder. This glass powder is a coarsely pulverized product that passes through a sieve having an opening of 45 μm. Three types of water, ethanol, and isopropyl alcohol were used as liquids for mixing with the glass powder to form a slurry.

そして、上記ガラス粉末と液体とを表1に示す固形分濃度となるように、10リットルのスラリーを作製し、これをホールディングタンク4に供給し、ポンプ5で循環流量を4リットル/分とし、粉砕室1内のアジテータの回転数を1800rpmとし、粉砕室1内に0.3mmφ、3kgのジルコニア製ボールの粉砕媒体を入れ、スラリー温度を30℃以上50℃以下の温度範囲となるように温度調節した低温域と、50℃を超え60℃以下の温度範囲となるように温度調節した高温域に分け湿式粉砕した結果(試料1〜27)を表1に示す。なお、微粉砕したもののD50%粒径およびD90%粒径は、日機装株式会社製のマイクロトラック粒子径分布測定装置で測定した。図2に凝集のない場合の粒度分布曲線101と凝集のある場合の粒度分布曲線102を概念的に示した。凝集のない場合は曲線101のようにピーク103のみであるが、凝集のある場合には曲線102のようにピーク104及び凝集により発生したピーク105の二つのピークが存在するようになる。 Then, 10 liters of slurry is prepared so that the glass powder and the liquid have the solid content concentration shown in Table 1, and this is supplied to the holding tank 4, and the circulation flow rate is 4 liters / minute with the pump 5. The rotational speed of the agitator in the pulverizing chamber 1 is 1800 rpm, 0.3 mmφ, 3 kg of zirconia ball pulverizing medium is placed in the pulverizing chamber 1, and the slurry temperature is set to a temperature range of 30 ° C. to 50 ° C. Table 1 shows the results (samples 1 to 27) of the wet pulverization divided into the adjusted low temperature range and the high temperature range adjusted to be in the temperature range exceeding 50 ° C. and 60 ° C. or less. Note that the D50% particle size and D90% particle size of the finely pulverized product were measured with a microtrack particle size distribution measuring device manufactured by Nikkiso Co., Ltd. FIG. 2 conceptually shows the particle size distribution curve 101 when there is no aggregation and the particle size distribution curve 102 when there is aggregation. When there is no aggregation, there is only peak 103 as shown by curve 101, but when there is aggregation, there are two peaks, peak 104 and peak 105 generated by aggregation, as shown by curve 102.

Figure 2005169264
Figure 2005169264

表1の結果を以下に説明する。
(SiO2−CaO−BaO系ガラス粉末のとき)
溶媒を水としたとき、スラリー温度が32℃、45℃の低温時では、D90%粒径が0.50μm、0.55μmと良好に微粉砕されていた。また、マイクロトラック粒子径分布測定装置の測定で同時に得られる粒度分布曲線を見ても、0.37μm、0.41μmをピークとする図2に示す曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.12μm、0.14μmであった。一方、スラリー温度が59℃の高温時では、D90%粒径が1.24μmと所望とする微粉砕がされていなかった。また、粒度分布曲線を見ても、図2に示す曲線102のような曲線となっており、凝集により発生したと見られるピーク105に相当するものがはっきりと表示され、0.49μmと1.06μmを二つのピークとするものとなっていた。このときの(D90%粒径)−(D50%粒径)の値は0.69μmであった。
The results of Table 1 will be described below.
(When SiO 2 —CaO—BaO glass powder)
When the solvent was water and the slurry temperature was as low as 32 ° C. and 45 ° C., the D90% particle size was finely pulverized to 0.50 μm and 0.55 μm. Further, even when looking at the particle size distribution curve obtained simultaneously with the measurement by the microtrack particle size distribution measuring apparatus, a particle size distribution curve like the curve 101 shown in FIG. 2 having peaks of 0.37 μm and 0.41 μm was displayed. . The values of (D90% particle size) − (D50% particle size) at this time were 0.12 μm and 0.14 μm. On the other hand, when the slurry temperature was 59 ° C., the desired fine pulverization was not performed with a D90% particle size of 1.24 μm. Further, the particle size distribution curve is also a curve like the curve 102 shown in FIG. 2, and the one corresponding to the peak 105 that appears to be generated by aggregation is clearly displayed. 06 μm had two peaks. At this time, the value of (D90% particle size) − (D50% particle size) was 0.69 μm.

溶媒をエタノールとしたとき、スラリー温度が32℃、44℃の低温時では、D90%粒径が0.53μm、0.58μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.41μm、0.41μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.11μm、0.15μmであった。一方、スラリー温度が60℃の高温時では、D90%粒径が0.93μmと所望とする微粉砕はされていた。しかし、粒度分布曲線を見ても曲線102のような曲線となっており、0.45μmのピークと凝集により発生したと見られる0.82μmの小さなピークが表示されていた。このときの(D90%粒径)−(D50%粒径)の値は0.38μmであった。   When the solvent was ethanol, when the slurry temperature was as low as 32 ° C. and 44 ° C., the D90% particle size was finely pulverized to 0.53 μm and 0.58 μm. Further, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.41 μm and 0.41 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.11 μm and 0.15 μm. On the other hand, when the slurry temperature was 60 ° C., the desired fine pulverization was performed with a D90% particle size of 0.93 μm. However, looking at the particle size distribution curve, it was a curve as shown by curve 102, and a 0.45 μm peak and a small 0.82 μm peak that appears to have occurred due to aggregation were displayed. The value of (D90% particle size) − (D50% particle size) at this time was 0.38 μm.

溶媒をイソプロピルアルコールとしたとき、スラリー温度が34℃、43℃の低温時では、D90%粒径が0.55μm、0.56μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.41μm、0.45μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.15μm、0.12μmであった。一方、スラリー温度が58℃の高温時では、D90%粒径が0.91μmと所望とする微粉砕はされていた。しかし、粒度分布曲線を見ても曲線102のような曲線となっており、0.45μmのピークと凝集により発生したと見られる0.82μmの小さなピークが表示されていた。このときの(D90%粒径)−(D50%粒径)の値が0.35μmであった。   When the solvent was isopropyl alcohol, the D90% particle size was finely pulverized to 0.55 μm and 0.56 μm at low temperatures of 34 ° C. and 43 ° C. Also, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.41 μm and 0.45 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.15 μm and 0.12 μm. On the other hand, when the slurry temperature was 58 ° C., the desired fine pulverization was performed with a D90% particle size of 0.91 μm. However, looking at the particle size distribution curve, it was a curve as shown by curve 102, and a 0.45 μm peak and a small 0.82 μm peak that appears to have occurred due to aggregation were displayed. The value of (D90% particle size) − (D50% particle size) at this time was 0.35 μm.

この結果から、SiO2−CaO−BaO系ガラス粉末では、溶媒の種類に関係なく、スラリー温度を高温域の状態で粉砕すると凝集しやすいことが確認できた。また、溶媒に水を使用した場合、高温域でD90%粒径や粒度分布曲線から明らかに凝集が生じていることも確認できた。一方、溶媒にエタノール、イソプロピルアルコールを使用した場合、高温域で粉砕しても、所望とするD90%粒径≦0.10μmを満足するものが得られるが、粒度分布曲線に凝集による小さなピークが表示されていた。この点について、検討したところ(D90%粒径)−(D50%粒径)の差値が、0.20μm以下であれば粒度分布曲線に凝集によるピークのない正規分布の曲線を得ることがわかった。 From this result, it was confirmed that the SiO 2 —CaO—BaO glass powder easily aggregates when pulverized in a high temperature state regardless of the type of solvent. Moreover, when water was used as the solvent, it was also confirmed that aggregation occurred clearly from the D90% particle size and particle size distribution curve in the high temperature range. On the other hand, when ethanol or isopropyl alcohol is used as a solvent, a product satisfying the desired D90% particle size ≦ 0.10 μm can be obtained even when pulverized in a high temperature range, but there is a small peak due to aggregation in the particle size distribution curve. It was displayed. When this point was examined, if the difference value of (D90% particle size) − (D50% particle size) was 0.20 μm or less, it was found that a normal distribution curve having no peak due to aggregation was obtained in the particle size distribution curve. It was.

(SiO2−CaO−BaO−Li2O系ガラス粉末のとき)
溶媒を水としたとき、スラリー温度が32℃、43℃の低温時では、D90%粒径が0.49μm、0.56μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.37μm、0.41μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.14μm、0.12μmであった。一方、スラリー温度が56℃の高温時では、D90%粒径が1.30μmと所望とする微粉砕がされていなかった。また、粒度分布曲線を見ても曲線102のような曲線となっており、0.49μmのピークと凝集により発生したと見られる1.06μmのピークがはっきりと表示されていた。このときの(D90%粒径)−(D50%粒径)の値は0.71μmであった。
(When SiO 2 —CaO—BaO—Li 2 O glass powder)
When the solvent was water and the slurry temperature was as low as 32 ° C. and 43 ° C., the D90% particle size was finely pulverized to 0.49 μm and 0.56 μm. Further, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.37 μm and 0.41 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.14 μm and 0.12 μm. On the other hand, when the slurry temperature was as high as 56 ° C., the desired fine pulverization was not performed with a D90% particle size of 1.30 μm. The particle size distribution curve also shows a curve like curve 102, and a peak of 0.49 μm and a peak of 1.06 μm that appears to have occurred due to aggregation were clearly displayed. The value of (D90% particle size) − (D50% particle size) at this time was 0.71 μm.

溶媒をエタノールとしたとき、スラリー温度が33℃、44℃の低温時では、D90%粒径が0.55μm、0.56μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.41μm、0.45μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.16μm、0.14μmであった。一方、スラリー温度が59℃の高温時では、D90%粒径が0.99と所望とする微粉砕はされていた。しかし、粒度分布曲線を見ても曲線102のような曲線となっており、0.45μmのピークと凝集により発生したと見られる0.82μmのピークが表示されていた。このときの(D90%粒径)−(D50%粒径)の値が0.45μmであった。   When the solvent was ethanol, when the slurry temperature was as low as 33 ° C. and 44 ° C., the D90% particle size was finely pulverized to 0.55 μm and 0.56 μm. Also, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.41 μm and 0.45 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.16 μm and 0.14 μm. On the other hand, when the slurry temperature was 59 ° C., the desired fine pulverization was performed with a D90% particle size of 0.99. However, looking at the particle size distribution curve, it was a curve like curve 102, and a peak of 0.45 μm and a peak of 0.82 μm that appears to have occurred due to aggregation were displayed. The value of (D90% particle size) − (D50% particle size) at this time was 0.45 μm.

溶媒をイソプロピルアルコールとしたとき、スラリー温度が35℃、45℃の低温時では、D90%粒径が0.59μm、0.59μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.41μm、0.41μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.16μm、0.15μmであった。一方、スラリー温度が60℃の高温時では、D90%粒径が0.84μmと所望とする微粉砕はされていた。しかし、粒度分布曲線を見ても曲線102のような曲線となっていたが、0.49μmのピークと凝集により発生したと見られる0.82μmのごく僅かなピークが表示されていた。このときの(D90%粒径)−(D50%粒径)の値は0.24μmであった。   When the solvent was isopropyl alcohol, the D90% particle size was finely pulverized to 0.59 μm and 0.59 μm at low temperatures of 35 ° C. and 45 ° C. Further, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.41 μm and 0.41 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.16 μm and 0.15 μm. On the other hand, when the slurry temperature was 60 ° C., the desired fine pulverization was performed with a D90% particle size of 0.84 μm. However, the particle size distribution curve showed a curve as shown by curve 102, but a 0.49 μm peak and a very slight peak of 0.82 μm, which appears to have occurred due to aggregation, were displayed. The value of (D90% particle size) − (D50% particle size) at this time was 0.24 μm.

この結果から、SiO2−CaO−BaO−Li2O系ガラス粉末でも、溶媒の種類に関係なく、スラリー温度を高温域の状態で粉砕すると凝集しやすいことが確認できた。また、溶媒が水の場合は、ガラス組成中にアルカリ成分(Li2O)を主成分として含むので、アルカリ成分が溶出していたが、低温域で凝集が発生することはなかった。さらに、粒度分布曲線についても、上記と同様の検討を行ったところ、(D90%粒径)−(D50%粒径)の差値が、0.20μm以下であれば粒度分布曲線に凝集によるピークのない曲線を得ることがわかった。ただし、(D90%粒径)−(D50%粒径)の差値が、0.24μmのものをペースト化して、塗布試験を行ったところ、ピークのないものと同様の評価結果が得られたことから、ごく僅かなピークであれば(換言すると、凝集が少なければ)、凝集のないものと同様に取り扱える。そこで、許容量を調査したところ、上記差値が0.30μm以下であればよいことがわかった。 From this result, it was confirmed that even if the SiO 2 —CaO—BaO—Li 2 O glass powder was pulverized at a high slurry temperature at a high temperature, regardless of the type of solvent. Further, when the solvent was water, the alkali component (Li 2 O) was included as a main component in the glass composition, so the alkali component was eluted, but aggregation did not occur in the low temperature range. Further, the same investigation as described above was performed for the particle size distribution curve. When the difference value of (D90% particle size) − (D50% particle size) is 0.20 μm or less, the particle size distribution curve shows a peak due to aggregation. It turns out that the curve without is obtained. However, when a difference value of (D90% particle size) − (D50% particle size) was 0.24 μm and a coating test was conducted, the same evaluation result as that having no peak was obtained. Therefore, if it is a very small peak (in other words, if there is little aggregation), it can be handled in the same manner as that without aggregation. Therefore, when the allowable amount was investigated, it was found that the difference value should be 0.30 μm or less.

(B23−ZnO−SiO2系ガラス粉末のとき)
溶媒を水としたとき、スラリー温度が32℃、43℃の低温時では、D90%粒径が0.53μm、0.54μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.34μm、0.37μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.17μm、0.14μmであった。一方、スラリー温度が59℃の高温時では、D90%粒径が1.19μmと所望とする微粉砕がされていなかった。また、粒度分布曲線を見ても曲線102のような曲線となっており、0.53μmのピークと凝集により発生したと見られる0.89μmのピークがはっきりと表示されていた。このときの(D90%粒径)−(D50%粒径)の値は0.57μmであった。
(When B 2 O 3 —ZnO—SiO 2 glass powder)
When the solvent was water, the D90% particle size was finely pulverized to 0.53 μm and 0.54 μm at low temperatures of 32 ° C. and 43 ° C. Further, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.34 μm and 0.37 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.17 μm and 0.14 μm. On the other hand, when the slurry temperature was 59 ° C., the desired fine pulverization was not performed with a D90% particle size of 1.19 μm. Further, the particle size distribution curve is also a curve like the curve 102, and the peak of 0.53 μm and the peak of 0.89 μm that appears to be generated by aggregation are clearly displayed. At this time, the value of (D90% particle size) − (D50% particle size) was 0.57 μm.

溶媒をエタノールとしたとき、スラリー温度が35℃、45℃の低温時では、D90%粒径が0.58μm、0.56μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.41μm、0.41μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.17μm、0.15μmであった。一方、スラリー温度が57℃の高温時では、D90%粒径が0.84μmと所望とする微粉砕はされていた。しかし、粒度分布曲線を見ても曲線102のような曲線となっており、0.45μmのピークと凝集により発生したと見られる0.75μmの小さなピークが表示されていた。このときの(D90%粒径)−(D50%粒径)の値は0.31μmであった。   When ethanol was used as the solvent, the D90% particle size was finely pulverized to 0.58 μm and 0.56 μm at low temperatures of 35 ° C. and 45 ° C. Further, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.41 μm and 0.41 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.17 μm and 0.15 μm. On the other hand, when the slurry temperature was as high as 57 ° C., the desired fine pulverization was performed with a D90% particle size of 0.84 μm. However, looking at the particle size distribution curve, it was a curve as shown by curve 102, and a 0.45 μm peak and a small peak of 0.75 μm that appears to have occurred due to aggregation were displayed. At this time, the value of (D90% particle size) − (D50% particle size) was 0.31 μm.

溶媒をイソプロピルアルコールとしたとき、スラリー温度が36℃、43℃の低温時では、D90%粒径が0.54μm、0.59μmと良好に微粉砕されていた。また、粒度分布曲線を見ても、0.41μm、0.49μmをピークとする曲線101のような粒度分布曲線が表示された。このときの(D90%粒径)−(D50%粒径)の値は0.16μm、0.14μmであった。一方、スラリー温度が58℃の高温時では、D90%粒径が0.82μmと所望とする微粉砕はされていた。しかし、粒度分布曲線を見ても曲線102のような曲線となっていたが、0.49μmのピークと凝集により発生したと見られる0.75μmのごく僅かなピークが表示されていた。このときの(D90%粒径)−(D50%粒径)の値は0.22μmであった。   When the solvent was isopropyl alcohol, the D90% particle size was finely pulverized to 0.54 μm and 0.59 μm at low temperatures of 36 ° C. and 43 ° C. Further, looking at the particle size distribution curve, a particle size distribution curve such as a curve 101 having peaks at 0.41 μm and 0.49 μm was displayed. The values of (D90% particle size) − (D50% particle size) at this time were 0.16 μm and 0.14 μm. On the other hand, when the slurry temperature was as high as 58 ° C., the desired fine pulverization was performed with a D90% particle size of 0.82 μm. However, the particle size distribution curve showed a curve as shown by the curve 102, but a 0.49 μm peak and a very slight peak of 0.75 μm that was considered to have occurred due to aggregation were displayed. The value of (D90% particle size) − (D50% particle size) at this time was 0.22 μm.

この結果から、B23−ZnO−SiO2系ガラス粉末でも、溶媒の種類に関係なく、スラリー温度を高温域の状態で粉砕すると凝集しやすいことが確認できた。また、粒度分布曲線についても、上記と同様の検討を行ったところ、(D90%粒径)−(D50%粒径)の差値が、0.20μm以下であれば粒度分布曲線に凝集によるピークのない正規分布の曲線を得ることがわかった。また、上記したSiO2−CaO−BaO−Li2O系ガラス粉末と同様に、上記差値が0.30μm以下であれば、凝集のないものと同様な評価結果が得られた。 From this result, it was confirmed that even when the B 2 O 3 —ZnO—SiO 2 glass powder was pulverized at a high temperature, the slurry easily aggregated regardless of the type of the solvent. Further, the same examination as described above was performed for the particle size distribution curve. If the difference value of (D90% particle size) − (D50% particle size) is 0.20 μm or less, the particle size distribution curve shows a peak due to aggregation. It was found that a normal distribution curve without the curve was obtained. Similar to the above-mentioned SiO 2 —CaO—BaO—Li 2 O glass powder, if the difference value was 0.30 μm or less, the same evaluation results as those without aggregation were obtained.

以上をまとめると、スラリー温度が低温域では粉砕するガラス粉末の種類、水および非水系の溶媒の種類に関係なく凝集のない微粉末を得ることができる。このように、D90%粒径で1.0μm未満の粉砕物を得ることにより、コンデンサーの主原料粉末の大きさに近づかせることができ、コンデンサー用助剤として用いても、従来よりも均一な混合ができ性能の優れたコンデンサーを得ることができる。また、回路基板として使用されている低温焼成基板の小型化や薄型化も可能である。さらに、表示装置として使用されるPDP、FEDおよびVFDなどの接着層や誘電体層等を薄くしたり、隔壁の厚さをより薄くしたりすることも可能となる。   In summary, when the slurry temperature is low, a fine powder without aggregation can be obtained regardless of the type of glass powder to be crushed and the types of water and non-aqueous solvent. Thus, by obtaining a pulverized product having a D90% particle size of less than 1.0 μm, it is possible to approach the size of the main raw material powder of the capacitor, and even when used as an auxiliary agent for a capacitor, it is more uniform than before. Capacitors that can be mixed and have excellent performance can be obtained. In addition, a low-temperature fired substrate used as a circuit board can be reduced in size and thickness. Furthermore, it is possible to reduce the thickness of an adhesive layer such as PDP, FED, and VFD used as a display device, a dielectric layer, and the like, and to further reduce the thickness of a partition wall.

なお、上記した実施例では循環式媒体撹拌型粉砕機での例であったが、ガラス粉末等の固形粉末が循環しない回転ボールミルや空気圧で固形粉末同士を衝突させ粉砕する湿式ジェットミルなどでも温度を50℃以下に保てば凝集のない又は凝集の少ない粉砕物を得ることができた。   In the above-described embodiment, the example is a circulation type medium agitating pulverizer, but the temperature is also used in a rotating ball mill in which solid powder such as glass powder does not circulate or a wet jet mill in which solid powder collides with air and pulverizes. Was maintained at 50 ° C. or lower, a pulverized product with little or no aggregation could be obtained.

本発明の製造方法で得られた粉砕物は、D90%粒径が1μm未満であるので、コンデンサー用の助剤として利用しても有効に利用することができ、ガラス粉とセラミックス粉とを用いて低温焼結基板を作成すれば、従来よりも肉厚の薄い基板を得ることが可能である。また、フィラーやバインダー等を加えてペースト化することにより、PDP、FEDおよびVFDなどの表示装置の材料として好適なものが得られる。   Since the pulverized product obtained by the production method of the present invention has a D90% particle size of less than 1 μm, it can be used effectively as an auxiliary agent for capacitors, using glass powder and ceramic powder. If a low-temperature sintered substrate is prepared, it is possible to obtain a substrate having a thinner thickness than the conventional one. In addition, by adding a filler, a binder, or the like to form a paste, a suitable material for a display device such as PDP, FED, or VFD can be obtained.

本発明で使用した循環式媒体撹拌粉砕機の概念図である。It is a conceptual diagram of the circulation type medium stirring crusher used by this invention. 凝集の有無を示す粒度分布曲線の概念図である。It is a conceptual diagram of the particle size distribution curve which shows the presence or absence of aggregation.

符号の説明Explanation of symbols

1…粉砕室、2…温度計、3…熱交換器、4…ホールディングタンク、5…ポンプ DESCRIPTION OF SYMBOLS 1 ... Grinding chamber, 2 ... Thermometer, 3 ... Heat exchanger, 4 ... Holding tank, 5 ... Pump

Claims (3)

ガラス粉末やセラミックス粉末等の固形粉末を液体によりスラリー化し、このスラリーの温度を50℃以下に保ちながら前記固形粉末を粉砕することを特徴とする粉砕方法。   A pulverization method characterized in that a solid powder such as glass powder or ceramic powder is slurried with a liquid, and the solid powder is pulverized while maintaining the temperature of the slurry at 50 ° C. or lower. 前記液体が水、アルコール類、炭化水素類であることを特徴とする請求項1記載の粉砕方法。   The pulverization method according to claim 1, wherein the liquid is water, alcohols, or hydrocarbons. ガラス粉末、セラミックス粉末および磁性粉末のいずれかの固形粉末を水、アルコール類および炭化水素類のいずれかの液体によりスラリー化し、このスラリーの温度を50℃以下に保ちながら前記固形粉末を微粉砕した粉砕物のD90%粒径とD50%粒径とが以下の関係を満足することを特徴とする粉砕物。
(D90%粒径)−(D50%粒径)≦0.30μm
A solid powder of any one of glass powder, ceramic powder and magnetic powder was slurried with any liquid of water, alcohols and hydrocarbons, and the solid powder was finely pulverized while maintaining the temperature of this slurry at 50 ° C. or lower. A pulverized product wherein the D90% particle size and the D50% particle size of the pulverized product satisfy the following relationship:
(D90% particle size) − (D50% particle size) ≦ 0.30 μm
JP2003412895A 2003-12-11 2003-12-11 Pulverizing method Withdrawn JP2005169264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412895A JP2005169264A (en) 2003-12-11 2003-12-11 Pulverizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412895A JP2005169264A (en) 2003-12-11 2003-12-11 Pulverizing method

Publications (1)

Publication Number Publication Date
JP2005169264A true JP2005169264A (en) 2005-06-30

Family

ID=34733176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412895A Withdrawn JP2005169264A (en) 2003-12-11 2003-12-11 Pulverizing method

Country Status (1)

Country Link
JP (1) JP2005169264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212808A (en) * 2007-03-02 2008-09-18 Mitsui Mining Co Ltd Media-stirring type wet pulverizer and crushing treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212808A (en) * 2007-03-02 2008-09-18 Mitsui Mining Co Ltd Media-stirring type wet pulverizer and crushing treatment method

Similar Documents

Publication Publication Date Title
JP4969813B2 (en) Ultrafine calcium hydroxide slurry
KR100415384B1 (en) High-density sintered ITO compact and manufacturing method
CN112752627A (en) Silver powder, method for producing same, and conductive paste
JPH1088207A (en) Silver powder and its manufacture
WO2021049530A1 (en) Wear-resistant alumina sintered body
JP2016008148A (en) METHOD FOR PRODUCING Ca(OH)2 AQUEOUS SLURRY
JP2011052300A (en) Flaky silver powder, method for producing the same, and conductive paste
JP2005169264A (en) Pulverizing method
JP2009148681A (en) Slurry composition
JP2003119501A (en) Flake copper powder, manufacturing method therefor, and flake copper paste using the flake copper powder
JP3316872B2 (en) Dry grinding of alumina
JP4996016B2 (en) Niobium oxide slurry, niobium oxide powder and production method thereof
CN105541303B (en) A kind of new-energy automobile ternary series high-performance fuse porcelain tube
JP2008169050A (en) Ceramics green sheet and method of producing the same
JP2007261861A (en) Glass powder and its production method
Malghan et al. Silicon nitride powder milling kinetics in a high-energy agitation ball mill
JP4202920B2 (en) Alumina calcined and pulverized for inclusion in the composition of a precursor for refractory materials and a method for obtaining such alumina
JP2021187710A (en) High-purity fine-grain alumina powders
JP4045178B2 (en) Tantalum oxide slurry, tantalum oxide powder and method for producing them
JP2020117433A (en) Glass particles, conductive composition therewith and production method of glass particles
JP2005306628A (en) Production method of ceramic slurry
Qiu et al. Fabrication of fine AlN particles by pulverizing with very small ZrO2 beads
WO2024135596A1 (en) Method for producing lithium silicophosphate powder composition
WO2022210214A1 (en) Silicon nitride powder, slurry, and method for producing silicon nitride sintered compact
JP2008184351A (en) Glass sol and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A761 Written withdrawal of application

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A761