JP2005168134A - Liquid-cooled type power converter - Google Patents

Liquid-cooled type power converter Download PDF

Info

Publication number
JP2005168134A
JP2005168134A JP2003401852A JP2003401852A JP2005168134A JP 2005168134 A JP2005168134 A JP 2005168134A JP 2003401852 A JP2003401852 A JP 2003401852A JP 2003401852 A JP2003401852 A JP 2003401852A JP 2005168134 A JP2005168134 A JP 2005168134A
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
cooling body
pump
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003401852A
Other languages
Japanese (ja)
Inventor
Takashi Hashimoto
隆 橋本
Yuji Ide
勇治 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003401852A priority Critical patent/JP2005168134A/en
Priority to CNB2004100979884A priority patent/CN100367494C/en
Publication of JP2005168134A publication Critical patent/JP2005168134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-cooled type power converter optimum for the prolongment of a service lifetime of a semiconductor element. <P>SOLUTION: The liquid-cooled type power converter has a cooling body with a flow passage for making a cooling liquid flow inside, a heat exchanger 5 for executing heat exchange, a pump 3 for circulating the cooling liquid, piping 4 for connecting the cooling body, the heat exchanger 5, and the pump 3, bypass piping 11 provided so as to bypass the heat exchanger 5, a first openable/closable valve 12 provided to the bypass piping 11, a second valve 12a provided to the in-flow side to the heat exchanger 5, and a third valve 12b provided to the out-flow side from the heat exchanger 5. The first valve 12 is closed and the second/third valves 12a, 12b are opened when a railroad vehicle travels. The first valve 12 is opened and the second/third valves 12a, 12b are closed when the railroad vehicle is stopped. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液冷式電力変換装置に関する。 The present invention relates to a liquid-cooled power converter.

従来の液冷式電力変換装置について図を用いて詳細に説明する。図8(a)は、従来の液冷式電力変換装置の配管構成図である。 A conventional liquid-cooled power converter will be described in detail with reference to the drawings. Fig.8 (a) is a piping block diagram of the conventional liquid cooling type power converter device.

従来の液冷式電力変換装置において、半導体素子1は冷却体となる液冷フィン2に取付けられる。この液冷フィン2は内部に冷却液の流れる流路が形成されている。液冷フィンの内部は、ポンプ3により強制的に冷却液を循環させている。配管4はポンプ3と液冷フィン2を接続し、さらに液冷フィン2と熱交換器5、熱交換器5とポンプ3とを直列ループ状に接続して循環系を形成している。ポンプ3を駆動することで冷却液が強制循環され、半導体素子1より発生する熱損失は液冷フィン2を介して液冷フィン2内部の冷却液に入熱され、熱交換器5側で大気へ熱放散するが、循環する冷却液がこの熱輸送を行なう。熱交換器5は電動送風機6により強制送風され外気への熱放散を行っている。 In a conventional liquid-cooled power converter, the semiconductor element 1 is attached to a liquid-cooled fin 2 that serves as a cooling body. The liquid cooling fin 2 has a flow path through which the cooling liquid flows. Inside the liquid cooling fin, the cooling liquid is forcedly circulated by the pump 3. The pipe 4 connects the pump 3 and the liquid cooling fin 2, and further connects the liquid cooling fin 2 and the heat exchanger 5, and the heat exchanger 5 and the pump 3 in a series loop shape to form a circulation system. The coolant is forcibly circulated by driving the pump 3, and the heat loss generated from the semiconductor element 1 is input to the coolant inside the liquid cooling fin 2 via the liquid cooling fin 2, and the atmosphere on the heat exchanger 5 side. Although the heat is dissipated, the circulating coolant performs this heat transport. The heat exchanger 5 is forcedly blown by the electric blower 6 to dissipate heat to the outside air.

尚、図8(a)では液冷フィン2が循環系内に1個の冷却配管系統図を示したが、この液冷フィン2が直列に複数個接続されていたり、並列に複数個接続されている場合が多いが、本発明の説明上は違いは無いので以下液冷フィン2が1個の場合で説明する。 In FIG. 8A, a single cooling piping system diagram is shown in which the liquid cooling fins 2 are in the circulation system. However, a plurality of liquid cooling fins 2 are connected in series or connected in parallel. However, since there is no difference in the explanation of the present invention, the case where there is one liquid cooling fin 2 will be described below.

このように構成された液冷式電力変換装置は、冷媒の相変化を利用した沸騰冷却方式、ヒートパイプ冷却方式、冷媒を用いない空冷フィンによる冷却方式と比べ、強制的に冷却液を循環させることで熱伝達率が高く冷却能力に優れており、半導体素子の温度上昇を低減することができ大容量の半導体素子冷却に適しているが、熱時定数が小さく熱応答性が良いので、温度上昇変化が速い特徴がある。
特開平09−219904号公報
The liquid-cooled power conversion device configured as described above forcibly circulates the coolant as compared with the boiling cooling method using the phase change of the refrigerant, the heat pipe cooling method, and the cooling method using the air-cooling fins that do not use the refrigerant. The heat transfer rate is high and the cooling capacity is excellent, and the temperature rise of the semiconductor element can be reduced and it is suitable for cooling a large-capacity semiconductor element. There is a characteristic that the rise change is quick.
JP 09-219904 A

このように構成された液冷式電力変換装置は、冷媒の相変化を利用した沸騰冷却方式、ヒートパイプ冷却方式、冷媒を用いない空冷フィンによる冷却方式を採用した電力変換装置と比べ、強制的に冷却液を循環させることで熱伝達率が高く冷却能力に優れている。そのため、半導体素子の温度上昇を低減することができ大容量の半導体素子冷却に適しているが、熱時定数が小さく熱応答性が良いので、温度上昇変化が速いという特徴がある。即ち、冷却システムの熱時定数が小さいので間欠的な発生熱損失パターンに対し熱応答性が良く、温度上昇値の増減が他の冷却システムに比べ大きい。液冷式電力変換装置における半導体素子の温度上昇の増減具体的に図を用いて説明する。図8(b)は電気鉄道車両駆動制御を行なう電力変換装置に液冷システムを適用した際の半導体素子ケース温度(冷却フィンとの接触面)7、冷却液の温度8の変化を示したものである。 The liquid-cooled power converter configured in this way is more compulsory than power converters that employ a boiling cooling system that uses the phase change of the refrigerant, a heat pipe cooling system, and a cooling system that uses air-cooling fins that do not use a refrigerant. The coolant is circulated in a high temperature so that the heat transfer rate is high and the cooling capacity is excellent. Therefore, the temperature rise of the semiconductor element can be reduced and suitable for cooling a large-capacity semiconductor element. However, since the thermal time constant is small and the thermal response is good, there is a feature that the temperature rise change is fast. That is, since the thermal time constant of the cooling system is small, the thermal responsiveness is good with respect to the intermittent generated heat loss pattern, and the increase and decrease of the temperature rise value is large compared to other cooling systems. The increase / decrease in the temperature rise of the semiconductor element in the liquid-cooled power conversion device will be specifically described with reference to the drawings. FIG. 8B shows changes in the semiconductor element case temperature (contact surface with the cooling fin) 7 and the temperature 8 of the cooling liquid when the liquid cooling system is applied to the power conversion device that performs electric railcar drive control. It is.

鉄道車両の力行、制動時は電力変換装置内の半導体素子は電気通電あるいは半導体素子のスイッチング動作により熱損失が発生し半導体素子ケース温度7は上昇する。一方、鉄道車両の惰行及び停止時は、半導体素子からの熱損失の発生は無くケース温度7は下降する。力行から惰行、惰行から力行、あるいは力行〜惰行〜制動の繰り返しとなる走行中は半導体素子ケース温度7は小さな温度変化(ΔTc1)9を繰り返すが、駅での停車時には走行中と比べ長時間に亘って半導体素子からの熱損失が発生しないので半導体素子ケース温度7は走行時よりも大きく温度が低減し、大きな温度変化(ΔTc2)10となる。 During power running and braking of the railway vehicle, the semiconductor element in the power conversion device generates heat loss due to electrical energization or switching operation of the semiconductor element, and the semiconductor element case temperature 7 rises. On the other hand, when the railway vehicle coasts and stops, there is no heat loss from the semiconductor elements, and the case temperature 7 decreases. The semiconductor device case temperature 7 repeats a small temperature change (ΔTc1) 9 during running, which is repeated from power running to coasting, coasting to power running, or power running to coasting to braking, but it takes longer than when running at a station when it stops at the station. Since no heat loss is generated from the semiconductor element, the semiconductor element case temperature 7 is greatly reduced as compared with the traveling time, resulting in a large temperature change (ΔTc2) 10.

ここでこの冷却システム中の強制循環される冷却液の温度8の変化に注目すると、半導体ケース温度7の小さな温度変化(ΔTc1)9の際は、冷却液の温度8の温度変化は極めて小さく冷却フィン2の半導体素子1が接触している近傍部分の熱定数により半導体素子ケース温度7が変化している。これはこの液冷システムに限らず他の例えばヒートパイプ冷却の場合でも同じような温度変化を示すことを意味する。 When attention is paid to the change in the temperature 8 of the forced circulating coolant in the cooling system, the temperature change of the coolant temperature 8 is very small when the semiconductor case temperature 7 is small (ΔTc1) 9. The semiconductor element case temperature 7 changes due to the thermal constant of the vicinity of the fin 2 where the semiconductor element 1 is in contact. This means that the same temperature change is exhibited not only in this liquid cooling system but also in other cases such as heat pipe cooling.

一方、半導体ケース温度7の大きな温度変化(ΔTc2)10の際は、冷却液の温度8の温度上昇値の低減とほぼ同じ値で温度低減している。つまり液冷式では冷却液が強制的に循環冷却されているので、駅停車時により大きく液温が低減されることになる。 On the other hand, at the time of a large temperature change (ΔTc2) 10 of the semiconductor case temperature 7, the temperature is reduced by substantially the same value as the reduction of the temperature rise value of the coolant temperature 8. That is, in the liquid cooling type, the coolant is forcibly circulated and cooled, so that the liquid temperature is greatly reduced when the station stops.

ところで、半導体素子の内部には種々の材料が使われており、それらの間は半田等で接合されていることから、半導体素子の温度変化は素材の熱膨張率の違いにより引き起こされる熱疲労の要因となっている。そのため、半導体素子の寿命にはこの温度変化が大きく影響するので、温度変化幅を小さくする、あるいは温度変化のサイクル数を少なくすることが半導体素子の長寿命化には重要である。半導体素子の最大温度上昇値を抑える目的からは、液冷式は冷却システムの熱抵抗が小さく(熱伝達率が大きく)優れた冷却システムであるが、温度変化幅が大きくなる点が半導体素子の寿命の観点からは憂慮すべき点である。 By the way, various materials are used inside the semiconductor element, and since they are joined by solder or the like, the temperature change of the semiconductor element is caused by thermal fatigue caused by the difference in the coefficient of thermal expansion of the material. It is a factor. For this reason, the temperature change greatly affects the life of the semiconductor element. Therefore, it is important to extend the life of the semiconductor element by reducing the temperature change width or reducing the number of cycles of the temperature change. For the purpose of suppressing the maximum temperature rise value of the semiconductor element, the liquid cooling type is an excellent cooling system with a small cooling system thermal resistance (large heat transfer coefficient), but the temperature change range is large. From the point of view of life, it is an alarming point.

そこで、本発明の目的は、上述の大きな温度変化(ΔTc2)の際の変化幅を低減し、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することにある。 Accordingly, an object of the present invention is to provide a liquid-cooled power conversion device that reduces the change width during the large temperature change (ΔTc2) described above and is optimal for extending the life of the semiconductor element.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、前記冷却体と前記熱交換器と前記ポンプの順に、冷却液が流れるように設けられ、前記冷却体と前記熱交換器と前記ポンプとを接続する配管と、前記熱交換器をバイパスし、前記冷却体と前記ポンプの順に冷却液が流れるように設けられたバイパス配管と、前記バイパス配管に設けられ、開閉可能な第1のバルブと、前記熱交換機への流入側の前記配管に設けられ、開閉可能な第2のバルブと、前記熱交換器からの流出側の前記配管に設けられ、開閉可能な第3のバルブとを有し、鉄道車両走行時には、前記第1のバルブを閉じ、前記第2のバルブ及び前記第3のバルブを開き、鉄道車両停止時は、前記第1のバルブを開き、前記第2のバルブ及び前記第3のバルブを閉じることによって達成できる。 The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. A pump for circulating the coolant, and a pipe for connecting the coolant, the heat exchanger, and the pump, provided in order of the coolant, the heat exchanger, and the pump; A bypass pipe provided to bypass the heat exchanger so that coolant flows in the order of the cooling body and the pump; a first valve provided in the bypass pipe that can be opened and closed; and the heat exchanger. A second valve that can be opened and closed, and a third valve that can be opened and closed on the pipe on the outflow side from the heat exchanger. , Close the first valve Opening the second valve and the third valve, when the railway vehicle is stopped, it opens the first valve can be achieved by closing the second valve and the third valve.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、前記冷却体と前記熱交換器と前記ポンプの順に、冷却液が流れるように設けられ、前記冷却体と前記熱交換器と前記ポンプとを接続する配管と、前記ポンプをバイパスし、前記冷却体と前記熱交換器間で冷却液が循環するように設けられたバイパス配管と、前記バイパス配管に設けられ、開閉可能な第1のバルブと、前記ポンプへの流入側の前記配管に設けられ、開閉可能な第2のバルブと、前記ポンプからの流出側の前記配管に設けられ、開閉可能な第3のバルブとを有し、鉄道車両走行時には、前記第1のバルブを閉じ、前記第2のバルブ及び前記第3のバルブを開き、鉄道車両停止時は、前記第1のバルブを開き、前記第2のバルブ及び前記第3のバルブを閉じることによって達成できる。 The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. A pump for circulating the coolant, and a pipe for connecting the coolant, the heat exchanger, and the pump, provided in order of the coolant, the heat exchanger, and the pump; A bypass pipe provided to bypass the pump and circulate a coolant between the cooling body and the heat exchanger, a first valve provided in the bypass pipe and openable and closable, and to the pump A second valve that can be opened and closed, and a third valve that can be opened and closed on the pipe on the outflow side from the pump. Close the first valve, Valve and opening the third valve, when the railway vehicle is stopped, opens the first valve can be achieved by closing the second valve and the third valve.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、前記冷却体と前記熱交換器と前記ポンプの順に、冷却液が流れるように設けられ、前記冷却体と前記熱交換器と前記ポンプとを接続する配管と、前記冷却体をバイパスし、前記ポンプと前記熱交換器間で冷却液が循環するように設けられたバイパス配管と、前記バイパス配管に設けられ、開閉可能な第1のバルブと、前記冷却体への流入側の前記配管に設けられ、開閉可能な第2のバルブと、前記冷却体からの流出側の前記配管に設けられ、開閉可能な第3のバルブとを有し、鉄道車両走行時には、前記第1のバルブを閉じ、前記第2のバルブ及び前記第3のバルブを開き、鉄道車両停止時は、前記第1のバルブを開き、前記第2のバルブ及び前記第3のバルブを閉じることによって達成できる。 The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. A pump for circulating the coolant, and a pipe for connecting the coolant, the heat exchanger, and the pump, provided in order of the coolant, the heat exchanger, and the pump; A bypass pipe provided to bypass the cooling body and to circulate a coolant between the pump and the heat exchanger, a first valve provided in the bypass pipe and openable and closable, and the cooling body A second valve that can be opened and closed provided in the pipe on the inflow side of the vehicle, and a third valve that can be opened and closed provided on the pipe on the outflow side from the cooling body. , Closing the first valve, Valve and opening the third valve, when the railway vehicle is stopped, opens the first valve can be achieved by closing the second valve and the third valve.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、前記熱交換器へ冷却する送風機とを有し、鉄道車両走行時は、前記送風機を運転し、鉄道車両の停止時には前記送風機を停止することによって達成できる。   The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. This can be achieved by having a pump for circulating the coolant and a blower for cooling to the heat exchanger, operating the blower when traveling on a railway vehicle, and stopping the blower when the railway vehicle is stopped.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプとを有し、鉄道車両走行時は、前記ポンプを運転士、鉄道車両の停止時には前記ポンプを停止することによって達成できる。   The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. And a pump for circulating the coolant. When the railway vehicle is running, the pump is operated by the driver, and when the railway vehicle is stopped, the pump is stopped.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、前記熱交換器へ冷却する送風機と前記半導体素子の温度を検出する温度検地手段とを有し、前記温度検知手段により検知された前記半導体素子の温度変化を抑制するように前記送風機が加減速運転を行うことによって達成できる。   The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. A pump for circulating the coolant; a blower for cooling to the heat exchanger; and a temperature detecting means for detecting the temperature of the semiconductor element, and a temperature change of the semiconductor element detected by the temperature detecting means. This can be achieved by performing the acceleration / deceleration operation of the blower so as to suppress it.

上記課題は、半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、前記熱交換器へ冷却する送風機と前記半導体素子の温度を検出する温度検地手段とを有し、前記温度検知手段により検知された前記半導体素子の温度変化を抑制するように前記ポンプが加減速運転を行うことによって達成できる。   The above-mentioned problems include a cooling body having a semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, and the cooling body and the heat exchanger. A pump for circulating the coolant; a blower for cooling to the heat exchanger; and a temperature detecting means for detecting the temperature of the semiconductor element, and a temperature change of the semiconductor element detected by the temperature detecting means. This can be achieved by performing the acceleration / deceleration operation of the pump so as to suppress it.

上記課題は、スイッチングを行う半導体素子と、前記半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、前記冷却体と空気との間で熱交換を行う熱交換器と、前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプとを有し、鉄道車両走行時には、前記半導体素子を強制的に冷却し、鉄道車両停車時には前記半導体素子を強制的には冷却せず、自冷させることにより達成できる。   The above-described problems include a semiconductor element that performs switching, a cooling body that has the semiconductor element mounted therein and a flow path through which a coolant flows, a heat exchanger that performs heat exchange between the cooling body and air, A cooling body and a pump for circulating a coolant to the heat exchanger, forcibly cooling the semiconductor element when the railway vehicle is running, and forcibly cooling the semiconductor element when the railway vehicle is stopped. It can be achieved by self-cooling.

半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 It is possible to provide a liquid-cooled power conversion device that is optimal for extending the life of semiconductor elements.

(第1の実施の形態)
本発明に基づく第1の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図1(a)は、本発明の基づく第1の実施の形態の液冷式電力変換装置の冷却配管系統図である。図1(b)は、本発明に基づく第1の実施の形態の液冷式電力変換装置の半導体素子ケース温度(冷却フィンとの接触面)7と冷却液の温度8の変化を示したものである。尚、図8に記載したものと構造上同一のものについては同符号を付して説明を省略する。
(First embodiment)
A liquid-cooled power converter according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1A is a cooling piping system diagram of the liquid-cooled power converter according to the first embodiment of the present invention. FIG. 1B shows changes in the semiconductor element case temperature (contact surface with the cooling fin) 7 and the coolant temperature 8 of the liquid-cooled power converter according to the first embodiment of the present invention. It is. 8 that are structurally the same as those described in FIG.

本発明に基づく第1の実施の形態の液冷式電力変換装置において、半導体素子1は冷却体となる液冷フィン2に取付けられるが、この液冷フィン2は内部に冷却液の流れる流路が形成されており、ポンプ3により内部に強制的に冷却液を循環させる。配管4はポンプ3と液冷フィン2を接続し、さらに液冷フィン2と熱交換器5、熱交換器5とポンプ3とを直列ループ状に接続して循環系を形成している。この循環系に熱交換器5をバイパスするようバイパス配管11が接続される。バイパス配管11はその一端を冷却フィン2と熱交換器5を接続する配管に接続し、もう一端をポンプ3と熱交換器5を接続する配管に接続し、バイパス配管11の途中に第1のバルブ12を設け、冷却フィン2と熱交換器5の間の配管のバイパス配管11の接続部よりも熱交換器5側に第2のバルブ12aを設け、ポンプ3と熱交換器5間の配管のバイパス配管11の接続部よりも熱交換器5側に第3のバルブ12bを設ける。ここで第1〜第3のバルブ12、12a、12bは何れも電気信号により開閉可能なバルブである。又、熱交換器5は電動送風機6により強制送風されている。 In the liquid-cooled power conversion device according to the first embodiment of the present invention, the semiconductor element 1 is attached to a liquid-cooled fin 2 serving as a cooling body. The liquid-cooled fin 2 is a flow path through which the coolant flows. The cooling liquid is forcibly circulated inside by the pump 3. The pipe 4 connects the pump 3 and the liquid cooling fin 2, and further connects the liquid cooling fin 2 and the heat exchanger 5, and the heat exchanger 5 and the pump 3 in a series loop shape to form a circulation system. A bypass pipe 11 is connected to the circulation system so as to bypass the heat exchanger 5. One end of the bypass pipe 11 is connected to a pipe connecting the cooling fin 2 and the heat exchanger 5, and the other end is connected to a pipe connecting the pump 3 and the heat exchanger 5. A valve 12 is provided, a second valve 12a is provided on the heat exchanger 5 side of the connection portion of the bypass pipe 11 of the pipe between the cooling fin 2 and the heat exchanger 5, and a pipe between the pump 3 and the heat exchanger 5 is provided. A third valve 12b is provided on the heat exchanger 5 side of the connection portion of the bypass pipe 11. Here, each of the first to third valves 12, 12a, 12b is a valve that can be opened and closed by an electric signal. The heat exchanger 5 is forcibly blown by an electric blower 6.

このように構成された液冷式電力変換装置において、鉄道車両走行時は第2のバルブ12aと、第3のバルブ12bを開き、第1のバルブ12を閉じて熱交換器5側へ冷却液を循環させる循環系を構成する。つまり第1のバルブ12が閉じていることでバイパス配管11内を冷却液が循環することは無い。 In the liquid-cooled power conversion device configured as described above, the second valve 12a and the third valve 12b are opened and the first valve 12 is closed and the coolant is moved to the heat exchanger 5 side when the railway vehicle is running. A circulatory system is circulated. In other words, the coolant does not circulate in the bypass pipe 11 because the first valve 12 is closed.

このように構成された液冷式電力変換装置において、ポンプ3を駆動することで冷却液が強制循環されるが、半導体素子1より発生する熱損失は液冷フィン2を介して液冷フィン2内部の冷却液に伝熱され、熱交換器5側で大気へ熱放散するが、循環する冷却液がこの熱輸送を行ない、熱交換器5は電動送風機6により強制送風され外気への熱放散を行っている。 In the liquid-cooled power converter configured as described above, the coolant is forcibly circulated by driving the pump 3, but heat loss generated from the semiconductor element 1 is caused by the liquid-cooled fin 2 via the liquid-cooled fin 2. Heat is transferred to the internal coolant and heat is dissipated to the atmosphere on the heat exchanger 5 side, but the circulating coolant performs this heat transport, and the heat exchanger 5 is forcibly blown by the electric blower 6 and dissipates heat to the outside air. It is carried out.

一方、鉄道車両の駅停止時は第2のバルブ12a、第3のバルブ12bを閉じ、第1のバルブ12を開いてバイパス配管11側へ冷却液を循環させる構成とする。この際、熱交換器5側へは冷却液は循環されず、バイパスされた循環系側で冷却液が強制的に放熱されることが無く冷却液の温度低減が抑えられる。 On the other hand, when the railway vehicle stops, the second valve 12a and the third valve 12b are closed, the first valve 12 is opened, and the coolant is circulated to the bypass pipe 11 side. At this time, the cooling liquid is not circulated to the heat exchanger 5 side, and the cooling liquid is not forcibly radiated on the bypassed circulation system side, and the temperature reduction of the cooling liquid is suppressed.

このように構成された液冷式電力変換装置において、駅停車時の半導体素子ケース温度7の大きな温度変化(ΔTc2’)10aの変化幅は小さい。そのため、半導体素子の長寿命化が可能となる。つまり、駅停止時にはバイパス配管11側を冷却液が循環するよう前記バルブ12,12a,12bの開閉を行なったことで、熱交換器5部分に冷却液が循環されないので冷却液の温度8が大きく低減することが無く、半導体素子ケース温度7の大きな温度変化(ΔTc2’)10aも変化幅が小さくなる(図1(b)参照)。 In the liquid-cooled power conversion apparatus configured as described above, the change width of the large temperature change (ΔTc2 ′) 10a of the semiconductor element case temperature 7 when the station stops is small. As a result, the lifetime of the semiconductor element can be extended. That is, when the station is stopped, the valves 12, 12a, and 12b are opened and closed so that the coolant circulates on the bypass pipe 11 side, so that the coolant is not circulated in the heat exchanger 5, so that the coolant temperature 8 increases. There is no reduction, and the change width of the large temperature change (ΔTc2 ′) 10a of the semiconductor element case temperature 7 is also small (see FIG. 1B).

このように構成された液冷式電力変換装置は、温度変化幅(ΔTc)が低減され両対数グラフ故、耐繰り返し回数(N)は大幅に増大され、半導体素子の長寿命化が達成できる(図1(c)参照:半導体素子の温度変化繰り返しに対する寿命曲線、温度変化幅(ΔTc)と繰り返し回数(N)の両対数グラフ上で右下がりとなる)。 The liquid-cooled power converter configured in this way has a reduced temperature change width (ΔTc) and a double logarithmic graph, so that the number of repetitions (N) is greatly increased, and the life of the semiconductor element can be extended ( See FIG. 1C: Life curve with repeated temperature change of semiconductor element, temperature change width (ΔTc) and logarithmic graph of number of repetitions (N) descending to the right).

尚、本実施の形態の液冷式電力変換装置では、バイパス配管11より熱交換器5への流入側及び流出側となる配管2箇所にバルブを設け第2のバルブ12a、第3のバルブ12bとして説明したが、いずれか一方のみにバルブを設けても同様の作用、効果があることはいうまでもない。 In the liquid-cooled power converter according to the present embodiment, valves are provided at two locations on the inflow side and the outflow side from the bypass piping 11 to the heat exchanger 5, and the second valve 12 a and the third valve 12 b are provided. However, it goes without saying that the same action and effect can be obtained even if a valve is provided in only one of them.

このように構成された液冷式電力変換装置は、鉄道車両走行時には、前記半導体素子を強制的に冷却し、鉄道車両停車時には前記半導体素子を強制的には冷却していないので、半導体素子の温度変化幅が縮小され、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power conversion device configured as described above forcibly cools the semiconductor element when the railway vehicle is running and does not forcibly cool the semiconductor element when the railway vehicle is stopped. It is possible to provide a liquid-cooled power conversion device that has a reduced temperature change width and is optimal for extending the life of a semiconductor element.

(第2の実施の形態)
本発明に基づく第2の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図2は本発明の第2の実施の形態の液冷式電力変換装置の冷却配管系統図である。
(Second Embodiment)
A liquid cooling power converter according to a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 2 is a cooling piping system diagram of the liquid-cooled power converter according to the second embodiment of the present invention.

本発明に基づく第1の実施の形態の液冷式電力変換装置では、熱交換器5をバイパスするようにバイパス配管11を設けたが、ここでは液冷フィン2、熱交換器5の双方ともバイパスするようバイパス配管11aを設けた。つまり、ポンプ3への流入側及び流出側の2本の配管部分にポンプ3と並列にバイパス配管11aを接続し、この配管が液冷フィン2と熱交換器5とをバイパスした循環系を形成するよう開閉可能なバルブが設けたものであり、バイパス配管11aはその一端をポンプ3と液冷フィン2とを接続する配管に接続し、もう一端をポンプ3と熱交換器5を接続する配管に接続し、バイパス配管11aの途中に第1のバルブ12を設け、ポンプ3と液冷フィン2との配管のバイパス配管11a接続部よりも液冷フィン2側に第2のバルブ12cを設け、ポンプ3と熱交換器5間の配管のバイパス配管11a接続部よりも熱交換器5側に第3のバルブ12dを設けている。 In the liquid-cooled power converter according to the first embodiment of the present invention, the bypass pipe 11 is provided so as to bypass the heat exchanger 5, but here both the liquid-cooled fins 2 and the heat exchanger 5 are provided. A bypass pipe 11a is provided to bypass. That is, the bypass pipe 11a is connected in parallel with the pump 3 to the two pipe parts on the inflow side and the outflow side to the pump 3, and this pipe forms a circulation system bypassing the liquid cooling fin 2 and the heat exchanger 5. The bypass pipe 11a has one end connected to the pipe connecting the pump 3 and the liquid cooling fin 2, and the other end connected to the pump 3 and the heat exchanger 5. The first valve 12 is provided in the middle of the bypass pipe 11a, and the second valve 12c is provided on the liquid cooling fin 2 side of the bypass pipe 11a connection part of the pipe between the pump 3 and the liquid cooling fin 2, A third valve 12d is provided closer to the heat exchanger 5 than a bypass pipe 11a connecting portion of the pipe between the pump 3 and the heat exchanger 5.

このように構成された液冷式電力変換装置は、鉄道車両走行時は第2のバルブ12c、第3のバルブ12dを開き、第1のバルブ12を閉じて液冷フィン2及び熱交換器5側へ冷却液を循環させ、駅停止時は第2のバルブ12c、第3のバルブ12dを閉じ、第1のバルブ12を開いてバイパス配管11a側へ冷却液を循環させる。これにより、鉄道車両走行時はバイパス配管11aは閉じており液冷フィン2、熱交換器5側の循環系を冷却液が流れ、停止時にはバイパス配管11a側を冷却液が循環し液冷フィン2、熱交換器5側の冷却液が循環しないので冷却液の温度が大きく低減することが無く、半導体素子ケース温度の大きな温度変化(ΔTc2)の変化幅が小さくなり半導体素子の長寿命化が達成できる。つまり第1の実施の形態と同様の効果がある。 In the liquid-cooled power conversion device configured as described above, the second valve 12c and the third valve 12d are opened and the first valve 12 is closed and the liquid-cooled fins 2 and the heat exchanger 5 are opened when the railway vehicle is running. The coolant is circulated to the side, and when the station is stopped, the second valve 12c and the third valve 12d are closed, the first valve 12 is opened, and the coolant is circulated to the bypass pipe 11a side. As a result, the bypass pipe 11a is closed when the railway vehicle is running, and the coolant flows through the liquid cooling fin 2 and the circulation system on the heat exchanger 5 side, and when stopped, the coolant circulates through the bypass pipe 11a side and the liquid cooling fin 2 Since the coolant on the heat exchanger 5 side does not circulate, the temperature of the coolant does not greatly decrease, and the variation range of the large temperature change (ΔTc2) of the semiconductor element case temperature is reduced, thereby extending the life of the semiconductor element. it can. That is, there is an effect similar to that of the first embodiment.

このように構成された液冷式電力変換装置は、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power converter configured as described above can provide a liquid-cooled power converter optimal for extending the life of the semiconductor element.

尚、ここでもバイパスさせる為の第2のバルブ12c、第3のバルブ12dは何れか一方のみに設置しても同様の作用、効果がある。 In this case, even if the second valve 12c and the third valve 12d for bypassing are installed only in one of them, the same operation and effect are obtained.

(第3の実施の形態)
本発明に基づく第3の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図3は本発明の第3の実施の形態の液冷式電力変換装置の冷却配管系統図である。
(Third embodiment)
A liquid-cooled power converter according to a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 3 is a cooling piping system diagram of the liquid-cooled power converter according to the third embodiment of the present invention.

本発明に基づく第3の実施の形態の液冷式電力変換装置では、液冷フィン2をバイパスするようバイパス配管11bを設けた。バイパス配管11bはその一端をポンプ3と液冷フィン2を接続する配管に接続し、もう一端を液冷フィン2と熱交換器5を接続する配管に接続し、バイパス配管11bの途中に第1のバルブ12を設け、ポンプ3と液冷フィン2間の配管のバイパス配管11b接続部よりも液冷フィン2側に第2のバルブ12eを設け、液冷フィン2と熱交換器5間の配管のバイパス配管11b接続部よりも液冷フィン2側に第3のバルブ12fを設けている。鉄道車両走行時は第2のバルブ12e、第3のバルブ12fを開き、第1のバルブ12を閉じて液冷フィン2側へ冷却液を循環させ、駅停止時は第2のバルブ12e、第3のバルブ12fを閉じ、第1のバルブ12を開いてバイパス配管11b側へ冷却液を循環させるものである。これにより、鉄道車両停止時にはバイパス配管11b側を冷却液が循環し液冷フィン2の冷却液が循環しないので液冷フィン2内部の冷却液の温度が大きく低減することが無く、半導体素子ケース温度の大きな温度変化(ΔTc2)の変化幅が小さくなり、第1,2の実施の形態と同様、半導体素子の長寿命化が達成できる。つまり第1の実施の形態と同様の効果がある。又.駅停止時に液冷フィン2内部の冷却液は強制的に冷却されないが、ポンプ3、熱交換器5は冷却液が循環されており、熱交換器5から大気への熱放散は行われているので液冷フィン2内部以外の冷却液は強制冷却されている。この状態から鉄道車両が走行を再開すると、循環系は本来の配管(バイパス配管は閉じられる)となり、温度の低減された冷却液が冷却フィン2内部に流れ込み始めることになるので、鉄道車両走行し始めの急激な温度上昇を緩和する効果もある。 In the liquid-cooled power converter according to the third embodiment of the present invention, the bypass pipe 11b is provided so as to bypass the liquid-cooled fins 2. One end of the bypass pipe 11b is connected to the pipe connecting the pump 3 and the liquid cooling fin 2, the other end is connected to the pipe connecting the liquid cooling fin 2 and the heat exchanger 5, and the first bypass pipe 11b is in the middle of the bypass pipe 11b. The second valve 12e is provided closer to the liquid cooling fin 2 side than the bypass piping 11b connecting portion of the piping between the pump 3 and the liquid cooling fin 2, and the piping between the liquid cooling fin 2 and the heat exchanger 5 is provided. A third valve 12f is provided on the liquid cooling fin 2 side of the bypass pipe 11b connecting portion. When the railway vehicle is running, the second valve 12e and the third valve 12f are opened, the first valve 12 is closed and the coolant is circulated to the liquid cooling fin 2 side. When the station is stopped, the second valve 12e and the second valve 12f are circulated. The third valve 12f is closed and the first valve 12 is opened to circulate the coolant to the bypass pipe 11b side. As a result, when the railway vehicle is stopped, the coolant circulates on the bypass pipe 11b side and the coolant of the liquid cooling fin 2 does not circulate, so that the temperature of the coolant inside the liquid cooling fin 2 is not greatly reduced, and the semiconductor element case temperature The change width of the large temperature change (ΔTc2) becomes small, and the life of the semiconductor element can be extended as in the first and second embodiments. That is, there is an effect similar to that of the first embodiment. or. Although the cooling liquid inside the liquid cooling fin 2 is not forcibly cooled when the station is stopped, the cooling liquid is circulated in the pump 3 and the heat exchanger 5, and the heat dissipation from the heat exchanger 5 to the atmosphere is performed. Therefore, the cooling liquid other than the inside of the liquid cooling fin 2 is forcibly cooled. When the railway vehicle resumes running from this state, the circulation system becomes the original piping (bypass piping is closed), and the coolant with reduced temperature begins to flow into the cooling fins 2. It also has the effect of mitigating the initial rapid temperature rise.

このように構成された液冷式電力変換装置は、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power converter configured as described above can provide a liquid-cooled power converter optimal for extending the life of the semiconductor element.

尚、ここでもバイパスさせる為の第2のバルブ12e、第3のバルブ12fは何れか一方のみに設置しても同様の作用、効果がある。 Note that the second valve 12e and the third valve 12f for bypassing also have the same operation and effect even if they are installed only in one of them.

(第4の実施の形態)
本発明に基づく第4の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図4は本発明の第4の実施の形態の液冷式電力変換装置の冷却配管系統図である。
(Fourth embodiment)
A liquid-cooled power converter according to a fourth embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4 is a cooling piping system diagram of the liquid-cooled power converter according to the fourth embodiment of the present invention.

本発明に基づく第4の実施の形態の液冷式電力変換装置では、熱交換器5を強制送風する電動送風機6の動作を鉄道車両走行時と停止時とで異ならせることで半導体素子ケース温度の変化幅を低減させている。つまり電動送風機6は補助電源13により電力供給されるが、補助電源13と電動送風機6の間に設けたスイッチ14を開くことで駅停止時に電動送風機6を停止する、あるいは補助電源13を可変電圧可変周波数制御(以下VVVFと呼ぶ)可能な交流電源とすることで、鉄道車両停止時は熱交換器5に積極的に送風しないような電動送風機6の減速運転制御を行い、図1(b)に示したものと同様に半導体素子ケース温度の大きな温度変化を抑制することができる。加えてVVVF制御することで電動送風機の加減速運転がスムーズに行なえ、電動送風機起動時の突入電流の低減、電動送風機の信頼性向上につながるメリットもある。 In the liquid-cooled power conversion device according to the fourth embodiment of the present invention, the operation of the electric blower 6 that forcibly blows the heat exchanger 5 is made different between when the railway vehicle is running and when it is stopped. The width of change is reduced. That is, the electric blower 6 is supplied with power by the auxiliary power supply 13, but the switch 14 provided between the auxiliary power supply 13 and the electric blower 6 is opened to stop the electric blower 6 when the station stops, or the auxiliary power supply 13 can be set to a variable voltage. By using an AC power source capable of variable frequency control (hereinafter referred to as VVVF), the deceleration operation control of the electric blower 6 is performed so as not to actively blow air to the heat exchanger 5 when the railway vehicle is stopped. FIG. As in the case shown in FIG. 5, a large temperature change of the semiconductor element case temperature can be suppressed. In addition, by performing VVVF control, the acceleration / deceleration operation of the electric blower can be performed smoothly, and there is a merit that leads to a reduction in inrush current at the start of the electric blower and an improvement in the reliability of the electric blower.

このように構成された液冷式電力変換装置は、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power converter configured as described above can provide a liquid-cooled power converter optimal for extending the life of the semiconductor element.

(第5の実施の形態)
本発明に基づく第5の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図5は本発明の第5の実施の形態の液冷式電力変換装置の冷却配管系統図である。
(Fifth embodiment)
A liquid-cooled power converter according to a fifth embodiment of the present invention will be described in detail with reference to the drawings. FIG. 5 is a cooling piping system diagram of the liquid-cooled power converter according to the fifth embodiment of the present invention.

本発明に基づく第5の実施の形態の液冷式電力変換装置は、これまで説明してきた他の実施の形態と異なり配管系統は従来装置の配管系統と同一であるが、ポンプ3の動作を鉄道車両走行時と停止時とで異ならせることで半導体素子ケース温度の変化幅を低減させている。つまりポンプ3は補助電源13aにより電力供給されるが、補助電源13aとポンプ3の間に設けたスイッチ14aを開くことで駅停止時にポンプ3を停止する、あるいは補助電源13aをVVVF制御可能な交流電源とすることで、鉄道車両停止時は冷却液を積極的に冷却しないようなポンプ3の減速運転制御を行い、図1(b)に示したものと同様に半導体素子ケース温度の大きな温度変化を抑制することができる。 Unlike the other embodiments that have been described so far, the liquid-cooled power converter according to the fifth embodiment of the present invention has the same piping system as the piping system of the conventional apparatus. The difference in temperature of the semiconductor element case is reduced by making the difference between when the railway vehicle is running and when it is stopped. In other words, the pump 3 is supplied with power by the auxiliary power source 13a, but the pump 3 is stopped when the station stops by opening a switch 14a provided between the auxiliary power source 13a and the pump 3, or the auxiliary power source 13a can be controlled by VVVF. By using the power source, the operation of the pump 3 is controlled so that the coolant is not actively cooled when the railway vehicle is stopped. As in the case shown in FIG. Can be suppressed.

このように構成された液冷式電力変換装置は、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power converter configured as described above can provide a liquid-cooled power converter optimal for extending the life of the semiconductor element.

(第6の実施の形態)
本発明に基づく第6の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図6は本発明の第6の実施の形態の液冷式電力変換装置の冷却配管系統図である。
(Sixth embodiment)
A liquid-cooled power converter according to a sixth embodiment of the present invention will be described in detail with reference to the drawings. FIG. 6 is a cooling piping system diagram of the liquid-cooled power converter according to the sixth embodiment of the present invention.

本発明に基づく第6の実施の形態の液冷式電力変換装置において、前述第4の実施の形態と同様に、電動送風機6に電力供給を行なう補助電源13はVVVF制御可能な交流電源であり、液冷フィン2の半導体素子1近傍に設けた温度検知手段15の情報により、補助電源13はVVVF制御される。 In the liquid-cooled power converter of the sixth embodiment based on the present invention, the auxiliary power source 13 for supplying power to the electric blower 6 is an AC power source capable of VVVF control, as in the fourth embodiment. The auxiliary power supply 13 is VVVF controlled by the information of the temperature detection means 15 provided near the semiconductor element 1 of the liquid cooling fin 2.

このように構成された液冷式電力変換装置は、半導体素子1の温度上昇値変化量を所定の値以下となるよう温度検知手段15で監視することで、鉄道車両停止時だけでなく走行中も、電動送風機6の加減速運転制御を行い、半導体素子ケース温度の大きな温度変化を抑制することができる。 The liquid-cooled power conversion device configured as described above is not only running when the railway vehicle is stopped, but also when the temperature detection means 15 monitors the temperature rise value change amount of the semiconductor element 1 to be a predetermined value or less. In addition, the acceleration / deceleration operation control of the electric blower 6 can be performed, and a large temperature change of the semiconductor element case temperature can be suppressed.

このように構成された液冷式電力変換装置は、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power converter configured as described above can provide a liquid-cooled power converter optimal for extending the life of the semiconductor element.

(第7の実施の形態)
本発明に基づく第7の実施の形態の液冷式電力変換装置について、図を参照し詳細に説明する。図7は本発明の第7の実施の形態の液冷式電力変換装置の冷却配管系統図である。
(Seventh embodiment)
A liquid-cooled power converter according to a seventh embodiment of the present invention will be described in detail with reference to the drawings. FIG. 7 is a cooling piping system diagram of the liquid-cooled power converter according to the seventh embodiment of the present invention.

本発明に基づく第7の実施の形態の液冷式電力変換装置において、前述第5の実施の形態と同様に、ポンプ3に電力供給を行なう補助電源13aは、VVVF制御可能な交流電源であり、液冷フィン2の半導体素子1近傍に設けた温度検知手段15の情報により、補助電源13aはVVVF制御される。 In the liquid-cooled power converter according to the seventh embodiment based on the present invention, the auxiliary power supply 13a for supplying power to the pump 3 is an AC power supply capable of VVVF control, as in the fifth embodiment. The auxiliary power supply 13a is VVVF controlled by information from the temperature detecting means 15 provided in the vicinity of the semiconductor element 1 of the liquid cooling fin 2.

このように構成された液冷式電力変換装置は、半導体素子1の温度上昇値変化量を所定の値以下となるよう温度検知手段15で監視することで、鉄道車両停止時だけでなく走行中も、ポンプ3の加減速運転制御を行い、半導体素子ケース温度の大きな温度変化を抑制することができる。 The liquid-cooled power conversion device configured as described above is not only running when the railway vehicle is stopped, but also when the temperature detection means 15 monitors the temperature rise value change amount of the semiconductor element 1 to be a predetermined value or less. In addition, the acceleration / deceleration operation control of the pump 3 can be performed, and a large temperature change of the semiconductor element case temperature can be suppressed.

このように構成された液冷式電力変換装置は、半導体素子の長寿命化に最適な液冷式電力変換装置を提供することができる。 The liquid-cooled power converter configured as described above can provide a liquid-cooled power converter optimal for extending the life of the semiconductor element.

(a)本発明に基づく第1の実施の形態の液冷式電力変換装置の構成図である。(A) It is a block diagram of the liquid cooling type power converter device of 1st Embodiment based on this invention.

(b)本発明に基づく第1の実施の形態の液冷式電力変換装置の半導体素子ケース温度(冷
却フィンとの接触面)7と冷却液の温度8の変化をあらわす図である。
(B) It is a figure showing the change of the semiconductor element case temperature (contact surface with a cooling fin) 7 and the temperature 8 of a cooling fluid of the liquid cooling type power converter device of 1st Embodiment based on this invention.

(c)半導体素子の温度変化繰り返しに対する寿命曲線である。
本発明に基づく第2の実施の形態の液冷式電力変換装置の構成図である。 本発明に基づく第3の実施の形態の液冷式電力変換装置の構成図である。 本発明に基づく第4の実施の形態の液冷式電力変換装置の構成図である。 本発明に基づく第5の実施の形態の液冷式電力変換装置の構成図である。 本発明に基づく第6の実施の形態の液冷式電力変換装置の構成図である。 本発明に基づく第7の実施の形態の液冷式電力変換装置の構成図である。 (a)従来の液冷式電力変換装置の構成図である。
(C) It is a lifetime curve with respect to the temperature change repetition of a semiconductor element.
It is a block diagram of the liquid cooling type power converter device of 2nd Embodiment based on this invention. It is a block diagram of the liquid cooling type power converter device of 3rd Embodiment based on this invention. It is a block diagram of the liquid cooling type power converter device of 4th Embodiment based on this invention. It is a block diagram of the liquid cooling type power converter device of 5th Embodiment based on this invention. It is a block diagram of the liquid cooling type power converter device of 6th Embodiment based on this invention. It is a block diagram of the liquid cooling type power converter device of 7th Embodiment based on this invention. (A) It is a block diagram of the conventional liquid cooling type power converter device.

(b)従来の液冷式電力変換装置の半導体素子ケース温度(冷却フィンとの接触面)7と冷却
液の温度8の変化をあらわす図である。
(B) It is a figure showing the change of the semiconductor element case temperature (contact surface with a cooling fin) 7 and the temperature 8 of a cooling fluid of the conventional liquid cooling type power converter.

符号の説明Explanation of symbols

1・・・半導体素子
2・・・液冷フィン
3・・・ポンプ
4・・・配管、
5・・・熱交換器
6・・・電動送風機
7・・・半導体素子ケース温度(冷却フィンとの接触面)
8・・・冷却液の温度
9・・・半導体素子ケース温度の小さな温度変化(ΔTc1)
10,10a・・・半導体素子ケース温度の大きな温度変化(ΔTc2)
11,11a,11b・・・バイパス配管
12,12a,12b,12c,12d,12e,12f・・・バルブ
13,13a・・・補助電源
14,14a・・・スイッチ
15・・・温度検知手段
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 2 ... Liquid cooling fin 3 ... Pump 4 ... Piping,
5 ... Heat exchanger 6 ... Electric blower 7 ... Semiconductor element case temperature (contact surface with cooling fin)
8 ... Coolant temperature 9 ... Small temperature change of semiconductor element case temperature (ΔTc1)
10, 10a: Large temperature change of semiconductor element case temperature (ΔTc2)
11, 11a, 11b ... Bypass piping 12, 12a, 12b, 12c, 12d, 12e, 12f ... Valve 13, 13a ... Auxiliary power supply 14, 14a ... Switch 15 ... Temperature detection means

Claims (8)

半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、
前記冷却体と前記熱交換器と前記ポンプの順に、冷却液が流れるように設けられ、前記冷却体と前記熱交換器と前記ポンプとを接続する配管と、
前記熱交換器をバイパスし、前記冷却体と前記ポンプの順に冷却液が流れるように設けられたバイパス配管と、
前記バイパス配管に設けられ、開閉可能な第1のバルブと、
前記熱交換機への流入側の前記配管に設けられ、開閉可能な第2のバルブと、
前記熱交換器からの流出側の前記配管に設けられ、開閉可能な第3のバルブとを有し、
鉄道車両走行時には、前記第1のバルブを閉じ、前記第2のバルブ及び前記第3のバルブを開き、鉄道車両停止時は、前記第1のバルブを開き、前記第2のバルブ及び前記第3のバルブを閉じることを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger;
A pipe for connecting the cooling body, the heat exchanger, and the pump;
Bypass piping provided to bypass the heat exchanger, and the coolant flows in the order of the cooling body and the pump;
A first valve which is provided in the bypass pipe and can be opened and closed;
A second valve that is provided in the pipe on the inflow side to the heat exchanger and can be opened and closed;
A third valve which is provided in the pipe on the outflow side from the heat exchanger and can be opened and closed;
When the railway vehicle is running, the first valve is closed, the second valve and the third valve are opened, and when the railway vehicle is stopped, the first valve is opened, and the second valve and the third valve are opened. A liquid-cooled power converter characterized by closing the valve.
半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、
前記冷却体と前記熱交換器と前記ポンプの順に、冷却液が流れるように設けられ、前記冷却体と前記熱交換器と前記ポンプとを接続する配管と、
前記ポンプをバイパスし、前記冷却体と前記熱交換器間で冷却液が循環するように設けられたバイパス配管と、
前記バイパス配管に設けられ、開閉可能な第1のバルブと、
前記ポンプへの流入側の前記配管に設けられ、開閉可能な第2のバルブと、
前記ポンプからの流出側の前記配管に設けられ、開閉可能な第3のバルブとを有し、
鉄道車両走行時には、前記第1のバルブを閉じ、前記第2のバルブ及び前記第3のバルブを開き、鉄道車両停止時は、前記第1のバルブを開き、前記第2のバルブ及び前記第3のバルブを閉じることを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger;
A pipe for connecting the cooling body, the heat exchanger, and the pump;
Bypass piping provided to bypass the pump and to circulate coolant between the cooling body and the heat exchanger;
A first valve which is provided in the bypass pipe and can be opened and closed;
A second valve that is provided in the pipe on the inflow side to the pump and can be opened and closed;
A third valve that is provided in the pipe on the outflow side from the pump and can be opened and closed;
When the railway vehicle is running, the first valve is closed, the second valve and the third valve are opened, and when the railway vehicle is stopped, the first valve is opened, and the second valve and the third valve are opened. A liquid-cooled power converter characterized by closing the valve.
半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、
前記冷却体と前記熱交換器と前記ポンプの順に、冷却液が流れるように設けられ、前記冷却体と前記熱交換器と前記ポンプとを接続する配管と、
前記冷却体をバイパスし、前記ポンプと前記熱交換器間で冷却液が循環するように設けられたバイパス配管と、
前記バイパス配管に設けられ、開閉可能な第1のバルブと、
前記冷却体への流入側の前記配管に設けられ、開閉可能な第2のバルブと、
前記冷却体からの流出側の前記配管に設けられ、開閉可能な第3のバルブとを有し、
鉄道車両走行時には、前記第1のバルブを閉じ、前記第2のバルブ及び前記第3のバルブを開き、鉄道車両停止時は、前記第1のバルブを開き、前記第2のバルブ及び前記第3のバルブを閉じることを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger;
A pipe for connecting the cooling body, the heat exchanger, and the pump;
Bypass piping provided to bypass the cooling body and to circulate coolant between the pump and the heat exchanger;
A first valve which is provided in the bypass pipe and can be opened and closed;
A second valve that is provided in the pipe on the inflow side to the cooling body and can be opened and closed;
A third valve that is provided in the pipe on the outflow side from the cooling body and can be opened and closed;
When the railway vehicle is running, the first valve is closed, the second valve and the third valve are opened, and when the railway vehicle is stopped, the first valve is opened, and the second valve and the third valve are opened. A liquid-cooled power converter characterized by closing the valve.
半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、
前記熱交換器を冷却する送風機とを有し、
鉄道車両走行時は、前記送風機を運転し、鉄道車両の停止時には前記送風機を停止することを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger;
A fan for cooling the heat exchanger,
A liquid-cooled power conversion device that operates the blower when traveling on a railway vehicle and stops the blower when the railway vehicle stops.
半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプとを有し、
鉄道車両走行時は、前記ポンプを運転し、鉄道車両の停止時には前記ポンプを停止することを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger,
A liquid-cooled power converter, wherein the pump is operated when the railway vehicle is running, and the pump is stopped when the railway vehicle is stopped.
半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、
前記熱交換器を冷却する送風機と
前記半導体素子の温度を検出する温度検地手段とを有し、
前記温度検知手段により検知された前記半導体素子の温度変化を抑制するように前記送風機が加減速運転を行うことを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger;
A fan for cooling the heat exchanger and a temperature detecting means for detecting the temperature of the semiconductor element;
The liquid-cooled power conversion apparatus, wherein the blower performs an acceleration / deceleration operation so as to suppress a temperature change of the semiconductor element detected by the temperature detection means.
半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプと、
前記熱交換器を冷却する送風機と
前記半導体素子の温度を検出する温度検地手段とを有し、
前記温度検知手段により検知された前記半導体素子の温度変化を抑制するように前記ポンプが加減速運転を行うことを特徴とする液冷式電力変換装置。
A cooling body having a flow path in which a semiconductor element is attached and a coolant flows therein;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger;
A fan for cooling the heat exchanger and a temperature detecting means for detecting the temperature of the semiconductor element;
The liquid-cooled power conversion device, wherein the pump performs an acceleration / deceleration operation so as to suppress a temperature change of the semiconductor element detected by the temperature detection means.
スイッチングを行う半導体素子と、
前記半導体素子が取り付けられ内部に冷却液の流れる流路を有する冷却体と、
前記冷却体と空気との間で熱交換を行う熱交換器と、
前記冷却体及び前記熱交換器へ冷却液を循環させるためのポンプとを有し、
鉄道車両走行時には、前記半導体素子を強制的に冷却し、鉄道車両停車時には前記半導体素子を強制的には冷却せず、自冷させることを特徴とする液冷式電力変換装置。
A semiconductor element for switching;
A cooling body to which the semiconductor element is attached and having a flow path through which a coolant flows;
A heat exchanger for exchanging heat between the cooling body and air;
A pump for circulating a coolant to the cooling body and the heat exchanger,
A liquid-cooled power conversion apparatus characterized in that the semiconductor element is forcibly cooled when traveling on a railway vehicle, and the semiconductor element is not cooled forcibly but is cooled when the railway vehicle is stopped.
JP2003401852A 2003-12-01 2003-12-01 Liquid-cooled type power converter Pending JP2005168134A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003401852A JP2005168134A (en) 2003-12-01 2003-12-01 Liquid-cooled type power converter
CNB2004100979884A CN100367494C (en) 2003-12-01 2004-12-01 Liquid cooling type power transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401852A JP2005168134A (en) 2003-12-01 2003-12-01 Liquid-cooled type power converter

Publications (1)

Publication Number Publication Date
JP2005168134A true JP2005168134A (en) 2005-06-23

Family

ID=34725639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401852A Pending JP2005168134A (en) 2003-12-01 2003-12-01 Liquid-cooled type power converter

Country Status (2)

Country Link
JP (1) JP2005168134A (en)
CN (1) CN100367494C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062694A (en) * 2005-09-02 2007-03-15 Toshiba Corp Liquid-cooled type electric power converting device for railroad car
US7263848B2 (en) * 2005-08-24 2007-09-04 Delphi Technologies, Inc. Heat pump system
CN106787631A (en) * 2017-03-08 2017-05-31 无锡市优利康电气有限公司 A kind of liquid air-cooled variable-frequency device
CN112910222A (en) * 2021-02-04 2021-06-04 苏州汇川技术有限公司 Heat radiation structure and converter
WO2021109296A1 (en) * 2019-12-05 2021-06-10 株洲中车时代电气股份有限公司 Frequency converter cooling system, apparatus in which frequency converter is applied, and cooling control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504052B2 (en) * 1996-02-14 2004-03-08 株式会社日立製作所 Power converter for electric vehicles
JPH10160368A (en) * 1996-11-22 1998-06-19 Nec Corp Heat pipe type cooler
JP2001320187A (en) * 2000-02-29 2001-11-16 Matsushita Electric Ind Co Ltd Liquid type cooler for electronic part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263848B2 (en) * 2005-08-24 2007-09-04 Delphi Technologies, Inc. Heat pump system
JP2007062694A (en) * 2005-09-02 2007-03-15 Toshiba Corp Liquid-cooled type electric power converting device for railroad car
JP4643399B2 (en) * 2005-09-02 2011-03-02 株式会社東芝 Liquid-cooled power converter for railway vehicles
CN106787631A (en) * 2017-03-08 2017-05-31 无锡市优利康电气有限公司 A kind of liquid air-cooled variable-frequency device
WO2021109296A1 (en) * 2019-12-05 2021-06-10 株洲中车时代电气股份有限公司 Frequency converter cooling system, apparatus in which frequency converter is applied, and cooling control method
CN112910222A (en) * 2021-02-04 2021-06-04 苏州汇川技术有限公司 Heat radiation structure and converter

Also Published As

Publication number Publication date
CN100367494C (en) 2008-02-06
CN1649137A (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP5197713B2 (en) Cooling system
US8908375B2 (en) Cooler of power converting device for railroad vehicle
JP2006224879A (en) Vehicle cooling system
JP4912512B1 (en) Cooling device and power conversion device
JPH11313406A (en) Cooler for hybrid vehicle
JP2014117121A (en) Cooling device, cooling method, and railway vehicle
JP2005117819A (en) Power conversion device for electric vehicle
JP2005168134A (en) Liquid-cooled type power converter
WO2016031089A1 (en) Drive system
WO2006019343A1 (en) Method and arrangement for cooling
JP2004332988A (en) Inverter device
JP6693476B2 (en) Cooling system
JP5875995B2 (en) Driving device for railway vehicles
JP2021154844A (en) Thermal management system
JP4052256B2 (en) Temperature control device
JP2005163758A (en) Heat exchange device
JP2013084648A (en) Cooling system
JP4819457B2 (en) Condensation prevention system for inverter device
JP2004324445A (en) Combined cooling system for hybrid vehicle
JP2005304151A (en) Forced air-cooling power converter
CN111247360B (en) Thermal control device
CN113400887A (en) Thermal management device
KR101130812B1 (en) Water Cooling System for Tube Train
JP2009215005A (en) Elevator system
KR100842834B1 (en) A cooling apparatuf for electric apparatus of hyprid automobile

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090529