JP2005167281A - 半導体チップの製造方法 - Google Patents

半導体チップの製造方法 Download PDF

Info

Publication number
JP2005167281A
JP2005167281A JP2005045950A JP2005045950A JP2005167281A JP 2005167281 A JP2005167281 A JP 2005167281A JP 2005045950 A JP2005045950 A JP 2005045950A JP 2005045950 A JP2005045950 A JP 2005045950A JP 2005167281 A JP2005167281 A JP 2005167281A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
cutting
region
laser
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045950A
Other languages
English (en)
Other versions
JP3761566B2 (ja
Inventor
Fumitsugu Fukuyo
文嗣 福世
Kenji Fukumitsu
憲志 福満
Naoki Uchiyama
直己 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2005045950A priority Critical patent/JP3761566B2/ja
Publication of JP2005167281A publication Critical patent/JP2005167281A/ja
Application granted granted Critical
Publication of JP3761566B2 publication Critical patent/JP3761566B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

【課題】 半導体デバイスの製造工程における切断によって機能素子が破壊されるのを防止することのできる半導体チップの製造方法を提供する。
【解決手段】 半導体基板1の内部に集光点を合わせてレーザ光を照射することにより、半導体基板1において第1の方向に延在する複数の切断予定ラインのそれぞれに沿って半導体基板1の内部に溶融処理領域(切断起点領域9a)を形成すると共に、半導体基板1において第1の方向と交差する第2の方向に延在する複数の切断予定ラインのそれぞれに沿って半導体基板1の内部に溶融処理領域(切断起点領域9b)を形成する。そして、それらの溶融処理領域(切断起点領域9a,9b)を切断の起点として切断予定ラインに沿って半導体基板1を切断することにより、溶融処理領域(切断起点領域9a,9b)が形成された切断面で囲まれた複数の半導体チップを得る。
【選択図】 図11

Description

本発明は、半導体基板を切断することにより複数の半導体チップを得る半導体チップの製造方法に関する。
半導体デバイスの製造工程においては、シリコンウェハ等の半導体基板上に複数の機能素子を形成した後に、ダイヤモンドブレードにより半導体基板を機能素子毎に切断し(切削加工)、半導体チップを得るのが一般的である(例えば、特許文献1参照)。
また、上記ダイヤモンドブレードによる切断に代えて、半導体基板に対して吸収性を有するレーザ光を半導体基板に照射し、加熱溶融により半導体基板を切断することもある(加熱溶融加工)(例えば、特許文献2参照)。
特開2001−7054号公報 特開平10−163780号公報
しかしながら、上述した切削加工や加熱溶融加工による半導体基板の切断は、半導体基板上に機能素子を形成した後に行われるため、例えば切断時に発生する熱を原因として機能素子が破壊されるおそれがある。
そこで、本発明は、このような事情に鑑みてなされたものであり、半導体デバイスの製造工程における切断によって機能素子が破壊されるのを防止することのできる半導体チップの製造方法を提供することを目的とする。
上記目的を達成するために、本発明に係る半導体チップの製造方法は、半導体基板の内部に集光点を合わせてレーザ光を照射することにより、半導体基板において第1の方向に延在する複数の第1の切断予定ラインのそれぞれに沿って半導体基板の内部に第1の改質領域を形成すると共に、半導体基板において第1の方向と交差する第2の方向に延在する複数の第2の切断予定ラインのそれぞれに沿って半導体基板の内部に第2の改質領域を形成する工程と、第1及び第2の改質領域を切断の起点として第1及び第2の切断予定ラインに沿って半導体基板を切断することにより、第1又は第2の改質領域が形成された切断面で囲まれた複数の半導体チップを得る工程と、を備えることを特徴とする。
この半導体チップの製造方法よれば、レーザ光の照射により第1及び第2の改質領域が半導体基板の内部に形成されるが、このようなレーザ光の照射においては、半導体基板の表面ではレーザ光がほとんど吸収されないため、半導体基板の表面が溶融することはない。したがって、半導体デバイスの製造工程において、従来通り半導体基板の表面に機能素子を形成することが可能になる。さらに、この半導体チップの製造方法によれば、第1及び第2の改質領域が半導体基板の内部に形成される。半導体基板の内部に第1及び第2の改質領域が形成されると、第1及び第2の改質領域を起点として比較的小さな力で半導体基板に割れが発生するため、第1及び第2の切断予定ラインに沿って高い精度で半導体基板を割って切断することができる。したがって、半導体デバイスの製造工程において、従来のような機能素子形成後の切削加工や加熱溶融加工が不要となり、半導体基板の切断による機能素子の破壊を防止することが可能になる。なお、第1及び第2の改質領域は溶融処理領域である場合がある。
本発明に係る半導体チップの製造方法によれば、半導体デバイスの製造工程における切断によって機能素子が破壊されるのを防止することができる。
以下、図面と共に本発明の好適な実施形態について詳細に説明する。本実施形態に係る半導体基板及び半導体チップを構成するに際しては、半導体基板の内部に集光点を合わせてレーザ光を照射し、半導体基板の内部に多光子吸収による改質領域を形成する、というレーザ加工方法を使用する。そこで、このレーザ加工方法、特に多光子吸収について最初に説明する。
材料の吸収のバンドギャップEよりも光子のエネルギーhνが小さいと光学的に透明となる。よって、材料に吸収が生じる条件はhν>Eである。しかし、光学的に透明でも、レーザ光の強度を非常に大きくするとnhν>Eの条件(n=2,3,4,・・・)で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm)で決まり、例えばピークパワー密度が1×10(W/cm)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm)で決まる。
このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について、図1〜図6を参照して説明する。図1はレーザ加工中の半導体基板1の平面図であり、図2は図1に示す半導体基板1のII−II線に沿った断面図であり、図3はレーザ加工後の半導体基板1の平面図であり、図4は図3に示す半導体基板1のIV−IV線に沿った断面図であり、図5は図3に示す半導体基板1のV−V線に沿った断面図であり、図6は切断された半導体基板1の平面図である。
図1及び図2に示すように、半導体基板1の表面3には、半導体基板1を切断すべき所望の切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である(半導体基板1に実際に線を引いて切断予定ライン5としてもよい)。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で半導体基板1の内部に集光点Pを合わせてレーザ光Lを半導体基板1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。
レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3〜図5に示すように改質領域7が切断予定ライン5に沿って半導体基板1の内部にのみ形成され、この改質領域7でもって切断起点領域(切断予定部)9が形成される。本実施形態に係るレーザ加工方法は、半導体基板1がレーザ光Lを吸収することにより半導体基板1を発熱させて改質領域7を形成するのではない。半導体基板1にレーザ光Lを透過させ半導体基板1の内部に多光子吸収を発生させて改質領域7を形成している。よって、半導体基板1の表面3ではレーザ光Lがほとんど吸収されないので、半導体基板1の表面3が溶融することはない。
半導体基板1の切断において、切断する箇所に起点があると半導体基板1はその起点から割れるので、図6に示すように比較的小さな力で半導体基板1を切断することができる。よって、半導体基板1の表面3に不必要な割れを発生させることなく半導体基板1の切断が可能となる。
なお、切断起点領域を起点とした半導体基板の切断には、次の2通りが考えられる。1つは、切断起点領域形成後、半導体基板に人為的な力が印加されることにより、切断起点領域を起点として半導体基板が割れ、半導体基板が切断される場合である。これは、例えば半導体基板の厚さが大きい場合の切断である。人為的な力が印加されるとは、例えば、半導体基板の切断起点領域に沿って半導体基板に曲げ応力やせん断応力を加えたり、半導体基板に温度差を与えることにより熱応力を発生させたりすることである。他の1つは、切断起点領域を形成することにより、切断起点領域を起点として半導体基板の断面方向(厚さ方向)に向かって自然に割れ、結果的に半導体基板が切断される場合である。これは、例えば半導体基板の厚さが小さい場合には、1列の改質領域により切断起点領域が形成されることで可能となり、半導体基板の厚さが大きい場合には、厚さ方向に複数列形成された改質領域により切断起点領域が形成されることで可能となる。なお、この自然に割れる場合も、切断する箇所において、切断起点領域が形成されていない部位に対応する部分の表面上にまで割れが先走ることがなく、切断起点領域を形成した部位に対応する部分のみを割断することができるので、割断を制御よくすることができる。近年、シリコンウェハ等の半導体基板の厚さは薄くなる傾向にあるので、このような制御性のよい割断方法は大変有効である。
さて、本実施形態において多光子吸収により形成される改質領域としては、次に説明する溶融処理領域がある。
半導体基板の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。これにより半導体基板の内部は多光子吸収によって局所的に加熱される。この加熱により半導体基板の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。半導体基板がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。
本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。
(A)半導体基板:シリコンウェハ(厚さ350μm、外径4インチ)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:20μJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
倍率:50倍
N.A.:0.55
レーザ光波長に対する透過率:60パーセント
(D)半導体基板が載置される載置台の移動速度:100mm/秒
図7は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域13の厚さ方向の大きさは100μm程度である。
溶融処理領域13が多光子吸収により形成されたことを説明する。図8は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さtが50μm、100μm、200μm、500μm、1000μmの各々について上記関係を示した。
例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが500μm以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図7に示すシリコンウェハ11の厚さは350μmであるので、多光子吸収による溶融処理領域13はシリコンウェハの中心付近、つまり表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13が多光子吸収により形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁〜第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている。
なお、シリコンウェハは、溶融処理領域でもって形成される切断起点領域を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面とに到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達するこの割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。なお、切断起点領域からシリコンウェハの表面と裏面とに割れが自然に成長する場合には、切断起点領域を形成する溶融処理領域が溶融している状態から割れが成長する場合と、切断起点領域を形成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図7のように内部にのみ溶融処理領域が形成されている。半導体基板の内部に溶融処理領域でもって切断起点領域を形成すると、割断時、切断起点領域ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。
以上、多光子吸収により形成される改質領域として溶融処理領域の場合を説明したが、半導体基板の結晶構造やその劈開性などを考慮して切断起点領域を次のように形成すれば、その切断起点領域を起点として、より一層小さな力で、しかも精度良く半導体基板を切断することが可能になる。
すなわち、シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場合は、(111)面(第1劈開面)や(110)面(第2劈開面)に沿った方向に切断起点領域を形成するのが好ましい。また、GaAsなどの閃亜鉛鉱型構造のIII−V族化合物半導体からなる基板の場合は、(110)面に沿った方向に切断起点領域を形成するのが好ましい。
なお、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板における(111)面に沿った方向)、或いは切断起点領域を形成すべき方向に直交する方向に沿って半導体基板にオリエンテーションフラットを形成すれば、そのオリエンテーションフラットを基準とすることで、切断起点領域を形成すべき方向に沿った切断起点領域を容易且つ正確に半導体基板に形成することが可能になる。
上述したレーザ加工方法に使用されるレーザ加工装置について、図9を参照して説明する。図9はレーザ加工装置100の概略構成図である。
レーザ加工装置100は、レーザ光Lを発生するレーザ光源101と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、レーザ光Lの反射機能を有しかつレーザ光Lの光軸の向きを90°変えるように配置されたダイクロイックミラー103と、ダイクロイックミラー103で反射されたレーザ光Lを集光する集光用レンズ105と、集光用レンズ105で集光されたレーザ光Lが照射される半導体基板1が載置される載置台107と、載置台107を回転させるためのθステージ108と、載置台107をX軸方向に移動させるためのX軸ステージ109と、載置台107をX軸方向に直交するY軸方向に移動させるためのY軸ステージ111と、載置台107をX軸及びY軸方向に直交するZ軸方向に移動させるためのZ軸ステージ113と、これら4つのステージ108,109,111,113の移動を制御するステージ制御部115とを備える。
載置台107は、半導体基板1を赤外線で照明するために赤外線を発生する赤外透過照明116と、半導体基板1が赤外透過照明116による赤外線で照明されるよう、半導体基板1を赤外透過照明116上に支持する支持部107aとを有している。
なお、Z軸方向は半導体基板1の表面3と直交する方向なので、半導体基板1に入射するレーザ光Lの焦点深度の方向となる。よって、Z軸ステージ113をZ軸方向に移動させることにより、半導体基板1の表面3や内部にレーザ光Lの集光点Pを合わせることができる。また、この集光点PのX(Y)軸方向の移動は、半導体基板1をX(Y)軸ステージ109(111)によりX(Y)軸方向に移動させることにより行う。
レーザ光源101はパルスレーザ光を発生するNd:YAGレーザである。レーザ光源101に用いることができるレーザとして、この他、Nd:YVOレーザ、Nd:YLFレーザやチタンサファイアレーザがある。溶融処理領域を形成する場合には、Nd:YAGレーザ、Nd:YVOレーザ、Nd:YLFレーザを用いるのが好適である。本実施形態では、半導体基板1の加工にパルスレーザ光を用いているが、多光子吸収を起こさせることができるなら連続波レーザ光でもよい。
レーザ加工装置100はさらに、載置台107に載置された半導体基板1を可視光線により照明するために可視光線を発生する観察用光源117と、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された可視光用のビームスプリッタ119とを備える。ビームスプリッタ119と集光用レンズ105との間にダイクロイックミラー103が配置されている。ビームスプリッタ119は、可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可視光線の光軸の向きを90°変えるように配置されている。観察用光源117から発生した可視光線はビームスプリッタ119で約半分が反射され、この反射された可視光線がダイクロイックミラー103及び集光用レンズ105を透過し、半導体基板1の切断予定ライン5等を含む表面3を照明する。
レーザ加工装置100はさらに、ビームスプリッタ119、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された撮像素子121及び結像レンズ123を備える。撮像素子121としては例えばCCDカメラがある。切断予定ライン5等を含む表面3を照明した可視光線の反射光は、集光用レンズ105、ダイクロイックミラー103、ビームスプリッタ119を透過し、結像レンズ123で結像されて撮像素子121で撮像され、撮像データとなる。なお、半導体基板1を赤外透過照明116による赤外線で照明すると共に、後述する撮像データ処理部125により結像レンズ123及び撮像素子121の観察面を半導体基板1の内部に合わせれば、半導体基板1の内部を撮像して半導体基板1の内部の撮像データを取得することもできる。
レーザ加工装置100はさらに、撮像素子121から出力された撮像データが入力される撮像データ処理部125と、レーザ加工装置100全体を制御する全体制御部127と、モニタ129とを備える。撮像データ処理部125は、撮像データを基にして観察用光源117で発生した可視光の焦点を表面3上に合わせるための焦点データを演算する。この焦点データを基にしてステージ制御部115がZ軸ステージ113を移動制御することにより、可視光の焦点が表面3に合うようにする。よって、撮像データ処理部125はオートフォーカスユニットとして機能する。また、撮像データ処理部125は、撮像データを基にして表面3の拡大画像等の画像データを演算する。この画像データは全体制御部127に送られ、全体制御部で各種処理がなされ、モニタ129に送られる。これにより、モニタ129に拡大画像等が表示される。
全体制御部127には、ステージ制御部115からのデータ、撮像データ処理部125からの画像データ等が入力し、これらのデータも基にしてレーザ光源制御部102、観察用光源117及びステージ制御部115を制御することにより、レーザ加工装置100全体を制御する。よって、全体制御部127はコンピュータユニットとして機能する。
以下、実施例により、本発明についてより具体的に説明する。
[半導体基板の実施例1]
本発明に係る半導体基板の実施例1について、図10〜図13を参照して説明する。図10は実施例1に係る半導体基板1の斜視図であり、図11は図10に示す半導体基板1のXI−XI線に沿った断面図であり、図12は図10に示す半導体基板1のXII−XII線に沿った断面図であり、図13は図10に示す半導体基板1の表面に設けられたレーザマークの写真を表した図である。
実施例1に係る半導体基板1は、厚さ350μm、外径4インチの円板状のシリコンウェハであり、図10に示すように、半導体基板1の周縁部の一部が直線となるよう切り欠かれてオリエンテーションフラット(以下「OF」という)15が形成されている。
図11に示すように、半導体基板1の内部には、OF15に平行な方向に延びる切断起点領域9aが、半導体基板1の内部における外径の中心(以下「基準原点」という)から所定の間隔毎に複数形成されている。また、半導体基板1の内部には、OF15に垂直な方向に延びる切断起点領域9bが基準原点から所定の間隔毎に複数形成されている。切断起点領域9aは、図12に示すように、半導体基板1の内部にのみ形成され、半導体基板1の表面3及び裏面17には達していない。このことは、切断起点領域9bについても同様である。切断起点領域9a及び切断起点領域9bのそれぞれは、半導体基板1の内部に1列となるよう形成された溶融処理領域でもって形成されている。
図10に示すように、半導体基板1の表面3における基準原点直上の位置には、レーザマーク19が設けられている。このレーザマーク19とOF15との両者により、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置を把握することができる。すなわち、レーザマーク19とOF15との両者は、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置を識別するための識別マークとして機能する。なお、レーザマーク19の形成場所は、切断起点領域上に設ける他に、半導体基板に形成される回路等の機能部位以外の場所や、半導体基板の周縁部の半導体デバイスとして利用しない部位に形成してもよい。そして、レーザマーク19は、ソフトマーキングと呼ばれる発塵や熱影響のないクリーンなレーザマーキング方式によって半導体基板1の表面3を溶かし込むことで形成され、図13に示すように、レーザマーク19は直径1μmの凹状のものである。
次に、上述したレーザ加工装置100による半導体基板1の製造方法について、図9及び図14を参照して説明する。図14は半導体基板1の製造方法を説明するためのフローチャートである。
まず、半導体基板1の光吸収特性を図示しない分光光度計等により測定する。この測定結果に基づいて、半導体基板1の表面3にレーザマーク19を形成するためのレーザ光と、半導体基板1に対して透明な波長又は吸収の少ない波長のレーザ光Lとを発生するレーザ光源101をそれぞれ選定する(S101)。続いて、半導体基板1の厚さを測定する。厚さの測定結果及び半導体基板1の屈折率を基にして、半導体基板1のZ軸方向の移動量を決定する(S103)。これは、半導体基板1に対して透明な波長又は吸収の少ない波長のレーザ光Lの集光点Pを半導体基板1の内部に位置させるために、半導体基板1の表面3に位置するレーザ光Lの集光点Pを基準とした半導体基板1のZ軸方向の移動量である。この移動量は全体制御部127に入力される。
半導体基板1をレーザ加工装置100の載置台107の支持部材107a上に載置する。そして、観察用光源117から可視光を発生させて半導体基板1を照明する(S105)。照明された半導体基板1の表面3を撮像素子121により撮像する。撮像素子121により撮像された撮像データは撮像データ処理部125に送られる。この撮像データに基づいて撮像データ処理部125は観察用光源117の可視光の焦点が表面3に位置するような焦点データを演算する(S107)。
この焦点データはステージ制御部115に送られる。ステージ制御部115は、この焦点データを基にしてZ軸ステージ113をZ軸方向の移動させる(S109)。これにより、観察用光源117の可視光の焦点が半導体基板1の表面3に位置する。なお、撮像データ処理部125は、撮像データに基づいて半導体基板1の表面3の拡大画像データを演算する。この拡大画像データは全体制御部127を介してモニタ129に送られ、これによりモニタ129に半導体基板1の表面3の拡大画像が表示される。
続いて、半導体基板1のOF15の方向がYステージ111のストローク方向に一致するよう、θステージ108により半導体基板1を回転させる(S111)。さらに、半導体基板1の表面3にレーザマーク19を形成するためのレーザ光の集光点が、半導体基板1の表面3における基準原点直上の位置となるよう、X軸ステージ109、Y軸ステージ111及びZ軸ステージ113により半導体基板1を移動させる(S113)。この状態でレーザ光を照射し、半導体基板1の表面3における基準原点直上の位置にレーザマーク19を形成する(S115)。
その後、ステップS103で決定され全体制御部127に予め入力された移動量データが、ステージ制御部115に送られる。ステージ制御部115はこの移動量データに基づいて、レーザ光Lの集光点Pが半導体基板1の内部となる位置に、Z軸ステージ113により半導体基板1をZ軸方向に移動させる(S117)。
続いて、レーザ光源101からレーザ光Lを発生させて、レーザ光Lを半導体基板1に照射する。レーザ光Lの集光点Pは半導体基板1の内部に位置しているので、溶融処理領域は半導体基板1の内部にのみ形成される。そして、X軸ステージ109やY軸ステージ111により半導体基板1を移動させて、半導体基板1の内部に、OF15に平行な方向に延びる切断起点領域9a及びOF15に垂直な方向に延びる切断起点領域9bのそれぞれを、基準原点から所定の間隔毎に複数形成し(S119)、実施例1に係る半導体基板1が製造される。
なお、半導体基板1を赤外透過照明116による赤外線で照明すると共に、撮像データ処理部125により結像レンズ123及び撮像素子121の観察面を半導体基板1の内部に合わせれば、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bを撮像して撮像データを取得し、モニタ129に表示させることもできる。
以上説明したように、実施例1に係る半導体基板1は、半導体基板1の内部に集光点Pが合わされ、集光点Pにおけるピークパワー密度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光Lが照射されることで、半導体基板1の内部に多光子吸収による溶融処理領域が形成されている。この多光子吸収を発生し得るレーザ光Lの照射においては、半導体基板1の表面3ではレーザ光Lがほとんど吸収されないため、半導体基板1の表面3が溶融することはない。したがって、半導体デバイスの製造工程においては、従来通りの工程によって、半導体基板1の表面3に機能素子を形成することができる。なお、半導体基板1の裏面17も溶融されることはないので、半導体基板1の裏面17を半導体基板1の表面3と同様に扱うことができるのは勿論である。
また、実施例1に係る半導体基板1は、溶融処理領域でもって切断起点領域9a及び切断起点領域9bが半導体基板1の内部に形成されている。半導体基板1の内部に溶融処理領域が形成されていると、溶融処理領域を起点として比較的小さな力で半導体基板1に割れが発生するため、切断起点領域9a及び切断起点領域9bに沿って高い精度で半導体基板1を割って切断することができる。よって、半導体デバイスの製造工程においては、従来のような機能素子形成後の切削加工や加熱溶融加工が不要となり、例えば、切断起点領域9a及び切断起点領域9bに沿うよう半導体基板1の裏面17にナイフエッジを当てるだけで半導体基板1を切断することができる。したがって、機能素子形成後の半導体基板1の切断による機能素子の破壊を防止することができる。
さらに、実施例1に係る半導体基板1においては、レーザマーク19とOF15との両者が、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置の基準となっている。したがって、半導体デバイスの製造工程においては、レーザマーク19とOF15とに基づいて、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置を把握し、機能素子のパターンニングや半導体基板1の切断等を行うことができる。
なお、半導体基板1の内部に溶融処理領域が形成されると、意識的に外力を印加しなくても、溶融処理領域を起点として(すなわち、切断起点領域9a及び切断起点領域9bに沿って)、半導体基板1の内部に割れが発生する場合がある。この割れが半導体基板1の表面3及び裏面17に到達するか否かは、半導体基板1の厚さ方向における溶融処理領域の位置や、半導体基板1の厚さに対する溶融処理領域の大きさ等に関係する。したがって、半導体基板1の内部に形成する溶融処理領域の位置や大きさ等を調節することによって、半導体デバイスの製造工程において半導体基板1がハンドリングされたりヒートサイクルを経たりすることで、半導体基板1の表面3及び裏面17に割れが到達しないよう、或いは切断直前に半導体基板1の表面3及び裏面17に割れが到達するよう、種々の制御を行うことができる。
[半導体基板の実施例2]
本発明に係る半導体基板の実施例2について、図15〜図18を参照して説明する。実施例2に係る半導体基板1は、厚さ350μm、外径4インチの円板状のGaAsウェハであり、図15に示すように、半導体基板1の周縁部の一部が直線となるよう切り欠かれてOF15が形成されている。
この半導体基板1は、外縁に沿った外縁部31(図15の2点鎖線の外側部分)を有し、この外縁部31の内側部分32(図15の2点鎖線の内側部分)の内部には、実施例1に係る半導体基板1と同様に、OF15と平行な方向に延びる複数本の切断起点領域9aと、OF15に垂直な方向に延びる複数本の切断起点領域9bとが形成されている。このように、内側部分32の内部に切断起点領域9a,9bが格子状に形成されることで、内側部分32は多数の矩形状の区画部33に仕切られる。
半導体デバイスの製造工程においては、この区画部33毎に機能素子が形成され、その後、切断起点領域9a,9bに沿って半導体基板1が切断されて、各区画部33が個々の半導体チップに対応することとなる。
そして、図16に示すように、多数の区画部33のうち、外縁部31側に位置する区画部33の外縁部31側の角部分33aにおいては、切断起点領域9aと切断起点領域9bが交差して形成されている。すなわち、角部分33aにおいて、切断起点領域9aは切断起点領域9bを超えて終端しており、切断起点領域9bは切断起点領域9aを超えて終端している。なお、「多数の区画部33のうち、外縁部31側に位置する区画部33」とは、換言すれば「多数の区画部33のうち、外縁部31に隣接して形成された区画部33」ということもできる。
次に、実施例2に係る半導体基板1の製造方法について説明する。図17に示すように、半導体基板1の内側部分32と同等の形状を有する開口部35が形成されたマスク36を用意する。そして、内側部分32が開口部35から露出するように半導体基板1にマスク36を重ねる。これにより、半導体基板1の外縁部31がマスク36で覆われることになる。
この状態で、例えば上述のレーザ加工装置100を用いて、半導体基板1の内部に集光点を合わせてレーザ光を照射し、半導体基板1の内部に多光子吸収による溶融処理領域を形成することで、半導体基板1のレーザ光入射面(すなわち、マスク36の開口部35から露出する半導体基板1の表面)から所定距離内側に切断起点領域9a,9bを形成する。
このとき、レーザ光の走査ラインとなる切断予定ライン5を、OF15を基準として格子状に設定するが、各切断予定ライン5の始点5a及び終点5bをマスク36上に位置させれば、半導体基板1の内側部分32に対して確実に且つ同等の条件でレーザ光が照射されることになる。これにより、内側部分32の内部に形成される溶融処理領域をいずれの場所でもほぼ同等の形成状態とすることができ、精密な切断起点領域9a,9bを形成することが可能になる。
なお、マスク36を用いずに、半導体基板1の内側部分32と外縁部31との境界付近に各切断予定ライン5の始点5a及び終点5bを位置させて、各切断予定ライン5に沿ってレーザ光の照射を行うことにより、内側部分32の内部に切断起点領域9a,9bを形成することも可能である。
以上説明したように、実施例2に係る半導体基板1によれば、実施例1に係る半導体基板1と同様の理由により、半導体デバイスの製造工程において、半導体基板1の表面に機能素子を形成することができ、且つ機能素子形成後における半導体基板1の切断による機能素子の破壊を防止することができる。
しかも、半導体基板1の内側部分32の内部に切断起点領域9a,9bが形成され、外縁部31には切断起点領域9a,9bが形成されていないことから、半導体基板1全体としての機械的強度が向上することになる。したがって、半導体基板1の搬送工程や機能素子形成のための加熱工程等において、半導体基板1が不測の下に切断されてしまうという事態を防止することができる。
また、外縁部31側に位置する区画部33の角部分33aにおいては、切断起点領域9a,9bが交差して形成されているため、角部分33aにおいても、当該区画部33の他の部分と同様に切断起点領域9a,9bの形成が確実且つ良好なものとなる。したがって、半導体基板1を切断した際に当該区画部33に対応する半導体チップにチッピングやクラッキングが発生するのを防止することができる。
また、図18に示すように、切断起点領域9a,9bは半導体基板1の内部に収まり、外部には露出しないため、切断起点領域9a,9bを構成する溶融処理領域を形成する際にガスが発生するようなことも防止される。
さらに、切断起点領域9a,9bを構成する溶融処理領域が半導体基板1の内部に形成されていることで、不純物を捕獲するゲッタリング効果が期待され、半導体デバイスの製造工程において、重金属等の不純物をデバイス活性領域から取り除くことが可能になる。このことは、実施例1に係る半導体基板1についても同様である。
[半導体チップ、及び半導体デバイスの製造方法の実施例]
本発明に係る半導体チップ、及び半導体デバイスの製造方法の実施例について、図19を参照して説明する。図19は、実施例に係る半導体チップ21の斜視図である。
実施例1に係る半導体チップ21は、次に示すようにして形成されたものである。すなわち、上述した実施例1又は実施例2に係る半導体基板1を用い、半導体デバイスの製造工程において、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置をレーザマーク19とOF15とに基づいて把握し、パターンニングにより半導体基板1の表面3に複数の機能素子23を形成する。そして、プローブテスト等の検査工程を経た後に、レーザマーク19とOF15とに基づいて切断起点領域9a及び切断起点領域9bに沿うよう半導体基板1の裏面17にナイフエッジを当てて半導体基板1を切断し、半導体チップ21を得る。
このように形成された半導体チップ21は、図19に示すように、その周縁部が切断面25により囲まれており、半導体チップ21の端面のうち切断面25に切断起点領域9a又は切断起点領域9bを有している。切断起点領域9a及び切断起点領域9bは共に、溶融処理領域でもって形成されているため、半導体チップ21は、切断面25に溶融処理領域を有していることになる。
以上説明したように、実施例に係る半導体チップ21によれば、溶融処理領域により切断面25が保護されるため、切断面25におけるチッピングやクラッキングの発生を防止することができる。また、半導体チップ21の周縁部が切断面25により囲まれているため、半導体チップ21の周縁部が溶融処理領域により囲まれることとなり、これにより、半導体チップ21の抗折強度を向上させることができる。
以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されないことはいうまでもない。
上記実施形態では、半導体基板の内部に形成された切断起点領域の位置を識別するための識別マークとして、半導体基板の表面にレーザマーク及びOFを設けたが、例えば、レーザマークを複数設けたり、或いはラインを引いたり等、種々の方法で半導体基板の表面に識別マークを設けることができる。
また、上記実施形態は、切断起点領域が半導体基板の内部に格子状に形成された場合であったが、切断起点領域はレーザ加工により形成されるため、任意の形状のラインに沿って切断起点領域を形成することができる。
さらに、上記実施形態の半導体チップは、周縁部が切断面で囲まれたものであったが、周縁部の一部のみが切断面であっても、溶融処理領域により切断面におけるチッピングやクラッキングの発生が防止され、半導体チップの抗折強度が向上することとなる。
本実施形態に係るレーザ加工方法によるレーザ加工中の半導体基板の平面図である。 図1に示す半導体基板のII−II線に沿った断面図である。 本実施形態に係るレーザ加工方法によるレーザ加工後の半導体基板の平面図である。 図3に示す半導体基板のIV−IV線に沿った断面図である。 図3に示す半導体基板のV−V線に沿った断面図である。 本実施形態に係るレーザ加工方法により切断された半導体基板の平面図である。 本実施形態に係るレーザ加工方法により切断されたシリコンウェハの一部における断面の写真を表した図である。 本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 本実施形態に係るレーザ加工装置の概略構成図である。 実施例1に係る半導体基板の斜視図である。 図10に示す半導体基板のXI−XI線に沿った断面図である。 図10に示す半導体基板のXII−XII線に沿った断面図である。 図10に示す半導体基板の表面に設けられたレーザマークの写真を表した図である。 実施例1に係る半導体基板の製造方法を説明するためのフローチャートである。 実施例2に係る半導体基板の平面図である。 図15に示す半導体基板の要部拡大図である。 図15に示す半導体基板の製造方法を説明するための平面図である。 図15に示す半導体基板のXVIII−XVIII線に沿った断面図である。 実施例に係る半導体チップの斜視図である。
符号の説明
1…半導体基板、5…切断予定ライン、7…改質領域、13…溶融処理領域、21…半導体チップ、25…切断面、L…レーザ光、P…集光点。

Claims (2)

  1. 半導体基板の内部に集光点を合わせてレーザ光を照射することにより、前記半導体基板において第1の方向に延在する複数の第1の切断予定ラインのそれぞれに沿って前記半導体基板の内部に第1の改質領域を形成すると共に、前記半導体基板において前記第1の方向と交差する第2の方向に延在する複数の第2の切断予定ラインのそれぞれに沿って前記半導体基板の内部に第2の改質領域を形成する工程と、
    前記第1及び前記第2の改質領域を切断の起点として前記第1及び前記第2の切断予定ラインに沿って前記半導体基板を切断することにより、前記第1又は前記第2の改質領域が形成された切断面で囲まれた複数の半導体チップを得る工程と、を備えることを特徴とする半導体チップの製造方法。
  2. 前記第1及び前記第2の改質領域は溶融処理領域であることを特徴とする請求項1記載の半導体チップの製造方法。
JP2005045950A 2002-03-12 2005-02-22 半導体チップの製造方法 Expired - Lifetime JP3761566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045950A JP3761566B2 (ja) 2002-03-12 2005-02-22 半導体チップの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002067348 2002-03-12
JP2005045950A JP3761566B2 (ja) 2002-03-12 2005-02-22 半導体チップの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003574373A Division JP4509573B2 (ja) 2002-03-12 2003-03-11 半導体基板、半導体チップ、及び半導体デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2005167281A true JP2005167281A (ja) 2005-06-23
JP3761566B2 JP3761566B2 (ja) 2006-03-29

Family

ID=34740943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045950A Expired - Lifetime JP3761566B2 (ja) 2002-03-12 2005-02-22 半導体チップの製造方法

Country Status (1)

Country Link
JP (1) JP3761566B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116323A1 (en) * 2008-05-07 2009-11-11 Sumco Corporation Method of producing semiconductor wafer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116323A1 (en) * 2008-05-07 2009-11-11 Sumco Corporation Method of producing semiconductor wafer
US8124501B2 (en) 2008-05-07 2012-02-28 Sumco Corporation Method of producing semiconductor wafer

Also Published As

Publication number Publication date
JP3761566B2 (ja) 2006-03-29

Similar Documents

Publication Publication Date Title
JP4509573B2 (ja) 半導体基板、半導体チップ、及び半導体デバイスの製造方法
JP4606741B2 (ja) 加工対象物切断方法
JP4322881B2 (ja) レーザ加工方法及びレーザ加工装置
JP3722731B2 (ja) レーザ加工方法
JP4837320B2 (ja) 加工対象物切断方法
JP3762409B2 (ja) 基板の分割方法
JP3626442B2 (ja) レーザ加工方法
JP4050534B2 (ja) レーザ加工方法
JP3670267B2 (ja) レーザ加工方法
JP4664140B2 (ja) レーザ加工方法
JP4851060B2 (ja) 半導体レーザ素子の製造方法
JP4659301B2 (ja) レーザ加工方法
JP2005159378A (ja) レーザ加工方法
JP3990710B2 (ja) レーザ加工方法
JP4167094B2 (ja) レーザ加工方法
JP2008012542A (ja) レーザ加工方法
JP4509720B2 (ja) レーザ加工方法
JP3867109B2 (ja) レーザ加工方法
JP3751970B2 (ja) レーザ加工装置
JP3990711B2 (ja) レーザ加工装置
JP3761566B2 (ja) 半導体チップの製造方法
JP3867110B2 (ja) レーザ加工方法
JP3867108B2 (ja) レーザ加工装置
JP2006165594A (ja) 半導体材料基板の切断方法
JP2006165593A (ja) 半導体材料基板の切断方法

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3761566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term