JP2005167072A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005167072A
JP2005167072A JP2003405856A JP2003405856A JP2005167072A JP 2005167072 A JP2005167072 A JP 2005167072A JP 2003405856 A JP2003405856 A JP 2003405856A JP 2003405856 A JP2003405856 A JP 2003405856A JP 2005167072 A JP2005167072 A JP 2005167072A
Authority
JP
Japan
Prior art keywords
semiconductor chip
electrode
wiring
region
mounting region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003405856A
Other languages
Japanese (ja)
Other versions
JP4128945B2 (en
Inventor
Tomohiro Tamaoki
友博 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003405856A priority Critical patent/JP4128945B2/en
Publication of JP2005167072A publication Critical patent/JP2005167072A/en
Application granted granted Critical
Publication of JP4128945B2 publication Critical patent/JP4128945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems: a mutual contact of a sealing resin of adjacent semiconductor chips in a flip chip type MCM package lowers a connection reliability to prevent a distance between the semiconductor chips from narrowing, which cannot increase a packaging density of the semiconductor chips in the package, or the like. <P>SOLUTION: A substrate thickness 18 of a region for mounting a semiconductor chip A1 and a substrate thickness 19 of a region for mounting a semiconductor chip B2 of a wiring board 6 greater than a substrate thickness 20 of a region 21 for not mounting the semiconductor chip makes the height of the surface of the region for mounting the semiconductor chip A1 and the height of the surface of the region for mounting the semiconductor chip B2 greater than the height of the surface of the region 21 for not mounting the semiconductor chip. The resin 8 protruding from the semiconductor chip A1 and the semiconductor chip B2 flows out to the region 21 lower than the mounting region and the region 21 for not mounting the semiconductor chip, which can eliminate a connection defect caused by an increase in thermal stress added to the projecting electrode 4 by a thermal shock test. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof.

携帯電子機器のサイズダウンが加速し、1つのパッケージ内に複数の半導体チップや電子部品を搭載した、マルチチップモジュール(MCM)、およびキャビティ構造パッケージの需要が高まっている。   With the downsizing of portable electronic devices, the demand for multi-chip modules (MCM) and cavity structure packages in which a plurality of semiconductor chips and electronic components are mounted in one package is increasing.

従来のMCMの一般的な製造方法を、図7から図8を用いて説明する。   A general method for manufacturing a conventional MCM will be described with reference to FIGS.

図7(a)のように、半導体チップA1および半導体チップB2それぞれの外部電極3に突起電極4を形成する。   As shown in FIG. 7A, the protruding electrode 4 is formed on the external electrode 3 of each of the semiconductor chip A1 and the semiconductor chip B2.

図7(b)のように、半導体チップA1および半導体チップB2それぞれの突起電極4に導電性接着剤5を塗布する。   As shown in FIG. 7B, the conductive adhesive 5 is applied to the protruding electrodes 4 of the semiconductor chip A1 and the semiconductor chip B2.

図7(c)のように、半導体チップA1および半導体チップB2を、突起電極4と配線基板6上の配線パターン7を位置合わせして接着する。   As shown in FIG. 7C, the semiconductor chip A <b> 1 and the semiconductor chip B <b> 2 are bonded by aligning the protruding electrode 4 and the wiring pattern 7 on the wiring substrate 6.

図8(a)のように、半導体チップA1および半導体チップB2の側面から樹脂8を注入し、半導体チップA1および半導体チップB2と配線基板6との隙間に充填し、充填後の樹脂8を熱硬化させ、MCMの組立が完了する。このとき、半導体チップA1からはみだした樹脂長さ9および、半導体チップB2からはみだした樹脂長さ10の合計長さを、半導体チップA1および半導体チップB2間の距離11を超えないようにする必要がある。半導体チップA1からはみだした樹脂長さ9および、半導体チップB2からはみだした樹脂長さ10は、通常約0.5mmである。そのため、半導体チップA1および半導体チップB2間の距離11は、1.0mm以上にしなければならない。   As shown in FIG. 8A, the resin 8 is injected from the side surfaces of the semiconductor chip A1 and the semiconductor chip B2, filled into the gaps between the semiconductor chip A1 and the semiconductor chip B2, and the wiring board 6, and the resin 8 after filling is heated. Cure and complete MCM assembly. At this time, it is necessary that the total length of the resin length 9 protruding from the semiconductor chip A1 and the resin length 10 protruding from the semiconductor chip B2 does not exceed the distance 11 between the semiconductor chip A1 and the semiconductor chip B2. is there. The resin length 9 protruding from the semiconductor chip A1 and the resin length 10 protruding from the semiconductor chip B2 are usually about 0.5 mm. Therefore, the distance 11 between the semiconductor chip A1 and the semiconductor chip B2 must be 1.0 mm or more.

理由は、図8(b)のように、半導体チップA1および半導体チップB2間の距離11が1.0mmより狭くなったときに、信頼性上の不具合が発生するためである。すなわち、半導体チップA1および半導体チップB2間の距離11が小さくなり、半導体チップA1からはみだした樹脂長さ9および、半導体チップB2からはみだした樹脂長さ10の合計長さが、半導体チップA1および半導体チップB2間の距離11を超えた場合、半導体チップA1からはみだした樹脂8および半導体チップB2からはみだした樹脂8が互いにつながる。その場合、熱衝撃試験において突起電極4に加わる熱応力が増大し、接続不良が発生することが、実験および応力シミュレーションにより判っているためである。   The reason is that, as shown in FIG. 8B, when the distance 11 between the semiconductor chip A1 and the semiconductor chip B2 becomes narrower than 1.0 mm, a problem in reliability occurs. That is, the distance 11 between the semiconductor chip A1 and the semiconductor chip B2 is reduced, and the total length of the resin length 9 protruding from the semiconductor chip A1 and the resin length 10 protruding from the semiconductor chip B2 is the semiconductor chip A1 and the semiconductor chip. When the distance 11 between the chips B2 is exceeded, the resin 8 protruding from the semiconductor chip A1 and the resin 8 protruding from the semiconductor chip B2 are connected to each other. In this case, it is known from experiments and stress simulation that the thermal stress applied to the protruding electrode 4 in the thermal shock test increases and a connection failure occurs.

次に、従来のキャビティ構造パッケージの一般的な製造方法を、図9から図11を用いて説明する。   Next, a general manufacturing method of a conventional cavity structure package will be described with reference to FIGS.

図9(a)のように、半導体チップ12の外部電極3に突起電極4を形成する。   As shown in FIG. 9A, the protruding electrode 4 is formed on the external electrode 3 of the semiconductor chip 12.

図9(b)のように、半導体チップ12の突起電極4に導電性接着剤5を塗布する。   As shown in FIG. 9B, the conductive adhesive 5 is applied to the protruding electrodes 4 of the semiconductor chip 12.

図9(c)のように、半導体チップ12を、突起電極4と、凹型のキャビティ13を有する配線基板6の配線パターン7を位置合わせして接着する。   As shown in FIG. 9C, the semiconductor chip 12 is bonded by aligning the protruding electrode 4 and the wiring pattern 7 of the wiring substrate 6 having the concave cavity 13.

図10(a)のように、半導体チップ12の側面から樹脂8を注入し、半導体チップ12と凹型のキャビティ13の底面との隙間に充填し、充填後の樹脂8を熱硬化させる。このとき、半導体チップ12からはみだした樹脂長さ14を、半導体チップ12と凹型のキャビティ13の側壁間の距離15を超えないように、キャビティ寸法を大きく設定する必要がある。半導体チップ12からはみだした樹脂長さ14は、通常約0.5mmである。そのため、半導体チップ12とキャビティ13の側壁間の距離15は、0.5mm以上必要となる。   As shown in FIG. 10A, the resin 8 is injected from the side surface of the semiconductor chip 12, filled into the gap between the semiconductor chip 12 and the bottom surface of the concave cavity 13, and the filled resin 8 is thermally cured. At this time, it is necessary to set the cavity size large so that the resin length 14 protruding from the semiconductor chip 12 does not exceed the distance 15 between the sidewalls of the semiconductor chip 12 and the concave cavity 13. The resin length 14 protruding from the semiconductor chip 12 is usually about 0.5 mm. Therefore, the distance 15 between the semiconductor chip 12 and the side wall of the cavity 13 is required to be 0.5 mm or more.

理由は、図10(b)のように、半導体チップ12からはみだした樹脂8とキャビティ13の側壁16とがつながった場合、熱衝撃試験において突起電極4に加わる熱応力が増大し、接続不良が発生するためである。   The reason is that, as shown in FIG. 10B, when the resin 8 protruding from the semiconductor chip 12 and the side wall 16 of the cavity 13 are connected, the thermal stress applied to the protruding electrode 4 in the thermal shock test increases, resulting in poor connection. This is because it occurs.

続いて、図11のように、配線基板6のキャビティ13の反対面に電子部品17を接続して、キャビティ構造パッケージの組立が完了する。電子部品17を配線基板6に接続する方法は、はんだ付け、フリップチップなどである。   Subsequently, as shown in FIG. 11, an electronic component 17 is connected to the opposite surface of the cavity 13 of the wiring board 6 to complete the assembly of the cavity structure package. The method of connecting the electronic component 17 to the wiring board 6 is soldering, flip chip, or the like.

このように組立てたキャビティ構造パッケージは、入出力端子23を、マザーボードにはんだ付けなどにより実装した状態で、電子機器として用いられる。
特開平08−335593号公報 特許第3061014号公報
The cavity structure package assembled in this way is used as an electronic device in a state where the input / output terminals 23 are mounted on the mother board by soldering or the like.
Japanese Patent Laid-Open No. 08-335593 Japanese Patent No. 3061014

上記従来のMCM構造では、図8(b)のように隣接する半導体チップA1および半導体チップB2間の距離11を短くすると、熱衝撃試験において不具合が出るため、パッケージ(半導体装置)の小型化ができない、あるいは、1つのパッケージ内の半導体チップの搭載密度を高められないという課題があった。   In the above conventional MCM structure, if the distance 11 between the adjacent semiconductor chip A1 and the semiconductor chip B2 is shortened as shown in FIG. 8B, a defect occurs in the thermal shock test, so that the package (semiconductor device) can be downsized. There is a problem that the mounting density of semiconductor chips in one package cannot be increased.

また、従来の凹型のキャビティ13を有するパッケージ構造では、図10(b)のように半導体チップ12とキャビティ13の側壁間の距離15を短くすると、熱衝撃試験において不具合が出るため、パッケージ(半導体装置)の小型化ができないという課題があった。   Further, in the conventional package structure having the concave cavity 13, if the distance 15 between the semiconductor chip 12 and the side wall of the cavity 13 is shortened as shown in FIG. There was a problem that the device could not be downsized.

本発明の目的は、MCM構造や凹型のキャビティを有するパッケージ構造において、小型化が可能あるいは半導体チップの搭載密度を高められる半導体装置およびその製造方法を提供することである。   An object of the present invention is to provide a semiconductor device that can be miniaturized or that can increase the mounting density of semiconductor chips in a package structure having an MCM structure or a concave cavity, and a method for manufacturing the same.

本発明の第1の半導体装置は、一表面に第1の配線電極が形成された第1の半導体チップ搭載領域と第2の配線電極が形成された第2の半導体チップ搭載領域とを間隔をあけて有する配線基板の第1の配線電極と第1の半導体チップの電極とが第1の突起電極を介して電気的に接続され、配線基板の第2の配線電極と第2の半導体チップの電極とが第2の突起電極を介して電気的に接続され、配線基板と第1の半導体チップとの間に第1の樹脂が充填され、配線基板と第2の半導体チップとの間に第2の樹脂が充填された半導体装置であって、配線基板の一表面側における第1の半導体チップ搭載領域および第2の半導体チップ搭載領域の表面高さを、第1の半導体チップ搭載領域および第2の半導体チップ搭載領域を除く領域の表面高さよりも高くしたことを特徴とする。   The first semiconductor device of the present invention provides a gap between the first semiconductor chip mounting region in which the first wiring electrode is formed on one surface and the second semiconductor chip mounting region in which the second wiring electrode is formed. The first wiring electrode of the wiring substrate that is opened and the electrode of the first semiconductor chip are electrically connected via the first protruding electrode, and the second wiring electrode of the wiring substrate and the second semiconductor chip are connected to each other. The electrode is electrically connected via the second protruding electrode, the first resin is filled between the wiring board and the first semiconductor chip, and the first resin is filled between the wiring board and the second semiconductor chip. 2 is a semiconductor device filled with resin, and the surface heights of the first semiconductor chip mounting region and the second semiconductor chip mounting region on the one surface side of the wiring board are set to the first semiconductor chip mounting region and the first semiconductor chip mounting region. The surface height of the area excluding the semiconductor chip mounting area 2 Characterized in that it was also high.

本発明の第2の半導体装置は、一表面に凹部が形成され、凹部の底面中央部に配線電極が形成された半導体チップ搭載領域を有する配線基板の配線電極と半導体チップの電極とが突起電極を介して電気的に接続され、配線基板と半導体チップとの間に樹脂が充填され、配線基板の凹部の底面を囲む凸部の先端面に配線電極と電気的に接続された入出力端子が形成された半導体装置であって、一表面側における配線基板の凹部の底面中央部の半導体チップ搭載領域の表面高さを、半導体チップ搭載領域を除く凹部の底面周辺部の表面高さよりも高くしたことを特徴とする。   According to the second semiconductor device of the present invention, the wiring electrode of the wiring board having the semiconductor chip mounting region in which the concave portion is formed on one surface and the wiring electrode is formed at the center of the bottom surface of the concave portion and the electrode of the semiconductor chip are protruding electrodes An input / output terminal electrically connected to the wiring electrode is provided on the front end surface of the convex portion surrounding the bottom surface of the concave portion of the wiring substrate. In the formed semiconductor device, the surface height of the semiconductor chip mounting region at the center of the bottom surface of the recess of the wiring board on one surface side is made higher than the surface height of the peripheral portion of the bottom surface of the recess excluding the semiconductor chip mounting region It is characterized by that.

本発明の第3の半導体装置の製造方法は、一表面に第1の配線電極が形成された第1の半導体チップ搭載領域と第2の配線電極が形成された第2の半導体チップ搭載領域とを間隔をあけて有し、一表面側における第1の半導体チップ搭載領域および第2の半導体チップ搭載領域の表面高さを、第1の半導体チップ搭載領域および第2の半導体チップ搭載領域を除く領域の表面高さよりも高くした配線基板を用意する工程と、配線基板の第1の配線電極と第1の半導体チップの電極とを第1の突起電極を介して電気的に接続し、配線基板の第2の配線電極と第2の半導体チップの電極とを第2の突起電極を介して電気的に接続する工程と、配線基板と第1の半導体チップとの間に第1の樹脂を注入し、配線基板と第2の半導体チップとの間に第2の樹脂を注入する工程とを含むものである。   According to a third method of manufacturing a semiconductor device of the present invention, a first semiconductor chip mounting region in which a first wiring electrode is formed on one surface and a second semiconductor chip mounting region in which a second wiring electrode is formed; And the surface heights of the first semiconductor chip mounting region and the second semiconductor chip mounting region on one surface side are excluded from the first semiconductor chip mounting region and the second semiconductor chip mounting region. A step of preparing a wiring board having a height higher than the surface height of the region, and electrically connecting the first wiring electrode of the wiring board and the electrode of the first semiconductor chip via the first protruding electrode; Electrically connecting the second wiring electrode and the electrode of the second semiconductor chip via the second protruding electrode, and injecting the first resin between the wiring substrate and the first semiconductor chip And between the wiring board and the second semiconductor chip. It is intended to include a step of injecting the resin.

本発明の第4の半導体装置の製造方法は、一表面に凹部が形成され、凹部の底面中央部に配線電極が形成された半導体チップ搭載領域を有し、凹部の底面を囲む凸部の先端面に配線電極と電気的に接続された入出力端子が形成され、一表面側における配線基板の凹部の底面中央部の半導体チップ搭載領域の表面高さを、半導体チップ搭載領域を除く凹部の底面周辺部の表面高さよりも高くした配線基板を用意する工程と、配線基板の配線電極と半導体チップの電極とを突起電極を介して電気的に接続する工程と、配線基板と半導体チップとの間に樹脂を注入する工程とを含むものである。   The fourth method of manufacturing a semiconductor device according to the present invention includes a semiconductor chip mounting region in which a recess is formed on one surface and a wiring electrode is formed at the center of the bottom of the recess, and the tip of the protrusion surrounding the bottom of the recess An input / output terminal electrically connected to the wiring electrode is formed on the surface, and the surface height of the semiconductor chip mounting region at the center of the bottom surface of the concave portion of the wiring board on one surface side is set to the bottom surface of the concave portion excluding the semiconductor chip mounting region. A step of preparing a wiring board having a height higher than the surface height of the peripheral portion, a step of electrically connecting the wiring electrode of the wiring board and the electrode of the semiconductor chip via a protruding electrode, and between the wiring board and the semiconductor chip And a step of injecting a resin.

第1の半導体装置および第3の半導体装置の製造方法によれば、配線基板の一表面側に第1と第2の半導体チップを搭載するMCM構造において、配線基板の一表面側における第1の半導体チップ搭載領域および第2の半導体チップ搭載領域の表面高さを、第1の半導体チップ搭載領域および第2の半導体チップ搭載領域を除く領域の表面高さよりも高くしていることによって、第1の半導体チップ搭載領域と第2の半導体チップ搭載領域との間隔を狭くしても、配線基板と第1の半導体チップとの間に充填される第1の樹脂の注入時、および配線基板と第2の半導体チップとの間に充填される第2の樹脂の注入時に、それぞれ第1の半導体チップ搭載領域、第2の半導体チップ搭載領域からはみだした樹脂は、配線基板上でそれらの領域より低い領域に流出し、はみだした第1の樹脂と第2の樹脂とが第1、第2の半導体チップ搭載領域の表面より上側でつながることはなく、熱衝撃試験において、第1の突起電極および第2の突起電極に加わる熱応力は増大せず、熱応力増大による接続不良をなくすことが可能となる。したがって、第1と第2の半導体チップの間隔を狭くしても熱衝撃試験において不具合が発生せず、半導体装置の小型化が可能となり、または半導体チップの搭載密度を高めることができる。   According to the manufacturing method of the first semiconductor device and the third semiconductor device, in the MCM structure in which the first and second semiconductor chips are mounted on one surface side of the wiring board, the first on the one surface side of the wiring board. By making the surface height of the semiconductor chip mounting area and the second semiconductor chip mounting area higher than the surface height of the area excluding the first semiconductor chip mounting area and the second semiconductor chip mounting area, the first Even when the interval between the semiconductor chip mounting region and the second semiconductor chip mounting region is narrowed, the first resin filled between the wiring substrate and the first semiconductor chip is injected, and the wiring substrate When the second resin filled between the two semiconductor chips is injected, the resin protruding from the first semiconductor chip mounting region and the second semiconductor chip mounting region, respectively, from the regions on the wiring board. In the thermal shock test, the first protruding electrode and the second resin that flowed out into the lower region and protruded from the first resin and the second resin are not connected above the surfaces of the first and second semiconductor chip mounting regions. The thermal stress applied to the second protruding electrode does not increase, and it is possible to eliminate connection failure due to an increase in thermal stress. Therefore, even if the distance between the first and second semiconductor chips is narrowed, no problem occurs in the thermal shock test, and the semiconductor device can be miniaturized or the mounting density of the semiconductor chips can be increased.

第2の半導体装置および第4の半導体装置の製造方法によれば、配線基板の一表面に凹部が形成され、凹部の底面中央部に半導体チップを搭載する凹型キャビティを有するパッケージ構造において、一表面側における配線基板の凹部の底面中央部の半導体チップ搭載領域の表面高さを、半導体チップ搭載領域を除く凹部の底面周辺部の表面高さよりも高くしていることによって、半導体チップ搭載領域と凹部の底面を囲む凸部との間隔を狭くしても、配線基板と半導体チップとの間に充填される樹脂の注入時に、半導体チップ搭載領域からはみだした樹脂は、半導体チップ搭載領域よりも高さの低い凹部の底面周辺部領域に流出し、はみだした樹脂が凸部の側壁と、半導体チップ搭載領域の表面より上側でつながることはなく、熱衝撃試験において、突起電極に加わる熱応力は増大せず、熱応力増大による接続不良をなくすことが可能となる。したがって、半導体チップと凸部の間隔を狭くしても熱衝撃試験において不具合が発生せず、半導体装置の小型化が可能となる。   According to the second semiconductor device and the fourth semiconductor device manufacturing method, in the package structure having the concave cavity in which the concave portion is formed on one surface of the wiring substrate and the semiconductor chip is mounted at the bottom center portion of the concave portion, By setting the surface height of the semiconductor chip mounting region at the center of the bottom surface of the recess of the wiring board on the side higher than the surface height of the peripheral portion of the bottom surface of the recess excluding the semiconductor chip mounting region, the semiconductor chip mounting region and the recess Even when the gap between the convex portion surrounding the bottom surface of the substrate is narrowed, the resin protruding from the semiconductor chip mounting area is higher than the semiconductor chip mounting area when the resin filled between the wiring board and the semiconductor chip is injected. The resin that has flowed out into the peripheral area of the bottom of the low-pitched recess is not connected to the side wall of the protrusion above the surface of the semiconductor chip mounting area. There, the heat stress applied to the protruding electrode does not increase, it is possible to eliminate the connection failure due to thermal stress increases. Therefore, even if the distance between the semiconductor chip and the convex portion is narrowed, no problem occurs in the thermal shock test, and the semiconductor device can be miniaturized.

以上のように本発明によれば、配線基板の一表面側に第1と第2の半導体チップを搭載するMCM構造において、配線基板の一表面側における第1の半導体チップ搭載領域および第2の半導体チップ搭載領域の表面高さを、第1の半導体チップ搭載領域および第2の半導体チップ搭載領域を除く領域の表面高さよりも高くしていることによって、第1の半導体チップ搭載領域と第2の半導体チップ搭載領域との間隔を狭くしても、配線基板と第1の半導体チップとの間に充填される第1の樹脂の注入時、および配線基板と第2の半導体チップとの間に充填される第2の樹脂の注入時に、それぞれ第1の半導体チップ搭載領域、第2の半導体チップ搭載領域からはみだした樹脂は、配線基板上でそれらの領域より低い領域に流出し、はみだした第1の樹脂と第2の樹脂とが第1、第2の半導体チップ搭載領域の表面より上側でつながることはなく、熱衝撃試験において、第1の突起電極および第2の突起電極に加わる熱応力は増大せず、熱応力増大による接続不良をなくすことが可能となる。したがって、第1と第2の半導体チップの間隔を狭くしても熱衝撃試験において不具合が発生せず、半導体装置の小型化が可能となり、または半導体チップの搭載密度を高めることができる。   As described above, according to the present invention, in the MCM structure in which the first and second semiconductor chips are mounted on the one surface side of the wiring board, the first semiconductor chip mounting region and the second on the one surface side of the wiring board are provided. By making the surface height of the semiconductor chip mounting region higher than the surface height of the region excluding the first semiconductor chip mounting region and the second semiconductor chip mounting region, the first semiconductor chip mounting region and the second semiconductor chip mounting region Even when the distance from the semiconductor chip mounting region is reduced, the first resin filled between the wiring board and the first semiconductor chip is injected and between the wiring board and the second semiconductor chip. At the time of injecting the second resin to be filled, the resin protruding from the first semiconductor chip mounting area and the second semiconductor chip mounting area respectively flowed out into areas lower than those areas on the wiring board. The first resin and the second resin are not connected above the surfaces of the first and second semiconductor chip mounting regions, and the thermal stress applied to the first protruding electrode and the second protruding electrode in the thermal shock test It is possible to eliminate connection failure due to increased thermal stress. Therefore, even if the distance between the first and second semiconductor chips is narrowed, no problem occurs in the thermal shock test, and the semiconductor device can be miniaturized or the mounting density of the semiconductor chips can be increased.

また、本発明によれば、配線基板の一表面に凹部が形成され、凹部の底面中央部に半導体チップを搭載する凹型キャビティを有するパッケージ構造において、一表面側における配線基板の凹部の底面中央部の半導体チップ搭載領域の表面高さを、半導体チップ搭載領域を除く凹部の底面周辺部の表面高さよりも高くしていることによって、半導体チップ搭載領域と凹部の底面を囲む凸部との間隔を狭くしても、配線基板と半導体チップとの間に充填される樹脂の注入時に、半導体チップ搭載領域からはみだした樹脂は、半導体チップ搭載領域よりも高さの低い凹部の底面周辺部領域に流出し、はみだした樹脂が凸部の側壁と、半導体チップ搭載領域の表面より上側でつながることはなく、熱衝撃試験において、突起電極に加わる熱応力は増大せず、熱応力増大による接続不良をなくすことが可能となる。したがって、半導体チップと凸部の間隔を狭くしても熱衝撃試験において不具合が発生せず、半導体装置の小型化が可能となる。   According to the present invention, in the package structure having a concave cavity in which a recess is formed on one surface of the wiring board and a semiconductor chip is mounted at the bottom center part of the recess, the bottom center part of the recess of the wiring board on the one surface side By making the surface height of the semiconductor chip mounting area higher than the surface height of the periphery of the bottom surface of the recess excluding the semiconductor chip mounting area, the distance between the semiconductor chip mounting area and the convex part surrounding the bottom surface of the recess is reduced. Even if it is narrowed, when the resin filled between the wiring board and the semiconductor chip is injected, the resin that protrudes from the semiconductor chip mounting area flows into the peripheral area of the bottom surface of the recess that is lower than the semiconductor chip mounting area. However, the protruding resin is not connected to the side wall of the convex part above the surface of the semiconductor chip mounting area, and the thermal stress applied to the protruding electrode increases in the thermal shock test. Not, it is possible to eliminate the connection failure due to thermal stress increases. Therefore, even if the distance between the semiconductor chip and the convex portion is narrowed, no problem occurs in the thermal shock test, and the semiconductor device can be miniaturized.

(第1の実施形態)
本発明の第1の実施形態を、図面を用いて説明する。本実施形態における半導体装置はMCM構造であり、図2の断面図で示される。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings. The semiconductor device in this embodiment has an MCM structure, and is shown in the cross-sectional view of FIG.

本実施形態における従来例のMCM構造との相違点は、半導体チップA1を搭載する領域および半導体チップB2を搭載する領域の表面高さを、半導体チップを搭載しない領域21の表面高さよりも高くした配線基板6を用いていることである。そのために、半導体チップA1を搭載する領域の基板厚さ18および半導体チップB2を搭載する領域の基板厚さ19を、半導体チップを搭載しない領域21の基板厚さ20よりも厚くしている。   The difference from the conventional MCM structure in this embodiment is that the surface height of the region where the semiconductor chip A1 is mounted and the region where the semiconductor chip B2 is mounted is made higher than the surface height of the region 21 where no semiconductor chip is mounted. The wiring board 6 is used. For this purpose, the substrate thickness 18 in the region where the semiconductor chip A1 is mounted and the substrate thickness 19 in the region where the semiconductor chip B2 is mounted are made thicker than the substrate thickness 20 in the region 21 where no semiconductor chip is mounted.

本実施形態の半導体装置の製造方法を、図1、図2を用いて説明する。   A method for manufacturing the semiconductor device of this embodiment will be described with reference to FIGS.

図1(a)のように、半導体チップA1および半導体チップB2それぞれの外部電極3に突起電極4を形成する。例えば外部電極3がアルミパッドで、そのアルミパッド上に突起電極4として金バンプを形成する代表的な方法として、SBB(スタッドバンプ)方式がある。   As shown in FIG. 1A, the protruding electrodes 4 are formed on the external electrodes 3 of the semiconductor chip A1 and the semiconductor chip B2. For example, an SBB (stud bump) method is a typical method for forming a gold bump as the protruding electrode 4 on the aluminum pad as the external electrode 3.

次に図1(b)のように、半導体チップA1および半導体チップB2の突起電極4に導電性接着剤5を塗布する。このとき、突起電極4の形成面が下方になるように半導体チップA1および半導体チップB2を反転し、導電性ペースト槽に突起電極4の先端部分を浸漬し、導電性接着材5を転写するという方法を、通常用いる。   Next, as shown in FIG. 1B, a conductive adhesive 5 is applied to the protruding electrodes 4 of the semiconductor chip A1 and the semiconductor chip B2. At this time, the semiconductor chip A1 and the semiconductor chip B2 are inverted so that the formation surface of the protruding electrode 4 is downward, the tip portion of the protruding electrode 4 is immersed in the conductive paste tank, and the conductive adhesive 5 is transferred. The method is usually used.

次に図1(c)のように、配線基板6と半導体チップA1および半導体チップB2を向かい合わせ、突起電極4を、配線基板6上の配線パターン7に接着する。このとき、半導体チップA1を搭載する領域の基板厚さ18と、半導体チップB2を搭載する領域の基板厚さ19は、半導体チップを搭載しない領域の基板厚さ20よりも厚くなっている。配線基板6には、通常セラミック多層基板を用いる。セラミック多層基板を構成する層の最小厚さは、通常0.1mmである。したがって、半導体チップA1を搭載する領域の基板厚さ18と、半導体チップB2を搭載する領域の基板厚さ19は、半導体チップを搭載しない領域の基板厚さ20よりも、0.1mm、0.2mm、0.3mmのように、0.1mmの倍数だけ厚くすることが出来る。   Next, as shown in FIG. 1C, the wiring substrate 6 faces the semiconductor chip A <b> 1 and the semiconductor chip B <b> 2, and the protruding electrode 4 is bonded to the wiring pattern 7 on the wiring substrate 6. At this time, the substrate thickness 18 in the region where the semiconductor chip A1 is mounted and the substrate thickness 19 in the region where the semiconductor chip B2 is mounted are larger than the substrate thickness 20 in the region where the semiconductor chip is not mounted. As the wiring substrate 6, a ceramic multilayer substrate is usually used. The minimum thickness of the layers constituting the ceramic multilayer substrate is usually 0.1 mm. Therefore, the substrate thickness 18 in the region where the semiconductor chip A1 is mounted and the substrate thickness 19 in the region where the semiconductor chip B2 is mounted are 0.1 mm, 0. The thickness can be increased by a multiple of 0.1 mm, such as 2 mm and 0.3 mm.

次に図2のように、半導体チップA1および半導体チップB2の側面から樹脂8を注入し、半導体チップA1と配線基板6の隙間、および半導体チップB2と配線基板6の隙間に樹脂8が充填完了後、樹脂8を熱硬化させる。このとき、半導体チップA1を搭載する領域の基板厚さ18が、半導体チップを搭載しない領域21の基板厚さ20より厚いため、半導体チップA1からはみだした樹脂8は、半導体チップを搭載しない領域21上に流出する。同様に、半導体チップB2を搭載する領域の基板厚さ19が、半導体チップを搭載しない領域21の基板厚さ20より厚いため、半導体チップB2からはみだした樹脂8は、半導体チップを搭載しない領域21上に流出する。そのため、図8(b)のように半導体チップA1からはみ出した樹脂長さ9および半導体チップB2からはみ出した樹脂長さ10の合計長さより、半導体チップA1および半導体チップB2間の距離11を短くしても、本実施形態では、半導体チップA1からはみだした樹脂8と半導体チップB2からはみだした樹脂8とが、配線基板6の半導体チップ搭載領域の表面より上側で、つながることはない。そのため熱衝撃試験においても、突起電極4に加わる熱応力は増大せず、接続不良は発生しない。   Next, as shown in FIG. 2, the resin 8 is injected from the side surfaces of the semiconductor chip A1 and the semiconductor chip B2, and the resin 8 is completely filled in the gap between the semiconductor chip A1 and the wiring board 6 and the gap between the semiconductor chip B2 and the wiring board 6. Thereafter, the resin 8 is thermally cured. At this time, since the substrate thickness 18 of the region where the semiconductor chip A1 is mounted is thicker than the substrate thickness 20 of the region 21 where the semiconductor chip is not mounted, the resin 8 protruding from the semiconductor chip A1 is the region 21 where the semiconductor chip is not mounted. Spills up. Similarly, since the substrate thickness 19 of the region where the semiconductor chip B2 is mounted is thicker than the substrate thickness 20 of the region 21 where the semiconductor chip is not mounted, the resin 8 protruding from the semiconductor chip B2 is the region 21 where the semiconductor chip is not mounted. Spills up. Therefore, as shown in FIG. 8B, the distance 11 between the semiconductor chip A1 and the semiconductor chip B2 is made shorter than the total length of the resin length 9 protruding from the semiconductor chip A1 and the resin length 10 protruding from the semiconductor chip B2. However, in the present embodiment, the resin 8 protruding from the semiconductor chip A1 and the resin 8 protruding from the semiconductor chip B2 are not connected above the surface of the semiconductor chip mounting region of the wiring board 6. Therefore, even in the thermal shock test, the thermal stress applied to the protruding electrode 4 does not increase, and connection failure does not occur.

従来のMCM構造では、半導体チップA1および半導体チップB2間の距離11は、1.0mm以上必要であった。これに対し、本実施形態では、半導体チップA1を搭載する領域の基板厚さ18と半導体チップB2を搭載する領域の基板厚さ19を、半導体チップを搭載しない領域21の基板厚さ20より、0.1mmの倍数分だけ厚くすることによって、半導体チップA1および半導体チップB2間の距離11は、約0.4mmにまで、接近させることができる。この0.4mmは、セラミック多層基板の層張り合わせ位置精度が約0.2mmであるため、隣接する2つの半導体チップを搭載するセラミック基板層の位置精度を合計したものである。   In the conventional MCM structure, the distance 11 between the semiconductor chip A1 and the semiconductor chip B2 needs to be 1.0 mm or more. On the other hand, in the present embodiment, the substrate thickness 18 in the region on which the semiconductor chip A1 is mounted and the substrate thickness 19 in the region on which the semiconductor chip B2 is mounted are determined from the substrate thickness 20 in the region 21 on which the semiconductor chip is not mounted. By increasing the thickness by a multiple of 0.1 mm, the distance 11 between the semiconductor chip A1 and the semiconductor chip B2 can be brought close to about 0.4 mm. This 0.4 mm is a total of the positional accuracy of the ceramic substrate layers on which two adjacent semiconductor chips are mounted because the layer bonding positional accuracy of the ceramic multilayer substrate is about 0.2 mm.

以上のように本実施形態によれば、MCM構造において、隣接する半導体チップA1と半導体チップB2との間隔が狭くても、熱衝撃試験において突起電極4に加わる熱応力の増大による接続不良をなくすことが可能となる。したがって、パッケージの小型化が可能となり、または1つのパッケージ内の半導体チップの搭載密度を高めることができる。   As described above, according to the present embodiment, in the MCM structure, even if the distance between the adjacent semiconductor chip A1 and the semiconductor chip B2 is narrow, connection failure due to an increase in thermal stress applied to the protruding electrode 4 in the thermal shock test is eliminated. It becomes possible. Therefore, the size of the package can be reduced, or the mounting density of semiconductor chips in one package can be increased.

なお、本実施形態では、配線基板6上に2つの半導体チップを搭載した例について説明したが、3つ以上でもよく、複数の半導体チップを搭載する場合に本発明の効果を得ることができる。   In the present embodiment, an example in which two semiconductor chips are mounted on the wiring board 6 has been described. However, three or more semiconductor chips may be mounted, and the effect of the present invention can be obtained when a plurality of semiconductor chips are mounted.

(第2の実施形態)
本発明の第2の実施形態を、図面を用いて説明する。本実施形態における半導体装置は凹型キャビティを有するパッケージ構造であり、例えば図4の断面図で示される。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to the drawings. The semiconductor device in the present embodiment has a package structure having a concave cavity, and is shown, for example, in the cross-sectional view of FIG.

本実施形態における従来例の凹型キャビティを有するパッケージ構造との相違点は、凹型のキャビティ13の底面において、半導体チップ12を搭載する領域の表面高さを、その周囲の半導体チップを搭載しない領域21の表面高さよりも高くした配線基板6を用いていることである。そのために、半導体チップ12を搭載する領域の基板厚さ22を、半導体チップを搭載しない領域21の基板厚さ20よりも厚くしている。   The difference from the conventional package structure having a concave cavity in the present embodiment is that the surface height of the area on which the semiconductor chip 12 is mounted on the bottom surface of the concave cavity 13 is the area 21 on which the surrounding semiconductor chip is not mounted. That is, the wiring board 6 having a height higher than the surface height is used. Therefore, the substrate thickness 22 in the region where the semiconductor chip 12 is mounted is made thicker than the substrate thickness 20 in the region 21 where the semiconductor chip is not mounted.

本実施形態の半導体装置の製造方法を、図3から図6を用いて説明する。   A method for manufacturing the semiconductor device of this embodiment will be described with reference to FIGS.

図3(a)のように、半導体チップ12の外部電極3に突起電極4を形成する。   As shown in FIG. 3A, the protruding electrode 4 is formed on the external electrode 3 of the semiconductor chip 12.

次に図3(b)のように、半導体チップ12の突起電極4に導電性接着剤5を塗布する。   Next, as shown in FIG. 3B, a conductive adhesive 5 is applied to the protruding electrodes 4 of the semiconductor chip 12.

次に図3(c)のように、配線基板6の凹型のキャビティ13と半導体チップ12を向かい合わせ、突起電極4を配線パターン7に接着する。キャビティ13内において、半導体チップ12を搭載する領域の基板厚さ22は、半導体チップを搭載しない領域の基板厚さ20より厚くなっている。配線基板6は、通常セラミック多層基板を用いる。   Next, as shown in FIG. 3C, the concave cavity 13 of the wiring substrate 6 and the semiconductor chip 12 face each other, and the protruding electrode 4 is bonded to the wiring pattern 7. In the cavity 13, the substrate thickness 22 in the region where the semiconductor chip 12 is mounted is thicker than the substrate thickness 20 in the region where the semiconductor chip is not mounted. As the wiring substrate 6, a ceramic multilayer substrate is usually used.

次に図4のように、半導体チップ12の側面から樹脂8を注入し、半導体チップ12とキャビティ13の底面との隙間に充填し、充填後の樹脂8を熱硬化させる。このとき、キャビティ13において、半導体チップを搭載する領域の基板厚さ22が半導体チップを搭載しない領域の基板厚さ20より厚いため、半導体チップ12からはみだした樹脂8は、半導体チップを搭載しない領域21上に流出する。そのため、半導体チップ12とキャビティの側壁16との距離15が短い距離であっても、半導体チップ12からはみだした樹脂8がキャビティの側壁16と、配線基板6の半導体チップ搭載領域の表面より上側で、つながることはない。そのため熱衝撃試験においても、突起電極4に加わる熱応力は増大せず、接続不良は発生しない。   Next, as shown in FIG. 4, the resin 8 is injected from the side surface of the semiconductor chip 12, filled in the gap between the semiconductor chip 12 and the bottom surface of the cavity 13, and the filled resin 8 is thermally cured. At this time, in the cavity 13, the substrate thickness 22 in the region where the semiconductor chip is mounted is thicker than the substrate thickness 20 in the region where the semiconductor chip is not mounted, so that the resin 8 protruding from the semiconductor chip 12 21 flows out. Therefore, even if the distance 15 between the semiconductor chip 12 and the side wall 16 of the cavity is a short distance, the resin 8 protruding from the semiconductor chip 12 is above the surface of the semiconductor chip mounting area of the cavity side wall 16 and the wiring substrate 6. , Never connected. Therefore, even in the thermal shock test, the thermal stress applied to the protruding electrode 4 does not increase, and connection failure does not occur.

従来のキャビティ構造パッケージでは、半導体チップとキャビティの側壁間距離15は、0.5mm以上必要であった。これに対し、本実施形態では、半導体チップを搭載する領域の基板厚さ22を、半導体チップを搭載しない領域の基板厚さ20より、0.1mmの倍数分だけ厚くすることによって、半導体チップとキャビティの側壁間の距離15は、約0.2mmにまで、接近させることができる。この0.2mmは、セラミック多層基板の層張り合わせ位置精度が約0.2mmであることによる。   In the conventional cavity structure package, the distance 15 between the semiconductor chip and the sidewall of the cavity needs to be 0.5 mm or more. On the other hand, in this embodiment, the substrate thickness 22 in the region where the semiconductor chip is mounted is increased by a multiple of 0.1 mm from the substrate thickness 20 in the region where the semiconductor chip is not mounted. The distance 15 between the sidewalls of the cavity can be as close as about 0.2 mm. This 0.2 mm is due to the fact that the layer lamination position accuracy of the ceramic multilayer substrate is about 0.2 mm.

次に図5のように、配線基板6のキャビティ13とは反対面に形成された配線パターン7に電子部品17を接続して、キャビティ構造パッケージの組立が完了する。電子部品17を配線基板6に接続する方法は、はんだ付け、フリップチップなどである。キャビティ13の外周凸部には、入出力端子23が形成されており、半導体チップ12の外部電極3の一部と、電子部品17の一部とが、配線基板6内で電気的につながり、入出力端子23に引き出されている。半導体チップとキャビティの側壁間距離15を、約0.25mmにまで、接近させた場合、キャビティ13の外周凸部(側壁)が邪魔になって、半導体チップ12の側面に樹脂8を注入できないという課題が発生するが、これについては、キャビティ13の外周凸部を半導体チップ12の四方ではなく、例えば三方にのみ設置した構造とすることで解決する。   Next, as shown in FIG. 5, the electronic component 17 is connected to the wiring pattern 7 formed on the surface opposite to the cavity 13 of the wiring board 6 to complete the assembly of the cavity structure package. The method of connecting the electronic component 17 to the wiring board 6 is soldering, flip chip, or the like. An input / output terminal 23 is formed on the outer peripheral convex portion of the cavity 13, and a part of the external electrode 3 of the semiconductor chip 12 and a part of the electronic component 17 are electrically connected in the wiring substrate 6. It is drawn out to the input / output terminal 23. When the distance 15 between the side wall of the semiconductor chip and the cavity is made close to about 0.25 mm, the outer peripheral convex portion (side wall) of the cavity 13 becomes an obstacle, and the resin 8 cannot be injected into the side surface of the semiconductor chip 12. Although a problem arises, this can be solved by adopting a structure in which the outer peripheral convex portion of the cavity 13 is installed only in, for example, three sides of the semiconductor chip 12.

さらに図6のように、上述の工程で組立てたキャビティ構造パッケージは、入出力端子23を、マザーボード24にはんだ付けなどにより実装した状態で、電子機器として用いられる。   Further, as shown in FIG. 6, the cavity structure package assembled in the above-described process is used as an electronic device in a state where the input / output terminals 23 are mounted on the mother board 24 by soldering or the like.

以上のように本実施形態によれば、凹型のキャビティを有するパッケージ構造において、半導体チップとキャビティの側壁間距離15を狭くしても、熱衝撃試験において突起電極4に加わる熱応力の増大による接続不良をなくすことが可能となる。したがって、パッケージの小型化が可能となる。   As described above, according to the present embodiment, in a package structure having a concave cavity, even if the distance 15 between the semiconductor chip and the sidewall of the cavity is narrowed, the connection due to an increase in thermal stress applied to the protruding electrode 4 in the thermal shock test. Defects can be eliminated. Therefore, the package can be reduced in size.

本発明は、MCM構造あるいは凹型のキャビティを有するパッケージ構造の半導体装置およびその製造方法等として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a semiconductor device having an MCM structure or a package structure having a concave cavity, a manufacturing method thereof, and the like.

本発明の第1の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in the 1st Embodiment of this invention 本発明の第1の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in the 1st Embodiment of this invention 本発明の第2の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in the 2nd Embodiment of this invention 本発明の第2の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in the 2nd Embodiment of this invention 本発明の第2の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in the 2nd Embodiment of this invention 本発明の第2の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in the 2nd Embodiment of this invention 従来のMCM構造の半導体装置の製造工程断面図Cross-sectional view of the manufacturing process of a conventional MCM structure semiconductor device 従来のMCM構造の半導体装置の製造工程断面図Cross-sectional view of the manufacturing process of a conventional MCM structure semiconductor device 従来のキャビティ構造パッケージの半導体装置の製造工程断面図Cross-sectional view of the manufacturing process of a semiconductor device with a conventional cavity structure package 従来のキャビティ構造パッケージの半導体装置の製造工程断面図Cross-sectional view of the manufacturing process of a semiconductor device with a conventional cavity structure package 従来のキャビティ構造パッケージの半導体装置の製造工程断面図Cross-sectional view of the manufacturing process of a semiconductor device with a conventional cavity structure package

符号の説明Explanation of symbols

1 半導体チップA
2 半導体チップB
3 外部電極
4 突起電極
5 導電性接着剤
6 配線基板
7 配線パターン
8 樹脂
9 半導体チップAからはみだした樹脂長さ
10 半導体チップBからはみだした樹脂長さ
11 半導体チップAおよび半導体チップB間の距離
12 半導体チップ
13 キャビティ
14 半導体チップからはみだした樹脂長さ
15 半導体チップとキャビティの側壁間距離
16 キャビティの側壁
17 電子部品
18 半導体チップAを搭載する領域の基板厚さ
19 半導体チップBを搭載する領域の基板厚さ
20 半導体チップを搭載しない領域の基板厚さ
21 半導体チップを搭載しない領域
22 半導体チップを搭載する領域の基板厚さ
23 入出力端子
24 マザーボード
1 Semiconductor chip A
2 Semiconductor chip B
3 External electrode 4 Protruding electrode 5 Conductive adhesive 6 Wiring substrate 7 Wiring pattern 8 Resin 9 Resin length protruding from semiconductor chip A 10 Resin length protruding from semiconductor chip B 11 Distance between semiconductor chip A and semiconductor chip B 12 Semiconductor chip 13 Cavity 14 Resin length protruding from the semiconductor chip 15 Distance between the side wall of the semiconductor chip and the cavity 16 Side wall of the cavity 17 Electronic component 18 Substrate thickness of the area where the semiconductor chip A is mounted 19 Area where the semiconductor chip B is mounted Substrate Thickness 20 Substrate Thickness 21 in No Semiconductor Chip Mounting Area 21 Semiconductor Chip No Mounting Area 22 Semiconductor Chip Mounting Area Substrate Thickness 23 Input / Output Terminals 24 Motherboard

Claims (4)

一表面に第1の配線電極が形成された第1の半導体チップ搭載領域と第2の配線電極が形成された第2の半導体チップ搭載領域とを間隔をあけて有する配線基板の前記第1の配線電極と第1の半導体チップの電極とが第1の突起電極を介して電気的に接続され、前記配線基板の前記第2の配線電極と第2の半導体チップの電極とが第2の突起電極を介して電気的に接続され、前記配線基板と前記第1の半導体チップとの間に第1の樹脂が充填され、前記配線基板と前記第2の半導体チップとの間に第2の樹脂が充填された半導体装置であって、
前記配線基板の前記一表面側における前記第1の半導体チップ搭載領域および第2の半導体チップ搭載領域の表面高さを、前記第1の半導体チップ搭載領域および第2の半導体チップ搭載領域を除く領域の表面高さよりも高くしたことを特徴とする半導体装置。
The first of the wiring boards having a first semiconductor chip mounting region having a first wiring electrode formed on one surface and a second semiconductor chip mounting region having a second wiring electrode formed at an interval. The wiring electrode and the electrode of the first semiconductor chip are electrically connected via the first protruding electrode, and the second wiring electrode of the wiring substrate and the electrode of the second semiconductor chip are the second protruding. Electrically connected via an electrode, filled with a first resin between the wiring substrate and the first semiconductor chip, and a second resin between the wiring substrate and the second semiconductor chip; A semiconductor device filled with
The surface height of the first semiconductor chip mounting region and the second semiconductor chip mounting region on the one surface side of the wiring board is defined as a region excluding the first semiconductor chip mounting region and the second semiconductor chip mounting region. A semiconductor device characterized by being higher than the surface height of the semiconductor device.
一表面に凹部が形成され、前記凹部の底面中央部に配線電極が形成された半導体チップ搭載領域を有する配線基板の前記配線電極と半導体チップの電極とが突起電極を介して電気的に接続され、前記配線基板と前記半導体チップとの間に樹脂が充填され、前記配線基板の前記凹部の底面を囲む凸部の先端面に前記配線電極と電気的に接続された入出力端子が形成された半導体装置であって、
前記一表面側における前記配線基板の前記凹部の底面中央部の前記半導体チップ搭載領域の表面高さを、前記半導体チップ搭載領域を除く前記凹部の底面周辺部の表面高さよりも高くしたことを特徴とする半導体装置。
The wiring electrode of the wiring substrate having a semiconductor chip mounting region in which a concave portion is formed on one surface and a wiring electrode is formed in the center of the bottom surface of the concave portion is electrically connected to the electrode of the semiconductor chip via a protruding electrode. In addition, a resin is filled between the wiring board and the semiconductor chip, and an input / output terminal electrically connected to the wiring electrode is formed on the front end surface of the convex portion surrounding the bottom surface of the concave portion of the wiring board. A semiconductor device,
The surface height of the semiconductor chip mounting region at the center of the bottom surface of the concave portion of the wiring board on the one surface side is made higher than the surface height of the peripheral portion of the bottom surface of the concave portion excluding the semiconductor chip mounting region. A semiconductor device.
一表面に第1の配線電極が形成された第1の半導体チップ搭載領域と第2の配線電極が形成された第2の半導体チップ搭載領域とを間隔をあけて有し、前記一表面側における前記第1の半導体チップ搭載領域および第2の半導体チップ搭載領域の表面高さを、前記第1の半導体チップ搭載領域および第2の半導体チップ搭載領域を除く領域の表面高さよりも高くした配線基板を用意する工程と、
前記配線基板の前記第1の配線電極と第1の半導体チップの電極とを第1の突起電極を介して電気的に接続し、前記配線基板の前記第2の配線電極と第2の半導体チップの電極とを第2の突起電極を介して電気的に接続する工程と、
前記配線基板と前記第1の半導体チップとの間に第1の樹脂を注入し、前記配線基板と前記第2の半導体チップとの間に第2の樹脂を注入する工程とを含む半導体装置の製造方法。
A first semiconductor chip mounting region in which a first wiring electrode is formed on one surface and a second semiconductor chip mounting region in which a second wiring electrode is formed are spaced apart from each other on the one surface side. A wiring board in which the surface height of the first semiconductor chip mounting region and the second semiconductor chip mounting region is higher than the surface height of the region excluding the first semiconductor chip mounting region and the second semiconductor chip mounting region. A process of preparing
The first wiring electrode of the wiring board and the electrode of the first semiconductor chip are electrically connected via a first protruding electrode, and the second wiring electrode of the wiring board and the second semiconductor chip are connected. Electrically connecting the electrodes to each other via a second protruding electrode;
A step of injecting a first resin between the wiring substrate and the first semiconductor chip and injecting a second resin between the wiring substrate and the second semiconductor chip. Production method.
一表面に凹部が形成され、前記凹部の底面中央部に配線電極が形成された半導体チップ搭載領域を有し、前記凹部の底面を囲む凸部の先端面に前記配線電極と電気的に接続された入出力端子が形成され、前記一表面側における前記配線基板の前記凹部の底面中央部の前記半導体チップ搭載領域の表面高さを、前記半導体チップ搭載領域を除く前記凹部の底面周辺部の表面高さよりも高くした配線基板を用意する工程と、
前記配線基板の前記配線電極と半導体チップの電極とを突起電極を介して電気的に接続する工程と、
前記配線基板と前記半導体チップとの間に樹脂を注入する工程とを含む半導体装置の製造方法。
A concave portion is formed on one surface, and a semiconductor chip mounting region having a wiring electrode formed at the center of the bottom surface of the concave portion is electrically connected to the wiring electrode at the tip surface of the convex portion surrounding the bottom surface of the concave portion. The surface height of the semiconductor chip mounting region at the center of the bottom surface of the concave portion of the wiring board on the one surface side is defined as the surface of the peripheral portion of the bottom surface of the concave portion excluding the semiconductor chip mounting region. Preparing a wiring board higher than the height;
Electrically connecting the wiring electrode of the wiring board and the electrode of the semiconductor chip via a protruding electrode;
A method for manufacturing a semiconductor device, comprising: injecting a resin between the wiring substrate and the semiconductor chip.
JP2003405856A 2003-12-04 2003-12-04 Semiconductor device Expired - Fee Related JP4128945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405856A JP4128945B2 (en) 2003-12-04 2003-12-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405856A JP4128945B2 (en) 2003-12-04 2003-12-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005167072A true JP2005167072A (en) 2005-06-23
JP4128945B2 JP4128945B2 (en) 2008-07-30

Family

ID=34728409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405856A Expired - Fee Related JP4128945B2 (en) 2003-12-04 2003-12-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4128945B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170617A (en) * 2008-01-16 2009-07-30 Panasonic Corp Semiconductor device
JP2009267421A (en) * 2007-09-06 2009-11-12 Murata Mfg Co Ltd Circuit board and circuit module
JP2010245136A (en) * 2009-04-02 2010-10-28 Hitachi Automotive Systems Ltd Semiconductor device
JP2010251408A (en) * 2009-04-13 2010-11-04 Elpida Memory Inc Semiconductor device and method of manufacturing the same, and electronic device
US20130049216A1 (en) * 2011-08-30 2013-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Die-to-Die Gap Control for Semiconductor Structure and Method
WO2016022375A1 (en) * 2014-08-06 2016-02-11 Invensas Corporation Device and method for localized underfill

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275739A (en) * 1993-03-23 1994-09-30 Sony Corp Adaptor made of ceramics, and ceramic package
JPH1079405A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Semiconductor device and electronic component mounting the same
JPH10150118A (en) * 1996-11-15 1998-06-02 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JP2002208670A (en) * 2001-01-10 2002-07-26 Matsushita Electric Ind Co Ltd Electronic component mounting module and method for reinforcing substrate thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275739A (en) * 1993-03-23 1994-09-30 Sony Corp Adaptor made of ceramics, and ceramic package
JPH1079405A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Semiconductor device and electronic component mounting the same
JPH10150118A (en) * 1996-11-15 1998-06-02 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JP2002208670A (en) * 2001-01-10 2002-07-26 Matsushita Electric Ind Co Ltd Electronic component mounting module and method for reinforcing substrate thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267421A (en) * 2007-09-06 2009-11-12 Murata Mfg Co Ltd Circuit board and circuit module
JP2009170617A (en) * 2008-01-16 2009-07-30 Panasonic Corp Semiconductor device
JP2010245136A (en) * 2009-04-02 2010-10-28 Hitachi Automotive Systems Ltd Semiconductor device
JP2010251408A (en) * 2009-04-13 2010-11-04 Elpida Memory Inc Semiconductor device and method of manufacturing the same, and electronic device
US20130049216A1 (en) * 2011-08-30 2013-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Die-to-Die Gap Control for Semiconductor Structure and Method
KR101420855B1 (en) * 2011-08-30 2014-07-18 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Die-to-die gap control for semiconductor structure and method
US8963334B2 (en) 2011-08-30 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Die-to-die gap control for semiconductor structure and method
US10157879B2 (en) 2011-08-30 2018-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. Die-to-die gap control for semiconductor structure and method
WO2016022375A1 (en) * 2014-08-06 2016-02-11 Invensas Corporation Device and method for localized underfill
US9349614B2 (en) 2014-08-06 2016-05-24 Invensas Corporation Device and method for localized underfill
US9673124B2 (en) 2014-08-06 2017-06-06 Invensas Corporation Device and method for localized underfill

Also Published As

Publication number Publication date
JP4128945B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP5579402B2 (en) Semiconductor device, method for manufacturing the same, and electronic device
US6545366B2 (en) Multiple chip package semiconductor device
JP5192825B2 (en) Semiconductor device, manufacturing method thereof, and manufacturing method of laminated semiconductor device
US8106521B2 (en) Semiconductor device mounted structure with an underfill sealing-bonding resin with voids
US20140035161A1 (en) Semiconductor device and method of manufacturing the same
US20050103516A1 (en) Flip-chip mounting circuit board, manufacturing method thereof and integrated circuit device
JP2003179099A (en) Semiconductor device and method of manufacturing the same
JP4899406B2 (en) Flip chip type semiconductor device
JP4655092B2 (en) Circuit module and circuit device using the circuit module
JP4864810B2 (en) Manufacturing method of chip embedded substrate
KR102511832B1 (en) Semiconductor package device
JP2007207802A (en) Electronic circuit module and method of manufacturing same
JP2007281129A (en) Stacked semiconductor device
JPH11260851A (en) Semiconductor device and its manufacture
KR20120001626A (en) Semiconductor package and manufacturing method thereof
KR102066015B1 (en) Semiconductor package and method of manufacturing the same
JP4128945B2 (en) Semiconductor device
WO2019111873A1 (en) Module
JP4324773B2 (en) Manufacturing method of semiconductor device
KR101489678B1 (en) Intermediate for electronic component mounting structure, electronic component mounting structure, and method for manufacturing electronic component mounting structure
TWI435667B (en) Print circuit board assembly
JP2001035886A (en) Semiconductor device and its manufacture
JP2005019814A (en) Semiconductor device and its manufacturing method, circuit board and electronic apparatus
JP2012227320A (en) Semiconductor device
JP2006237280A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370