JP2005167058A - Explosion-proof insulated separation circuit - Google Patents

Explosion-proof insulated separation circuit Download PDF

Info

Publication number
JP2005167058A
JP2005167058A JP2003405625A JP2003405625A JP2005167058A JP 2005167058 A JP2005167058 A JP 2005167058A JP 2003405625 A JP2003405625 A JP 2003405625A JP 2003405625 A JP2003405625 A JP 2003405625A JP 2005167058 A JP2005167058 A JP 2005167058A
Authority
JP
Japan
Prior art keywords
explosion
proof
intrinsically safe
photocoupler
separation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003405625A
Other languages
Japanese (ja)
Other versions
JP2005167058A5 (en
Inventor
Yuichi Yamaguchi
祐市 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2003405625A priority Critical patent/JP2005167058A/en
Publication of JP2005167058A publication Critical patent/JP2005167058A/en
Publication of JP2005167058A5 publication Critical patent/JP2005167058A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy explosion-proof structure requirements while keeping a consumption current small by enabling a photocoupler of a small package of a relatively short inner filler space distance to be used. <P>SOLUTION: While a flowmeter is installed in a hazardous area, a measuring instrument such as an integrator is installed in an unclassified area. A safety holder is inserted between them, and transmission of energy from an unclassified area side to a dangerous area side is limited to a safe value even in case of accident. The signal line of the flowmeter is connected to the measuring instrument via an insulated separation circuit, and furthermore via the safety holder. In this case, for intrinsically safe explosion proof, photocouplers PC1, PC2 of two-step constitution are inserted for separating an inner inductance and a capacitance of the flowmeter to become a negligible value viewed from a safety holder side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、危険場所に設置される本質安全防爆機器からの出力信号を、安全保持器を介して非危険場所に設置されている非本質安全防爆機器に伝達するに際して、安全保持器と本質安全防爆機器とを絶縁分離する防爆用絶縁分離回路に関する。   When transmitting an output signal from an intrinsically safe explosion-proof device installed in a hazardous area to a non-intrinsically safe explosion-proof device installed in a non-hazardous area via a safety holder, The present invention relates to an explosion-proof insulation separation circuit for insulating and separating explosion-proof equipment.

図2は、従来から用いられている一般的な電気的な絶縁分離の手法を説明する図である。危険場所(現場)に設置した流量計の信号線(出力信号等)は、非危険場所に設置した計測器(例えば積算計)に接続される。この場合、流量計を耐圧防爆構造(容器内部で火花が発生しても容器の外では発火させない機械的保護構成)にした場合は、直接接続することが出来るが、しかし、流量計の構造上などの問題で耐圧防爆構造に出来ない場合は、本質安全防爆構造などの機器(本質安全防爆機器:危険なガスに着火しないように電気的にエネルギーを制限する電気的安全回路構成)に設計する必要がある。   FIG. 2 is a diagram for explaining a general method of electrical isolation that has been conventionally used. A signal line (output signal or the like) of a flow meter installed in a dangerous place (site) is connected to a measuring instrument (for example, an integrator) installed in a non-hazardous place. In this case, if the flow meter has a flameproof structure (a mechanical protection structure that does not ignite outside the container even if a spark occurs inside the container), it can be connected directly, but the flowmeter structure If the explosion-proof structure cannot be achieved due to problems such as the above, design to an intrinsically safe explosion-proof device (intrinsically safe explosion-proof device: an electrical safety circuit configuration that electrically limits energy to prevent ignition of dangerous gases) There is a need.

その場合、流量計と計測器の間には、非危険場所側から危険場所側へのエネルギーの伝達を事故時にも安全な値に制限するための安全保持器(本質安全関連機器)を入れなければならないが、本質安全防爆上、安全保持器側から見て流量計の内部インダクタンス及びキャパシタンスを無視出来る値となるように何らかの手法で分離しなければならない。このような分離のために用いられるフォトカプラは、防爆構造を満足する規定値のものを使用しなければならない。   In that case, a safety retainer (intrinsic safety related device) must be inserted between the flow meter and the measuring instrument to limit the transfer of energy from the non-hazardous area side to the hazardous area side even in the event of an accident. However, for intrinsically safe explosion protection, the flowmeter's internal inductance and capacitance must be separated by some method so that they can be ignored when viewed from the safety cage side. As the photocoupler used for such separation, a specified value satisfying the explosion-proof structure must be used.

一般的に電気回路の絶縁にフォトカプラを使用することは周知であるが、防爆構造を満足させるには、本質安全防爆構造の規格で要求される沿面距離・絶縁空間距離等を満足する必要がある。図3〜図5は、フォトカプラの沿面距離・絶縁空間距離を説明する図であり、各図はそれぞれフォトカプラの概略形状を示している。即ち、図3に矢印で示すようなフォトカプラの外部沿面距離、図4に矢印で示すような外部絶縁空間距離、及び図5に矢印で示すような内部充填物離隔距離が、いずれも規定の距離以上でなければならない。   In general, it is well known to use a photocoupler to insulate an electric circuit. However, to satisfy the explosion-proof structure, it is necessary to satisfy the creepage distance and insulation space distance required by the intrinsically safe explosion-proof structure standard. is there. 3-5 is a figure explaining the creeping distance and insulation space distance of a photocoupler, and each figure has each shown schematic shape of the photocoupler. That is, the external creepage distance of the photocoupler as shown by the arrow in FIG. 3, the external insulation space distance as shown by the arrow in FIG. 4, and the internal packing separation distance as shown by the arrow in FIG. Must be greater than the distance.

しかし、その殆どのフォトカプラは、図5に示す内部充填物離隔距離を満足するものがない。また、防爆構造を適合する為に作られたフォトカプラも存在するが、その場合、物理的な距離を保持するのにパッケージの大きさも大きくなり、また、発光・受光素子間の距離を確保しなければならないので、それに伴い順電流も大きく取らなければならなく、消費電流が大きくなってしまうなどの問題がある。   However, most of the photocouplers do not satisfy the internal packing separation shown in FIG. There are also photocouplers made to suit explosion-proof structures, but in that case, the size of the package increases to maintain the physical distance, and the distance between the light emitting and receiving elements is secured. Therefore, there is a problem that the forward current must be increased and the current consumption increases accordingly.

そのため、電池で動作するような流量計の場合には、その電源容量も限られたものになるので、上述したような防爆構造要件を満足するフォトカプラは適さないのが現実である。   For this reason, in the case of a flow meter that operates on a battery, its power supply capacity is limited, so that a photocoupler that satisfies the above-described requirements for the explosion-proof structure is not suitable.

本発明は、掛かる問題点を解決して、電池で動作するような電源容量の限られた流量計に使用する場合等において、比較的短い内部充填物離隔距離の小さなパッケージの汎用的なフォトカプラを使用可能にして、消費電流を小さく維持しつつ、防爆構造要件を満足させることを目的としている。   The present invention is a general-purpose photocoupler having a relatively short package with a small internal packing separation distance, such as when used in a flow meter with a limited power supply capacity that can be operated by a battery. The purpose is to satisfy the requirements of explosion-proof structure while keeping the current consumption small.

流量計(本質安全防爆機器)の入力段に、複数段の小さなパッケージのフォトカプラを挿入して使用することで、消費電流も抑えられ、同時に本質安全防爆構造も満足することができる。   By using multiple stages of small packaged photocouplers inserted in the input stage of the flow meter (intrinsically safe explosion-proof device), current consumption can be suppressed and, at the same time, the intrinsically safe explosion-proof structure can be satisfied.

本発明の防爆用絶縁分離回路は、危険場所に設置される本質安全防爆機器からの出力信号を、安全保持器を介して非危険場所に設置されている非本質安全防爆機器に伝達するに際して、前記安全保持器と前記本質安全防爆機器とを絶縁分離するものである。この絶縁分離回路は、本質安全防爆機器の安全保持器側に接続された1段目のフォトカプラと、該1段目のフォトカプラと従属接続された2段目のフォトカプラとから構成される。本質安全防爆機器からの出力信号は、2段目のフォトカプラに結合して、これら従属接続のフォトカプラにより絶縁分離しつつ信号を伝達する。   The explosion-proof insulation separation circuit of the present invention transmits an output signal from an intrinsically safe explosion-proof device installed in a hazardous location to a non-intrinsically safe explosion-proof device installed in a non-hazardous location via a safety holder. The safety retainer and the intrinsically safe explosion-proof device are insulated and separated. This insulation separation circuit is composed of a first-stage photocoupler connected to the safety cage side of the intrinsically safe explosion-proof device, and a second-stage photocoupler connected in cascade with the first-stage photocoupler. . The output signal from the intrinsically safe explosion-proof device is coupled to the second-stage photocoupler, and the signal is transmitted while being isolated and separated by these subordinately connected photocouplers.

また、本発明の防爆用絶縁分離回路は、2段目のフォトカプラには、さらに別の1段又はそれ以上の段数のフォトカプラを従属接続して、本質安全防爆機器からの出力信号を最終段のフォトカプラに結合することができる。   In addition, the explosion-proof insulation separation circuit according to the present invention includes a second-stage photocoupler and another one-stage or more photocoupler connected in cascade, and finally outputs an output signal from the intrinsically safe explosion-proof device. It can be coupled to a stage photocoupler.

本発明によれば、それ自体で本質安全防爆構造を満足する特別なフォトカプラを使用する必要がなく、消費電流やパッケージの大きさも小さいものが選定できる為、比較的安価で小スペースな構成とすることが可能となり、部品の選択範囲が広がる。また、電池駆動の機器に採用しても電池の消費が少なく済むため実用的である。   According to the present invention, it is not necessary to use a special photocoupler that itself satisfies the intrinsically safe explosion-proof structure, and it is possible to select a small current consumption and package size. The range of parts can be expanded. Moreover, even if it is adopted in a battery-driven device, it is practical because it consumes less battery.

以下、例示に基づき本発明を説明する。図1は、本発明の防爆用絶縁分離回路を例示する図である。流量計(本質安全防爆機器)は危険場所(現場)に設置される一方、積算計等の計測器(非本質安全防爆機器)が非危険場所に設置されている。両者の間には、安全保持器が挿入されて、非危険場所側から危険場所側へのエネルギーの伝達を事故時にも安全な値に制限している。   Hereinafter, the present invention will be described based on examples. FIG. 1 is a diagram illustrating an explosion-proof insulation separation circuit according to the present invention. Flow meters (intrinsically safe explosion-proof equipment) are installed in hazardous areas (site), while measuring instruments such as integrators (non-intrinsically safe explosion-proof equipment) are installed in non-hazardous areas. Between them, a safety cage is inserted to limit energy transmission from the non-hazardous area side to the hazardous area side to a safe value even in the event of an accident.

流量計の信号線(出力信号等)は、絶縁分離回路を介して、そしてさらに安全保持器を介して、計測器に接続されている。この場合、本質安全防爆上、安全保持器側から見て流量計の内部インダクタンス及びキャパシタンスを無視出来る値となるように分離するために、2段構成のフォトカプラPC1,PC2が挿入されている。なお、図中に矢印で示す部品は、本質安全防爆上の必要要求事項を満足した安全保持部品を使用し、短絡・開路故障は生じないものを使用する。   A signal line (output signal or the like) of the flow meter is connected to the measuring instrument via an insulation separation circuit and further via a safety holder. In this case, two-stage photocouplers PC1 and PC2 are inserted in order to separate the internal inductance and capacitance of the flowmeter so as to be negligible as viewed from the safety cage side in terms of intrinsic safety. In addition, the parts indicated by the arrows in the figure shall use safety-holding parts that satisfy the necessary requirements for intrinsically safe explosion-proofing, and those that do not cause a short circuit or open circuit failure.

流量計からの信号、例えば計測値に比例したパルス周波数を有するパルス信号は、絶縁分離回路の2段目のフォトカプラPC2に、入力トランジスタを介して入力される。さらに、この2段目のフォトカプラPC2を介して、パルス信号は、1段目のフォトカプラPC1に入力され、そして、それを介して安全保持器に伝達される。なお、絶縁分離回路の安全保持器側に、異常電圧吸収のためのツェナーダイオードZDを挿入することができる。なお、この分離回路は、流量計とは別個のものとして例示したが、通常は、流量計筐体内部に組み込んで、筐体内部で流量計の出力側に接続して使用することが、コスト的及び防爆構成的に望ましい。   A signal from the flow meter, for example, a pulse signal having a pulse frequency proportional to the measured value is input to the second-stage photocoupler PC2 of the insulation separation circuit via an input transistor. Further, the pulse signal is input to the first-stage photocoupler PC1 through the second-stage photocoupler PC2, and is transmitted to the safety holder through the pulse signal. A Zener diode ZD for absorbing abnormal voltage can be inserted on the safety cage side of the isolation circuit. Although this separation circuit has been illustrated as being separate from the flow meter, it is usually built in the flow meter housing and connected to the output side of the flow meter inside the housing. Desirable in terms of safety and explosion protection.

このように、例示の回路は、2段構成の従属接続フォトカプラを用いるものであるが、3段或いはそれ以上の従属接続のフォトカプラを用いることができる。このように複数段のフォトカプラにより絶縁分離回路を構成することにより、本質安全防爆上のあらゆる防爆等級(ia、ib)に対応することが可能となる。これによって、流量計の内部に存在するインダクタンスやキャパシタンスに蓄積された電気エネルギーが安全保持器側へ放出されなくなるので、インダクタンスやキャパシタンスは無視出来る値とすることが出来る。   As described above, the illustrated circuit uses the cascade connection photocoupler having a two-stage configuration, but a cascade connection photocoupler having three or more stages can be used. In this way, by constructing an insulation separation circuit with a plurality of stages of photocouplers, it becomes possible to cope with all explosion-proof grades (ia, ib) in terms of intrinsically safe explosion-proof. As a result, the electrical energy stored in the inductance and capacitance existing inside the flowmeter is not released to the safety cage side, so that the inductance and capacitance can be set to negligible values.

本発明は、複数のフォトカプラを使用するものの、フォトカプラ自体は、本質安全防爆構造を満足するような特別なフォトカプラを使用する必要がなく、消費電流やパッケージの大きさも小さいものを選定することが可能となる。例えば、本質安全防爆機器の入力部(外部配線引込み部近傍)に防爆で要求される規定値(沿面距離・絶縁空間距離等)の1/3以上を満足するフォトカプラを、防爆等級に応じた段数設けることで、所望の防爆要求を満足することができる。   Although the present invention uses a plurality of photocouplers, the photocoupler itself does not need to use a special photocoupler that satisfies the intrinsically safe explosion-proof structure, and the one that consumes less current and the size of the package is selected. It becomes possible. For example, a photocoupler that satisfies more than 1/3 of the required value (creeping distance, insulation space distance, etc.) required for explosion-proofing at the input part (near the external wiring lead-in part) of the intrinsically safe explosion-proof device according to the explosion-proof grade By providing the number of stages, a desired explosion-proof requirement can be satisfied.

なお、例示の絶縁分離回路の最終段は、フォトトランジスタ出力としているが、これに代えて、フォトMOSリレーを使用し、MOS−FET出力とすることも可能である。   Note that the final stage of the illustrated isolation circuit is a phototransistor output, but a photoMOS relay may be used instead to provide a MOS-FET output.

本発明の防爆用絶縁分離回路を例示する図である。It is a figure which illustrates the insulation isolation circuit for explosion-proof of this invention. 従来から用いられている一般的な電気的な絶縁分離の手法を説明する図である。It is a figure explaining the method of the general electrical insulation separation used conventionally. フォトカプラの外部沿面距離を説明するための図である。It is a figure for demonstrating the external creepage distance of a photocoupler. フォトカプラの外部絶縁空間距離を説明するための図である。It is a figure for demonstrating the external insulation space distance of a photocoupler. フォトカプラの内部充填物離隔距離を説明するための図である。It is a figure for demonstrating the internal packing separation distance of a photocoupler.

Claims (3)

危険場所に設置される本質安全防爆機器からの出力信号を、安全保持器を介して非危険場所に設置されている非本質安全防爆機器に伝達するに際して、前記安全保持器と前記本質安全防爆機器とを絶縁分離する防爆用絶縁分離回路において、
前記本質安全防爆機器の安全保持器側に接続された1段目のフォトカプラと、
該1段目のフォトカプラと従属接続された2段目のフォトカプラとから構成して、
前記本質安全防爆機器からの出力信号を2段目のフォトカプラに結合して、これら従属接続のフォトカプラにより絶縁分離しつつ信号を伝達することを特徴とする防爆用絶縁分離回路。
When the output signal from the intrinsically safe explosion-proof device installed in the hazardous area is transmitted to the non-intrinsically safe explosion-proof device installed in the non-hazardous area via the safety holder, the safety holder and the intrinsically safe explosion-proof device In an explosion-proof insulation separation circuit that insulates and separates
A first-stage photocoupler connected to the safety holder side of the intrinsically safe explosion-proof device;
The first-stage photocoupler and the second-stage photocoupler cascade-connected,
An explosion-proof insulation separation circuit, wherein an output signal from the intrinsically safe explosion-proof device is coupled to a second-stage photocoupler and the signal is transmitted while being insulated and separated by the subordinately connected photocouplers.
前記2段目のフォトカプラには、さらに別の1段又はそれ以上の段数のフォトカプラを従属接続して、前記本質安全防爆機器からの出力信号を最終段のフォトカプラに結合した請求項1に記載の防爆用絶縁分離回路。 2. The second-stage photocoupler is further cascade-connected with another one or more stages of photocouplers, and an output signal from the intrinsically safe explosion-proof device is coupled to a final-stage photocoupler. 2. Insulation isolation circuit for explosion-proof. 前記本質安全防爆機器の筐体内部に組み込まれて、該本質安全防爆機器の出力側に接続される請求項1に記載の防爆用絶縁分離回路。
2. The explosion-proof insulation separation circuit according to claim 1, wherein the explosion-proof insulation separation circuit is incorporated in a housing of the intrinsically safe explosion-proof device and connected to an output side of the intrinsically safe explosion-proof device.
JP2003405625A 2003-12-04 2003-12-04 Explosion-proof insulated separation circuit Pending JP2005167058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405625A JP2005167058A (en) 2003-12-04 2003-12-04 Explosion-proof insulated separation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405625A JP2005167058A (en) 2003-12-04 2003-12-04 Explosion-proof insulated separation circuit

Publications (2)

Publication Number Publication Date
JP2005167058A true JP2005167058A (en) 2005-06-23
JP2005167058A5 JP2005167058A5 (en) 2009-03-19

Family

ID=34728243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405625A Pending JP2005167058A (en) 2003-12-04 2003-12-04 Explosion-proof insulated separation circuit

Country Status (1)

Country Link
JP (1) JP2005167058A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019554A (en) * 2008-07-08 2010-01-28 Hioki Ee Corp Circuit board and measuring device
JP2011027392A (en) * 2009-06-22 2011-02-10 Ketaka Electric Co Ltd Hot air dryer
JP2015524995A (en) * 2012-04-13 2015-08-27 ヒストソニックス,インコーポレーテッド System and method for obtaining large creepage insulation on a printed circuit board
US9778149B2 (en) 2014-05-02 2017-10-03 Swagelok Company Fluid sample system and method
US9901753B2 (en) 2009-08-26 2018-02-27 The Regents Of The University Of Michigan Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US10071266B2 (en) 2011-08-10 2018-09-11 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US11058399B2 (en) 2012-10-05 2021-07-13 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
CN115085344A (en) * 2022-08-22 2022-09-20 山西科达自控股份有限公司 Intrinsic safety explosion-proof circuit of lithium battery box
US11648424B2 (en) 2018-11-28 2023-05-16 Histosonics Inc. Histotripsy systems and methods
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535518A (en) * 1976-07-02 1978-01-19 Mitsubishi Electric Corp Pulse transmission circuit
JPS55128453A (en) * 1979-03-27 1980-10-04 Shintarou Kawaguchi Preparation of compound metalic plate
JPH05122836A (en) * 1991-10-28 1993-05-18 Yokogawa Electric Corp Safety holder for two-line transmitter
JPH05335152A (en) * 1992-05-28 1993-12-17 Yamatake Honeywell Co Ltd Saturation type transformer for intrinsically safe explosion-proof use
JPH09233209A (en) * 1996-02-26 1997-09-05 Matsushita Electric Ind Co Ltd Automatic metering system
JPH106002A (en) * 1996-06-24 1998-01-13 Matsushita Electric Ind Co Ltd Power source equipment for welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535518A (en) * 1976-07-02 1978-01-19 Mitsubishi Electric Corp Pulse transmission circuit
JPS55128453A (en) * 1979-03-27 1980-10-04 Shintarou Kawaguchi Preparation of compound metalic plate
JPH05122836A (en) * 1991-10-28 1993-05-18 Yokogawa Electric Corp Safety holder for two-line transmitter
JPH05335152A (en) * 1992-05-28 1993-12-17 Yamatake Honeywell Co Ltd Saturation type transformer for intrinsically safe explosion-proof use
JPH09233209A (en) * 1996-02-26 1997-09-05 Matsushita Electric Ind Co Ltd Automatic metering system
JPH106002A (en) * 1996-06-24 1998-01-13 Matsushita Electric Ind Co Ltd Power source equipment for welding

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11701134B2 (en) 2005-09-22 2023-07-18 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US11364042B2 (en) 2005-09-22 2022-06-21 The Regents Of The University Of Michigan Histotripsy for thrombolysis
JP2010019554A (en) * 2008-07-08 2010-01-28 Hioki Ee Corp Circuit board and measuring device
JP2011027392A (en) * 2009-06-22 2011-02-10 Ketaka Electric Co Ltd Hot air dryer
US9901753B2 (en) 2009-08-26 2018-02-27 The Regents Of The University Of Michigan Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US10071266B2 (en) 2011-08-10 2018-09-11 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
JP2015524995A (en) * 2012-04-13 2015-08-27 ヒストソニックス,インコーポレーテッド System and method for obtaining large creepage insulation on a printed circuit board
US11058399B2 (en) 2012-10-05 2021-07-13 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US11819712B2 (en) 2013-08-22 2023-11-21 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
US9778149B2 (en) 2014-05-02 2017-10-03 Swagelok Company Fluid sample system and method
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
US11648424B2 (en) 2018-11-28 2023-05-16 Histosonics Inc. Histotripsy systems and methods
US11813484B2 (en) 2018-11-28 2023-11-14 Histosonics, Inc. Histotripsy systems and methods
US11980778B2 (en) 2018-11-28 2024-05-14 Histosonics, Inc. Histotripsy systems and methods
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
CN115085344A (en) * 2022-08-22 2022-09-20 山西科达自控股份有限公司 Intrinsic safety explosion-proof circuit of lithium battery box
CN115085344B (en) * 2022-08-22 2022-11-15 山西科达自控股份有限公司 Intrinsic safety explosion-proof circuit of lithium battery box

Similar Documents

Publication Publication Date Title
JP2005167058A (en) Explosion-proof insulated separation circuit
EP1982397B1 (en) Flameproof apparatus using non-grounded energy-limiting barrier
JP4976162B2 (en) Measuring device powered by non-intrinsically safe explosion-proof structure
EP3553875A1 (en) Method and system for detecting volatile organic compounds within a battery assembly
US7312716B2 (en) Wireless communication using an intrinsically safe design for use in a hazardous area
KR20060110771A (en) Apparatus and method of protecting battery packs
KR102520906B1 (en) Integration of lighting fixtures and sensor components in hazardous environments
EP3024085A1 (en) Secondary battery abnormality warning system
EP2980666A1 (en) Can bus explosion-proof network and explosion-proof node structure for same
AU2010362640A1 (en) Intrinsically safe backup power supply for combustible environments
JPWO2017110049A1 (en) Battery management system
US10476305B2 (en) Power and data transmission between explosion proof devices and intrinsically safe devices
JP4175567B2 (en) Explosion-proof separation circuit
CN100401610C (en) Anti-explosion power source surge protector
US10116158B2 (en) Power management system with selective source depletion
US9537438B2 (en) Buss potential isolation module
CN210775638U (en) Alternating current live isolation indicating device
CN202102987U (en) Mining explosion-proof breaker circuit
JPWO2017154516A1 (en) Battery management system
CN109039077A (en) One kind being mountable to the intracorporal intrinsic safety electric source of increased safety case for explosion hazard area
CN206542483U (en) A kind of analog video signal isolation circuit of explosive atmosphere electrical installation
CN203149381U (en) CAN bus explosion-proof network and structure of explosion-proof node
CN207397852U (en) Mining explosion-proof transformer guard box
CN107731456A (en) Mining explosion-proof transformer guard box
CN208508795U (en) One kind being mountable to the intracorporal intrinsic safety electric source of increased safety case for explosion hazard area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823