JP2005164773A - Diffraction optical element and lens for projection using the same - Google Patents

Diffraction optical element and lens for projection using the same Download PDF

Info

Publication number
JP2005164773A
JP2005164773A JP2003401083A JP2003401083A JP2005164773A JP 2005164773 A JP2005164773 A JP 2005164773A JP 2003401083 A JP2003401083 A JP 2003401083A JP 2003401083 A JP2003401083 A JP 2003401083A JP 2005164773 A JP2005164773 A JP 2005164773A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
lens
circular
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003401083A
Other languages
Japanese (ja)
Inventor
Hiroto Yasui
裕人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003401083A priority Critical patent/JP2005164773A/en
Publication of JP2005164773A publication Critical patent/JP2005164773A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection lens of a coaxial system suitable to, specially, a projection type display device etc., such as a liquid crystal projector by using a diffraction optical element which has high diffraction efficiency in the whole use wavelength range (light in visible region) and can reduce incidence angle dependency of light incident on the diffraction optical element. <P>SOLUTION: The projection lens of the coaxial system can be realized by introducing a stack type diffraction optical element at a position where the absolute value of the height from the optical axis of a pupil paraxial light beam passing through each lens is large and the center of a circle or ellipse forming the diffraction optical element is shifted from the optical axis of an introduced lens substrate according to a distribution of light beams incident on a surface of the diffraction optical element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回折光学素子及びそれを用いた光学系に関し、特に使用波長領域(可視光域)における回折光学素子の入射角度依存性による回折効率の低減を緩和することができ、且つ前記回折光学素子を用いた、特にライトバルブに表示された像をスクリーン上に拡大投影する、特に液晶プロジェクタ装置に好適な共軸系の投射用レンズに関するものである。   The present invention relates to a diffractive optical element and an optical system using the diffractive optical element, and in particular, can reduce the reduction in diffraction efficiency due to the incident angle dependence of the diffractive optical element in the used wavelength region (visible light region), and More particularly, the present invention relates to a coaxial projection lens suitable for a liquid crystal projector apparatus that enlarges and projects an image displayed on a light valve using an element on a screen.

従来の硝材の組合せにより色収差を減じる方法に対して、レンズ面やあるいは光学系の一部に回折作用を有する回折光学素子を設けることで色収差を減じる技術が、SPIE vol.1354 International Lens Design Conference(1990)等の文献や特開平4−213421号公報、特開平6−324262号公報、USP5,044,706号等により開示されている。これらは、光学系中の屈折面と回折面とでは、ある基準波長の光線に対する色収差の出方が逆方向に発現するという物理現象を利用したものである。これは、通常の光学ガラスが正の分散特性を有しているのに対し、回折光学素子は負の分散特性(υd=−3.453)を有していることを意味している。また、回折光学素子は強い異常分散性(θg,F=0.2956)を持ち、加えて、回折光学素子の周期構造を変化させることで、非球面効果をも持たせることができるという特性を有している。以上のことから、回折光学素子は負の分散特性や強い異常分散性を利用した色収差の補正効果と非球面効果の大きな2つの効果が利用でき、光学性能の大幅な向上が期待できる。更に、回折光学素子は微細な形状をしていることから、空間的な占有率を非常に低くすることができ、光学系の軽量化及び小型化を達成し易いという特性も有している。   In contrast to the conventional method of reducing chromatic aberration by combining glass materials, a technology that reduces chromatic aberration by providing a diffractive optical element having a diffractive action on the lens surface or part of the optical system is the SPIE vol.1354 International Lens Design Conference ( 1990), JP-A-4-213421, JP-A-6-324262, USP5,044,706, and the like. These are based on the physical phenomenon that refracting surfaces and diffractive surfaces in an optical system exhibit chromatic aberration in a reverse direction with respect to a light beam having a certain reference wavelength. This means that the normal optical glass has a positive dispersion characteristic, whereas the diffractive optical element has a negative dispersion characteristic (νd = −3.453). In addition, the diffractive optical element has a strong anomalous dispersion (θg, F = 0.2956) and, in addition, has a characteristic that it can have an aspherical effect by changing the periodic structure of the diffractive optical element. ing. From the above, the diffractive optical element can use two effects of correcting the chromatic aberration using the negative dispersion characteristic and the strong anomalous dispersion and the aspheric effect, and the optical performance can be greatly improved. Furthermore, since the diffractive optical element has a fine shape, the space occupancy can be made very low, and the optical system can be easily reduced in weight and size.

一方、液晶パネル等の表示画像を拡大投影する液晶プロジェクタ等の投射型の表示装置は、近年大幅にその性能が向上し様々な場所で使用されるようになったものの、表示画像の画質、画像の明るさ、小型化、軽量化等の点に関してより一層の向上が求められている。   On the other hand, projection-type display devices such as liquid crystal projectors for enlarging and projecting display images such as liquid crystal panels have been improved in performance in recent years and have been used in various places. Further improvement is demanded in terms of brightness, size reduction, weight reduction, and the like.

現在主流である液晶プロジェクタとして、赤、青、緑の波長領域用に各々液晶パネルを配置する、所謂「3板式液晶プロジェクタ」が知られている。この「3板式液晶プロジェクタ」は、3つの液晶パネルに表示された画像を、スクリーン上に重ねてカラー画像として表示するために光路上にダイクロイックプリズム等の色合成光学系を用いている。このダイクロイックプリズム中のダイクロ膜の角度依存性により発生する投射画像の色むらや、液晶パネルの視向性により発生するコントラスト低下を防ぐために、投射光学系には縮小共役側の像面に対してテレセントリック性が要求される。また、3つの液晶パネルの拡大画像の色ずれを少なくするため、投射レンズには倍率色収差を低減することが要求される。更に、近年比較的明るい部屋の中でも画像を観察できるようにするため、液晶パネルにはマイクロレンズが採用されるようになった。このため液晶パネルより放射する光の立体角が大きくなり、この光を有効利用するため、投射レンズにはより明るいものが求められるようになった。   A so-called “three-plate type liquid crystal projector” is known as a liquid crystal projector that is currently mainstream, in which liquid crystal panels are arranged for red, blue, and green wavelength regions, respectively. This “three-plate liquid crystal projector” uses a color synthesizing optical system such as a dichroic prism on the optical path in order to display the images displayed on the three liquid crystal panels on the screen as a color image. In order to prevent unevenness in the color of the projected image caused by the angle dependence of the dichroic film in this dichroic prism, and the decrease in contrast caused by the viewing direction of the liquid crystal panel, the projection optical system has an image plane on the reduction conjugate side. Telecentricity is required. Further, in order to reduce the color shift of the enlarged images of the three liquid crystal panels, the projection lens is required to reduce the chromatic aberration of magnification. Further, in recent years, microlenses have been adopted for liquid crystal panels so that images can be observed even in a relatively bright room. For this reason, the solid angle of the light emitted from the liquid crystal panel is increased, and in order to effectively use this light, a brighter projection lens is required.

前記回折光学素子を投射光学系に用いる場合、回折効率を考慮しなければならない。屈折光学系の場合、ある屈折面に入射した1本の光線は屈折後も1本の光線であるが、回折においては、複数の各回折次数に光が分離してしまう。そこで、レンズ系として回折光学素子を用いる場合には、使用波長領域の光束が1つの特定次数(以後設計次数と言う)に集中するように格子構造を決定する必要がある。設計次数に光が集中している場合では、それ以外の回折光の光線強度は低いものとなり、強度が0の場合にはその回折光は存在しないものとなる。設計次数以外の回折次数を持った光線が存在する場合は、設計次数の光線とは異なる位置に結像するため、設計した像面に対してはボケを有するフレア光となる。従って、回折効果を利用した光学系においては、設計次数での回折効率の分光分布だけでなく、設計次数以外の光線の振舞いについても十分考慮することが重要である。そのため、前記特長である回折光学素子の色収差の補正効果等を有効に利用するには、使用波長域全域において設計次数の光線の回折効率が十分に高いことが必要となる。   When the diffractive optical element is used in a projection optical system, the diffraction efficiency must be taken into consideration. In the case of a refracting optical system, one light beam incident on a certain refracting surface is one light beam after refraction, but in diffraction, light is separated into a plurality of diffraction orders. Therefore, when a diffractive optical element is used as the lens system, it is necessary to determine the grating structure so that the light flux in the used wavelength region is concentrated in one specific order (hereinafter referred to as the design order). When light is concentrated at the design order, the light intensity of the other diffracted light is low, and when the intensity is 0, the diffracted light does not exist. When there is a light beam having a diffraction order other than the design order, an image is formed at a position different from the light beam of the design order, so that the flare light has a blur on the designed image plane. Therefore, in an optical system using the diffraction effect, it is important to sufficiently consider not only the spectral distribution of diffraction efficiency at the design order but also the behavior of light rays other than the design order. For this reason, in order to effectively use the chromatic aberration correction effect of the diffractive optical element, which is the feature described above, it is necessary that the diffraction efficiency of the light of the designed order is sufficiently high in the entire use wavelength range.

図11は、ある1つの材料により形成された単層の回折光学素子(図11(a))の回折効率(図11(b))を例に示したものである。前記図11(a)は単層の回折光学素子の簡略図を表しており、図中において、d1は格子高さを、Pitchは格子ピッチを、(nd1、νd1)は格子に用いた紫外線硬化樹脂のd線における屈折率及びアッベ数を各々表している。また前記図11(b)は、前記図11(a)の回折効率の波長依存特性を表している。この時、前記図11(a)において、d1=1.0[μm]、Pitch=1000[μm]、(nd1、νd1)=(1.513、51.0)にして計算した結果を図11(b)に示してある。前記図11(b)においては、設計次数である1次光と、その他の次数として0次光と2次光の回折効率の波長依存特性を併せて表記してある。尚、図11(b)中において、横軸は波長[μm]を、縦軸は回折効率[%]を各々表している。前記図11(b)より、1次光の回折効率は、ある特定の波長において回折効率は高いものの、前記特定な波長より離れた波長の回折効率は大きく低下していることが分かる。この回折効率の低下している波長域においては、設計次数以外の0次光及び2次光の回折効率が高くなっておりフレア等の画像劣化を起こしてしまう。   FIG. 11 shows an example of the diffraction efficiency (FIG. 11 (b)) of a single-layer diffractive optical element (FIG. 11 (a)) formed of a certain material. FIG. 11 (a) shows a simplified diagram of a single-layer diffractive optical element, in which d1 is the grating height, Pitch is the grating pitch, and (nd1, νd1) is the ultraviolet curing used for the grating. The refractive index and Abbe number at the d-line of the resin are respectively shown. FIG. 11B shows the wavelength dependence characteristics of the diffraction efficiency of FIG. At this time, in FIG. 11 (a), the calculation result with d1 = 1.0 [μm], Pitch = 1000 [μm], (nd1, νd1) = (1.513, 51.0) is shown in FIG. 11 (b). is there. In FIG. 11B, the wavelength dependence characteristics of the diffraction efficiency of the first order light, which is the designed order, and the other orders, the zero order light and the second order light, are also shown. In FIG. 11B, the horizontal axis represents wavelength [μm] and the vertical axis represents diffraction efficiency [%]. From FIG. 11 (b), it can be seen that the diffraction efficiency of the primary light is high at a specific wavelength, but the diffraction efficiency at wavelengths away from the specific wavelength is greatly reduced. In the wavelength region where the diffraction efficiency is lowered, the diffraction efficiency of the zero-order light and the second-order light other than the designed order is high, which causes image degradation such as flare.

このような回折効率の波長依存性を低減するような構成が、特開平10-133149号公報や特開平10-39639号公報において開示されている。特開平10-133149号公報等の技術は、分散の異なる2つの材料により回折格子を形成し、波長による位相差を低減することで、単層の回折格子に見られるような回折効率の波長依存劣化を低減させたものである。図12は、特開平10-133149号公報の技術に見られるような回折光学素子の回折効率の例である。前記特開平10-133149号公報の中では、2つの材料を密着させた構成であったが、その材料どうしを空気層を挟んで分離した構成で図12(a)は示されている。ここで、d1、d2は格子高さを、Pitchは格子ピッチを、nd1、nd2は格子に用いた紫外線硬化樹脂1及び2のd線における屈折率を、νd1、νd2は前記紫外線硬化樹脂1及び2のd線におけるアッベ数を各々表している。また図12(b)は、前記図12(a)の回折効率の波長依存特性を表しており、前記図12(a)において、d1=6.9[μm]、d2=9.5[μm]、Pitch=1000[μm]、(nd1、νd1)=(1.636、22.8)、(nd2、νd2)=(1.513、51.0)にして計算した結果を示している。前記図12(b)より、1次光の回折効率は、広波長域に渡り高い回折効率を示していることが分かる。また、この時設計次数以外の0次光及び2次光の回折効率が低くなっている。このように、空気層を挟むことにより、2つの材料の選択性が広がり、光学性能を向上させることが可能となる。以下、この技術により構成される回折素子の形状を単層型の回折光学素子に対して、積層型の回折光学素子と呼ぶことにする。   Japanese Patent Laid-Open No. 10-133149 and Japanese Patent Laid-Open No. 10-39639 disclose such a configuration that reduces the wavelength dependency of diffraction efficiency. The technology such as Japanese Patent Application Laid-Open No. 10-133149 is based on the wavelength dependence of diffraction efficiency as seen in a single-layer diffraction grating by forming a diffraction grating with two materials with different dispersion and reducing the phase difference due to wavelength. Deterioration is reduced. FIG. 12 is an example of the diffraction efficiency of a diffractive optical element as found in the technique of Japanese Patent Laid-Open No. 10-133149. In Japanese Patent Laid-Open No. 10-133149, the two materials are in close contact with each other, but FIG. 12 (a) shows a configuration in which the materials are separated with an air layer interposed therebetween. Here, d1 and d2 are the grating height, Pitch is the grating pitch, nd1 and nd2 are the refractive indices at the d-line of the ultraviolet curable resins 1 and 2 used in the grating, and νd1 and νd2 are the ultraviolet curable resin 1 and 2 represents the Abbe number on the d line. FIG. 12B shows the wavelength dependence characteristics of the diffraction efficiency of FIG. 12A. In FIG. 12A, d1 = 6.9 [μm], d2 = 9.5 [μm], Pitch = The calculation results are shown with 1000 [μm], (nd1, νd1) = (1.636, 22.8), (nd2, νd2) = (1.513, 51.0). From FIG. 12 (b), it can be seen that the diffraction efficiency of the primary light shows high diffraction efficiency over a wide wavelength range. At this time, the diffraction efficiencies of the zero-order light and the second-order light other than the designed order are low. Thus, by sandwiching the air layer, the selectivity of the two materials is expanded, and the optical performance can be improved. Hereinafter, the shape of a diffractive element constituted by this technique is referred to as a laminated diffractive optical element as opposed to a single-layered diffractive optical element.

前記回折光学素子をプロジェクタ装置等の(共軸系の)投射光学系に利用した例として、特開2000−019400号公報、特開2001−066499号公報等が挙げられる。前記特開2000−019400号公報及び特開2001−066499号公報で提案されている光学系は、投射光学系のF値が比較的小さいため、マージナル光線の回折光学素子への入射角が大きくなってしまい、回折効率が大きく低下してしまう傾向にあった。その問題に対し、前記特開2000−019400号公報は、諸収差特に倍率色収差の補正を主な目的としていたため、前記回折光学素子の回折効率、特に斜入射に対する回折効率劣化まで言及されていなかった。一方、特開2001−066499号公報では、前記回折光学素子と縮小像面との光路間に正の屈折力のレンズを配置したり、前記回折光学素子の屈折力を適切に条件化したり、前記回折光学素子が形成されているベース面の曲率を調整することで、前記回折光学素子に入射する光線の入射角度の変動をある程度緩和していた。しかしながら、現在主流である液晶プロジェクタ用の(共軸系の)投射用レンズは、前記公開特許当時よりも更に明るく(光学系のF値が小さい)、且つ広角化されたものが求められており、これまで以上に回折光学素子への光線斜入射が問題になると考えられ、前記対応だけでは回折効率の劣化を緩和しきれないという問題があった。   Examples of using the diffractive optical element in a projection optical system (coaxial system) such as a projector apparatus include Japanese Patent Application Laid-Open Nos. 2000-019400 and 2001-066499. In the optical systems proposed in the above-mentioned JP-A-2000-019400 and JP-A-2001-066499, since the F value of the projection optical system is relatively small, the incident angle of the marginal ray on the diffractive optical element becomes large. As a result, the diffraction efficiency tends to decrease greatly. In order to solve this problem, the Japanese Patent Application Laid-Open No. 2000-019400 has been mainly aimed at correcting various aberrations, particularly lateral chromatic aberration, and therefore does not mention the diffraction efficiency of the diffractive optical element, particularly the deterioration of diffraction efficiency with respect to oblique incidence. It was. On the other hand, in Japanese Patent Application Laid-Open No. 2001-066499, a lens having a positive refractive power is disposed between the optical path between the diffractive optical element and the reduced image plane, the refractive power of the diffractive optical element is appropriately conditioned, By adjusting the curvature of the base surface on which the diffractive optical element is formed, fluctuations in the incident angle of light rays incident on the diffractive optical element have been alleviated to some extent. However, the current mainstream projection lens for LCD projectors (coaxial system) is required to be brighter (the F value of the optical system is smaller) and wider than that of the published patent. Further, it is considered that oblique incidence of light on the diffractive optical element becomes a problem more than ever, and there has been a problem that the degradation of diffraction efficiency cannot be alleviated only by the above measures.

ところで、現在の液晶プロジェクタ用の特に共軸系の投射用レンズは、スクリーン上に画像を投影する際、前記スクリーン上の投影範囲は前記共軸系の投射用レンズの光軸より片側半分のみを主に使用している。この時、前記投射用レンズの絞りより離れた箇所(各レンズを通過する瞳近軸光線の光軸からの高さの絶対値が高い位置)では、レンズを通過する光線に偏りが生じている。このことを利用して、回折光学素子を各レンズを通過する瞳近軸光線の光軸からの高さの絶対値が高い位置に導入し、前記回折光学素子の中心位置を光線分布に応じてずらすことができないかということについて、本出願人は本特許において検討を試みた。   By the way, especially the projection lens of the coaxial system for the current liquid crystal projector, when projecting an image on the screen, the projection range on the screen is only half on one side from the optical axis of the projection lens of the coaxial system. Mainly used. At this time, the light beam passing through the lens is biased at a position away from the aperture of the projection lens (a position where the absolute value of the height of the paraxial light beam passing through each lens from the optical axis is high). . Utilizing this, the diffractive optical element is introduced to a position where the absolute value of the height of the paraxial light beam passing through each lens from the optical axis is high, and the center position of the diffractive optical element is determined according to the light distribution. The Applicant has attempted to consider in this patent whether it can be displaced.

前記回折光学素子の斜入射に対する回折効率劣化対策として、回折光学素子の中心位置をずらすという提案がなされた例としては、特許番号第2532729号及び特許番号第2586703号等が挙げられる。前記特許において、斜入射による回折効率劣化を回折格子のパターン形状を楕円形にし、且つ前記楕円形の中心の位置を光線の入射角度に応じ外周部方向に徐々にずらすことで、前記回折効率の劣化を緩和していた。しかしながら、前記特許においては単波長(He−Neレーザ)における回折効率の斜入射劣化対策でしかなく、且つ高い回折効率が得られているとは言い難かった。   Examples of proposals for shifting the center position of the diffractive optical element as countermeasures against the deterioration of diffraction efficiency with respect to the oblique incidence of the diffractive optical element include Japanese Patent Nos. 2532729 and 25670703. In the patent, the diffraction efficiency deterioration due to oblique incidence is caused by making the pattern shape of the diffraction grating an ellipse, and gradually shifting the position of the center of the ellipse in the outer peripheral direction according to the incident angle of the light beam. The deterioration was mitigated. However, the above-mentioned patent is only a countermeasure against the oblique incidence deterioration of the diffraction efficiency in a single wavelength (He-Ne laser), and it cannot be said that a high diffraction efficiency is obtained.

本発明では、上記従来の課題を解決し、光学系が明るく且つ小型で、諸収差特に色収差を良好に補正することができ、使用波長全域(可視光域)における回折光学素子の入射角度依存性の低減を図ることが可能な、特に液晶プロジェクタ等の投射型の表示装置等に好適な回折光学素子及びそれを用いた共軸系の投射用レンズを提供することを目的とする。   In the present invention, the above conventional problems are solved, the optical system is bright and compact, various aberrations, in particular, chromatic aberration can be corrected well, and the incident angle dependence of the diffractive optical element in the entire operating wavelength range (visible light range). It is an object of the present invention to provide a diffractive optical element suitable for projection type display devices such as a liquid crystal projector, and a coaxial projection lens using the same.

上記課題を解決するために、本発明の回折光学素子及びそれを用いた投射用レンズは、以下のような構成であることを特徴とするものである。   In order to solve the above problems, a diffractive optical element of the present invention and a projection lens using the diffractive optical element have the following configurations.

(1)本発明の回折光学素子は、広帯域の波長領域で使用する回折光学素子であり、前記回折光学素子はレンズ基板上に形成された回折格子を有し、前記回折格子のパターン形状は円形若しくは楕円形であり、前記円形若しくは楕円形の中心位置が、前記レンズ基板の光軸に対してずれていることを特徴としている。   (1) The diffractive optical element of the present invention is a diffractive optical element used in a wide wavelength range, and the diffractive optical element has a diffraction grating formed on a lens substrate, and the pattern shape of the diffraction grating is circular. Or it is elliptical, The center position of the said circle | round | yen or an ellipse has shifted | deviated with respect to the optical axis of the said lens board | substrate.

(2)本発明の回折光学素子において、前記回折光学素子の前記円形若しくは楕円形の中心位置のずれ方向は、前記回折光学素子に入射する光の通過領域が偏っている方向にずれていることを特徴としている。   (2) In the diffractive optical element of the present invention, the shift direction of the center position of the circular or elliptical shape of the diffractive optical element is shifted in a direction in which a light passing region incident on the diffractive optical element is biased. It is characterized by.

(3)本発明の回折光学素子において、前記回折光学素子の前記円形若しくは楕円形の中心位置のずれ方向は、前記円形の場合は前記レンズ基板の光軸に対して垂直方向にある一方の径方向に、前記楕円形の場合は前記レンズ基板の光軸に対して垂直方向にある一方の長軸若しくは短軸方向にずれていることを特徴としている。   (3) In the diffractive optical element of the present invention, the direction of deviation of the center position of the circular or elliptical shape of the diffractive optical element is one diameter perpendicular to the optical axis of the lens substrate in the case of the circular shape. In the case of the ellipse, the direction is shifted in one major axis or minor axis direction perpendicular to the optical axis of the lens substrate.

(4)本発明の回折光学素子において、前記回折格子の周辺部に向かうに連れ、格子ピッチが小さくなる前記回折格子の前記円形若しくは楕円形の中心位置がずれた形状であることを特徴としている。   (4) The diffractive optical element of the present invention is characterized in that the center position of the circular or elliptical shape of the diffraction grating becomes smaller as the grating pitch decreases toward the periphery of the diffraction grating. .

(5)本発明の回折光学素子において、使用波長領域が可視光域であることを特徴としている。   (5) The diffractive optical element of the present invention is characterized in that the used wavelength region is a visible light region.

(6)本発明の回折光学素子は、主に共軸系の投射用レンズにおいて用いられることを特徴としている。   (6) The diffractive optical element according to the present invention is mainly used in a coaxial projection lens.

(7)本発明の回折光学素子及びそれを用いた投射用レンズにおいて、前記回折光学素子は各レンズを通過する瞳近軸光線の光軸からの高さが以下の条件式を満足する位置に導入されていることを特徴としている。   (7) In the diffractive optical element of the present invention and a projection lens using the diffractive optical element, the diffractive optical element is positioned at a position where the height from the optical axis of the paraxial ray passing through each lens satisfies the following conditional expression: It is characterized by being introduced.

Figure 2005164773
ここで、
Figure 2005164773
here,

Figure 2005164773
は回折光学素子を導入するレンズ面の瞳近軸光線の光軸からの高さを、RDOEは回折光学素子を導入するレンズ面における光線有効半径を各々表している。
Figure 2005164773
Denotes the height of the lens paraxial ray from the optical axis of the lens surface where the diffractive optical element is introduced, and R DOE denotes the effective ray radius at the lens surface where the diffractive optical element is introduced.

(8)本発明の回折光学素子及びそれを用いた投射用レンズにおいて、前記回折光学素子の前記円形若しくは楕円形の中心位置のずれ量は、以下の条件式を満足することを特徴としている。   (8) In the diffractive optical element of the present invention and the projection lens using the diffractive optical element, the deviation amount of the center position of the circular or elliptical shape of the diffractive optical element satisfies the following conditional expression.

0.0 < | Yshift / RDOE| < 0.3 ………(2)
ここで、Yshiftは回折光学素子の円形若しくは楕円形の中心位置の、投射用レンズにおける前記回折光学素子を導入するレンズ面の光軸に対して垂直方向へのずれ量を、RDOEは回折光学素子を導入するレンズ面における光線有効半径を各々表している。
0.0 <| Yshift / R DOE | <0.3 ……… (2)
Here, Yshift is the amount of deviation of the center position of the circular or elliptical shape of the diffractive optical element in the direction perpendicular to the optical axis of the lens surface for introducing the diffractive optical element in the projection lens, and R DOE is the diffractive optical Each of the effective ray radii on the lens surface where the element is introduced is shown.

(9)本発明の回折光学素子及びそれを用いた投射用レンズにおいて、前記回折光学素子は、レンズ基板上に形成された回折格子を有し、且つ前記回折格子のパターン形状が円形若しくは楕円形で形成された層を、複数個積層して構成された積層型回折光学素子であることを特徴としている。   (9) In the diffractive optical element of the present invention and a projection lens using the diffractive optical element, the diffractive optical element has a diffraction grating formed on a lens substrate, and the pattern shape of the diffraction grating is circular or elliptical. The multilayer diffractive optical element is formed by laminating a plurality of layers formed in (1).

(10)本発明の回折光学素子及びそれを用いた投射用レンズにおいて、前記回折光学素子が分散の異なる2つの材料により構成される2つの前記回折格子の層を近接配置した構成であることを特徴としている。   (10) In the diffractive optical element of the present invention and the projection lens using the diffractive optical element, the diffractive optical element has a configuration in which two layers of the diffraction grating composed of two materials having different dispersions are arranged close to each other. It is a feature.

(11)本発明のプロジェクタ装置は、前項(6)から(10)のいずれか1項の投射用レンズを用いて、投影像原画をスクリーン面上に投影していることを特徴としている。   (11) The projector device according to the present invention is characterized in that the projection image original image is projected on the screen surface using the projection lens according to any one of (6) to (10).

本発明によれば、以上のように、共軸系の投射用ズームレンズにおいて、各レンズを通過する瞳近軸光線の光軸からの高さの絶対値が高い位置に回折光学素子を導入し、前記回折光学素子面に入射する光線分布に応じて、前記回折光学素子を形成する円形若しくは楕円形の中心を導入したレンズ基板の光軸に対してずらすことによって実現することができる。更に、前記回折光学素子の導入箇所及び前記回折光学素子を形成する円形若しくは楕円形の中心のずれ量を適切に設定することにより、更に、より諸収差特に色収差が補正され、且つ回折効率の斜入射劣化の緩和がなされた光学系を実現することができる。   According to the present invention, as described above, in the coaxial projection zoom lens, the diffractive optical element is introduced at a position where the absolute value of the height from the optical axis of the paraxial light beam passing through each lens is high. This can be realized by shifting the circular or elliptical center forming the diffractive optical element with respect to the optical axis of the lens substrate in accordance with the distribution of light rays incident on the diffractive optical element surface. Furthermore, by appropriately setting the shift position of the introduction position of the diffractive optical element and the center of the circle or ellipse forming the diffractive optical element, various aberrations, in particular chromatic aberration, are further corrected, and the diffraction efficiency is inclined. It is possible to realize an optical system in which incident deterioration is mitigated.

図1〜図4の各(a)及び図14、15の各(a)は、本発明の数値実施例1から4及び前記本実施例の比較対象となる従来例1と2の広角端におけるレンズ断面図(光路図)を各々表している。各図において、拡大共役側がスクリーン側にあたり、縮小共役側が液晶パネル側にあたる。また、各図中のL1からL6は第1レンズ群から第6レンズ群の各レンズ群を表している。SPは絞りであり、各実施例及び各比較従来例とも第3レンズ群L3と第4レンズ群L4の間に存在する。回折光学素子は、図1の数値実施例1、図2の数値実施例2及び図14の比較従来例1では前記第6レンズ群L6の接合面に、また図3の数値実施例3、図4の数値実施例4及び図15の比較従来例2では前記第1レンズ群L1の接合面に、各々導入されている。また、GBは色合成プリズム等のガラスブロックである。矢印は広角端から望遠端へ変倍を行う際の各レンズ群の移動軌跡を示している。尚、光学系の座標系(X、Y、Z軸の関係)は各図に示した通りである。   1 to 4 and FIGS. 14 and 15 are respectively (a) at the wide-angle end of Numerical Examples 1 to 4 of the present invention and Conventional Examples 1 and 2 to be compared with the present Example. Each lens sectional view (optical path diagram) is shown. In each figure, the enlargement conjugate side corresponds to the screen side, and the reduction conjugate side corresponds to the liquid crystal panel side. Further, L1 to L6 in the drawings represent the lens groups of the first lens group to the sixth lens group. SP is a stop, which exists between the third lens unit L3 and the fourth lens unit L4 in each of the examples and the comparative conventional examples. The diffractive optical element is shown in Numerical Example 1 of FIG. 1, Numerical Example 2 of FIG. 2 and Comparative Conventional Example 1 of FIG. 14 on the cemented surface of the sixth lens unit L6, and Numerical Example 3 of FIG. In Numerical Example 4 of FIG. 4 and Comparative Example 2 of FIG. 15, each is introduced to the cemented surface of the first lens unit L1. GB is a glass block such as a color synthesis prism. The arrows indicate the movement trajectory of each lens group when zooming from the wide-angle end to the telephoto end. The coordinate system of the optical system (relationship between X, Y, and Z axes) is as shown in each drawing.

本提案において、各実施例及び各比較従来例の光学系とも、拡大共役側より順に負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5、正の屈折力の第6レンズ群L6の6群構成の共軸系の投射用ズームレンズである。また広角端から望遠端への変倍に際して、各実施例及び各比較従来例とも、前記第1レンズ群L1及び第6レンズ群L6は固定であり、前記第2レンズ群L2、前記第3レンズ群L3及び第5レンズ群L5を縮小共役側から拡大共役側に移動させることによって変倍を行っている。尚、各実施例及び各比較従来例の光学系とも第1レンズ群L1を移動させてフォーカスを行っている。   In this proposal, in each optical system of each example and each comparative conventional example, the first lens unit L1 having a negative refractive power, the second lens unit L2 having a positive refractive power, the first lens unit having a positive refractive power in order from the magnification conjugate side. Coaxial projection zoom lens with 6 lens groups: 3 lens unit L3, 4th lens unit L4 with negative refractive power, 5th lens unit L5 with positive refractive power, 6th lens unit L6 with positive refractive power It is. When zooming from the wide-angle end to the telephoto end, the first lens unit L1 and the sixth lens unit L6 are fixed, and the second lens unit L2 and the third lens in each example and each comparative conventional example. The zooming is performed by moving the group L3 and the fifth lens unit L5 from the reduction conjugate side to the enlargement conjugate side. In each of the optical systems of the examples and comparative conventional examples, focusing is performed by moving the first lens unit L1.

図1〜図4及び図14、図15の各(b)及び各(c)は、本発明の数値実施例1から4(図1〜図4の各(a))及び前記本発明の比較従来例1、2(図14、15の各(a))の光学系に用いた回折光学素子のXY断面図及びYZ断面図を各々表している。ここで、各断面図の座標系は各図(a)の光学系の座標系と一致している。尚、各図の(b)の回折格子の数(円周の数)は簡略化されており、また(c)の回折格子の深さはデフォルメされた図となっている。   1 to 4, 14, and 15, (b) and (c) are numerical examples 1 to 4 of the present invention (each (a) of FIGS. 1 to 4) and a comparison of the present invention. XY sectional drawing and YZ sectional drawing of the diffraction optical element used for the optical system of the prior art examples 1 and 2 (each (a) of FIG. 14, 15) are each represented. Here, the coordinate system of each cross-sectional view coincides with the coordinate system of the optical system of each figure (a). In each figure, the number of diffraction gratings (the number of circumferences) in (b) is simplified, and the depth of the diffraction grating in (c) is a deformed figure.

次に、本発明の各数値実施例を各図に対応させながら説明する。   Next, each numerical example of the present invention will be described with reference to each drawing.

まず本発明の実施例の説明に入る前に、本発明の回折光学素子及びそれを用いた光学系の比較対象となる光学系及び回折光学素子も検討したので、まずその説明からすることにする。   Prior to the description of the embodiments of the present invention, the diffractive optical element of the present invention and the optical system and the diffractive optical element to be compared with the optical system using the same were also examined. .

図14(a)〜(c)の比較従来例1は、前記図14(a)で示した6群構成の共軸系の投射用ズームレンズにおいて、第6レンズ群L6の接合面に前記図14(b)、(c)に示したような回転対称な積層型回折光学素子を導入した、本発明の比較対象となる従来例を示している。具体的には、第24面r24と第25面r25に積層型回折光学素子が形成される構成となっている。(本数値データ中では、第24面r24に位相関数を表記してあるが、実際には回折光学素子を2つの面に形成するため、前記第24面r24と第25面r25上に回折光学素子を形成する。)
回折光学素子の表記に当たっては、以下の式で表される位相関数を用いた。
14 (a) to 14 (c) shows a comparative example 1 in the coaxial zoom projection zoom lens having the 6-group configuration shown in FIG. 14 (a), on the cemented surface of the sixth lens group L6. 14 shows a conventional example to be compared with the present invention, in which a rotationally symmetric laminated diffractive optical element as shown in FIGS. 14 (b) and (c) is introduced. Specifically, a laminated diffractive optical element is formed on the 24th surface r24 and the 25th surface r25. (In this numerical data, the phase function is shown on the 24th surface r24, but in reality, the diffractive optical elements are formed on the two surfaces, so that the diffractive optics are formed on the 24th surface r24 and the 25th surface r25. Forming an element.)
In describing the diffractive optical element, a phase function represented by the following equation was used.

Figure 2005164773
上記(A)式において、λは設計波長(550nm)、Ciは位相係数、x及びyは投射光学系のXY座標系における光軸からの位置(x,y)を各々表している。尚、本比較従来例及び後述の各実施例においては、設計次数を1次としているため、位相差が2πとなるように格子のピッチが決定される。本比較従来例1においては、回転対称な回折光学素子を用いていることより、C3、C5、C10、C12、C14の位相係数を使用し最適化を行った。(他の位相係数の値は0である。)
次に、異なる2種類の材料により成る積層型回折光学素子において、回折格子の格子形状を決定するための方法について説明する。
Figure 2005164773
In the above formula (A), λ represents the design wavelength (550 nm), Ci represents the phase coefficient, and x and y represent the position (x, y) from the optical axis in the XY coordinate system of the projection optical system. In this comparative conventional example and each of the examples described later, the design order is the first order, and therefore the pitch of the grating is determined so that the phase difference is 2π. In this comparative conventional example 1, since a rotationally symmetric diffractive optical element was used, optimization was performed using phase coefficients of C3, C5, C10, C12, and C14. (The other phase coefficient values are 0.)
Next, a method for determining the grating shape of the diffraction grating in the laminated diffractive optical element made of two different materials will be described.

本比較従来例1では、第23面r23と第24面r24の間の第1層に紫外線硬化樹脂1(nd=1.636、νd=22.8)、第25面r25と第26面r26の間の第2層に紫外線硬化樹脂2(nd=1.513、νd=51.0)により構成された例を示している。この時、前記紫外線硬化樹脂1及び2の格子高さを各々d1、d2とすれば、以下の条件式を満足するような前記格子高さd1、d2が決定される。   In this comparative conventional example 1, UV curable resin 1 (nd = 1.636, νd = 22.8) is formed on the first layer between the 23rd surface r23 and the 24th surface r24, and the first layer between the 25th surface r25 and the 26th surface r26. An example is shown in which two layers are made of ultraviolet curable resin 2 (nd = 1.513, νd = 51.0). At this time, if the grid heights of the ultraviolet curable resins 1 and 2 are d1 and d2, respectively, the grid heights d1 and d2 satisfying the following conditional expressions are determined.

Figure 2005164773
ここで、n1(λ)、n2(λ)は波長λにおける前記紫外線硬化樹脂1及び2の屈折率を、nair(=1)は空気の屈折率を、mは設計次数(ここでは1次)を各々表している。上記(i)式から、本比較従来例及び後述の各実施例では、前記紫外線硬化樹脂1及び2の格子高さd1、d2を各々6.9μm、9.5μmとした。また、両樹脂より構成される格子間に空気層(1.0μm)を設けている。本比較従来例の数値データ中において、前記紫外線硬化樹脂の各厚みを0.05mmとしているが、これは回折光学素子の格子部の厚み(格子高さ)のみを表しているのではなく、前記回折光学素子を構成する樹脂のベース部分の厚みも考慮して示している。しかしながら、回折光学素子の構成についてはこれに限定するものではない。
Figure 2005164773
Here, n1 (λ) and n2 (λ) are the refractive indexes of the ultraviolet curable resins 1 and 2 at the wavelength λ, nair (= 1) is the refractive index of air, and m is the design order (here, the first order). Respectively. From the above formula (i), in this comparative conventional example and each example described later, the grating heights d1 and d2 of the ultraviolet curable resins 1 and 2 were set to 6.9 μm and 9.5 μm, respectively. In addition, an air layer (1.0 μm) is provided between the lattices made of both resins. In the numerical data of this comparative conventional example, each thickness of the ultraviolet curable resin is set to 0.05 mm, but this does not represent only the thickness (grating height) of the grating portion of the diffractive optical element, but the diffraction The thickness of the base portion of the resin constituting the optical element is also taken into consideration. However, the configuration of the diffractive optical element is not limited to this.

次に、本比較従来例1に対する1次回折効率の斜入射依存性を図6の(a)に示した。前記図6(a)の詳細について説明する前に、斜入射回折効率の算出法について簡単に説明する。   Next, the oblique incidence dependence of the first-order diffraction efficiency with respect to the comparative example 1 is shown in FIG. Before describing the details of FIG. 6A, a method for calculating the oblique incidence diffraction efficiency will be briefly described.

図13に示したように、積層型回折光学素子の樹脂層1の格子1に入射角θ1で入射した際の光学光路長差の関係は以下の式で表される。   As shown in FIG. 13, the relationship of the optical optical path length difference when entering the grating 1 of the resin layer 1 of the laminated diffractive optical element at the incident angle θ1 is expressed by the following equation.

Figure 2005164773
ここで、θ1は格子1への入射角を、θairは格子1からの射出角(格子2への入射角)を、θ2は格子2からの射出角を各々表しており、残りの屈折率、格子厚、設計次数等は上記(i)式の場合と同じである。ここで、各角度は面法線を基準にして、反時計回りを正、時計回りを負としている。上記関係式が成り立つ時のm次の回折効率η(λ)は、以下の式で求められる。
Figure 2005164773
Here, θ1 represents the incident angle to the grating 1, θair represents the exit angle from the grating 1 (incident angle to the grating 2), θ2 represents the exit angle from the grating 2, and the remaining refractive index, The lattice thickness, the design order, etc. are the same as those in the above formula (i). Here, with respect to each angle, the counterclockwise direction is positive and the clockwise direction is negative with respect to the surface normal. The m-th order diffraction efficiency η (λ) when the above relational expression is satisfied is obtained by the following expression.

Figure 2005164773
ここで、Ψ(λ)は以下の式で表される。
Figure 2005164773
Here, Ψ (λ) is expressed by the following equation.

Figure 2005164773
上記(iii)、(iv)式で算出された1次の回折効率の入射角θ1による依存特性を図6(a)に示した。また図6(a)を算出する際、以下のことを考慮した。図5(a)は、図14(b)のY軸上(Y≧0)における位置yと格子ピッチp及び入射角度θ1の分布との関係を示している。図5(a)中において、横軸が輪帯半径r[mm](Y軸上の位置y[mm])を、縦軸が格子ピッチp[μm]及び入射角度θ1[deg.]を各々表している。ここで、この図の見方は、格子ピッチpは◆で表してあり、左のY軸の値を読み、入射角θ1はその値の最大値をθ1maxとして塗りつぶし□で表し、その値の最小値をθ1minとして塗りつぶし△で表し、右のY軸の値を読むようにする。つまり、前記θ1maxとθ1minの間の範囲が、回折光学素子に入射する入射角度θ1の範囲に相当する。この図5(a)より、格子ピッチpは輪帯半径r(位置y)が大きくなる(周辺部に向かう)につれて小さくなり(格子ピッチが細かくなり)、一方入射角度θ1の分布は、輪帯半径r(位置y)が大きくなる(周辺部に向かう)につれて分布幅が狭まっていることが分かる。この図5(a)から、図6(a)の1次の回折効率の入射角θ1による依存特性を評価する位置yを、格子ピッチpの値がある程度細かく、且つ入射角度θ1の分布幅もある程度広いy=12.0[mm]位置で行うこととした。
Figure 2005164773
FIG. 6 (a) shows the dependency of the first-order diffraction efficiency calculated by the above equations (iii) and (iv) on the incident angle θ1. In calculating FIG. 6A, the following was taken into consideration. FIG. 5A shows the relationship between the position y on the Y axis (Y ≧ 0) of FIG. 14B and the distribution of the grating pitch p and the incident angle θ1. In FIG. 5 (a), the horizontal axis represents the zone radius r [mm] (position y [mm] on the Y axis), and the vertical axis represents the grating pitch p [μm] and the incident angle θ1 [deg.]. Represents. In this figure, the grid pitch p is represented by ◆, the value on the left Y axis is read, the incident angle θ1 is represented by a solid square □ with the maximum value of θ1max, and the minimum value of the value Is represented by a solid Δ as θ1min, and the value on the right Y-axis is read. That is, the range between θ1max and θ1min corresponds to the range of the incident angle θ1 incident on the diffractive optical element. From FIG. 5 (a), the grating pitch p decreases as the annular radius r (position y) increases (towards the periphery) (the grating pitch becomes finer), while the distribution of the incident angle θ1 is It can be seen that the distribution width narrows as the radius r (position y) increases (towards the periphery). From FIG. 5 (a), the position y at which the dependence characteristic of the first-order diffraction efficiency on the incident angle θ1 in FIG. 6 (a) is evaluated has a fine value of the grating pitch p and the distribution width of the incident angle θ1. It was decided to carry out at a somewhat wide y = 12.0 [mm] position.

上記図5(a)を基に、図6(a)では、回折光学素子導入面において、投射光学系のXY座標系の光軸からの位置(x,y)=(0,12.0)[mm]における入射角度分布θ1=−6°〜6°を3°間隔ごとに取り、その各角度θ1に対する1次回折効率の結果を示している。この時、横軸が波長[μm]を、縦軸が回折効率[%]を各々表している。尚、この時の格子ピッチpは93.8[μm]である。図6(a)より、入射角度θ1の値が正方向に大きくなるに連れて、波長0.48[μm]付近で回折効率の値が低下しているのが分かる。特に、θ1=+6°の際はθ1=0°に対して約6%回折効率が落ちていることが分かる。この低下は他の不要な次数の回折光の回折効率が増加することを意味しており、これによりフレア光(ノイズ光)が発生し画像劣化を引き起こしてしまう恐れがある。一方θ1の値が負の場合は、0.40[μm]及び0.70[μm]の可視領域両端の波長で多少回折効率が落ちるものの、ほぼθ1=0°の時と変わらない値を維持している。以上の結果より、入射角度θ1が正の場合の回折効率の低下が、本比較従来例1の光学系における問題点であることが分かった。   Based on FIG. 5A, in FIG. 6A, the position (x, y) = (0, 12.0) [mm from the optical axis of the XY coordinate system of the projection optical system on the diffractive optical element introduction surface. The incident angle distribution θ1 = −6 ° to 6 ° is taken every 3 ° intervals, and the result of the first-order diffraction efficiency for each angle θ1 is shown. At this time, the horizontal axis represents wavelength [μm] and the vertical axis represents diffraction efficiency [%]. The lattice pitch p at this time is 93.8 [μm]. From FIG. 6 (a), it can be seen that the value of the diffraction efficiency decreases near the wavelength of 0.48 [μm] as the value of the incident angle θ1 increases in the positive direction. In particular, it can be seen that when θ1 = + 6 °, the diffraction efficiency drops by about 6% with respect to θ1 = 0 °. This reduction means that the diffraction efficiency of other unnecessary orders of diffracted light is increased, which may cause flare light (noise light) and cause image degradation. On the other hand, when the value of θ1 is negative, the diffraction efficiency is somewhat lowered at the wavelengths at both ends of the visible region of 0.40 [μm] and 0.70 [μm], but the value that is almost the same as when θ1 = 0 ° is maintained. From the above results, it was found that the decrease in diffraction efficiency when the incident angle θ1 is positive is a problem in the optical system of Comparative Example 1 of the present comparative example.

前記比較従来例1における問題を鑑みて、本発明の実施例1を図1の(a)〜(c)に示した。図1(a)〜(c)の実施例1は、前記図14(a)の光学系と同様に、前記図1(a)で示した6群構成の共軸系の投射用ズームレンズにおいて、第6レンズ群L6の接合面に前記図1(b)、(c)に示したようなY軸方向に回折格子の円形のパターン形状の中心をずらした積層型回折光学素子を導入した例である。具体的には、Y軸方向にYshift=+2[mm]分円形のパターン形状の中心をずらした実施例であり、その他の部分(回折光学素子の導入箇所等)は前記比較従来例1の場合と同様である。本実施例1の場合のように、Y軸方向に円形のパターン形状の中心をずらした理由は、前記実施例1の図1(a)の光路図において、回折光学素子を導入した第6レンズ群L6の接合面が、通過する瞳近軸光線の光軸からの高さが高い位置にあるため、前記回折面を通過する光線に偏りを生じているからである。(図1(a)においてはY軸の正方向)また、本実施例で用いられているような共軸系の投射用レンズは、スクリーン上に画像を投影する際、前記スクリーン上の投影範囲は前記共軸系の投射用レンズの光軸より片側半分のみを主に使用していることから、前記回折格子の円形のパターン形状の中心をY軸の(正)方向にずらしても、回折効率の性能上あまり問題がないと判断したからである。(投影の際使用しない箇所(光線が通過しない箇所)の回折効率が悪くなっても、投影上あまり影響がないという意味。)
本実施例1においては、円形のパターン形状の中心をY軸の正方向にずらした構成の回折光学素子を用いていることより、前記(A)式におけるC2、C3、C5、C7、C9、C10、C12、C14の各位相係数を使用し最適化を行った。(他の位相係数の値は0である。)
また、本実施例1で使用した紫外線硬化樹脂1、2及び格子高さd1、d2等は、前記比較従来例1の場合と同じである。
In view of the problem in the comparative example 1, the first example of the present invention is shown in FIGS. Example 1 in FIGS. 1 (a) to 1 (c) is similar to the optical system in FIG. 14 (a) in the six-group coaxial zoom zoom lens system shown in FIG. 1 (a). An example in which a laminated diffractive optical element in which the center of the circular pattern shape of the diffraction grating is shifted in the Y-axis direction as shown in FIGS. 1B and 1C is introduced to the cemented surface of the sixth lens unit L6. It is. Specifically, this is an example in which the center of the circular pattern shape is shifted by Yshift = + 2 [mm] in the Y-axis direction, and the other parts (such as places where the diffractive optical element is introduced) are in the case of Comparative Example 1 described above. It is the same. The reason for shifting the center of the circular pattern shape in the Y-axis direction as in Example 1 is that the sixth lens in which a diffractive optical element is introduced in the optical path diagram of FIG. This is because the cemented surface of the group L6 is at a position where the height of the paraxial light beam passing through the optical axis is high, so that the light beam passing through the diffraction surface is biased. (In FIG. 1 (a), the positive direction of the Y-axis) Further, the coaxial projection lens as used in the present embodiment has a projection range on the screen when an image is projected on the screen. Is mainly used on one half of the optical axis of the coaxial projection lens, so even if the center of the circular pattern shape of the diffraction grating is shifted in the (positive) direction of the Y-axis, This is because it is determined that there is not much problem in efficiency performance. (This means that even if the diffraction efficiency of the part that is not used for projection (the part where the light beam does not pass) deteriorates, there is not much influence on the projection.)
In the first embodiment, a diffractive optical element having a configuration in which the center of the circular pattern shape is shifted in the positive direction of the Y axis is used, so that C2, C3, C5, C7, C9, Optimization was performed using each phase coefficient of C10, C12, and C14. (The other phase coefficient values are 0.)
Further, the ultraviolet curable resins 1 and 2 and the lattice heights d1 and d2 used in Example 1 are the same as those in Comparative Example 1.

この時の実施例1に対する1次回折効率の斜入射依存性を図6の(b)に示した。また、前記比較従来例1の場合と同様に、図1(b)のY軸上(Y≧0)における位置yと格子ピッチp及び入射角度θ1の分布との関係を図5(b)に示した。図5(b)中において、格子ピッチpは輪帯半径r(位置y)が大きくなる(周辺部に向かう)につれて小さくなる(格子ピッチが細かくなる)ものの、前記比較従来例1の場合(図5(a))に比べてその減り具合が緩やかであることが分かる。一方、入射角度θ1の分布は、輪帯半径r(位置y)が大きくなる(周辺部に向かう)につれて分布幅が狭まっており、前記比較従来例1の場合(図5(a))とほぼ同じ角度分布にあることが分かる。尚、図6(b)の1次の回折効率の入射角θ1による依存特性を評価する位置yは、前記比較従来例1と同様にy=12.0[mm]位置で行うこととした。   The oblique incidence dependence of the first-order diffraction efficiency for Example 1 at this time is shown in FIG. Similarly to the case of the comparative example 1, the relationship between the position y on the Y axis (Y ≧ 0) in FIG. 1B and the distribution of the grating pitch p and the incident angle θ1 is shown in FIG. 5B. Indicated. In FIG. 5 (b), the grating pitch p becomes smaller (the grating pitch becomes finer) as the ring zone radius r (position y) becomes larger (towards the periphery), but in the case of Comparative Example 1 (FIG. 5). It can be seen that the decrease is moderate compared to 5 (a)). On the other hand, the distribution of the incident angle θ1 becomes narrower as the ring zone radius r (position y) increases (towards the periphery), which is almost the same as in the case of the comparative example 1 (FIG. 5A). It can be seen that they have the same angular distribution. In FIG. 6B, the position y for evaluating the dependency characteristic of the first-order diffraction efficiency depending on the incident angle θ1 is set at the position y = 12.0 [mm] as in the comparative example 1.

図6(b)では、前記比較従来例1と同様に、投射光学系のXY座標系の光軸からの位置(x,y)=(0,12.0)[mm]における入射角度分布θ1=−6°〜6°を3°間隔ごとに取り、その各角度θ1に対する1次回折効率の結果を示している。尚、この時の格子ピッチpは166.15[μm]である。図6(b)の結果より、前記比較従来例1において問題となっていた、入射角度θ1の値が正方向に大きくなるに連れての、波長0.48[μm]付近での回折効率の値の低下であるが、本実施例1は前記比較従来例1の場合に比べ、θ1=+6°の時の最小であった回折効率の値が約3%上がっている(改善されている)ことが分かる。これにより、θ1=+6°の際の波長0.48[μm]付近での回折効率の値は、θ1=0°に対して約3%の落ちに改善されたことになる。一方、θ1の値が負の場合は、可視光域全域おいて良好な回折効率が得られており、θ1=0°の際の回折効率とほぼ変わらない値を維持している。以上のように、Y軸方向に回折格子の円形のパターン形状の中心をずらした構成の回折光学素子を用いることで、回折効率の斜入射劣化を緩和することができた。   In FIG. 6B, similar to the comparative example 1, the incident angle distribution θ1 = − at the position (x, y) = (0, 12.0) [mm] from the optical axis of the XY coordinate system of the projection optical system. 6 ° to 6 ° is taken every 3 ° intervals, and the results of the first-order diffraction efficiency for each angle θ1 are shown. The lattice pitch p at this time is 166.15 [μm]. From the result of FIG. 6 (b), the value of the diffraction efficiency near the wavelength of 0.48 [μm] as the value of the incident angle θ1 increases in the positive direction, which is a problem in the comparative example 1 described above. Although this is a decrease, the diffraction efficiency in Example 1 is about 3% higher (improved) compared to the case of Comparative Conventional Example 1 when θ1 = + 6 °. I understand. As a result, the value of the diffraction efficiency near the wavelength of 0.48 [μm] when θ1 = + 6 ° is improved to about 3% with respect to θ1 = 0 °. On the other hand, when the value of θ1 is negative, good diffraction efficiency is obtained over the entire visible light range, and a value almost unchanged from the diffraction efficiency when θ1 = 0 ° is maintained. As described above, by using the diffractive optical element having the configuration in which the center of the circular pattern shape of the diffraction grating is shifted in the Y-axis direction, the oblique incidence deterioration of the diffraction efficiency can be alleviated.

図2(a)〜(c)の実施例2は、前記実施例1のY軸への前記回折格子の円形のパターン形状の中心のずれ量を更に増やした例である。具体的には、前記図2(a)で示したような6群構成の共軸系の投射用ズームレンズにおいて、第6レンズ群L6の接合面に前記図2(b)、(c)に示したようなY軸方向にYshift=+5[mm]分回折格子の円形のパターン形状の中心をずらした積層型回折光学素子を導入した例である。その他の部分(回折光学素子の導入箇所等)は前記実施例1の場合と同様である。また、本実施例2において用いられる位相係数についても、前記実施例1の場合と同じであり、前記各位相係数を用いて最適化を行った。   Example 2 in FIGS. 2A to 2C is an example in which the amount of deviation of the center of the circular pattern shape of the diffraction grating from the Y axis of Example 1 is further increased. Specifically, in the six-group coaxial projection zoom lens shown in FIG. 2 (a), the cemented surface of the sixth lens group L6 is shown in FIGS. 2 (b) and 2 (c). This is an example in which a laminated diffractive optical element in which the center of the circular pattern shape of the diffraction grating is shifted in the Y-axis direction as shown is shifted by Yshift = + 5 [mm]. Other portions (such as a place where the diffractive optical element is introduced) are the same as those in the first embodiment. In addition, the phase coefficient used in the second embodiment is the same as that in the first embodiment, and optimization was performed using each phase coefficient.

図5(c)は、図5(a)、(b)と同様に、Y軸上(Y≧0)における位置yと格子ピッチp及び入射角度θ1の分布との関係を示している。図5(c)において、格子ピッチpは輪帯半径r(位置y)が大きくなる(周辺部に向かう)につれて小さくなる(格子ピッチが細かくなる)ものの、前記実施例1の場合(図5(b))に比べ、更にその減り具合が緩やかになっていることが分かる。一方、入射角度θ1の分布は、前記比較従来例1及び実施例1の場合(図5(a)、(b))とほぼ同じ角度分布にあることが分かる。尚、1次の回折効率の入射角θ1による依存特性を評価する位置yは、前記比較従来例1及び実施例1と同様にy=12.0[mm]位置で行うこととした。   FIG. 5 (c) shows the relationship between the position y on the Y axis (Y ≧ 0) and the distribution of the grating pitch p and the incident angle θ1, as in FIGS. 5 (a) and 5 (b). In FIG. 5 (c), the grating pitch p becomes smaller (the grating pitch becomes finer) as the annular radius r (position y) becomes larger (towards the periphery), but in the case of Example 1 (FIG. 5 (c)). Compared with b)), it can be seen that the degree of decrease is even slower. On the other hand, it can be seen that the distribution of the incident angle θ1 is substantially the same as that in the comparative conventional example 1 and the example 1 (FIGS. 5A and 5B). It should be noted that the position y at which the dependence characteristic of the first-order diffraction efficiency on the incident angle θ1 is evaluated is determined at the position y = 12.0 [mm] as in the comparative example 1 and example 1.

図6(c)では、前記比較従来例1及び実施例1と同様に、投射光学系のXY座標系の光軸からの位置(x,y)=(0,12.0)[mm]における入射角度分布θ1=−6°〜6°を3°間隔ごとに取り、その各角度θ1に対する1次回折効率の結果を示している。尚、この時の格子ピッチpは580.0[μm]である。図6(c)の結果より、前記比較従来例1において問題となっていた、入射角度θ1の値が正の場合の波長0.48[μm]付近での回折効率の低下がほとんど見られなくなり、本実施例2では前記実施例1の場合に比べ、θ1=+6°の時の最小であった回折効率の値が約2%上がっている(改善されている)ことが分かる。これにより、θ1=+6°の際の波長0.48[μm]付近での回折効率の値は、θ1=0°の時の値とほとんど変わらず、入射角θ1による依存がほとんどなくなったことが分かる。以上のように、Y軸方向に回折格子の円形のパターン形状の中心をずらす量を更に増やすことにより、回折効率の斜入射劣化を前記実施例1の場合よりも更に緩和することができた。   In FIG. 6 (c), the incident angle at the position (x, y) = (0, 12.0) [mm] from the optical axis of the XY coordinate system of the projection optical system, as in Comparative Example 1 and Example 1. The distribution θ1 = −6 ° to 6 ° is taken every 3 ° interval, and the result of the first-order diffraction efficiency for each angle θ1 is shown. The lattice pitch p at this time is 580.0 [μm]. From the result of FIG. 6 (c), there is almost no decrease in diffraction efficiency near the wavelength of 0.48 [μm] when the value of the incident angle θ1 is positive, which was a problem in the comparative conventional example 1. In Example 2, it can be seen that the value of the diffraction efficiency, which was the minimum when θ1 = + 6 °, is about 2% higher (improved) than in Example 1. As a result, the diffraction efficiency value near the wavelength of 0.48 [μm] when θ1 = + 6 ° is almost the same as the value when θ1 = 0 °, and the dependence on the incident angle θ1 is almost eliminated. . As described above, by further increasing the amount by which the center of the circular pattern shape of the diffraction grating is shifted in the Y-axis direction, the oblique incidence deterioration of the diffraction efficiency can be further mitigated as compared with the case of Example 1.

次に、図15(a)〜(c)の比較従来例2は、図15(a)で示した6群構成の共軸系の投射用ズームレンズにおいて、第1レンズ群L1の接合面に図15(b)、(c)に示したような回転対称な積層型回折光学素子を導入した、(後述する)本発明の比較対象となる例である。具体的には、本比較従来例2では第3面r3と第4面r4に積層型回折光学素子が形成される構成となっている(本数値データ中では、第3面r3に位相関数を表記してあるが、実際には回折光学素子を2つの面に形成するため、前記第3面r3と第4面r4上に回折光学素子を形成する。)。   Next, Comparative Example 2 shown in FIGS. 15A to 15C is formed on the cemented surface of the first lens unit L1 in the six-group coaxial projection zoom lens shown in FIG. This is an example to be compared with the present invention (described later), in which a rotationally symmetric laminated diffractive optical element as shown in FIGS. 15B and 15C is introduced. Specifically, in this comparative conventional example 2, a laminated diffractive optical element is formed on the third surface r3 and the fourth surface r4 (in this numerical data, a phase function is applied to the third surface r3). Although shown, in practice, a diffractive optical element is formed on the third surface r3 and the fourth surface r4 in order to form the diffractive optical element on two surfaces.

本比較従来例2においては、前記比較従来例1と同様に、回転対称な回折光学素子を用いていることより、C3、C5、C10、C12、C14の位相係数を使用し最適化を行った(他の位相係数の値は0である。)。   In this comparative conventional example 2, similar to the comparative conventional example 1, since a rotationally symmetric diffractive optical element is used, optimization was performed using phase coefficients of C3, C5, C10, C12, and C14. (The other phase coefficient values are 0.)

また、積層型回折光学素子を構成している材料、格子高さ等は前記比較従来例1及び実施例1、2と全て同様である。   Further, the material, the grating height, etc. constituting the laminated diffractive optical element are all the same as those in Comparative Example 1 and Examples 1 and 2.

図7(a)は、前記比較従来例1及び実施例1、2の図5(a)〜(c)と同様にして、図15(b)のY軸上(Y≦0)における位置yと格子ピッチp及び入射角度θ1の分布との関係を示している。この図7(a)より、格子ピッチpは輪帯半径r(位置y)が小さくなる(周辺部に向かう)につれて小さくなり(格子ピッチが細かくなり)、一方入射角度θ1の分布は、輪帯半径r(位置y)が小さくなる(周辺部に向かう)につれて分布幅が狭まっていることが分かる。この図7(a)から、図8(a)の1次の回折効率の入射角θ1による依存特性を評価する位置yを、格子ピッチpの値がある程度細かく、且つ入射角度θ1の分布幅もある程度広いy=−12.0[mm]位置で行うこととした。   FIG. 7A shows the position y on the Y-axis (Y ≦ 0) in FIG. 15B in the same manner as FIGS. 5A to 5C in the comparative example 1 and Examples 1 and 2. And the distribution of the grating pitch p and the incident angle θ1. From FIG. 7 (a), the grating pitch p becomes smaller as the annular radius r (position y) becomes smaller (towards the periphery) (the grating pitch becomes finer), while the distribution of the incident angle θ1 is It can be seen that the distribution width becomes narrower as the radius r (position y) becomes smaller (towards the periphery). From FIG. 7 (a), the position y for evaluating the dependency of the first-order diffraction efficiency on the incident angle θ1 in FIG. 8 (a) has a fine grating pitch p value and the distribution width of the incident angle θ1. It was decided to perform at a somewhat wide y = −12.0 [mm] position.

上記図7(a)を基に、図8(a)では、回折光学素子導入面において、投射光学系のXY座標系の光軸からの位置(x,y)=(0,−12.0)[mm]における入射角度分布θ1=−2°〜8°をθ1=−2°、0°、3°、5°、8°の順に取り、その各角度θ1に対する1次回折効率の結果を示している。尚、この時の格子ピッチpは109.34[μm]である。図8(a)より、入射角度θ1の値が正方向に大きくなるに連れて、波長0.48[μm]付近で回折効率の値が低下しているのが分かる。特に、θ1=+8°の際はθ1=0°に対して約9%回折効率が落ちていることが分かる。この低下は他の不要な次数の回折光の回折効率が増加することを意味しており、これによりフレア光(ノイズ光)が発生し画像劣化を引き起こしてしまう恐れがある。一方θ1の値が負の場合は、0.40[μm]及び0.70[μm]の可視領域両端の波長では多少回折効率が落ちるものの、ほぼθ1=0°の時と変わらない値を維持している。以上の結果より、本比較従来例2も前記比較従来例1と同様に、入射角度θ1が正の場合の回折効率の低下が、問題点であることが分かった。   Based on FIG. 7 (a), in FIG. 8 (a), the position (x, y) = (0, −12.0) [from the optical axis of the XY coordinate system of the projection optical system on the diffractive optical element introduction surface. The incident angle distribution θ1 = −2 ° to 8 ° in mm] is taken in the order of θ1 = −2 °, 0 °, 3 °, 5 °, 8 °, and the results of the first-order diffraction efficiency for each angle θ1 are shown. Yes. At this time, the lattice pitch p is 109.34 [μm]. FIG. 8 (a) shows that the value of the diffraction efficiency decreases near the wavelength of 0.48 [μm] as the value of the incident angle θ1 increases in the positive direction. In particular, it can be seen that when θ1 = + 8 °, the diffraction efficiency drops by about 9% with respect to θ1 = 0 °. This reduction means that the diffraction efficiency of other unnecessary orders of diffracted light is increased, which may cause flare light (noise light) and cause image degradation. On the other hand, when the value of θ1 is negative, the diffraction efficiency is somewhat lowered at the wavelengths at both ends of the visible region of 0.40 [μm] and 0.70 [μm], but the value that is almost the same as when θ1 = 0 ° is maintained. From the above results, it was found that, as in the case of the comparative conventional example 1, this comparative conventional example 2 also has a problem that the diffraction efficiency is lowered when the incident angle θ1 is positive.

前記比較従来例2における問題を鑑みて、前記実施例1及び2の場合と同様の検討を、本発明の実施例3でも試みた。図3(a)〜(c)の実施例3は、前記図15(a)の光学系と同様に、前記図3(a)で示した6群構成の共軸系の投射用ズームレンズにおいて、第1レンズ群L1の接合面に前記図3(b)、(c)に示したようなY軸方向に回折格子の円形のパターン形状の中心をずらした積層型回折光学素子を導入した例である。具体的には、Y軸方向にYshift=−2[mm]分円形のパターン形状の中心をずらした実施例であり、その他の部分(回折光学素子の導入箇所等)は前記比較従来例2の場合と同様である。本実施例3の場合のように、Y軸方向に円形のパターン形状の中心をずらした理由は、前記実施例3の図3(a)の光路図において、回折光学素子を導入した第1レンズ群L1の接合面が、通過する瞳近軸光線の光軸からの高さの絶対値が高い位置にあるため、前記回折面を通過する光線に偏りを生じているからである。(図3(a)においてはY軸の負方向)また、本実施例で用いられているような共軸系の投射用レンズは、スクリーン上に画像を投影する際、前記スクリーン上の投影範囲は前記共軸系の投射用レンズの光軸より片側半分のみを主に使用していることから、前記回折格子の円形のパターン形状の中心をY軸の(負)方向にずらしても、回折効率の性能上あまり問題がないと判断したからである。(投影の際使用しない箇所(光線が通過しない箇所)の回折効率が悪くなっても、投影上あまり影響がないという意味。)
本実施例3においては、円形のパターン形状の中心をY軸の負方向にずらした構成の回折光学素子を用いていることより、前記(A)式におけるC2、C3、C5、C7、C9、C10、C12、C14の各位相係数を使用し最適化を行った。(他の位相係数の値は0である。)
また、本実施例3で使用した紫外線硬化樹脂1、2及び格子高さd1、d2等は、前記比較従来例2の場合と同じである。
In view of the problem in the comparative example 2, the same examination as in the case of the examples 1 and 2 was also attempted in the example 3 of the present invention. Example 3 in FIGS. 3 (a) to 3 (c) is similar to the optical system in FIG. 15 (a) in the six-group coaxial projection zoom lens shown in FIG. 3 (a). An example in which a laminated diffractive optical element in which the center of the circular pattern of the diffraction grating is shifted in the Y-axis direction as shown in FIGS. 3B and 3C is introduced to the cementing surface of the first lens unit L1. It is. Specifically, this is an example in which the center of the circular pattern shape is shifted by Yshift = −2 [mm] in the Y-axis direction, and the other parts (such as places where the diffractive optical element is introduced) are the same as those in Comparative Example 2 described above. Same as the case. The reason for shifting the center of the circular pattern shape in the Y-axis direction as in the third embodiment is that the first lens in which the diffractive optical element is introduced in the optical path diagram of FIG. This is because the cemented surface of the group L1 is at a position where the absolute value of the height of the paraxial light beam passing through the optical axis is high, so that the light beam passing through the diffraction surface is biased. (The negative direction of the Y-axis in FIG. 3A) Further, the coaxial projection lens as used in the present embodiment has a projection range on the screen when an image is projected onto the screen. Is mainly used on one half of the optical axis of the projection lens of the coaxial system, so even if the center of the circular pattern shape of the diffraction grating is shifted in the (negative) direction of the Y-axis, diffraction is performed. This is because it is determined that there is not much problem in efficiency performance. (This means that even if the diffraction efficiency of the part that is not used for projection (the part where the light beam does not pass) deteriorates, there is not much influence on the projection.)
In Example 3, a diffractive optical element having a configuration in which the center of the circular pattern shape is shifted in the negative direction of the Y axis is used, so that C2, C3, C5, C7, C9, Optimization was performed using each phase coefficient of C10, C12, and C14. (The other phase coefficient values are 0.)
Further, the ultraviolet curable resins 1 and 2 and the lattice heights d1 and d2 used in Example 3 are the same as those in Comparative Example 2.

この時の実施例3に対する1次回折効率の斜入射依存性を図8の(b)に示した。また、前記比較従来例2の場合と同様に、図3(b)のY軸上(Y≦0)における位置yと格子ピッチp及び入射角度θ1の分布との関係を図7(b)に示した。図7(b)中において、格子ピッチpは輪帯半径r(位置y)が小さくなる(周辺部に向かう)につれて小さくなる(格子ピッチが細かくなる)ものの、前記比較従来例2の場合(図7(a))に比べてその減り具合が緩やかになっていることが分かる。一方、入射角度θ1の分布は、輪帯半径r(位置y)が小さくなる(周辺部に向かう)につれて分布幅が狭まっており、前記比較従来例2の場合(図7(a))とほぼ同じ角度分布にあることが分かる。尚、図8(b)の1次の回折効率の入射角θ1による依存特性を評価する位置yは、前記比較従来例2と同様にy=−12.0[mm]位置で行うこととした。   The oblique incidence dependence of the first-order diffraction efficiency for Example 3 at this time is shown in FIG. As in the case of the comparative example 2, the relationship between the position y on the Y axis (Y ≦ 0) in FIG. 3B and the distribution of the grating pitch p and the incident angle θ1 is shown in FIG. 7B. Indicated. In FIG. 7B, the grating pitch p decreases as the zone radius r (position y) decreases (towards the periphery) (the grating pitch becomes finer), but in the case of the comparative example 2 (FIG. It can be seen that the degree of decrease is moderate compared to 7 (a)). On the other hand, the distribution of the incident angle θ1 narrows as the ring zone radius r (position y) decreases (towards the periphery), which is almost the same as in the case of the comparative example 2 (FIG. 7A). It can be seen that they have the same angular distribution. In FIG. 8B, the position y for evaluating the dependence characteristic of the first-order diffraction efficiency depending on the incident angle θ1 is set at the position y = −12.0 [mm] as in the comparative example 2.

図8(b)では、前記比較従来例2と同様に、投射光学系のXY座標系の光軸からの位置(x,y)=(0,−12.0)[mm]における入射角度分布θ1=−2°〜8°をθ1=−2°、0°、3°、5°、8°の順に取り、その各角度θ1に対する1次回折効率の結果を示している。尚、この時の格子ピッチpは199.20[μm]である。図8(b)の結果より、前記比較従来例2において問題となっていた、入射角度θ1の値が正方向に大きくなるに連れての、波長0.48[μm]付近における回折効率の値の低下であるが、本実施例3は前記比較従来例2の場合に比べ、θ1=+8°の時の最小であった回折効率の値が約5%上がっている(改善されている)ことが分かる。これにより、θ1=+8°の際の波長0.48[μm]付近での回折効率の値は、θ1=0°に対して約5%の落ちに改善されたことになる。一方、θ1の値が負の場合は、可視領域全域おいて良好な回折効率が得られており、θ1=0°の際の回折効率とほぼ変わらない値を維持している。以上のように、Y軸方向に回折格子の円形のパターン形状の中心をずらした構成の回折光学素子を用いることで、回折効率の斜入射劣化を緩和することができた。   In FIG. 8 (b), as in Comparative Example 2, the incident angle distribution θ1 = at the position (x, y) = (0, −12.0) [mm] from the optical axis of the XY coordinate system of the projection optical system. -2 ° to 8 ° are taken in the order of θ1 = −2 °, 0 °, 3 °, 5 °, and 8 °, and the result of the first-order diffraction efficiency for each angle θ1 is shown. At this time, the lattice pitch p is 199.20 [μm]. From the result of FIG. 8 (b), the value of the diffraction efficiency in the vicinity of the wavelength of 0.48 [μm] decreases as the value of the incident angle θ1 increases in the positive direction, which is a problem in the comparative conventional example 2. However, the value of the diffraction efficiency, which was the minimum when θ1 = + 8 °, in Example 3 is about 5% higher (improved) than in the case of Comparative Example 2 described above. I understand. As a result, the value of the diffraction efficiency in the vicinity of the wavelength of 0.48 [μm] when θ1 = + 8 ° is improved to about 5% with respect to θ1 = 0 °. On the other hand, when the value of θ1 is negative, good diffraction efficiency is obtained over the entire visible region, and a value that is almost the same as the diffraction efficiency when θ1 = 0 ° is maintained. As described above, by using the diffractive optical element having the configuration in which the center of the circular pattern shape of the diffraction grating is shifted in the Y-axis direction, the oblique incidence deterioration of the diffraction efficiency can be alleviated.

図4(a)〜(c)の実施例4は、前記実施例3のY軸への前記回折格子の円形のパターン形状の中心のずれ量を更に増やした例である。具体的には、前記実施例3と同様に、前記図4(a)で示したような6群構成の共軸系の投射用ズームレンズにおいて、第1レンズ群L1の接合面に前記図4(b)、(c)に示したようなY軸方向にYshift=−5[mm]分回折格子の円形のパターン形状の中心をずらした積層型回折光学素子を導入した例である。その他の部分(回折光学素子の導入箇所等)は前記実施例3の場合と同様である。また、本実施例4において用いられる位相係数についても、前記実施例3の場合と同じ係数を用いて最適化を行った。   Example 4 of FIGS. 4A to 4C is an example in which the amount of deviation of the center of the circular pattern shape of the diffraction grating from the Y axis of Example 3 is further increased. Specifically, in the same manner as in the third embodiment, in the coaxial projection zoom lens having the six-group configuration as shown in FIG. 4A, the joint surface of the first lens unit L1 is shown in FIG. This is an example in which a laminated diffractive optical element in which the center of a circular pattern shape of a diffraction grating of Yshift = −5 [mm] is shifted in the Y axis direction as shown in (b) and (c) is introduced. Other parts (such as the place where the diffractive optical element is introduced) are the same as in the third embodiment. Further, the phase coefficient used in the fourth embodiment was also optimized using the same coefficient as in the third embodiment.

図7(c)は、前記図7(a)、(b)と同様に、Y軸上(Y≦0)における位置yと格子ピッチp及び入射角度θ1の分布との関係を示している。図7(c)において、格子ピッチpは輪帯半径r(位置y)が小さくなる(周辺部に向かう)につれて小さくなる(格子ピッチが細かくなる)ものの、前記実施例3の場合(図7(b))に比べ、更にその減り具合が緩やかになっていることが分かる。一方、入射角度θ1の分布は、前記比較従来例2及び実施例2の場合(図7(a)、(b))とほぼ同じ角度分布にあることが分かる。尚、1次の回折効率の入射角θ1による依存特性を評価する位置yは、前記比較従来例2及び実施例3と同様にy=−12.0[mm]位置で行うこととした。   FIG. 7 (c) shows the relationship between the position y on the Y axis (Y ≦ 0) and the distribution of the grating pitch p and the incident angle θ1, as in FIGS. 7 (a) and 7 (b). In FIG. 7C, the grating pitch p becomes smaller (the grating pitch becomes finer) as the zone radius r (position y) becomes smaller (towards the periphery), but in the case of the third embodiment (FIG. 7 (c)). Compared with b)), it can be seen that the degree of decrease is even slower. On the other hand, it can be seen that the distribution of the incident angle θ1 is substantially the same as that of the comparative prior art example 2 and the example 2 (FIGS. 7A and 7B). It should be noted that the position y at which the dependence characteristic of the first-order diffraction efficiency on the incident angle θ1 is evaluated is the y = −12.0 [mm] position as in the comparative example 2 and the example 3.

図8(c)では、前記比較従来例2及び実施例3と同様に、投射光学系のXY座標系の光軸からの位置(x,y)=(0,−12.0)[mm]における入射角度分布θ1=−2°〜8°をθ1=−2°、0°、3°、5°、8°の順に取り、その各角度θ1に対する1次回折効率の結果を示している。尚、この時の格子ピッチpは600.00[μm]である。図8(c)の結果より、前記比較従来例2において問題となっていた、入射角度θ1の値が正の場合の波長0.48[μm]付近での回折効率の低下がほとんど見られなくなり、本実施例4は前記実施例3の場合に比べ、θ1=+8°の時の最小であった回折効率の値が約3%上がっている(改善されている)ことが分かる。これにより、θ1=+8°の際の波長0.48[μm]付近での回折効率の値は、θ1=0°に対して約3%の落ちに改善され、入射角θ1による依存がほとんどなくなったことが分かる。以上のように、Y軸方向に回折格子の円形のパターン形状の中心をずらす量を更に増やすことにより、回折効率の斜入射劣化を前記実施例3の場合よりも更に緩和することができた。   In FIG. 8 (c), as in Comparative Example 2 and Example 3, incidence at the position (x, y) = (0, −12.0) [mm] from the optical axis of the XY coordinate system of the projection optical system. The angle distribution θ1 = −2 ° to 8 ° is taken in the order of θ1 = −2 °, 0 °, 3 °, 5 °, and 8 °, and the result of the first-order diffraction efficiency for each angle θ1 is shown. The lattice pitch p at this time is 600.00 [μm]. From the result of FIG. 8 (c), there is almost no decrease in diffraction efficiency near the wavelength of 0.48 [μm] when the incident angle θ1 is positive, which was a problem in the comparative example 2 described above. It can be seen that the value of diffraction efficiency in Example 4 which is the minimum when θ1 = + 8 ° is increased (improved) by about 3% compared to the case of Example 3. As a result, the value of diffraction efficiency near the wavelength of 0.48 [μm] when θ1 = + 8 ° is improved to about 3% when θ1 = 0 °, and the dependence on the incident angle θ1 is almost eliminated. I understand that. As described above, by further increasing the amount by which the center of the circular pattern shape of the diffraction grating is shifted in the Y-axis direction, the oblique incidence deterioration of the diffraction efficiency can be further reduced as compared with the case of Example 3.

更に、前記本実施例1〜4において、回折光学素子における回折格子のパターン形状は、図9(a)、(b)及び図10(a)、(b)のような楕円形のパターン形状の中心をずらした構成であっても成り立つことが分かった(但し、前記図11及び12の回折光学素子は、前記実施例1及び2の光学系に対応するものを例として示した。尚、前記図9(a)、(b)は楕円の長軸がY軸方向にある場合を、一方前記図10(a)、(b)は楕円の長軸がX軸方向にある場合を各々表している。)。   Furthermore, in the first to fourth embodiments, the diffraction grating pattern shape in the diffractive optical element is an elliptical pattern shape as shown in FIGS. 9 (a) and 9 (b) and FIGS. 10 (a) and 10 (b). It has been found that even a configuration in which the center is shifted is established (however, the diffractive optical element in FIGS. 11 and 12 is shown as an example corresponding to the optical system in the first and second embodiments. FIGS. 9A and 9B show the case where the major axis of the ellipse is in the Y-axis direction, while FIGS. 10A and 10B show the case where the major axis of the ellipse is in the X-axis direction. Yes.)

以上のような構成の回折光学素子及びそれを用いた本実施例に記載のレンズ構成を取ることにより、本発明に掲げた課題を達成することができる。   By taking the diffractive optical element having the above-described configuration and the lens configuration described in the present embodiment using the diffractive optical element, the problems listed in the present invention can be achieved.

更に諸収差の補正が十分になされ、且つ斜入射に対する回折効率劣化の緩和がなれた光学系を達成するためには、以下の条件式を満足することが望ましい。   Further, in order to achieve an optical system in which various aberrations are sufficiently corrected and the diffraction efficiency deterioration with respect to oblique incidence is alleviated, it is desirable to satisfy the following conditional expression.

本発明の回折光学素子及びそれを用いた共軸系の投射用ズームレンズにおいて、   In the diffractive optical element of the present invention and a coaxial projection zoom lens using the same,

Figure 2005164773
を回折光学素子が導入されるレンズ面の瞳近軸光線の光軸からの高さとし、RDOEを回折光学素子を導入するレンズ面における光線有効半径とした際、以下の条件式を満足することである。
Figure 2005164773
Is the height from the optical axis of the paraxial light beam on the lens surface where the diffractive optical element is introduced, and R DOE is the effective ray radius at the lens surface where the diffractive optical element is introduced, the following conditional expression must be satisfied: It is.

Figure 2005164773
条件式(1)は、光学系と回折光学素子の導入箇所との関係に関するものである。条件式(1)の範囲外の箇所に前記回折光学素子を導入すると、その導入箇所における光線分布に偏りが生じなくなるので好ましくない。
Figure 2005164773
Conditional expression (1) relates to the relationship between the optical system and the place where the diffractive optical element is introduced. If the diffractive optical element is introduced at a location outside the range of the conditional expression (1), the light distribution at the introduced location will not be biased, which is not preferable.

上記条件式(1)を満足した上で、以下の条件式(2)を満足しなければならない。   After satisfying the conditional expression (1), the following conditional expression (2) must be satisfied.

本発明の回折光学素子及びそれを用いた共軸系の投射用ズームレンズにおいて、Yshiftを回折光学素子の円形若しくは楕円形の中心位置の、投射用レンズにおける前記回折光学素子を導入するレンズ面の光軸に対して垂直方向へのずれ量とし、RDOEを回折光学素子を導入するレンズ面における光線有効半径とした際、以下の条件式を満足することである。
0.0 < | Yshift / RDOE| < 0.3 ………(2)
条件式(2)は、回折光学素子を用いた共軸系の投射用ズームレンズにおける前記回折光学素子の移動量に関するものである。前記条件式(2)の範囲外になると、光学系の収差補正上良好でなくなるので好ましくない。
In the diffractive optical element of the present invention and a coaxial projection zoom lens using the diffractive optical element, Yshift is the center position of the circular or elliptical shape of the diffractive optical element, and the lens surface that introduces the diffractive optical element in the projection lens When the amount of deviation in the direction perpendicular to the optical axis is used and R DOE is the effective ray radius on the lens surface where the diffractive optical element is introduced, the following conditional expression is satisfied.
0.0 <| Yshift / R DOE | <0.3 ……… (2)
Conditional expression (2) relates to the movement amount of the diffractive optical element in the coaxial projection zoom lens using the diffractive optical element. If the value is outside the range of the conditional expression (2), it is not preferable for correcting aberrations of the optical system.

本発明に係る回折光学素子及びそれを用いた共軸系の投射用ズームレンズは、以上のような条件式を満足することにより、全変倍範囲に渡りより良好なる光学性能を得ることができ、且つ回折光学素子の斜入射劣化の緩和がなされた光学系を達成することができる。   The diffractive optical element according to the present invention and a coaxial projection zoom lens using the diffractive optical element can obtain better optical performance over the entire zooming range by satisfying the above conditional expressions. In addition, it is possible to achieve an optical system in which the oblique incidence deterioration of the diffractive optical element is reduced.

以下に、本発明の数値実施例を記載する。数値実施例において、riは拡大共役側より順に第i番目のレンズ面の曲率半径、diは拡大共役側より順に第i番目のレンズ厚及び空気間隔、niとviは各々拡大共役側より順に第i番目のレンズのd線におけるガラス屈折率とアッベ数を表している。   The numerical examples of the present invention will be described below. In numerical examples, ri is the radius of curvature of the i-th lens surface in order from the magnification conjugate side, di is the i-th lens thickness and air spacing in order from the magnification conjugate side, and ni and vi are respectively in order from the magnification conjugate side. It represents the glass refractive index and Abbe number at the d-line of the i-th lens.

Figure 2005164773
Figure 2005164773

Figure 2005164773
Figure 2005164773

Figure 2005164773
Figure 2005164773

Figure 2005164773
Figure 2005164773

Figure 2005164773
Figure 2005164773

Figure 2005164773
また、以下に各数値実施例の条件式の値を示す。
Figure 2005164773
Moreover, the value of the conditional expression of each numerical example is shown below.

Figure 2005164773
上記の表の各値は、前記条件式(1)及び(2)の範囲を満足しており、以上の構成をとることにより、諸収差、特に色収差の補正が十分になされ、且つ斜入射に対する回折効率劣化の緩和がなれた光学系を達成することができた。
Figure 2005164773
Each value in the above table satisfies the range of the conditional expressions (1) and (2). By adopting the above configuration, various aberrations, in particular, chromatic aberration are sufficiently corrected, and against oblique incidence. It was possible to achieve an optical system in which the degradation of diffraction efficiency was alleviated.

本発明の数値実施例1の広角端におけるレンズ断面図(光路図)((a))及び回折光学素子の断面図((b),(c))。FIG. 2 is a lens cross-sectional view (optical path diagram) ((a)) and a cross-sectional view of a diffractive optical element ((b), (c)) at a wide angle end according to Numerical Example 1 of the present invention. 本発明の数値実施例2の広角端におけるレンズ断面図(光路図)((a))及び回折光学素子の断面図((b),(c))。FIG. 5 is a lens cross-sectional view (optical path diagram) ((a)) and a cross-sectional view of a diffractive optical element ((b), (c)) at a wide angle end according to Numerical Example 2 of the present invention. 本発明の数値実施例3の広角端におけるレンズ断面図(光路図)((a))及び回折光学素子の断面図((b),(c))。FIG. 6 is a lens cross-sectional view (optical path diagram) ((a)) and a cross-sectional view of a diffractive optical element ((b), (c)) at a wide angle end according to Numerical Example 3 of the present invention. 本発明の数値実施例4の広角端におけるレンズ断面図(光路図)((a))及び回折光学素子の断面図((b),(c))。FIG. 6 is a lens cross-sectional view (optical path diagram) ((a)) and a cross-sectional view of a diffractive optical element ((b), (c)) at a wide angle end according to Numerical Example 4 of the present invention. (a)本発明に対する比較従来例1における輪帯半径と格子ピッチ及び入射角度の関係図。(b)本発明の実施例1における輪帯半径と格子ピッチ及び入射角度の関係図。(c)本発明の実施例2における輪帯半径と格子ピッチ及び入射角度の関係図。(a) The relationship figure of the ring zone radius, grating | lattice pitch, and incident angle in the comparative example 1 with respect to this invention. (b) The relationship figure of the ring zone radius, a grating | lattice pitch, and an incident angle in Example 1 of this invention. (c) Relationship diagram between ring zone radius, grating pitch and incident angle in Embodiment 2 of the present invention. (a)本発明に対する比較従来例1における1次回折効率の入射角依存特性の図。(b)本発明の実施例1における1次回折効率の入射角依存特性の図。(c)本発明の実施例2における1次回折効率の入射角依存特性の図。(a) The figure of the incident angle dependence characteristic of the 1st-order diffraction efficiency in the comparative example 1 with respect to this invention. (b) The incident angle dependence characteristic of the 1st-order diffraction efficiency in Example 1 of this invention. (c) The incident angle dependence characteristic of the 1st-order diffraction efficiency in Example 2 of this invention. (a)本発明に対する比較従来例2における輪帯半径と格子ピッチ及び入射角度の関係図。(b)本発明の実施例3における輪帯半径と格子ピッチ及び入射角度の関係図。(c)本発明の実施例4における輪帯半径と格子ピッチ及び入射角度の関係図。(a) Comparison diagram of annular zone radius, grating pitch and incident angle in Comparative Example 2 for the present invention. (b) Relationship diagram of annular zone radius, grating pitch and incident angle in Example 3 of the present invention. (c) Relationship diagram between ring zone radius, grating pitch, and incident angle in Example 4 of the present invention. (a)本発明に対する比較従来例2における1次回折効率の入射角依存特性の図。(b)本発明の実施例3における1次回折効率の入射角依存特性の図。(c)本発明の実施例4における1次回折効率の入射角依存特性の図。(a) The figure of the incident angle dependence characteristic of the 1st-order diffraction efficiency in the comparative prior art example 2 with respect to this invention. (b) The figure of the incident angle dependence characteristic of the 1st-order diffraction efficiency in Example 3 of this invention. (c) The incident angle dependence characteristic of the 1st-order diffraction efficiency in Example 4 of this invention. 本発明に係る回折光学素子の断面図((a),(b))。Sectional drawing ((a), (b)) of the diffractive optical element which concerns on this invention. 本発明に係る回折光学素子の断面図((a),(b))。Sectional drawing ((a), (b)) of the diffractive optical element which concerns on this invention. (a)本発明に係る単層の回折光学素子の説明図。(b)前記(a)の回折光学素子の回折効率波長依存特性の説明図。(a) Explanatory drawing of the single layer diffractive optical element which concerns on this invention. (b) Explanatory drawing of the diffraction efficiency wavelength dependence characteristic of the diffractive optical element of said (a). (a)本発明に係る積層の回折光学素子の説明図。(b)前記(a)の回折光学素子の回折効率波長依存特性の説明図。(a) Explanatory drawing of the laminated diffractive optical element which concerns on this invention. (b) Explanatory drawing of the diffraction efficiency wavelength dependence characteristic of the diffractive optical element of said (a). 本発明に係る積層の回折光学素子への入射角の定義の説明図。Explanatory drawing of the definition of the incident angle to the laminated | stacked diffractive optical element which concerns on this invention. 本発明に対する比較従来例1の広角端におけるレンズ断面図(光路図) ((a))及び回折光学素子の断面図((b),(c))。FIG. 2 is a lens cross-sectional view (optical path diagram) ((a)) and a cross-sectional view of a diffractive optical element ((b), (c)) at the wide-angle end of Comparative Example 1 for the present invention. 本発明に対する比較従来例2の広角端におけるレンズ断面図(光路図)((a))及び回折光学素子の断面図((b),(c))。Sectional view (optical path diagram) ((a)) and sectional views ((b), (c)) of the diffractive optical element at the wide angle end of Comparative Example 2 for the present invention.

Claims (11)

広帯域の波長領域で使用する回折光学素子であり、前記回折光学素子はレンズ基板上に形成された回折格子を有し、前記回折格子のパターン形状は円形若しくは楕円形であり、前記円形若しくは楕円形の中心位置が、前記レンズ基板の光軸に対してずれていることを特徴とする前記回折光学素子。   A diffractive optical element used in a broad wavelength region, the diffractive optical element having a diffraction grating formed on a lens substrate, the pattern shape of the diffraction grating being circular or elliptical, the circular or elliptical The center position of the diffractive optical element is shifted with respect to the optical axis of the lens substrate. 前記回折光学素子の前記円形若しくは楕円形の中心位置のずれ方向は、前記回折光学素子に入射する光の通過領域が偏っている方向にずれていることを特徴とする請求項1に記載の回折光学素子。   2. The diffractive optical element according to claim 1, wherein a shift direction of the center position of the circular or elliptical shape of the diffractive optical element is shifted in a direction in which a passing region of light incident on the diffractive optical element is biased. Optical element. 前記回折光学素子の前記円形若しくは楕円形の中心位置のずれ方向は、前記円形の場合は前記レンズ基板の光軸に対して垂直方向にある一方の径方向に、前記楕円形の場合は前記レンズ基板の光軸に対して垂直方向にある一方の長軸若しくは短軸方向にずれていることを特徴とする請求項2に記載の回折光学素子。   The circular or elliptical center position of the diffractive optical element is shifted in one radial direction perpendicular to the optical axis of the lens substrate in the case of the circular shape, and in the case of the elliptical shape, the lens. 3. The diffractive optical element according to claim 2, wherein the diffractive optical element is shifted in one major axis or minor axis direction perpendicular to the optical axis of the substrate. 前記回折光学素子は、前記回折格子の周辺部に向かうに連れ、格子ピッチが小さくなる前記回折格子の前記円形若しくは楕円形の中心位置がずれた形状であることを特徴とする請求項1から3に記載の回折光学素子。   4. The diffractive optical element has a shape in which a center position of the circular or elliptical shape of the diffraction grating becomes smaller as a grating pitch becomes smaller toward a peripheral portion of the diffraction grating. The diffractive optical element according to 1. 前記使用波長領域が、可視光域であることを特徴とする請求項1から4に記載の回折光学素子。   5. The diffractive optical element according to claim 1, wherein the use wavelength region is a visible light region. 前記回折光学素子は、主に共軸系の投射用レンズにおいて用いられることを特徴とする請求項1から5に記載の回折光学素子及び前記回折光学素子を用いた投射用レンズ。   6. The diffractive optical element according to claim 1, wherein the diffractive optical element is mainly used in a coaxial projection lens, and the projection lens using the diffractive optical element. 前記回折光学素子を用いた前記投射用レンズにおいて、前記回折光学素子は各レンズを通過する瞳近軸光線の光軸からの高さが以下の条件式を満足する位置に導入されていることを特徴とする請求項6に記載の回折光学素子及び前記回折光学素子を用いた投射用レンズ。
Figure 2005164773
ここで、
Figure 2005164773
:回折光学素子を導入するレンズ面の瞳近軸光線の光軸からの高さ。
RDOE:回折光学素子を導入するレンズ面における光線有効半径。
を各々表している。
In the projection lens using the diffractive optical element, the diffractive optical element is introduced at a position where the height from the optical axis of the paraxial ray passing through each lens satisfies the following conditional expression: 7. The diffractive optical element according to claim 6, and a projection lens using the diffractive optical element.
Figure 2005164773
here,
Figure 2005164773
: The height from the optical axis of the paraxial ray on the lens surface where the diffractive optical element is introduced.
R DOE : Effective ray radius at the lens surface where the diffractive optical element is introduced.
Respectively.
前記回折光学素子の前記円形若しくは楕円形の中心位置のずれ量は、以下の条件式を満足することを特徴とする請求項7に記載の回折光学素子及び前記回折光学素子を用いた投射用レンズ。
0.0 < | Yshift / RDOE | < 0.3
ここで、
Yshift:回折光学素子の円形若しくは楕円形の中心位置の、投射用レンズにおける前記回折光学素子を導入するレンズ面の光軸に対して垂直方向へのずれ量。
RDOE:回折光学素子を導入するレンズ面における光線有効半径。
を各々表している。
8. The diffractive optical element according to claim 7, and a projection lens using the diffractive optical element according to claim 7, wherein a deviation amount of the center position of the circular or elliptical shape of the diffractive optical element satisfies the following conditional expression: .
0.0 <| Yshift / R DOE | <0.3
here,
Yshift: A shift amount of the center position of the circular or elliptical shape of the diffractive optical element in the direction perpendicular to the optical axis of the lens surface where the diffractive optical element is introduced in the projection lens.
R DOE : Effective ray radius at the lens surface where the diffractive optical element is introduced.
Respectively.
前記回折光学素子は、レンズ基板上に形成された回折格子を有し、且つ前記回折格子のパターン形状が円形若しくは楕円形で形成された層を、複数個積層して構成された積層型回折光学素子であることを特徴とする請求項1から8に記載の回折光学素子及び前記回折光学素子を用いた投射用レンズ。   The diffractive optical element has a diffraction grating formed on a lens substrate, and a laminated diffractive optical element configured by laminating a plurality of layers in which the pattern shape of the diffraction grating is circular or elliptical. The diffractive optical element according to claim 1, and a projection lens using the diffractive optical element. 前記回折光学素子は、分散の異なる2つの材料により形成される2つの前記回折格子の層を近接配置した構成であることを特徴とする請求項9に記載の回折光学素子及び前記回折光学素子を用いた投射用レンズ。   The diffractive optical element according to claim 9, wherein the diffractive optical element has a configuration in which two layers of the diffraction grating formed of two materials having different dispersions are arranged close to each other. The projection lens used. 前記請求項6から10のいずれか1項の投射用レンズを用いて、投影像原画をスクリーン面上に投影していることを特徴とする投影装置。
11. A projection apparatus that projects a projected image original image on a screen surface using the projection lens according to claim 6.
JP2003401083A 2003-12-01 2003-12-01 Diffraction optical element and lens for projection using the same Withdrawn JP2005164773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003401083A JP2005164773A (en) 2003-12-01 2003-12-01 Diffraction optical element and lens for projection using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401083A JP2005164773A (en) 2003-12-01 2003-12-01 Diffraction optical element and lens for projection using the same

Publications (1)

Publication Number Publication Date
JP2005164773A true JP2005164773A (en) 2005-06-23

Family

ID=34725111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401083A Withdrawn JP2005164773A (en) 2003-12-01 2003-12-01 Diffraction optical element and lens for projection using the same

Country Status (1)

Country Link
JP (1) JP2005164773A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094278A (en) * 2005-09-30 2007-04-12 Fujinon Corp Lens for image reading and image reader
JP2008052174A (en) * 2006-08-28 2008-03-06 Konica Minolta Opto Inc Zoom lens
JP2008158159A (en) * 2006-12-22 2008-07-10 Canon Inc Zoom lens and image projector with the same
JP2018189767A (en) * 2017-05-01 2018-11-29 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094278A (en) * 2005-09-30 2007-04-12 Fujinon Corp Lens for image reading and image reader
JP2008052174A (en) * 2006-08-28 2008-03-06 Konica Minolta Opto Inc Zoom lens
JP2008158159A (en) * 2006-12-22 2008-07-10 Canon Inc Zoom lens and image projector with the same
JP2018189767A (en) * 2017-05-01 2018-11-29 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Similar Documents

Publication Publication Date Title
US10645353B2 (en) Projection optical system and projector
JP4668159B2 (en) Projection optical system and projection-type image display device
US7123422B2 (en) Zoom lens system
JP5345008B2 (en) Projection variable focus lens and projection display device
WO2020262108A1 (en) Projection optical system and projector device
JP6252974B2 (en) Projection optical system, image display device including the same, and adjustment method of image display device
WO2018008199A1 (en) Projection optical system and image projection device
JP6589243B2 (en) Projection optical system and projector
JP6593844B2 (en) Projection optical system and projector
US7511897B2 (en) Projector optical system
US7545573B2 (en) Projector optical system, projector, and method for forming real image in use of projector optical system
JP2008058907A (en) Diffractive optical element and optical system having the same
JP2019095684A (en) Projection optical system and projection type image display device
JP4743607B2 (en) Fresnel lens and liquid crystal projector using the Fresnel lens
JP2015215399A (en) Projection lens and projection display device
JP2002182110A (en) Zoom lens, and image projecting device and image pickup device using the zoom lens
JP2004252101A (en) Super wide angle lens
JP2005164773A (en) Diffraction optical element and lens for projection using the same
JP4401748B2 (en) Projection zoom lens and image projection apparatus having the same
JP2001066499A (en) Optical system provided with diffraction optical device
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP2005106902A (en) Projection lens and color synthesis optical system using the lens
JP2002228930A (en) Zoom lens and projecting device by zoom lens
JP4438076B2 (en) Projection zoom lens and image projection apparatus having the same
WO2018117208A1 (en) Projection optical system and projector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206