JP2005163746A - Air-fuel ratio control system of internal combustion engine - Google Patents

Air-fuel ratio control system of internal combustion engine Download PDF

Info

Publication number
JP2005163746A
JP2005163746A JP2003407397A JP2003407397A JP2005163746A JP 2005163746 A JP2005163746 A JP 2005163746A JP 2003407397 A JP2003407397 A JP 2003407397A JP 2003407397 A JP2003407397 A JP 2003407397A JP 2005163746 A JP2005163746 A JP 2005163746A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
control
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003407397A
Other languages
Japanese (ja)
Other versions
JP4345462B2 (en
Inventor
Yoshiaki Atsumi
善明 渥美
Yasuhiro Oi
康広 大井
Naoto Kato
直人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003407397A priority Critical patent/JP4345462B2/en
Publication of JP2005163746A publication Critical patent/JP2005163746A/en
Application granted granted Critical
Publication of JP4345462B2 publication Critical patent/JP4345462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique which can restrain a gap between an actual exhaust air-fuel ratio and a target rich air-fuel ratio when performing air-fuel ratio rich control in an internal combustion engine which performs the air-fuel ratio rich control after fuel-cut control is stopped. <P>SOLUTION: When amending the amount of fuel supplied to the internal combustion engine, the amount of amendment with respect to a difference between a detection value of an exhaust air-fuel ratio sensor and a target air-fuel ratio in each exhaust air-fuel ratio control at the time of performing the air-fuel ratio rich control is made smaller than at the time of performing air-fuel ratio stoichiometric control(S103). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フューエルカット制御を行う内燃機関において排気空燃比を制御する内燃機関の空燃比制御装置に関する。   The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that controls an exhaust air-fuel ratio in an internal combustion engine that performs fuel cut control.

内燃機関においては、燃費向上等を目的として、該内燃機関が所定の運転状態にあるときに該内燃機関への燃料供給を停止する所謂フューエルカット制御を行うものがある。しかしながら、フューエルカット制御を実行すると、燃焼ガスを含まない排気が排気通路へ流出するため、該排気通路に設けられた排気浄化触媒での酸素貯蔵量が増加する。そのため、フューエルカット制御を停止し内燃機関への燃料供給を再開したときの該排気浄化触媒のNOx還元能力が過剰に低下する場合がある。そこで、フューエルカット制御を行う内燃機関では、フューエルカット制御の停止後、一時的に排気空燃比を理論空燃比より過濃なリッチ空燃比とすべく制御する(以下、この制御を空燃比リッチ制御と称する)技術が知られている(例えば、特許文献1参照。)。   Some internal combustion engines perform so-called fuel cut control for stopping fuel supply to the internal combustion engine when the internal combustion engine is in a predetermined operating state for the purpose of improving fuel consumption. However, when the fuel cut control is executed, the exhaust gas not containing the combustion gas flows out to the exhaust passage, so that the amount of oxygen stored in the exhaust purification catalyst provided in the exhaust passage increases. Therefore, the NOx reduction ability of the exhaust purification catalyst when fuel cut control is stopped and fuel supply to the internal combustion engine is restarted may be excessively reduced. Therefore, in an internal combustion engine that performs fuel cut control, after the fuel cut control is stopped, the exhaust air / fuel ratio is temporarily controlled to be a rich air / fuel ratio that is richer than the stoichiometric air / fuel ratio (hereinafter, this control is referred to as air / fuel ratio rich control). (Refer to Patent Document 1, for example).

このように、フューエルカット制御の停止後、空燃比リッチ制御を実行すると、排気浄化触媒からの酸素の放出を促進させることが出来、以て排気浄化触媒のNOx還元能力をより早期に回復させることが出来る。   As described above, when the air-fuel ratio rich control is executed after the fuel cut control is stopped, the release of oxygen from the exhaust purification catalyst can be promoted, so that the NOx reduction ability of the exhaust purification catalyst can be recovered earlier. I can do it.

一方、内燃機関が通常の運転状態にあるときに、排気浄化触媒において排気中のNOxのみならずHC,CO等の浄化をもより好適に行うために、排気空燃比を理論空燃比近傍とすべく制御する(以下、この制御を空燃比ストイキ制御と称する)技術も知られている。
特開平8−189397号公報
On the other hand, when the internal combustion engine is in a normal operating state, the exhaust air-fuel ratio is set close to the stoichiometric air-fuel ratio in order to more suitably purify not only NOx in the exhaust gas but also HC, CO, etc. in the exhaust gas purification catalyst. There is also known a technique for performing control accordingly (hereinafter, this control is referred to as air-fuel ratio stoichiometric control).
JP-A-8-1899797

空燃比リッチ制御実行時もしくは空燃比ストイキ制御実行時においては、排気空燃比をそれぞれの制御において目標とする空燃比とするために、排気浄化触媒の上流側の排気通路に設けられた排気空燃比センサの検出値に基づいて内燃機関への燃料供給量を補正する。   When executing the air-fuel ratio rich control or the air-fuel ratio stoichiometric control, the exhaust air-fuel ratio provided in the exhaust passage on the upstream side of the exhaust purification catalyst in order to set the exhaust air-fuel ratio to the target air-fuel ratio in each control The fuel supply amount to the internal combustion engine is corrected based on the detection value of the sensor.

しかしながら、排気空燃比センサは、一般に、排気空燃比が理論空燃比近傍の領域からはずれると検出精度が低下する。そのため、空燃比リッチ制御の実行時には、排気空燃比センサの検出値が実際の排気空燃比よりもリーン側もしくはリッチ側の値となる場合がある。従って、排気空燃比センサの検出値が目標とするリッチ空燃比(以下、目標リッチ空燃比と称する)の値となるように内燃機関への燃料供給量を補正しても、実際の排気空燃比は目標リッチ空燃比からずれる虞がある。   However, the detection accuracy of the exhaust air-fuel ratio sensor generally decreases when the exhaust air-fuel ratio deviates from the region near the stoichiometric air-fuel ratio. Therefore, when the air-fuel ratio rich control is executed, the detected value of the exhaust air-fuel ratio sensor may be a leaner or richer value than the actual exhaust air-fuel ratio. Therefore, even if the fuel supply amount to the internal combustion engine is corrected so that the detected value of the exhaust air / fuel ratio sensor becomes the target rich air / fuel ratio (hereinafter referred to as the target rich air / fuel ratio), the actual exhaust air / fuel ratio is corrected. May deviate from the target rich air-fuel ratio.

本発明は、上記問題に鑑みてなされたものであって、フューエルカット制御の停止後に空燃比リッチ制御を行う内燃機関において、空燃比リッチ制御を実行したときの、実際の排気空燃比と目標リッチ空燃比とのずれを抑制することが可能な技術を提供することを課題とする。   The present invention has been made in view of the above problems, and in an internal combustion engine that performs air-fuel ratio rich control after stopping fuel cut control, the actual exhaust air-fuel ratio and target rich when the air-fuel ratio rich control is executed. It is an object of the present invention to provide a technique capable of suppressing a deviation from an air-fuel ratio.

本発明は上記課題を解決するために以下の手段を採用した。
即ち、本発明は、空燃比ストイキ制御実行時および空燃比リッチ制御実行時において、
排気空燃比を目標とする空燃比とするために排気空燃比センサの検出値に基づいて内燃機関への燃料供給量を補正する場合、空燃比リッチ制御実行時の排気空燃比の変化量が空燃比ストイキ制御実行時の排気空燃比の変化量に比べて小さくなるように、内燃機関への燃料供給量を補正するものである。
The present invention employs the following means in order to solve the above problems.
That is, according to the present invention, the air-fuel ratio stoichiometric control and the air-fuel ratio rich control are executed.
When correcting the fuel supply amount to the internal combustion engine based on the detected value of the exhaust air / fuel ratio sensor in order to set the exhaust air / fuel ratio to the target air / fuel ratio, the amount of change in the exhaust air / fuel ratio when the air / fuel rich control is executed is The fuel supply amount to the internal combustion engine is corrected so as to be smaller than the change amount of the exhaust air-fuel ratio when the fuel ratio stoichiometric control is executed.

より詳しくは、第1の発明に係る内燃機関の空燃比制御装置は、
排気通路に設けられ、排気中のNOxを還元する特性および排気中の酸素を貯蔵する特性を有する排気浄化触媒と、
該排気浄化触媒の上流側の前記排気通路に設けられ、排気空燃比を検出する排気空燃比センサと、
排気空燃比を理論空燃比近傍とすべく制御する空燃比ストイキ制御を実行する空燃比ストイキ制御手段と、
内燃機関が所定の運転状態にあるときは該内燃機関への燃料供給を停止するフューエルカット制御を実行するフューエルカット制御手段と、
該フューエルカット制御手段によるフューエルカット制御が停止された後に所定条件が成立した場合、一時的に排気空燃比を理論空燃比より過濃な目標リッチ空燃比とすべく制御する空燃比リッチ制御を実行する空燃比リッチ制御手段と、
前記空燃比ストイキ制御手段による前記空燃比ストイキ制御実行時および前記空燃比リッチ制御手段による空燃比リッチ制御実行時に、前記排気空燃比センサの検出値に基づいて前記内燃機関への燃料供給量を補正する燃料供給量補正手段と、を備え、
前記燃料供給量補正手段は、前記内燃機関への燃料供給量を補正するときの、前記排気空燃比センサの検出値と各排気空燃比制御において目標とする空燃比の値との差に対する補正量を、前記空燃比リッチ制御実行時には前記空燃比ストイキ制御実行時よりも小さくすることを特徴とする。
More specifically, the air-fuel ratio control apparatus for an internal combustion engine according to the first invention is
An exhaust purification catalyst provided in the exhaust passage and having the characteristics of reducing NOx in the exhaust and storing oxygen in the exhaust;
An exhaust air-fuel ratio sensor that is provided in the exhaust passage upstream of the exhaust purification catalyst and detects an exhaust air-fuel ratio;
Air-fuel ratio stoichiometric control means for performing air-fuel ratio stoichiometric control for controlling the exhaust air-fuel ratio to be close to the theoretical air-fuel ratio;
Fuel cut control means for executing fuel cut control for stopping fuel supply to the internal combustion engine when the internal combustion engine is in a predetermined operating state;
When a predetermined condition is satisfied after the fuel cut control by the fuel cut control means is stopped, air-fuel ratio rich control is executed to temporarily control the exhaust air-fuel ratio to be a target rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio. Air-fuel ratio rich control means for
When the air-fuel ratio stoichiometric control is executed by the air-fuel ratio stoichiometric control means and when the air-fuel ratio rich control is executed by the air-fuel ratio rich control means, the fuel supply amount to the internal combustion engine is corrected based on the detected value of the exhaust air-fuel ratio sensor And a fuel supply amount correcting means for
The fuel supply amount correction means corrects the difference between the detected value of the exhaust air-fuel ratio sensor and the target air-fuel ratio value in each exhaust air-fuel ratio control when correcting the fuel supply amount to the internal combustion engine. Is made smaller when the air-fuel ratio rich control is executed than when the air-fuel ratio stoichiometric control is executed.

本発明では、内燃機関の排気通路に、排気中のNOxを還元する特性および排気中の酸素を貯蔵する特性を有する排気浄化触媒が設けられている。フューエルカット制御を実行すると、この排気浄化触媒での酸素貯蔵量が増加するため、フューエルカット制御を停止し内燃機関への燃料供給を再開したときの該排気浄化触媒のNOx還元能力が過剰に低下する場合がある。そこで、フューエルカット制御を停止した後に所定条件が成立した場合、排気浄化触媒からの酸素の放出を促進させるために、空燃比リッチ制御を実行する。ここで、所定条件とは、該所定条件が成立した場合、フューエルカット制御によって排気浄化触媒のNOx還元能力が過剰に低下したと判断できる条件である。この所定条件が成立した場合としては、フューエルカット制御の実行時間が所定時間以上の場合を例示できる。また、空燃比リッチ制御を実行するときに目標とする目標リッチ空燃比は、理論空燃比より過濃な空燃比であって予め定められた空燃比である。   In the present invention, an exhaust purification catalyst having a characteristic of reducing NOx in the exhaust and a characteristic of storing oxygen in the exhaust is provided in the exhaust passage of the internal combustion engine. When the fuel cut control is executed, the amount of oxygen stored in the exhaust purification catalyst increases. Therefore, when the fuel cut control is stopped and the fuel supply to the internal combustion engine is restarted, the NOx reduction ability of the exhaust purification catalyst is excessively reduced. There is a case. Therefore, when the predetermined condition is satisfied after the fuel cut control is stopped, the air-fuel ratio rich control is executed in order to promote the release of oxygen from the exhaust purification catalyst. Here, the predetermined condition is a condition under which it is possible to determine that the NOx reduction capability of the exhaust purification catalyst is excessively reduced by the fuel cut control when the predetermined condition is satisfied. As a case where this predetermined condition is satisfied, a case where the execution time of fuel cut control is a predetermined time or more can be exemplified. Further, the target rich air-fuel ratio that is targeted when the air-fuel ratio rich control is executed is an air-fuel ratio that is richer than the stoichiometric air-fuel ratio and is a predetermined air-fuel ratio.

また、フューエルカット制御および空燃比リッチ制御が実行されていないときには、排気浄化触媒において排気中のNOxのみならずHC,CO等の浄化をもより好適に行うことが出来るように、空燃比ストイキ制御を実行する。   Further, when the fuel cut control and the air-fuel ratio rich control are not executed, the air-fuel ratio stoichiometric control is performed so that the exhaust purification catalyst can more suitably purify not only NOx in the exhaust gas but also HC, CO, etc. Execute.

本発明では、空燃比リッチ制御実行時や空燃比ストイキ制御実行時においては、排気空燃比をそれぞれ目標リッチ空燃比または理論空燃比近傍とするために、排気浄化触媒の上流側の排気通路に設けられた排気空燃比センサの検出値に基づいて内燃機関への燃料供給量を補正する。   In the present invention, when the air-fuel ratio rich control or the air-fuel ratio stoichiometric control is executed, the exhaust air-fuel ratio is provided in the exhaust passage on the upstream side of the exhaust purification catalyst so that the exhaust air-fuel ratio becomes the target rich air-fuel ratio or the vicinity of the theoretical air-fuel ratio. The fuel supply amount to the internal combustion engine is corrected based on the detected value of the exhaust air / fuel ratio sensor.

内燃機関への燃料供給量を補正するとき、空燃比ストイキ制御実行時においては、排気空燃比センサの検出精度が高いため、該排気空燃比センサの検出値が理論空燃比近傍の値となるように内燃機関への燃料供給量を補正することで実際の排気空燃比をも理論空燃比近傍とすることができる。   When correcting the amount of fuel supplied to the internal combustion engine, when the air-fuel ratio stoichiometric control is executed, the detection accuracy of the exhaust air-fuel ratio sensor is high, so that the detected value of the exhaust air-fuel ratio sensor becomes a value near the stoichiometric air-fuel ratio. Further, by correcting the amount of fuel supplied to the internal combustion engine, the actual exhaust air-fuel ratio can be made close to the theoretical air-fuel ratio.

しかしながら、空燃比リッチ制御実行時においては、排気空燃比がリッチ空燃比となるため、排気空燃比センサの検出精度が低下し、その検出値が実際の排気空燃比からずれる場合がある。従って、排気空燃比センサの検出値が目標リッチ空燃比の値となるように内燃機関への燃料供給量を補正すると、実際の排気空燃比が過剰に変化する虞がある。   However, when the air-fuel ratio rich control is executed, the exhaust air-fuel ratio becomes the rich air-fuel ratio, so that the detection accuracy of the exhaust air-fuel ratio sensor is lowered and the detected value may deviate from the actual exhaust air-fuel ratio. Therefore, if the fuel supply amount to the internal combustion engine is corrected so that the detected value of the exhaust air / fuel ratio sensor becomes the target rich air / fuel ratio, the actual exhaust air / fuel ratio may change excessively.

そこで、本発明では、内燃機関への燃料供給量を補正するときの、排気空燃比センサの検出値と各排気空燃比制御において目標とする空燃比の値との差に対する補正量を、空燃比リッチ制御実行時には空燃比ストイキ制御実行時よりも小さくする。ここで、各排気空燃比制御とは空燃比ストイキ制御および空燃比リッチ制御のことである。即ち、空燃比ストイキ制御実行時における排気空燃比センサの検出値と理論空燃比近傍の値との差と、空燃比リッチ制御実行時における排気空燃比センサの検出値と目標リッチ空燃比の値との差とが、同量であっても、内燃機関への燃料供給量の補正量は異なるものとし、空燃比リッチ制御実行時の補正量を空燃比ストイキ制御実行時の補正量よりも小さくする。   Therefore, in the present invention, when correcting the fuel supply amount to the internal combustion engine, the correction amount for the difference between the detected value of the exhaust air-fuel ratio sensor and the target air-fuel ratio value in each exhaust air-fuel ratio control is calculated as the air-fuel ratio. When rich control is executed, it is made smaller than when air-fuel ratio stoichiometric control is executed. Here, each exhaust air-fuel ratio control is air-fuel ratio stoichiometric control and air-fuel ratio rich control. That is, the difference between the detected value of the exhaust air-fuel ratio sensor when the air-fuel ratio stoichiometric control is executed and the value near the theoretical air-fuel ratio, the detected value of the exhaust air-fuel ratio sensor when the air-fuel ratio rich control is executed, and the target rich air-fuel ratio value Even if the difference is the same amount, the correction amount of the fuel supply amount to the internal combustion engine is different, and the correction amount at the time of executing the air-fuel ratio rich control is made smaller than the correction amount at the time of executing the air-fuel ratio stoichiometric control .

内燃機関への燃料供給量の補正量をより小さくすると、排気空燃比の変化量もより小さくなる。そのため、空燃比リッチ制御実行時に、実際の排気空燃比を過剰に変化させることを抑制することが出来る。従って、本発明によれば、空燃比リッチ制御を実行したときの、実際の排気空燃比と目標リッチ空燃比とのずれを抑制することが可能となる。   If the correction amount of the fuel supply amount to the internal combustion engine is made smaller, the change amount of the exhaust air-fuel ratio becomes smaller. Therefore, it is possible to suppress the actual exhaust air / fuel ratio from being changed excessively during execution of the air / fuel ratio rich control. Therefore, according to the present invention, it is possible to suppress a deviation between the actual exhaust air-fuel ratio and the target rich air-fuel ratio when the air-fuel ratio rich control is executed.

また、第2の発明として以下の手段を採用しても良い。
即ち、第2の発明に係る内燃機関の空燃比制御装置は、
排気通路に設けられ、排気中のNOxを還元する特性および排気中の酸素を貯蔵する特性を有する排気浄化触媒と、
該排気浄化触媒の上流側の前記排気通路に設けられ、排気空燃比を検出する排気空燃比センサと、
排気空燃比を理論空燃比近傍とすべく制御する空燃比ストイキ制御を実行する空燃比ストイキ制御手段と、
内燃機関が所定の運転状態にあるときは該内燃機関への燃料供給を停止するフューエルカット制御を実行するフューエルカット制御手段と、
該フューエルカット制御手段によるフューエルカット制御が停止された後に所定条件が成立した場合、一時的に排気空燃比を理論空燃比より過濃な目標リッチ空燃比とすべく制御する空燃比リッチ制御を実行する空燃比リッチ制御手段と、
前記空燃比ストイキ制御手段による前記空燃比ストイキ制御実行時および前記空燃比リッチ制御手段による空燃比リッチ制御実行時に、前記排気空燃比センサの検出値に基づいて前記内燃機関への燃料供給量を補正する燃料供給量補正手段と、を備え、
前記燃料供給量補正手段は、前記内燃機関への燃料供給量を補正するときの補正限度量を、前記空燃比リッチ制御実行時には前記空燃比ストイキ制御実行時よりも小さくすることを特徴とする。
The following means may be adopted as the second invention.
That is, the air-fuel ratio control apparatus for an internal combustion engine according to the second invention is:
An exhaust purification catalyst provided in the exhaust passage and having the characteristics of reducing NOx in the exhaust and storing oxygen in the exhaust;
An exhaust air-fuel ratio sensor that is provided in the exhaust passage upstream of the exhaust purification catalyst and detects an exhaust air-fuel ratio;
Air-fuel ratio stoichiometric control means for performing air-fuel ratio stoichiometric control for controlling the exhaust air-fuel ratio to be close to the theoretical air-fuel ratio;
Fuel cut control means for executing fuel cut control for stopping fuel supply to the internal combustion engine when the internal combustion engine is in a predetermined operating state;
When a predetermined condition is satisfied after the fuel cut control by the fuel cut control means is stopped, air-fuel ratio rich control is executed to temporarily control the exhaust air-fuel ratio to be a target rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio. Air-fuel ratio rich control means for
When the air-fuel ratio stoichiometric control is executed by the air-fuel ratio stoichiometric control means and when the air-fuel ratio rich control is executed by the air-fuel ratio rich control means, the fuel supply amount to the internal combustion engine is corrected based on the detected value of the exhaust air-fuel ratio sensor And a fuel supply amount correcting means for
The fuel supply amount correcting means is characterized in that a correction limit amount when correcting the fuel supply amount to the internal combustion engine is made smaller when the air-fuel ratio rich control is executed than when the air-fuel ratio stoichiometric control is executed.

上述したように、空燃比リッチ制御実行時においては、排気空燃比センサの検出値が実際の排気空燃比からずれている場合がある。従って、排気空燃比センサの検出値と目標リッチ空燃比との差が大きいときに内燃機関への燃料供給量を大幅に補正すると、実際の排気空燃比と目標リッチ空燃比との差がかえって大きくなる虞がある。   As described above, when the air-fuel ratio rich control is executed, the detected value of the exhaust air-fuel ratio sensor may deviate from the actual exhaust air-fuel ratio. Therefore, if the amount of fuel supplied to the internal combustion engine is largely corrected when the difference between the detected value of the exhaust air / fuel ratio sensor and the target rich air / fuel ratio is large, the difference between the actual exhaust air / fuel ratio and the target rich air / fuel ratio is rather large. There is a risk of becoming.

そこで、本発明では、内燃機関への燃料供給量を補正するときの補正限度量を、空燃比リッチ制御実行時には空燃比ストイキ制御実行時より小さくする。ここで、補正限度量とは、内燃機関への燃料供給量を補正するときに補正可能な最大量のことである。即ち、排気空燃比センサの検出値が、それぞれの排気空燃比制御において目標とする空燃比の値となっていなくても、内燃機関への燃料供給量の補正量が該補正限度量に達したときは、そ
れ以上の補正は行わない。
Therefore, in the present invention, the correction limit amount when correcting the fuel supply amount to the internal combustion engine is made smaller when the air-fuel ratio rich control is executed than when the air-fuel ratio stoichiometric control is executed. Here, the correction limit amount is a maximum amount that can be corrected when correcting the fuel supply amount to the internal combustion engine. That is, even if the detected value of the exhaust air-fuel ratio sensor does not become the target air-fuel ratio value in each exhaust air-fuel ratio control, the correction amount of the fuel supply amount to the internal combustion engine has reached the correction limit amount Sometimes no further corrections are made.

内燃機関への燃料供給量の補正限度量をより小さくすると、排気空燃比の最大変化量もより小さくなる。そのため、空燃比リッチ制御実行時において、排気空燃比センサの検出値と目標リッチ空燃比との差が大きいときに、排気空燃比を過剰に変化させて実際の排気空燃比と目標リッチ空燃比との差をかえって大きくすることを抑制することが出来る。従って、本発明によれば、空燃比リッチ制御を実行したときの、実際の排気空燃比と目標リッチ空燃比とのずれを抑制することが可能となる。   If the correction limit amount of the fuel supply amount to the internal combustion engine is made smaller, the maximum change amount of the exhaust air-fuel ratio becomes smaller. Therefore, when the air-fuel ratio rich control is executed, when the difference between the detected value of the exhaust air-fuel ratio sensor and the target rich air-fuel ratio is large, the exhaust air-fuel ratio is changed excessively, and the actual exhaust air-fuel ratio and the target rich air-fuel ratio are changed. It is possible to suppress an increase in the difference. Therefore, according to the present invention, it is possible to suppress a deviation between the actual exhaust air-fuel ratio and the target rich air-fuel ratio when the air-fuel ratio rich control is executed.

尚、上述した第1の発明と第2の発明とにおいて、内燃機関への燃料噴射量を補正するときは、一度に補正しても良く、また、多段階に分けて補正しても良い。   In the first and second inventions described above, when the fuel injection amount to the internal combustion engine is corrected, it may be corrected at once, or may be corrected in multiple stages.

また、上述した第1の発明と第2の発明とを組み合わせても良い。   Moreover, you may combine the 1st invention mentioned above and the 2nd invention.

本発明に係る内燃機関の空燃比制御装置によれば、フューエルカット制御の停止後に空燃比リッチ制御を行う内燃機関において、空燃比リッチ制御を実行したときの、実際の排気空燃比の目標リッチ空燃比からのずれを抑制することが出来る。   According to the air-fuel ratio control apparatus for an internal combustion engine according to the present invention, in the internal combustion engine that performs the air-fuel ratio rich control after the fuel cut control is stopped, the target rich air-fuel ratio of the actual exhaust air-fuel ratio when the air-fuel ratio rich control is executed. Deviation from the fuel ratio can be suppressed.

以下、本発明に係る内燃機関の空燃比制御装置の実施の形態について図面に基づいて説明する。   Embodiments of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention will be described below with reference to the drawings.

<内燃機関とその吸排気系および制御系の概略構成>
先ず、本発明に係る内燃機関の空燃比制御装置の実施例1について図面に基づいて説明する。図1は、本実施例に係る内燃機関とその吸排気系および制御系の概略構成を示す図である。
<Schematic configuration of the internal combustion engine and its intake and exhaust systems and control system>
First, a first embodiment of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its intake / exhaust system and control system according to the present embodiment.

内燃機関1には、吸気通路4と排気通路2が接続されている。吸気通路4には、エアフローメータ5とスロットル弁6とが設けられている。排気通路2には、排気浄化触媒として三元触媒3が設けられている。尚、この排気浄化触媒は、排気中のNOxを還元する特性を有すると共に排気中の酸素を貯蔵する特性をも有していれば良く、例えば、吸蔵還元型NOx触媒や選択還元型NOx触媒等であっても良い。   An intake passage 4 and an exhaust passage 2 are connected to the internal combustion engine 1. An air flow meter 5 and a throttle valve 6 are provided in the intake passage 4. A three-way catalyst 3 is provided in the exhaust passage 2 as an exhaust purification catalyst. The exhaust purification catalyst only needs to have a characteristic of reducing NOx in the exhaust gas and a characteristic of storing oxygen in the exhaust gas. For example, an occlusion reduction type NOx catalyst, a selective reduction type NOx catalyst, etc. It may be.

三元触媒3の上流側の排気通路2には、該排気通路2を流通する排気の空燃比(排気空燃比)に対応した電気信号を出力する排気空燃比センサ7が設けられている。また、三元触媒3の下流側の排気通路2には、該排気通路2を流通する排気の酸素濃度に対応した電気信号を出力する酸素濃度センサ14と、該排気通路2を流通する排気の温度(排気温度)に対応した電気信号を出力する排気温度センサ8と、が設けられている   The exhaust passage 2 upstream of the three-way catalyst 3 is provided with an exhaust air / fuel ratio sensor 7 that outputs an electric signal corresponding to the air / fuel ratio (exhaust air / fuel ratio) of the exhaust gas flowing through the exhaust passage 2. The exhaust passage 2 downstream of the three-way catalyst 3 has an oxygen concentration sensor 14 that outputs an electric signal corresponding to the oxygen concentration of the exhaust gas flowing through the exhaust passage 2, and an exhaust gas flowing through the exhaust passage 2. And an exhaust temperature sensor 8 that outputs an electrical signal corresponding to the temperature (exhaust temperature).

以上述べたように構成された内燃機関1には、この内燃機関1を制御するための電子制御ユニット(ECU)10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。ECU10は、エアフローメータ5や、排気空燃比センサ7、酸素濃度センサ14、排気温度センサ8等の各種センサと電気的に接続されており、これらの出力信号がECU10に入力される。そして、ECU10は、排気温度センサ8の検出値から三元触媒3の温度を推定する。また、ECU10は、内燃機関1の燃料噴射弁やスロットル弁6と電気的に接続されており、これらを制御することが可能となっている。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 10 for controlling the internal combustion engine 1. The ECU 10 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver. The ECU 10 is electrically connected to various sensors such as the air flow meter 5, the exhaust air / fuel ratio sensor 7, the oxygen concentration sensor 14, and the exhaust temperature sensor 8, and these output signals are input to the ECU 10. Then, the ECU 10 estimates the temperature of the three-way catalyst 3 from the detection value of the exhaust temperature sensor 8. The ECU 10 is electrically connected to the fuel injection valve and the throttle valve 6 of the internal combustion engine 1 and can control them.

本実施例では、ECU10は、内燃機関1が所定の運転状態にあるときは該内燃機関1での燃料噴射を停止するフューエルカット制御を実行する。ここで、内燃機関1が所定の運転状態にあるときとしては、該内燃機関1が減速運転状態にあるときを例示出来る。しかしながら、フューエルカット制御を実行すると三元触媒3での酸素貯蔵量が増加するため、フューエルカット制御を停止し内燃機関1での燃料噴射を再開したときの該三元触媒3のNOx還元能力が過剰に低下する場合がある。   In the present embodiment, the ECU 10 executes fuel cut control for stopping fuel injection in the internal combustion engine 1 when the internal combustion engine 1 is in a predetermined operation state. Here, the case where the internal combustion engine 1 is in a predetermined operation state can be exemplified by the case where the internal combustion engine 1 is in a deceleration operation state. However, since the oxygen storage amount in the three-way catalyst 3 increases when the fuel cut control is executed, the NOx reduction ability of the three-way catalyst 3 when the fuel cut control is stopped and the fuel injection in the internal combustion engine 1 is restarted. May decrease excessively.

そこで、ECU10は、フューエルカット制御を停止したときに、酸素が貯蔵されることで三元触媒3のNOx還元能力が過剰に低下したと判断できる場合、内燃機関1での燃料噴射量やスロットル弁6の開度等を調整することによって、空燃比リッチ制御を実行する。空燃比リッチ制御を実行することによって、三元触媒3からの酸素の放出を促進することが出来、以て三元触媒3のNOx還元能力をより早期に回復させることが出来る。   Therefore, when the ECU 10 determines that the NOx reduction capability of the three-way catalyst 3 has decreased excessively due to the storage of oxygen when the fuel cut control is stopped, the fuel injection amount and the throttle valve in the internal combustion engine 1 are determined. The air-fuel ratio rich control is executed by adjusting the opening degree of 6 and the like. By executing the air-fuel ratio rich control, the release of oxygen from the three-way catalyst 3 can be promoted, so that the NOx reduction ability of the three-way catalyst 3 can be recovered earlier.

また、本実施例では、ECU10は、フューエルカット制御および空燃比リッチ制御が実行されていないときであって、且つ、三元触媒3の温度が活性温度範囲内にあるときには、内燃機関1での燃料噴射量やスロットル弁6の開度等を調整することによって、空燃比ストイキ制御を実行する。空燃比ストイキ制御を実行することによって、三元触媒3において排気中のNOxのみならずHC,CO等の浄化をもより好適に行うことが可能となる。   Further, in this embodiment, the ECU 10 is in the internal combustion engine 1 when the fuel cut control and the air-fuel ratio rich control are not executed and when the temperature of the three-way catalyst 3 is within the activation temperature range. Air-fuel ratio stoichiometric control is executed by adjusting the fuel injection amount, the opening degree of the throttle valve 6 and the like. By executing the air-fuel ratio stoichiometric control, it is possible to more suitably purify not only NOx in the exhaust gas but also HC, CO, etc. in the three-way catalyst 3.

<排気空燃比制御における燃料噴射量の補正方法1>
本実施例においては、空燃比リッチ制御実行時や空燃比ストイキ制御実行時には、排気空燃比をそれぞれ目標リッチ空燃比または理論空燃比近傍とするために排気空燃比センサ7の検出値に基づいて内燃機関1での燃料噴射量を補正する。尚、ここでの目標リッチ空燃比は、理論空燃比より過濃な空燃比であって予め定められた空燃比である。この目標リッチ空燃比はある程度の幅を持って定められても良い。
<Fuel injection amount correction method 1 in exhaust air-fuel ratio control>
In this embodiment, when the air-fuel ratio rich control or the air-fuel ratio stoichiometric control is executed, the internal combustion engine is operated based on the detected value of the exhaust air-fuel ratio sensor 7 in order to set the exhaust air-fuel ratio to the target rich air-fuel ratio or the theoretical air-fuel ratio. The fuel injection amount in the engine 1 is corrected. Note that the target rich air-fuel ratio here is an air-fuel ratio that is richer than the stoichiometric air-fuel ratio and is a predetermined air-fuel ratio. This target rich air-fuel ratio may be determined with a certain range.

ここで、本実施例に係る空燃比リッチ制御および空燃比ストイキ制御における内燃機関での燃料噴射量の補正制御ルーチンについて図2に示すフローチャート図に基づいて説明する。本ルーチンは、ECU10に予め記憶されており、このECU10の起動後、所定時間毎に繰り返されるルーチンである。   Here, a correction control routine for the fuel injection amount in the internal combustion engine in the air-fuel ratio rich control and the air-fuel ratio stoichiometric control according to the present embodiment will be described with reference to the flowchart shown in FIG. This routine is stored in advance in the ECU 10 and is repeated every predetermined time after the ECU 10 is started.

本ルーチンでは、先ず、S101において、ECU10は、空燃比ストイキ制御が実行されているか否かを判別する。このS101において、肯定判定された場合、ECU10はS104に進み、否定判定された場合、ECU10はS102に進む。   In this routine, first, in S101, the ECU 10 determines whether air-fuel ratio stoichiometric control is being executed. If an affirmative determination is made in S101, the ECU 10 proceeds to S104, and if a negative determination is made, the ECU 10 proceeds to S102.

S104において、ECU10は、内燃機関1での燃料噴射量を補正するときの、排気空燃比センサ7の検出値と理論空燃比近傍の値との差に対する補正量を標準補正量に設定し、該燃料噴射量の補正を実行して本ルーチンの実行を終了する。ここで、標準補正量は、各排気空燃比制御において、内燃機関1での燃料噴射量を該標準補正量だけ補正すると、排気空燃比センサ7の検出値が、目標とする空燃比の値(即ち、空燃比ストイキ制御実行時は理論空燃比近傍の値であり、空燃比リッチ制御実行時は目標リッチ空燃比の値)となるように、排気空燃比が変化する量である。   In S104, the ECU 10 sets the correction amount for the difference between the detected value of the exhaust air-fuel ratio sensor 7 and the value in the vicinity of the theoretical air-fuel ratio when correcting the fuel injection amount in the internal combustion engine 1 to the standard correction amount. The correction of the fuel injection amount is executed and the execution of this routine is finished. Here, the standard correction amount is obtained by correcting the fuel injection amount in the internal combustion engine 1 by the standard correction amount in each exhaust air-fuel ratio control, so that the detected value of the exhaust air-fuel ratio sensor 7 becomes the target air-fuel ratio value ( That is, the exhaust air / fuel ratio changes such that the value is close to the stoichiometric air / fuel ratio when the air / fuel ratio stoichiometric control is executed, and the target rich air / fuel ratio is the value when the air / fuel ratio rich control is executed.

一方、S102において、ECU10は、空燃比リッチ制御が実行されているか否かを判別する。このS102において、否定判定された場合、排気空燃比を制御するために燃料噴射量を補正する必要はないと判断し、ECU10は本ルーチンの実行を終了する。一方、S102において、肯定判定された場合、内燃機関1での燃料噴射量を補正するときの、排気空燃比センサ7の検出値と目標リッチ空燃比の値との差に対する補正量を、ここでの標準補正量に係数αを乗算した値とし、該燃料噴射量の補正を実行して本ルーチンの
実行を終了する。この係数αは1より小さい値であって、予め定められた値である。即ち、本ルーチンにおいては、内燃機関1での燃料噴射量を補正するときの、排気空燃比センサ7の検出値と目標とする空燃比の値との差に対する補正量を、空燃比リッチ制御実行時には空燃比ストイキ制御実行時よりも小さくする。
On the other hand, in S102, the ECU 10 determines whether air-fuel ratio rich control is being executed. If a negative determination is made in S102, it is determined that there is no need to correct the fuel injection amount in order to control the exhaust air-fuel ratio, and the ECU 10 ends the execution of this routine. On the other hand, if a positive determination is made in S102, the correction amount for the difference between the detected value of the exhaust air-fuel ratio sensor 7 and the value of the target rich air-fuel ratio when correcting the fuel injection amount in the internal combustion engine 1 is here. The standard correction amount is multiplied by the coefficient α, the fuel injection amount is corrected, and the execution of this routine is terminated. The coefficient α is a value smaller than 1 and a predetermined value. That is, in this routine, the correction amount for the difference between the detected value of the exhaust air-fuel ratio sensor 7 and the target air-fuel ratio value when correcting the fuel injection amount in the internal combustion engine 1 is executed as the air-fuel ratio rich control. Sometimes it is made smaller than when the air-fuel ratio stoichiometric control is executed.

上述したように、空燃比リッチ制御実行時は排気空燃比センサ7の検出値は実際の排気空燃比からずれている場合がある。そのため、排気空燃比センサ7の検出値が目標とする空燃比、即ち目標リッチ空燃比の値となるように内燃機関1での燃料噴射量を補正すると、実際の排気空燃比は目標リッチ空燃比とはならず過剰に変化する虞がある。   As described above, when the air-fuel ratio rich control is executed, the detected value of the exhaust air-fuel ratio sensor 7 may deviate from the actual exhaust air-fuel ratio. Therefore, when the fuel injection amount in the internal combustion engine 1 is corrected so that the detected value of the exhaust air / fuel ratio sensor 7 becomes the target air / fuel ratio, that is, the target rich air / fuel ratio, the actual exhaust air / fuel ratio becomes the target rich air / fuel ratio. However, it may change excessively.

本実施例では、空燃比リッチ制御実行時には、内燃機関1での燃料噴射量の補正量を標準補正量より小さくする。即ち、排気空燃比センサ7の検出値が目標リッチ空燃比の値には達しない程度に内燃機関1での燃料噴射量を補正する。その結果、空燃比ストイキ制御実行時に内燃機関1での燃料噴射量を補正したときに比べて、空燃比リッチ制御実行時に内燃機関1での燃料噴射量を補正したときの実際の排気空燃比の変化量はより小さくなる。そのため、空燃比リッチ制御実行時に、実際の排気空燃比を過剰に変化させることを抑制することが出来る。従って、本実施例によれば、空燃比リッチ制御を実行したときの、実際の排気空燃比と目標リッチ空燃比とのずれを抑制することが可能となる。   In this embodiment, when the air-fuel ratio rich control is executed, the correction amount of the fuel injection amount in the internal combustion engine 1 is made smaller than the standard correction amount. That is, the fuel injection amount in the internal combustion engine 1 is corrected so that the detected value of the exhaust air-fuel ratio sensor 7 does not reach the target rich air-fuel ratio. As a result, the actual exhaust air-fuel ratio when the fuel injection amount in the internal combustion engine 1 is corrected when the air-fuel ratio rich control is executed is compared with the case where the fuel injection amount in the internal combustion engine 1 is corrected when the air-fuel ratio stoichiometric control is executed. The amount of change is smaller. Therefore, it is possible to suppress the actual exhaust air / fuel ratio from being changed excessively during execution of the air / fuel ratio rich control. Therefore, according to the present embodiment, it is possible to suppress a deviation between the actual exhaust air-fuel ratio and the target rich air-fuel ratio when the air-fuel ratio rich control is executed.

次に、本発明に係る内燃機関の空燃比制御装置の実施例2について説明する。
本実施例に係る内燃機関とその吸排気系および制御系の概略構成は、上述した実施例1に係る内燃機関とその吸排気系および制御系の概略構成と同様であるためその説明を省略する。
Next, a second embodiment of the air-fuel ratio control apparatus for an internal combustion engine according to the present invention will be described.
The schematic configuration of the internal combustion engine and its intake / exhaust system and control system according to the present embodiment is the same as the schematic configuration of the internal combustion engine according to the first embodiment and its intake / exhaust system and control system, and therefore the description thereof is omitted. .

<排気空燃比制御における燃料噴射量の補正方法2>
ここで、本実施例に係る空燃比リッチ制御および空燃比ストイキ制御における内燃機関での燃料噴射量の補正制御ルーチンについて図3に示すフローチャート図に基づいて説明する。本実施例に係る内燃機関での燃料噴射量の補正制御ルーチンにおいては、S203、S204以外のステップは、上述した実施例1に係る内燃機関での燃料噴射量の補正制御ルーチンと同様であるため、同様のステップには同様の参照番号を付しその説明を省略する。本ルーチンは、前記と同様、ECU10に予め記憶されており、このECU10の起動後、所定時間毎に繰り返されるルーチンである。
<Fuel injection amount correction method 2 in exhaust air-fuel ratio control>
Here, a correction control routine for the fuel injection amount in the internal combustion engine in the air-fuel ratio rich control and the air-fuel ratio stoichiometric control according to the present embodiment will be described with reference to the flowchart shown in FIG. In the correction control routine for the fuel injection amount in the internal combustion engine according to the present embodiment, the steps other than S203 and S204 are the same as the correction control routine for the fuel injection amount in the internal combustion engine according to the first embodiment described above. The same steps are denoted by the same reference numerals, and the description thereof is omitted. Similar to the above, this routine is stored in advance in the ECU 10 and is repeated every predetermined time after the ECU 10 is activated.

本ルーチンでは、S101において、肯定判定された場合、ECU10はS204に進む。このS204において、ECU10は、内燃機関1での燃料噴射量を補正するときの補正限度量を標準補正限度量に設定し、該燃料噴射量の補正を実行して本ルーチンの実行を終了する。ここで、補正限度量とは、内燃機関1での燃料噴射量を補正するときに補正可能な最大量のことである。また、標準補正限度量は、空燃比ストイキ制御においては、内燃機関1での燃料噴射量を該標準補正限度量以下の量だけ補正すれば、排気空燃比を理論空燃比近傍とすることが可能と判断出来る量であって、予め実験等によって定められた値である。   In this routine, if an affirmative determination is made in S101, the ECU 10 proceeds to S204. In S204, the ECU 10 sets the correction limit amount for correcting the fuel injection amount in the internal combustion engine 1 to the standard correction limit amount, corrects the fuel injection amount, and ends the execution of this routine. Here, the correction limit amount is a maximum amount that can be corrected when the fuel injection amount in the internal combustion engine 1 is corrected. Further, the standard correction limit amount can be made close to the stoichiometric air-fuel ratio in the air-fuel ratio stoichiometric control if the fuel injection amount in the internal combustion engine 1 is corrected by an amount equal to or less than the standard correction limit amount. It is an amount that can be determined as follows, and is a value determined in advance through experiments or the like.

また、本ルーチンでは、S102において、肯定判定された場合、ECU10はS203に進む。このS203において、ECU10は、内燃機関1での燃料噴射量を補正するときの補正限度量を、空燃比ストイキ制御時の標準補正限度量に係数βを乗算した値とし、該燃料噴射量の補正を実行して本ルーチンの実行を終了する。この係数βは、前記係数αと同様、1より小さい値であって、予め定められた値である。即ち、本ルーチンにおいては、内燃機関1での燃料噴射量を補正するときの補正限度量を、空燃比リッチ制御実行時には空燃比ストイキ制御実行時よりも小さくする。   In this routine, if an affirmative determination is made in S102, the ECU 10 proceeds to S203. In S203, the ECU 10 sets the correction limit amount when correcting the fuel injection amount in the internal combustion engine 1 to a value obtained by multiplying the standard correction limit amount at the time of air-fuel ratio stoichiometric control by a coefficient β, and correcting the fuel injection amount. To end the execution of this routine. Like the coefficient α, the coefficient β is a value smaller than 1 and a predetermined value. That is, in this routine, the correction limit amount when correcting the fuel injection amount in the internal combustion engine 1 is made smaller when the air-fuel ratio rich control is executed than when the air-fuel ratio stoichiometric control is executed.

上述したように、空燃比リッチ制御実行時においては、排気空燃比センサの検出値が実際の排気空燃比からずれている場合がある。従って、空燃比ストイキ制御実行時と同様に、補正限度量を標準補正限度量として、排気空燃比センサ7の検出値と目標リッチ空燃比との差が大きいときに、内燃機関1での燃料噴射量を大幅に補正すると、実際の排気空燃比と目標リッチ空燃比との差がかえって大きくなる虞がある。   As described above, when the air-fuel ratio rich control is executed, the detected value of the exhaust air-fuel ratio sensor may deviate from the actual exhaust air-fuel ratio. Therefore, as in the case of executing the air-fuel ratio stoichiometric control, the fuel injection in the internal combustion engine 1 is performed when the correction limit amount is set as the standard correction limit amount and the difference between the detected value of the exhaust air-fuel ratio sensor 7 and the target rich air-fuel ratio is large. If the amount is significantly corrected, the difference between the actual exhaust air-fuel ratio and the target rich air-fuel ratio may be increased.

本実施例では、空燃比リッチ制御実行時には、内燃機関1での燃料噴射量を補正するときの補正限度量を標準補正限度量より小さくする。そのため、空燃比ストイキ制御実行時の排気空燃比の最大変化量に比べて、空燃比リッチ制御実行時の排気空燃比の最大変化量はより小さくなる。そのため、空燃比リッチ制御実行時において、排気空燃比センサ7の検出値と目標リッチ空燃比との差が大きいときに、排気空燃比を過剰に変化させて実際の排気空燃比と目標リッチ空燃比との差をかえって大きくすることを抑制することが出来る。従って、本発明によれば、空燃比リッチ制御を実行したときの、実際の排気空燃比と目標リッチ空燃比とのずれを抑制することが可能となる。   In this embodiment, when the air-fuel ratio rich control is executed, the correction limit amount for correcting the fuel injection amount in the internal combustion engine 1 is made smaller than the standard correction limit amount. Therefore, the maximum change amount of the exhaust air-fuel ratio when the air-fuel ratio rich control is executed is smaller than the maximum change amount of the exhaust air-fuel ratio when the air-fuel ratio stoichiometric control is executed. Therefore, when the air-fuel ratio rich control is executed, when the difference between the detected value of the exhaust air-fuel ratio sensor 7 and the target rich air-fuel ratio is large, the exhaust air-fuel ratio is changed excessively, and the actual exhaust air-fuel ratio and the target rich air-fuel ratio are changed. It can be suppressed that the difference is increased. Therefore, according to the present invention, it is possible to suppress a deviation between the actual exhaust air-fuel ratio and the target rich air-fuel ratio when the air-fuel ratio rich control is executed.

尚、上述した実施例1および実施例2の空燃比リッチ制御および空燃比ストイキ制御において、内燃機関1での燃料噴射量を補正するときは、一度に補正しても良く、また、多段階に分けて補正しても良い。   In the air-fuel ratio rich control and the air-fuel ratio stoichiometric control of the first and second embodiments described above, when correcting the fuel injection amount in the internal combustion engine 1, it may be corrected at once, or in multiple stages. It may be corrected separately.

また、空燃比リッチ制御および空燃比ストイキ制御における燃料噴射量の補正には、排気空燃比センサ7の検出値に加え、酸素濃度センサ14の検出値を使用しても良い。   In addition to the detection value of the exhaust air / fuel ratio sensor 7, the detection value of the oxygen concentration sensor 14 may be used for correcting the fuel injection amount in the air / fuel ratio rich control and the air / fuel ratio stoichiometric control.

また、実施例1における内燃機関1での燃料噴射量の補正制御と実施例2における内燃機関1での燃料噴射量の補正制御とを組み合わせて実行しても良い。   Further, the correction control of the fuel injection amount in the internal combustion engine 1 in the first embodiment and the correction control of the fuel injection amount in the internal combustion engine 1 in the second embodiment may be executed in combination.

本発明の実施例に係る内燃機関とその吸排気系および制御系の概略構成を示す図The figure which shows schematic structure of the internal combustion engine which concerns on the Example of this invention, its intake-exhaust system, and a control system 本発明の実施例1に係る空燃比リッチ制御および空燃比ストイキ制御における内燃機関での燃料噴射量の補正制御ルーチンを示すフローチャート図。The flowchart figure which shows the correction control routine of the fuel injection quantity in the internal combustion engine in the air fuel ratio rich control and the air fuel ratio stoichiometric control which concern on Example 1 of this invention. 本発明の実施例2に係る空燃比リッチ制御および空燃比ストイキ制御における内燃機関での燃料噴射量の補正制御ルーチンを示すフローチャート図。The flowchart figure which shows the correction | amendment control routine of the fuel injection quantity in the internal combustion engine in the air fuel ratio rich control and air fuel ratio stoichiometric control which concern on Example 2 of this invention.

符号の説明Explanation of symbols

1・・・内燃機関
3・・・三元触媒
6・・・スロットル弁
7・・・排気空燃比センサ
8・・・排気温度センサ
10・・ECU
14・・酸素濃度センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 3 ... Three-way catalyst 6 ... Throttle valve 7 ... Exhaust air-fuel ratio sensor 8 ... Exhaust temperature sensor 10 ... ECU
14. Oxygen concentration sensor

Claims (2)

排気通路に設けられ、排気中のNOxを還元する特性および排気中の酸素を貯蔵する特性を有する排気浄化触媒と、
該排気浄化触媒の上流側の前記排気通路に設けられ、排気空燃比を検出する排気空燃比センサと、
排気空燃比を理論空燃比近傍とすべく制御する空燃比ストイキ制御を実行する空燃比ストイキ制御手段と、
内燃機関が所定の運転状態にあるときは該内燃機関への燃料供給を停止するフューエルカット制御を実行するフューエルカット制御手段と、
該フューエルカット制御手段によるフューエルカット制御が停止された後に所定条件が成立した場合、一時的に排気空燃比を理論空燃比より過濃な目標リッチ空燃比とすべく制御する空燃比リッチ制御を実行する空燃比リッチ制御手段と、
前記空燃比ストイキ制御手段による前記空燃比ストイキ制御実行時および前記空燃比リッチ制御手段による空燃比リッチ制御実行時に、前記排気空燃比センサの検出値に基づいて前記内燃機関への燃料供給量を補正する燃料供給量補正手段と、を備え、
前記燃料供給量補正手段は、前記内燃機関への燃料供給量を補正するときの、前記排気空燃比センサの検出値と各排気空燃比制御において目標とする空燃比の値との差に対する補正量を、前記空燃比リッチ制御実行時には前記空燃比ストイキ制御実行時よりも小さくすることを特徴とする内燃機関の空燃比制御装置。
An exhaust purification catalyst provided in the exhaust passage and having the characteristics of reducing NOx in the exhaust and storing oxygen in the exhaust;
An exhaust air-fuel ratio sensor that is provided in the exhaust passage upstream of the exhaust purification catalyst and detects an exhaust air-fuel ratio;
Air-fuel ratio stoichiometric control means for performing air-fuel ratio stoichiometric control for controlling the exhaust air-fuel ratio to be close to the theoretical air-fuel ratio;
Fuel cut control means for executing fuel cut control for stopping fuel supply to the internal combustion engine when the internal combustion engine is in a predetermined operating state;
When a predetermined condition is satisfied after the fuel cut control by the fuel cut control means is stopped, air-fuel ratio rich control is executed to temporarily control the exhaust air-fuel ratio to be a target rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio. Air-fuel ratio rich control means for
When the air-fuel ratio stoichiometric control is executed by the air-fuel ratio stoichiometric control means and when the air-fuel ratio rich control is executed by the air-fuel ratio rich control means, the fuel supply amount to the internal combustion engine is corrected based on the detected value of the exhaust air-fuel ratio sensor And a fuel supply amount correcting means for
The fuel supply amount correction means corrects the difference between the detected value of the exhaust air-fuel ratio sensor and the target air-fuel ratio value in each exhaust air-fuel ratio control when correcting the fuel supply amount to the internal combustion engine. An air-fuel ratio control apparatus for an internal combustion engine, wherein the air-fuel ratio rich control is made smaller than when the air-fuel ratio stoichiometric control is executed.
排気通路に設けられ、排気中のNOxを還元する特性および排気中の酸素を貯蔵する特性を有する排気浄化触媒と、
該排気浄化触媒の上流側の前記排気通路に設けられ、排気空燃比を検出する排気空燃比センサと、
排気空燃比を理論空燃比近傍とすべく制御する空燃比ストイキ制御を実行する空燃比ストイキ制御手段と、
内燃機関が所定の運転状態にあるときは該内燃機関への燃料供給を停止するフューエルカット制御を実行するフューエルカット制御手段と、
該フューエルカット制御手段によるフューエルカット制御が停止された後に所定条件が成立した場合、一時的に排気空燃比を理論空燃比より過濃な目標リッチ空燃比とすべく制御する空燃比リッチ制御を実行する空燃比リッチ制御手段と、
前記空燃比ストイキ制御手段による前記空燃比ストイキ制御実行時および前記空燃比リッチ制御手段による空燃比リッチ制御実行時に、前記排気空燃比センサの検出値に基づいて前記内燃機関への燃料供給量を補正する燃料供給量補正手段と、を備え、
前記燃料供給量補正手段は、前記内燃機関への燃料供給量を補正するときの補正限度量を、前記空燃比リッチ制御実行時には前記空燃比ストイキ制御実行時よりも小さくすることを特徴とする内燃機関の空燃比制御装置。
An exhaust purification catalyst provided in the exhaust passage and having the characteristics of reducing NOx in the exhaust and storing oxygen in the exhaust;
An exhaust air-fuel ratio sensor that is provided in the exhaust passage upstream of the exhaust purification catalyst and detects an exhaust air-fuel ratio;
Air-fuel ratio stoichiometric control means for performing air-fuel ratio stoichiometric control for controlling the exhaust air-fuel ratio to be close to the theoretical air-fuel ratio;
Fuel cut control means for executing fuel cut control for stopping fuel supply to the internal combustion engine when the internal combustion engine is in a predetermined operating state;
When a predetermined condition is satisfied after the fuel cut control by the fuel cut control means is stopped, air-fuel ratio rich control is executed to temporarily control the exhaust air-fuel ratio to be a target rich air-fuel ratio that is richer than the stoichiometric air-fuel ratio. Air-fuel ratio rich control means for
When the air-fuel ratio stoichiometric control is executed by the air-fuel ratio stoichiometric control means and when the air-fuel ratio rich control is executed by the air-fuel ratio rich control means, the fuel supply amount to the internal combustion engine is corrected based on the detected value of the exhaust air-fuel ratio sensor And a fuel supply amount correcting means for
The fuel supply amount correction means is configured to make a correction limit amount when correcting the fuel supply amount to the internal combustion engine smaller when executing the air-fuel ratio rich control than when executing the air-fuel ratio stoichiometric control. Engine air-fuel ratio control device.
JP2003407397A 2003-12-05 2003-12-05 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4345462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407397A JP4345462B2 (en) 2003-12-05 2003-12-05 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407397A JP4345462B2 (en) 2003-12-05 2003-12-05 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005163746A true JP2005163746A (en) 2005-06-23
JP4345462B2 JP4345462B2 (en) 2009-10-14

Family

ID=34729455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407397A Expired - Fee Related JP4345462B2 (en) 2003-12-05 2003-12-05 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4345462B2 (en)

Also Published As

Publication number Publication date
JP4345462B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009299557A (en) Catalyst deterioration-determination device
US10100765B2 (en) Control apparatus for internal combustion engine
JP2007321614A (en) Exhaust emission control device of internal combustion engine
WO2020066436A1 (en) Control device for exhaust purging system
JP2010223023A (en) Control device for engine
JP2010084670A (en) Air-fuel ratio control device of internal combustion engine
JP4345462B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JP2005337029A (en) Exhaust emission control device for internal combustion engine
JP4148122B2 (en) Air-fuel ratio control device for internal combustion engine
JP4289133B2 (en) Air-fuel ratio control device for internal combustion engine
JP5077047B2 (en) Control device for internal combustion engine
JP4258733B2 (en) Air-fuel ratio control device for internal combustion engine
JP2020026756A (en) Engine control device and engine control method
JP2019074028A (en) Air-fuel ratio control device
JP5083044B2 (en) Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP5331931B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007285156A (en) Exhaust emission control device of internal combustion engine
JP2002276433A (en) Exhaust emission control device for internal combustion engine
JP2009299541A (en) Exhaust emission control device for internal combustion engine
JP2008202563A (en) Air/fuel ratio control device for internal combustion engine
JP2002180875A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Effective date: 20080730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees