JP2005163740A - Variable compression ratio device for internal combustion engine - Google Patents

Variable compression ratio device for internal combustion engine Download PDF

Info

Publication number
JP2005163740A
JP2005163740A JP2003407186A JP2003407186A JP2005163740A JP 2005163740 A JP2005163740 A JP 2005163740A JP 2003407186 A JP2003407186 A JP 2003407186A JP 2003407186 A JP2003407186 A JP 2003407186A JP 2005163740 A JP2005163740 A JP 2005163740A
Authority
JP
Japan
Prior art keywords
arm member
control shaft
compression ratio
pin
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003407186A
Other languages
Japanese (ja)
Other versions
JP4341392B2 (en
Inventor
Yoshiaki Tanaka
儀明 田中
Kiyoshi Hasegawa
清 長谷川
Katsuya Mogi
克也 茂木
Kenji Ushijima
研史 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003407186A priority Critical patent/JP4341392B2/en
Publication of JP2005163740A publication Critical patent/JP2005163740A/en
Application granted granted Critical
Publication of JP4341392B2 publication Critical patent/JP4341392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and precisely manufacture a driving transmission mechanism 28 for linking an operation shaft 25 of an actuator to a control shaft 20. <P>SOLUTION: An arm member 30 like one plate having a slit 31 whose one end is opened on an outer side in the radial direction and which is along the axial direction is protrudedly provided in an outer peripheral part of the control shaft 20. A pair of parallel support pieces 32 in which pin support holes 33 are coaxially formed, respectively, are formed at a tip of the operation shaft 25 of the actuator. Both end parts of a connection pin 34 are turnably supported in the pin support holes 33 of both support pieces 32. Both support pieces 32 are arranged on both sides of the arm member 30 so as to nip the arm member 30 therebetween. An intermediate part 36 of the connection pin 34 is slidably engaged with the slit 31 of the arm member 30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、運転条件に応じて気筒の圧縮比を可能制御する内燃機関の可変圧縮比装置に関する。   The present invention relates to a variable compression ratio device for an internal combustion engine that controls the compression ratio of a cylinder according to operating conditions.

本出願人は、先に、レシプロ式内燃機関の圧縮比可変装置として、複リンク式ピストン−クランク機構を用い、そのリンクの一部を可動制御することによりピストン上死点位置を変化させるようにしたものを種々提案している(例えば、特許文献1参照。)。   The present applicant first uses a multi-link type piston-crank mechanism as a compression ratio variable device for a reciprocating internal combustion engine, and changes the piston top dead center position by movably controlling a part of the link. Various proposals have been proposed (for example, see Patent Document 1).

特許文献1に記載の圧縮比可変装置は、ピストンのピストンピンとクランクシャフトのクランクピンをアッパリンクとロアリングを介して連結するとともに、ロアリンクに、同リンクの作動を制限する制御リンクを連結し、その制御リンクの揺動支点を可変操作することにより、ピストン上死点位置によって決まる気筒の圧縮比を任意に変更し得るようにしている。   The compression ratio variable device described in Patent Document 1 connects a piston pin of a piston and a crank pin of a crankshaft through an upper link and a lower ring, and connects a control link that restricts the operation of the link to the lower link. By variably operating the swing fulcrum of the control link, the compression ratio of the cylinder determined by the piston top dead center position can be arbitrarily changed.

この圧縮比可変装置の場合、シリンダブロックには、クランクシャフトと平行な制御軸が設けられ、その制御軸に前記制御リンクの揺動支点を成す偏心カムが一体に設けられている。偏心カムは制御軸の主軸受に対して偏心して設けられ、制御リンクの一端部はその偏心カムに回動自在に支持されており、制御軸の回動作動によって偏心カムの中心位置を操作し、それによって気筒の圧縮比を任意に変更する。制御軸は、運転条件に応じて進退作動するアクチュエータの操作軸によって操作され、その操作軸と制御軸とは以下のような駆動伝達機構を介して連携されている。   In the case of this variable compression ratio device, the cylinder block is provided with a control shaft parallel to the crankshaft, and an eccentric cam that forms the swing fulcrum of the control link is integrally provided on the control shaft. The eccentric cam is provided eccentrically with respect to the main bearing of the control shaft, and one end of the control link is rotatably supported by the eccentric cam, and the center position of the eccentric cam is operated by the rotation operation of the control shaft. Thereby, the compression ratio of the cylinder is arbitrarily changed. The control shaft is operated by an operation shaft of an actuator that moves forward and backward in accordance with operating conditions, and the operation shaft and the control shaft are linked via a drive transmission mechanism as described below.

即ち、この駆動伝達機構は、図7に示すように、アクチュエータの操作軸1の先端部に設けられたピン支持孔2と、このピン支持孔2に中央の大径部3aを回動自在に支持された連結ピン3と、制御軸4の外周に、軸方向に離間して設けられた一対のアーム部材5,5と、この両アーム部材5,5に、軸方向に沿い一端が径方向外側に開口するように形成されたスリット6と、を備え、ピン支持孔2に支持された連結ピン3の両端部が両アーム部材5,5の各スリット6にスライド可能に係合されている。この駆動伝達機構は、操作軸1がアクチュエータによって進退操作されると、連結ピン3が両アーム部材5,5のスリット6内をスライドしつつ制御軸4を回動させ、操作軸1の進退作動を制御軸4に回動作動として伝達する。   That is, as shown in FIG. 7, the drive transmission mechanism is configured to freely rotate a pin support hole 2 provided at the tip of the operating shaft 1 of the actuator and a central large-diameter portion 3a in the pin support hole 2. The supported connecting pin 3, a pair of arm members 5, 5 provided on the outer circumference of the control shaft 4 and spaced apart in the axial direction, and one end of each arm member 5, 5 along the axial direction is radial. And both ends of the connecting pin 3 supported by the pin support hole 2 are slidably engaged with the slits 6 of both arm members 5 and 5. . In this drive transmission mechanism, when the operating shaft 1 is advanced or retracted by an actuator, the connecting pin 3 slides in the slits 6 of both arm members 5 and 5 and the control shaft 4 is rotated, so that the operating shaft 1 is advanced and retracted. Is transmitted to the control shaft 4 as a rotation operation.

なお、前記両アーム部材5,5は、制御軸4の主軸受7とその主軸受7に隣接する偏心カム8との間に配置されている。また、図7中9はアクチュエータの回転を操作軸1の進退作動に変換する変換リングである。
特開2002−115571号公報
The arm members 5 and 5 are disposed between the main bearing 7 of the control shaft 4 and the eccentric cam 8 adjacent to the main bearing 7. Further, reference numeral 9 in FIG. 7 denotes a conversion ring for converting the rotation of the actuator into the advance / retreat operation of the operation shaft 1.
JP 2002-115571 A

しかし、この従来の可変圧縮比装置は、操作軸1に連結ピン3を回動自在に支持させ、その連結ピン3の両端部を制御軸4の一対のアーム部材5,5のスリット6に係合させた駆動伝達機構の構成となっているため、制御軸4上にアーム部材5,5を造形すること事態が難しいうえに、各アーム部材5にスリット6を精度良く加工することが難しい。   However, in this conventional variable compression ratio device, the operating shaft 1 supports the connecting pin 3 so as to be rotatable, and both ends of the connecting pin 3 are engaged with the slits 6 of the pair of arm members 5 and 5 of the control shaft 4. Because of the combined drive transmission mechanism, it is difficult to form the arm members 5 and 5 on the control shaft 4 and it is difficult to process the slits 6 in each arm member 5 with high accuracy.

即ち、この装置において、一対のアーム部材5,5が制御軸4の軸上に近接配置されているため、鍛造での製造が難しいのは勿論のこと、鋳造で製造するにしてもアーム部材5,5部分を型から抜くときの抜き性が悪くなってしまう。特に、制御軸4の回動範囲を広げるためには(圧縮比の可変範囲を広げるためには)アーム部材5のスリット6を長く確保する必要があるが、スリット6長さを長く確保するために両アーム部材5,5の延出長さを長くすると、型抜きがさらに難しくなる。   That is, in this apparatus, since the pair of arm members 5 and 5 are arranged close to each other on the axis of the control shaft 4, the arm member 5 is not only difficult to manufacture by forging, but also manufactured by casting. , The removability when the 5 part is removed from the mold is deteriorated. In particular, in order to widen the rotation range of the control shaft 4 (in order to widen the variable range of the compression ratio), it is necessary to ensure a long slit 6 of the arm member 5, but in order to ensure a long slit 6 length. If the extension lengths of both arm members 5 and 5 are increased, it becomes more difficult to remove the die.

また、両アーム部材5,5にスリット6を形成する場合には、両者のスリット位置が正確に合致するように両アーム部材5,5に対して同時に切削や研磨加工を行う必要があるが、制御軸4の外周面には主軸受7や偏心カム8が突出して形成されているため、スペース上の制約の関係で同時加工を行うことが難しく、充分な加工精度を出せないというのが実情である。そして、両スリット6,6の加工精度を充分に高めることができないことから、両スリット6,6と連結ピン3の間に必要外の隙間やフリクションが発生し易く、隙間が大きい場合には、機関運転中の爆発衝撃と慣性質量による交番荷重によって隙間部分で異音を発生し易くなり、フリクションが大きい場合には、アクチュエータ作動時のエネルギーロスが大きくなってしまう。また、スリット6,6相互の位置ずれは連結ピン3の作動、延いては制御リンクの作動を不正確にし、圧縮比の制御精度の低下を招くことが懸念される。   Further, when the slits 6 are formed in both the arm members 5 and 5, it is necessary to perform cutting and polishing at the same time on the both arm members 5 and 5 so that the slit positions of both are accurately matched. Since the main bearing 7 and the eccentric cam 8 protrude from the outer peripheral surface of the control shaft 4, it is difficult to perform simultaneous machining due to space constraints, and it is impossible to achieve sufficient machining accuracy. It is. And since the processing accuracy of both the slits 6 and 6 cannot be sufficiently increased, unnecessary gaps and friction are easily generated between the slits 6 and 6 and the connecting pin 3, and when the gap is large, Due to the explosion impact during engine operation and the alternating load due to the inertial mass, abnormal noise is likely to be generated in the gap portion, and if the friction is large, the energy loss during the operation of the actuator becomes large. Moreover, there is a concern that misalignment between the slits 6 and 6 may cause the operation of the connecting pin 3 and thus the operation of the control link to be inaccurate, leading to a decrease in the control accuracy of the compression ratio.

そこで本発明は、駆動伝達機構の製作を容易かつ高精度に行えるようにして、製造コストの削減と、エネルギーロスの低減、及び、制御精度の向上を図ることのできる内燃機関の可変圧縮比装置を提供しようとするものである。   Therefore, the present invention provides a variable compression ratio device for an internal combustion engine that can reduce the manufacturing cost, reduce the energy loss, and improve the control accuracy by making the drive transmission mechanism easy and highly accurate. Is to provide.

上述した課題を解決するための手段として、本発明は、制御軸の外周部には、一端が径方向外側に開口する軸方向に沿ったスリットを有する一枚板状のアーム部材を突設し、アクチュエータの操作軸の先端には、夫々同軸にピン支持孔が形成された一対の平行な支持片を形成し、両支持片のピン支持孔に連結ピンの両端部を回動可能に支持させるとともに、前記両支持片をアーム部材を間に挟むように同アーム部材の両側に配置し、連結ピンの中間部をアーム部材のスリットにスライド自在に係合させるようにした。   As a means for solving the above-described problems, the present invention projects a single plate-like arm member having a slit along the axial direction, one end of which is open radially outward, on the outer periphery of the control shaft. A pair of parallel support pieces each having a pin support hole formed coaxially is formed at the tip of the actuator operating shaft, and both ends of the connecting pin are rotatably supported by the pin support holes of both support pieces. At the same time, the both support pieces are arranged on both sides of the arm member so as to sandwich the arm member therebetween, and the intermediate portion of the connecting pin is slidably engaged with the slit of the arm member.

本発明の場合、アクチュエータ操作によって操作軸が進退作動すると、連結ピンがその両端を支持する両支持片の支持孔内を回動し、かつ、アーム部材のスリット内をスライドしつつ、制御軸を回動操作する。   In the case of the present invention, when the operation shaft is advanced and retracted by operating the actuator, the connecting pin rotates in the support holes of both support pieces that support both ends thereof, and slides in the slit of the arm member while moving the control shaft. Rotate.

本発明は、制御軸に突設されるアーム部材が一枚板状であるため、軸方向スペースが制限された制御軸の外周面に鋳造や鍛造、或いは、別体部材を結合する等してアーム部材を容易に設けることができる。そして、アーム部材に設けるスリットも、アーム部材が一枚板状であることから、精度良く容易に加工することができる。したがって、本発明によれば、製造コストを削減することができるとともに、スリットと連結ピンの間の必要外の隙間やフリクションの発生等を少なくして、エネルギーロスの低減と圧縮比制御精度の向上を図ることができる。   In the present invention, since the arm member protruding from the control shaft has a single plate shape, casting, forging, or connecting a separate member to the outer peripheral surface of the control shaft in which the axial space is limited. The arm member can be easily provided. And the slit provided in an arm member can also be processed easily with high precision since the arm member is a single plate. Therefore, according to the present invention, it is possible to reduce the manufacturing cost, reduce the unnecessary gap between the slit and the connecting pin, the occurrence of friction, etc., reduce the energy loss and improve the compression ratio control accuracy. Can be achieved.

次に、本発明の各実施形態を図面に基づいて説明する。   Next, each embodiment of the present invention will be described with reference to the drawings.

図1〜図3,図4(C),(D)は、本発明の第1の実施形態を示すものであり、図2は、この実施形態の可変圧縮比装置の全体を示す断面図である。   1 to 3 and FIGS. 4C and 4D show a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the entire variable compression ratio device of this embodiment. is there.

図2に示すように、シリンダブロック11に形成されたシリンダ12内にはピストン13が摺動自在に収容されており、このピストン13のピストンピン14にアッパリンク15の上端部が揺動可能に連結されている。一方、クランクシャフト16のクランクピン17には、略三角形状のロアリンク18の中心部が回動可能に支持され、そのロアリンク18の一端が前記アッパリンク15の下端に第1連結ピン19を介して揺動可能に連結されている。   As shown in FIG. 2, a piston 13 is slidably accommodated in a cylinder 12 formed in the cylinder block 11, and an upper end portion of an upper link 15 can swing on a piston pin 14 of the piston 13. It is connected. On the other hand, the crank pin 17 of the crankshaft 16 supports a central portion of a substantially triangular lower link 18 so as to be rotatable. One end of the lower link 18 has a first connecting pin 19 at the lower end of the upper link 15. It is connected so as to be swingable.

また、シリンダブロック11の下端部には、クランクシャフト16と平行に制御軸20が回動自在に配置され、この制御軸20に軸受中心に対して偏心するように偏心カム21が一体に設けられている。そして、この偏心カム21の外周には制御リンク22の基端が回動自在に支持され、その制御リンク22の先端部が前記ロアリンク18の他端に第2連結ピン23を介して揺動可能に連結されている。偏心カム21の中心は制御リンク22の揺動支点を成し、制御軸20の回転に伴なってその中心位置が変化する。そして、制御軸20の回転によって偏心カム21の中心位置が変化すると、制御リンク22によるロアリンク18の運転拘束条件が変化して、ピストン14の上死点位置が変化し、延いては機関圧縮比が変更されることになる。尚、制御軸20には各気筒に対応する個数の偏心カム21が設けられ、全ての気筒のピストン14は同様に制御リンク22によって制御されるようになっている。   A control shaft 20 is rotatably disposed at the lower end of the cylinder block 11 in parallel with the crankshaft 16, and an eccentric cam 21 is integrally provided on the control shaft 20 so as to be eccentric with respect to the bearing center. ing. The base end of the control link 22 is rotatably supported on the outer periphery of the eccentric cam 21, and the tip end portion of the control link 22 swings to the other end of the lower link 18 via the second connecting pin 23. Connected as possible. The center of the eccentric cam 21 forms a swing fulcrum of the control link 22, and its center position changes as the control shaft 20 rotates. When the center position of the eccentric cam 21 changes due to the rotation of the control shaft 20, the operation restraint condition of the lower link 18 by the control link 22 changes, the top dead center position of the piston 14 changes, and eventually the engine compression. The ratio will be changed. The control shaft 20 is provided with a number of eccentric cams 21 corresponding to each cylinder, and the pistons 14 of all the cylinders are similarly controlled by the control link 22.

また、前記制御軸20はアクチュエータ24の操作軸25によって回動操作されるようになっている。このアクチュエータ24は、ケーシング26内に進退自在に収容された操作軸25と、この操作軸25の基端側の雄ねじ部に螺合する円筒部材27と、を備え、この円筒部材27が機関運転条件に応じてモータ等のよって回動制御され、それによって操作軸25が進退作動するようになっている。そして、このアクチュエータ24の操作軸25と前記制御軸20とは、図1,図3に示すような駆動伝達機構28によって連繋されている。   The control shaft 20 is rotated by the operation shaft 25 of the actuator 24. The actuator 24 includes an operation shaft 25 that is housed in a casing 26 so as to be able to advance and retreat, and a cylindrical member 27 that is screwed into a male screw portion on the proximal end side of the operation shaft 25. The rotation is controlled by a motor or the like according to the conditions, so that the operation shaft 25 moves forward and backward. The operation shaft 25 of the actuator 24 and the control shaft 20 are connected by a drive transmission mechanism 28 as shown in FIGS.

駆動伝達機構28は、制御軸20の略中央の主軸受29(制御軸20をシリンダブロック11の下部に回動自在に支持するための軸受。)と偏心カム21の間に設けられた一枚板状のアーム部材30と、このアーム部材30に、径方向外側に開口し、かつ同アーム部材30の軸方向と径方向に沿うように形成されたスリット31と、アクチュエータ24の操作軸25の先端部に二股状に突設された一対の平行な板状の支持片32,32と、この両支持片32,32の対向する位置に夫々同軸に形成されたピン支持孔33,33と、この両支持片32,32のピン支持孔33,33に両端部が回動可能に嵌合された連結ピン34と、を備え、連結ピン34の軸方向略中央には、アーム部材30のスリット31にスライド自在に係合される二面幅35が形成されている。   The drive transmission mechanism 28 is a single piece provided between the main bearing 29 (the bearing for rotatably supporting the control shaft 20 on the lower portion of the cylinder block 11) at the center of the control shaft 20 and the eccentric cam 21. A plate-like arm member 30, a slit 31 formed in the arm member 30 so as to open radially outward and along the axial direction and the radial direction of the arm member 30, and the operation shaft 25 of the actuator 24 A pair of parallel plate-like support pieces 32, 32 projecting in a bifurcated manner at the tip, and pin support holes 33, 33 formed coaxially at positions opposed to the support pieces 32, 32, respectively; A connecting pin 34 having both ends rotatably fitted in the pin support holes 33, 33 of the support pieces 32, 32, and a slit of the arm member 30 at the substantially axial center of the connecting pin 34. Width slidably engaged with 31 5 is formed.

アーム部材30は、制御軸20とともに鋳造あるいは鍛造によって一体に形成され、制御軸20の軸方向が板厚方向となるように軸直角方向に延出しており、その軸直角方向に延出した延出部の先端面に前記スリット31が形成されている。また、連結ピン34は、二面幅35の形成される軸方向中間部36に対して両端部37,37が大径に形成され、その両端の大径部分がピン支持孔33,33に回動可能に嵌合されている。   The arm member 30 is integrally formed with the control shaft 20 by casting or forging, and extends in the direction perpendicular to the axis so that the axial direction of the control shaft 20 is the plate thickness direction, and extends in the direction perpendicular to the axis. The slit 31 is formed on the leading end surface of the protruding portion. Further, the connecting pin 34 has both end portions 37, 37 having a large diameter with respect to the axial intermediate portion 36 in which the two-surface width 35 is formed, and the large diameter portions at both ends are rotated to the pin support holes 33, 33. It is movably fitted.

操作軸25は、両支持片32,32で連結ピン34の大径部37を支持した状態において制御軸20のアーム部材30に組み付けられている。具体的には、連結ピン34を支持した支持片32,32は、アーム部材30を軸方向両側から挟み込むように配置され、連結ピン34の二面幅35部分はアーム部材30のスリット31にスライド自在に嵌合されている。したがって、アクチュエータ24の駆動によって操作軸25が進退操作されると、連結ピン34がピン支持孔33内を回動しつつアーム部材30のスリット31内をスライドし、このとき操作軸25の進退作動が回動作動に変換されて制御軸20に伝達される。   The operation shaft 25 is assembled to the arm member 30 of the control shaft 20 in a state where the large-diameter portion 37 of the connecting pin 34 is supported by both support pieces 32 and 32. Specifically, the support pieces 32, 32 that support the connecting pin 34 are arranged so as to sandwich the arm member 30 from both sides in the axial direction, and the two-surface width 35 portion of the connecting pin 34 slides on the slit 31 of the arm member 30. Fits freely. Therefore, when the operating shaft 25 is advanced or retracted by driving the actuator 24, the connecting pin 34 slides in the slit 31 of the arm member 30 while rotating in the pin support hole 33. At this time, the operating shaft 25 is advanced or retracted. Is converted into a rotation operation and transmitted to the control shaft 20.

ここで、アーム部材30、連結ピン34、支持片32等の各部の寸法は以下の式(1)〜(3)のように設定されている(図3参照。)。   Here, the dimension of each part, such as the arm member 30, the connecting pin 34, the support piece 32, is set like the following formula | equation (1)-(3) (refer FIG. 3).

L3(L4)>L5>L6 …(1)
L3;両支持片32,32間の幅
L4;連結ピン34の中間部36(小径部分)の軸方向長さ
L5;連結ピン34の二面幅35の軸方向長さ
L6;アーム部材30の軸方向幅
L1>L2 …(2)
L1;隣接する偏心カム21と主軸受29の間の間隔
L2;両支持片32の制御軸20軸方向の最大幅
D2>D1 …(3)
D2;連結ピン34の中間部36の直径
D1;連結ピン34の端部37の直径
まず、式(1)について説明すると、これは連結ピン34の二面幅35と、両支持片32,32間の幅とアーム部材30の軸方向幅の関係を規定したものであり、二面幅35の軸方向長さL5を、両支持片32,32間の幅L3よりも小さく設定することによって、ピン支持孔33に連結ピン34の大径部分(端部37)を充分な幅でもって嵌合できるようにするとともに、アーム部材30の軸方向幅L6よりも大きくすることによって二面幅35が常時アーム部材30のスリット31内に確実に係合されるようにしている。L3>L5の関係については、これが逆の場合には、二面幅35がピン支持孔33内に入り込むことによって連結ピン34とピン支持孔33の嵌合代が減少し、機関運転時における連結ピン34の軸方向のガタが大きくなり、その結果、連結ピン34が偏心カム21や主軸受29と干渉し易くなるが、上記の設定によってこのような不具合を確実に回避することができる。
L3 (L4)>L5> L6 (1)
L3; width L4 between the support pieces 32, 32; axial length L5 of the intermediate portion 36 (small diameter portion) of the connecting pin 34; axial length L6 of the two-surface width 35 of the connecting pin 34; Axial width L1> L2 (2)
L1; distance L2 between the adjacent eccentric cam 21 and the main bearing 29; maximum width of both support pieces 32 in the axial direction of the control shaft 20 D2> D1 (3)
D2: Diameter D1 of the intermediate portion 36 of the connecting pin 34; Diameter of the end portion 37 of the connecting pin 34 First, formula (1) will be described. This is the two-sided width 35 of the connecting pin 34 and both support pieces 32, 32. The relationship between the width between the support member 32 and the axial width of the arm member 30 is defined, and the axial length L5 of the two-surface width 35 is set smaller than the width L3 between the support pieces 32, 32. The large-diameter portion (end portion 37) of the connecting pin 34 can be fitted with a sufficient width into the pin support hole 33, and the two-surface width 35 is made larger than the axial width L6 of the arm member 30. The arm member 30 is always reliably engaged in the slit 31. As for the relationship of L3> L5, when this is the opposite, the fitting width between the connecting pin 34 and the pin support hole 33 is reduced by the two-sided width 35 entering the pin support hole 33, and the connection during engine operation is reduced. The backlash in the axial direction of the pin 34 increases, and as a result, the connecting pin 34 easily interferes with the eccentric cam 21 and the main bearing 29, but such a problem can be reliably avoided by the above setting.

式(2)は、両支持片32の最大幅L2について規定したものであり、両支持片32の最大幅L2を、偏心カム21と主軸受29の間隔L1よりも小さく設定することによって、操作軸25の進退操作時に、支持片32が偏心カム21や主軸受29に対して干渉することがないようにしている。   Expression (2) defines the maximum width L2 of the two support pieces 32. By setting the maximum width L2 of the two support pieces 32 smaller than the interval L1 between the eccentric cam 21 and the main bearing 29, the operation is performed. The support piece 32 is prevented from interfering with the eccentric cam 21 and the main bearing 29 when the shaft 25 is advanced or retracted.

また、式(3)は、連結ピン34の直径について規定したものであり、両端部37の直径を中央部36の直径より大きく設定することによって、ピン支持孔33との接触面圧を大きくし、連結ピン34及びピン支持孔33部分の耐久性の向上を図るようにしている。   Equation (3) defines the diameter of the connecting pin 34, and the contact surface pressure with the pin support hole 33 is increased by setting the diameter of both end portions 37 to be larger than the diameter of the central portion 36. The durability of the connecting pin 34 and the pin support hole 33 is improved.

なお、当然のことながら、操作軸25の両支持片32,32はアーム部材30の軸方向両側に配置されるため、アーム部材30の軸方向幅L6と両支持片32,32間の幅L3は、L6<L3の関係にある。   As a matter of course, since both support pieces 32 and 32 of the operation shaft 25 are disposed on both sides in the axial direction of the arm member 30, the axial width L6 of the arm member 30 and the width L3 between the support pieces 32 and 32 are provided. Is in a relationship of L6 <L3.

以上説明したように、この可変圧縮比装置の駆動伝達機構28は、制御軸20に一枚板状のアーム部材30を一体に設け、そのアーム部材30にスリット31を形成して、操作軸25側の支持片32に両端を回動自在に支持された連結ピン34の中間部36をスリット31にスライド自在に係合させたものであるため、駆動伝達機構28の各部の成形、特に、アーム部材30とスリット31の成形を容易に行うことができる。   As described above, the drive transmission mechanism 28 of the variable compression ratio device is provided with the single-plate arm member 30 integrally formed on the control shaft 20, the slit 31 is formed in the arm member 30, and the operation shaft 25. Since the intermediate portion 36 of the connecting pin 34 that is rotatably supported by the support piece 32 on the side is slidably engaged with the slit 31, molding of each part of the drive transmission mechanism 28, in particular, an arm The member 30 and the slit 31 can be easily formed.

即ち、アーム部材30を鋳造で成形する場合には、アーム部材30が他部材と近接していないことから、型抜き性が良好になる。また、アーム部材30を鍛造で成形する場合には、一対の棒材を圧着することによって制御軸20を成形し、このとき両棒材の圧着部の成長肉厚を利用することによって、アーム部材30を成形することができる。   That is, when the arm member 30 is formed by casting, the arm member 30 is not close to the other members, so that the mold release property is improved. In addition, when the arm member 30 is formed by forging, the control shaft 20 is formed by crimping a pair of rods, and at this time, by using the growth thickness of the crimping portion of both rods, the arm member is obtained. 30 can be molded.

スリット31の成形については、図4を参照して以下に詳述する。なお、図4(a),(b)は、図7の従来技術に対応するものを示し、図4(c),(d)は、第1の実施形態を示す。   The formation of the slit 31 will be described in detail below with reference to FIG. 4 (a) and 4 (b) show what corresponds to the prior art of FIG. 7, and FIGS. 4 (c) and 4 (d) show the first embodiment.

図4(a),(b)に示すように、平行な一対のアーム部材5,5を制御軸4に一体に形成した従来技術の場合、二つのカッター40,40Aを両アーム部材5,5に同時に当て、夫々にスリット6,6を同時に加工することが加工精度上望ましい。しかし、一対のアーム部材5,5を制御軸4上に設けた従来のものにおいては、主軸受7や偏心カム8に対するアーム部材5の間隔が狭くならざるを得ないため、切削加工時にカッター40,40Aが主軸受7や偏心カム8に干渉してしまう。このため、従来のものにおいては、単一のカッター40を用いて各アーム部材5に別々に切削加工を行わざるを得ず、両アーム部材5,5のスリット6,6の位置精度を高めることができなかった。   As shown in FIGS. 4A and 4B, in the case of the prior art in which a pair of parallel arm members 5 and 5 are integrally formed on the control shaft 4, two cutters 40 and 40A are connected to both arm members 5 and 5, respectively. It is desirable in terms of processing accuracy that the slits 6 and 6 are simultaneously processed. However, in the conventional structure in which the pair of arm members 5 and 5 are provided on the control shaft 4, the distance between the arm member 5 with respect to the main bearing 7 and the eccentric cam 8 must be narrowed. , 40A interferes with the main bearing 7 and the eccentric cam 8. For this reason, in the conventional one, each arm member 5 must be cut separately using a single cutter 40, and the positional accuracy of the slits 6 and 6 of both arm members 5 and 5 is increased. I could not.

これに対し、図4(c),(d)に示すように、この実施形態は、制御軸20に一枚板状のアーム部材30が形成されたものであるため、二つのカッターを用いずに単一のカッター40で精度上の問題なく加工を行うことができ、しかも、主軸受29や偏心カム21に対するアーム部材30の間隔を充分に広く確保できることから、カッター40が主軸受29や偏心カム21と接触する不具合も生じない。なお、スリット31に対する研磨加工についても同様である。   On the other hand, as shown in FIGS. 4C and 4D, in this embodiment, since the single-plate arm member 30 is formed on the control shaft 20, two cutters are not used. In addition, since the single cutter 40 can perform processing without any problem in accuracy, and the space between the arm member 30 with respect to the main bearing 29 and the eccentric cam 21 can be sufficiently widened, the cutter 40 can be used for the main bearing 29 and the eccentricity. There is no problem of contact with the cam 21. The same applies to the polishing process for the slit 31.

したがって、この実施形態の駆動伝達機構28の場合には、アーム部材30の成形とスリット31の加工を容易にかつ精度良く行うことができるため、製造コストの低減を図ることができるとともに、各部のフリクションや隙間が少なくなることから、アクチュエータ24のエネルギーロスの低減と圧縮比制御精度の向上を図ることができる。   Therefore, in the case of the drive transmission mechanism 28 of this embodiment, the arm member 30 and the slit 31 can be formed easily and accurately, so that the manufacturing cost can be reduced and each part can be reduced. Since the friction and the gap are reduced, it is possible to reduce the energy loss of the actuator 24 and improve the compression ratio control accuracy.

また、この実施形態においては、連結ピン34の中間部に二面幅35を形成し、その二面幅35をアーム部材30のスリット31に係合させるようにしているため、スリット31と連結ピン34の接触部の面圧を下げて部材の耐久性を向上させることができるとともに、連結ピン34とスリット31の接触が安定して機関運転時の装置の作動が安定するという利点がある。   Further, in this embodiment, since the two-sided width 35 is formed in the intermediate portion of the connecting pin 34 and the two-sided width 35 is engaged with the slit 31 of the arm member 30, the slit 31 and the connecting pin The surface pressure of the contact portion 34 can be lowered to improve the durability of the member, and the contact between the connecting pin 34 and the slit 31 can be stabilized and the operation of the apparatus during engine operation can be stabilized.

なお、操作軸25の両支持片32,32には同軸にピン支持孔33,33を形成する必要があるが、これらのピン支持孔33,33は、制御軸20のように他の構成部材が込み入って配置される部分に加工を行うものでないため、加工は著しく容易である。   It should be noted that pin support holes 33 and 33 need to be formed coaxially on both support pieces 32 and 32 of the operation shaft 25, and these pin support holes 33 and 33 are formed by other components such as the control shaft 20. The processing is remarkably easy because the processing is not performed on the portion arranged in a complicated manner.

図5は、本発明の第2の実施形態を示すものであり、この実施形態は、駆動伝達機構28の連結ピン134がストレート状に形成され、各支持片32,32のピン支持孔33,33に回動可能に嵌合される連結ピン134の両端部137,137と中間部136とが同直径に形成されている。なお、この実施形態の場合も、各部の寸法は前記式(1),式(2)を満たすように設定されている。   FIG. 5 shows a second embodiment of the present invention. In this embodiment, the connecting pin 134 of the drive transmission mechanism 28 is formed in a straight shape, and the pin support holes 33, Both end portions 137 and 137 and the intermediate portion 136 of the connecting pin 134 that is rotatably fitted to the 33 are formed in the same diameter. Also in this embodiment, the dimensions of each part are set so as to satisfy the expressions (1) and (2).

この実施形態の場合、基本的には第1の実施形態と同様の効果を得ることができるが、連結ピン134がストレート状に形成されているため、連結ピン134の製造が容易になり、より低コストでの製造が可能となる。   In the case of this embodiment, basically the same effect as that of the first embodiment can be obtained, but since the connecting pin 134 is formed in a straight shape, the manufacturing of the connecting pin 134 is facilitated. Manufacturing at a low cost is possible.

また、図6は、本発明の第3の実施形態を示すものであり、この実施形態は、一枚板状のアーム部材230を棒状の制御軸220と別体に製造し、両者に夫々切削や研磨や熱処理等を行った後に最終的にアーム部材230を制御軸220の設定位置にボルト50によって締結したものである。   FIG. 6 shows a third embodiment of the present invention. In this embodiment, a single plate-like arm member 230 is manufactured separately from the rod-like control shaft 220, and both are cut into the two. After performing polishing, heat treatment or the like, the arm member 230 is finally fastened to the set position of the control shaft 220 with the bolt 50.

この実施形態の場合、第1の実施形態と同様の効果を得ることができるうえ、さらに以下のような効果を得ることができる。   In the case of this embodiment, the same effects as those of the first embodiment can be obtained, and the following effects can be further obtained.

即ち、この実施形態は、制御軸220の形状を単純化できるうえ、アーム部材230の加工(例えば、スリット31の切削加工)をスペース的に余裕のある別の場所で行うことができるため、製造コストをより低減することができる。   That is, in this embodiment, the shape of the control shaft 220 can be simplified, and the processing of the arm member 230 (for example, the cutting processing of the slit 31) can be performed in another place where there is a space. Cost can be further reduced.

また、アーム部材230は制御軸220に対して径方向に大きく突出しているため、アーム部材230を制御軸220に一体に形成して全体に焼入れを行おうとすると、径方向変化の大きいアーム部材230部分が原因となって制御軸220に焼き曲がりが生じ、その焼き曲がりによって制御軸の同軸度が低下することが懸念される。しかし、この実施形態においては、アーム部材230と制御軸220が別体であるため、両者に対して別々に熱処理を行うことによって制御軸220の焼き曲がりによる気筒間の圧縮比のバラツキを無くすことができる。また、アーム部材230と制御軸220に夫々に適した熱処理を行い、例えば、制御軸220側には簡単な熱処理を行う等して熱処理効率の向上を図ることができる。   Further, since the arm member 230 protrudes greatly in the radial direction with respect to the control shaft 220, if the arm member 230 is formed integrally with the control shaft 220 and the whole is hardened, the arm member 230 having a large radial change. Due to this portion, the control shaft 220 is bent, and there is a concern that the coaxiality of the control shaft is lowered due to the bending. However, in this embodiment, since the arm member 230 and the control shaft 220 are separate bodies, the variation in the compression ratio between the cylinders due to the bending of the control shaft 220 is eliminated by performing heat treatment on both separately. Can do. Further, heat treatment suitable for the arm member 230 and the control shaft 220 can be performed, for example, simple heat treatment can be performed on the control shaft 220 side, and the heat treatment efficiency can be improved.

本発明の第1の実施形態の要部を示す分解斜視図。The disassembled perspective view which shows the principal part of the 1st Embodiment of this invention. 同実施形態の可変圧縮装置全体を示す断面図。Sectional drawing which shows the whole variable compression apparatus of the embodiment. 同実施形態の要部の寸法関係を示す部分断面平面図。The fragmentary sectional top view which shows the dimensional relationship of the principal part of the embodiment. 従来装置の平面図(A)、従来装置の切削工程時における側面図(B)、本発明の第1の実施形態の平面図(C)、同実施形態の切削工程時における側面図(D)を併せて記載した図。A plan view of a conventional apparatus (A), a side view (B) during the cutting process of the conventional apparatus, a plan view (C) of the first embodiment of the present invention, and a side view (D) during the cutting process of the same embodiment FIG. 本発明の第2の実施形態の要部の寸法関係を示す部分断面平面図。The fragmentary sectional top view which shows the dimensional relationship of the principal part of the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す要部の分解斜視図。The disassembled perspective view of the principal part which shows the 3rd Embodiment of this invention. 従来の可変圧縮装置の要部を示す分解斜視図。The disassembled perspective view which shows the principal part of the conventional variable compression apparatus.

符号の説明Explanation of symbols

13…ピストン
14…ピストンピン
15…アッパリンク
16…クランクシャフト
17…クランクピン
18…ロアリンク
20,220…制御軸
21…偏心カム
22…制御リンク
24…アクチュエータ
25…操作軸
28…駆動伝達機構
30,230…アーム部材
31…スリット
32…支持片
33…ピン支持孔
34,134…連結ピン
35…二面幅
36,136…中間部
37,137…端部
DESCRIPTION OF SYMBOLS 13 ... Piston 14 ... Piston pin 15 ... Upper link 16 ... Crank shaft 17 ... Crank pin 18 ... Lower link 20, 220 ... Control shaft 21 ... Eccentric cam 22 ... Control link 24 ... Actuator 25 ... Operation shaft 28 ... Drive transmission mechanism 30 , 230 ... arm member 31 ... slit 32 ... support piece 33 ... pin support holes 34 and 134 ... connecting pin 35 ... two-sided widths 36 and 136 ... intermediate parts 37 and 137 ... end parts

Claims (7)

ピストンのピストンピンとクランクシャフトのクランクピンを機械的に連結する複数のリンクと、
クランクシャフトと平行に延びる制御軸と、
この制御軸に偏心して設けられた偏心カムと、
前記複数のリンクの一つに一端が連結されるとともに、前記偏心カムに他端が回動自在に支持された制御リンクと、
運転条件に応じて進退操作されるアクチュエータの操作軸と、
この操作軸の進退作動を回動作動に変換して前記制御軸に伝達する駆動伝達機構と、を備え、
前記アクチュエータの作動によって制御軸を回動させ、その回動によって前記制御リンクの揺動支点を操作することにより、気筒の圧縮比を任意に制御する内燃機関の可変圧縮比装置において、
前記駆動伝達機構を、
一端が径方向外側に開口する軸方向に沿ったスリットを有し、前記制御軸の外周部に突設された一枚板状のアーム部材と、
前記アクチュエータの操作軸の先端に突設され、夫々に同軸にピン支持孔が形成された一対の平行な支持片と、
この一対の支持片のピン支持孔に両端部が回動可能に支持された連結ピンと、を備えた構成とし、
前記一対の支持片を前記アーム部材を間に挟み込むように同アーム部材の両側に配置するとともに、前記両支持片に支持された連結ピンの軸方向の中間部を前記アーム部材のスリットにスライド自在に係合させたことを特徴とする内燃機関の可変圧縮比装置。
A plurality of links that mechanically connect the piston pin of the piston and the crank pin of the crankshaft;
A control shaft extending parallel to the crankshaft;
An eccentric cam provided eccentric to the control shaft;
A control link having one end connected to one of the plurality of links and the other end rotatably supported by the eccentric cam;
An actuator operating axis that is advanced and retracted according to operating conditions;
A drive transmission mechanism that converts the advance / retreat operation of the operation shaft into a rotation operation and transmits it to the control shaft,
In the variable compression ratio device for an internal combustion engine that arbitrarily controls the compression ratio of the cylinder by rotating the control shaft by the operation of the actuator and operating the swing fulcrum of the control link by the rotation,
The drive transmission mechanism;
A single plate-like arm member having a slit along the axial direction with one end opening radially outward, and projecting from the outer periphery of the control shaft;
A pair of parallel support pieces projecting from the tip of the operating shaft of the actuator, each of which has a pin support hole formed coaxially;
A connection pin having both ends rotatably supported in the pin support holes of the pair of support pieces,
The pair of support pieces are arranged on both sides of the arm member so as to sandwich the arm member therebetween, and the intermediate portion in the axial direction of the connecting pin supported by the support pieces is slidable in the slit of the arm member. A variable compression ratio device for an internal combustion engine, wherein the variable compression ratio device is engaged with an internal combustion engine.
前記連結ピンの軸方向の中間部に、前記スリットにスライド自在に係合する二面幅を設けたことを特徴とする請求項1に記載の内燃機関の可変圧縮比装置。   The variable compression ratio device for an internal combustion engine according to claim 1, wherein a two-surface width that is slidably engaged with the slit is provided in an intermediate portion in the axial direction of the connecting pin. 前記連結ピンの二面幅の軸方向長さを、前記アーム部材の軸方向幅よりも大きく、かつ前記両支持片間の幅よりも小さく設定したことを特徴とする請求項2に記載の内燃機関の可変圧縮比装置。   3. The internal combustion engine according to claim 2, wherein an axial length of the two-side width of the connecting pin is set larger than an axial width of the arm member and smaller than a width between the support pieces. Variable compression ratio device for engines. 前記ピン支持孔に支持される連結ピンの両端部を、同連結ピンの中間部よりも大径に形成したことを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変圧縮比装置。   The variable compression ratio of the internal combustion engine according to any one of claims 1 to 3, wherein both end portions of the connection pin supported by the pin support hole are formed to have a larger diameter than an intermediate portion of the connection pin. apparatus. 前記ピン支持孔に支持される連結ピンの両端部を、連結ピンの中間部と同径に形成したことを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変圧縮比装置。   The variable compression ratio device for an internal combustion engine according to any one of claims 1 to 3, wherein both end portions of the connecting pin supported by the pin support hole are formed to have the same diameter as an intermediate portion of the connecting pin. 前記アーム部材が、制御軸上の偏心カムと、前記制御軸を回動可能に支持する主軸受との間に設けられている請求項1〜5のいずれかに記載の内燃機関の可変圧縮比装置であって、
前記両支持片の制御軸軸方向の最大幅を、前記偏心カムと主軸受の間の間隔よりも小さく設定したことを特徴とする内燃機関の可変圧縮比装置。
The variable compression ratio of the internal combustion engine according to any one of claims 1 to 5, wherein the arm member is provided between an eccentric cam on a control shaft and a main bearing that rotatably supports the control shaft. A device,
A variable compression ratio device for an internal combustion engine, wherein a maximum width in the control shaft axis direction of both the support pieces is set smaller than a distance between the eccentric cam and the main bearing.
前記アーム部材を制御軸と別体に製作し、製作後に両者を一体に結合したことを特徴とする請求項1〜6のいずれかに記載の内燃機関の可変圧縮比装置。
The variable compression ratio device for an internal combustion engine according to any one of claims 1 to 6, wherein the arm member is manufactured separately from the control shaft, and the two are integrally coupled after manufacturing.
JP2003407186A 2003-12-05 2003-12-05 Variable compression ratio device for internal combustion engine Expired - Fee Related JP4341392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407186A JP4341392B2 (en) 2003-12-05 2003-12-05 Variable compression ratio device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407186A JP4341392B2 (en) 2003-12-05 2003-12-05 Variable compression ratio device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005163740A true JP2005163740A (en) 2005-06-23
JP4341392B2 JP4341392B2 (en) 2009-10-07

Family

ID=34729308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407186A Expired - Fee Related JP4341392B2 (en) 2003-12-05 2003-12-05 Variable compression ratio device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4341392B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247533A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Variable compression ratio mechanism of internal combustion engine
EP2055914A2 (en) 2007-10-29 2009-05-06 Nissan Motor Co., Ltd. Multi-link variable compression ratio engine
US8100097B2 (en) 2007-10-26 2012-01-24 Nissan Motor Co., Ltd. Multi-link engine
US8397683B2 (en) 2007-08-10 2013-03-19 Nissan Motor Co., Ltd. Variable compression ratio device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247533A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Variable compression ratio mechanism of internal combustion engine
JP4714608B2 (en) * 2006-03-16 2011-06-29 日産自動車株式会社 Variable compression ratio mechanism of internal combustion engine
US8397683B2 (en) 2007-08-10 2013-03-19 Nissan Motor Co., Ltd. Variable compression ratio device for internal combustion engine
US8100097B2 (en) 2007-10-26 2012-01-24 Nissan Motor Co., Ltd. Multi-link engine
US8100098B2 (en) 2007-10-26 2012-01-24 Nissan Motor Co., Ltd. Multi-link engine
EP2055914A2 (en) 2007-10-29 2009-05-06 Nissan Motor Co., Ltd. Multi-link variable compression ratio engine
US8087390B2 (en) 2007-10-29 2012-01-03 Nissan Motor Co., Ltd. Multi-link variable compression ratio engine
EP2055914A3 (en) * 2007-10-29 2012-03-28 Nissan Motor Co., Ltd. Multi-link variable compression ratio engine

Also Published As

Publication number Publication date
JP4341392B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
EP3187705A1 (en) Valve opening/closing timing control device
EP2322771B1 (en) Variable valve operating system for internal combustion engine
RU2493376C1 (en) Ice valve timing control device
JP4341392B2 (en) Variable compression ratio device for internal combustion engine
JP6331926B2 (en) Variable valve operating device for internal combustion engine
WO2015087649A1 (en) Valve timing control device for internal combustion engine
JP2004339951A (en) Variable valve system of internal combustion engine
JP2006017114A (en) Variable valve timing mechanism of internal combustion engine
JP2006342794A (en) Valve gear for internal combustion engine
JP4680215B2 (en) Valve operating device for internal combustion engine
DE10141012A1 (en) Valve actuation device for internal combustion engines
JP2004169575A (en) Variable valve gear and intake air amount controller for internal combustion engine
JP2006200391A (en) Valve lift variable device for internal combustion engine
JP2009138532A (en) Assembling and fixing method and assembling and fixing device of driving cam member
JP2010190073A (en) Valve gear for internal combustion engine
EP2299070A1 (en) Variable valve mechanism
JP4630224B2 (en) Variable valve mechanism for internal combustion engine
JP6728715B2 (en) CAM SHAFT AND METHOD OF MANUFACTURING THE SAME
JP2007262957A (en) Variable valve gear intervention mechanism
JP2007132248A (en) Variable valve mechanism
JP6421628B2 (en) Valve timing adjustment device
JP2019203433A (en) Valve-opening/closing timing control device
JP2006300005A (en) Variable valve train
JP2009191798A (en) Variable valve mechanism of internal combustion
JP2007231957A (en) Variable valve gear for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees