JP2005163103A - 単分散粒子の製造方法 - Google Patents

単分散粒子の製造方法 Download PDF

Info

Publication number
JP2005163103A
JP2005163103A JP2003403203A JP2003403203A JP2005163103A JP 2005163103 A JP2005163103 A JP 2005163103A JP 2003403203 A JP2003403203 A JP 2003403203A JP 2003403203 A JP2003403203 A JP 2003403203A JP 2005163103 A JP2005163103 A JP 2005163103A
Authority
JP
Japan
Prior art keywords
orifice
diameter
particles
flowable material
cylinder rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003403203A
Other languages
English (en)
Inventor
Akira Kawasaki
亮 川崎
Kenta Takagi
健太 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICRO RYUSHI KENKYUSHO KK
Original Assignee
MICRO RYUSHI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICRO RYUSHI KENKYUSHO KK filed Critical MICRO RYUSHI KENKYUSHO KK
Priority to JP2003403203A priority Critical patent/JP2005163103A/ja
Publication of JP2005163103A publication Critical patent/JP2005163103A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】比較的粒径の大きい単分散粒子を製造することができる単分散粒子の製造方法を提供する。
【解決手段】圧電アクチュエータ12にパルス電圧を印加し、所定周波数、所定振幅の振動を発生させ、伝達ロッド14を介してシリンダロッド14aを上と同じ周波数のパルスで振動させ、シリンダロッド14aに接触しているキャビティ25C内の溶融金属にパルス圧力波を発生させる。これにより、圧電アクチュエータ12が下方に所定の変位量以上変位すると、伝達ロッド14を介してシリンダロッド14aが変位して、キャビティ25C内の溶湯をオリフィスプレート23上のオリフィスから液滴状にして噴射する。この噴射は、パルス圧力波の1周期に1回ずつ行われる。流動性材料のオリフィス構成材料への接触角が100°以上であり、該オリフィスの直径が10〜500μmであり、該オリフィスの直径の1.2倍以上の粒子を形成するように前記パルス圧力を該流動性材料に印加する。
【選択図】図1

Description

本発明は実質的に均一な粒子サイズの構成粒子よりなる単分散粒子を製造するための単分散粒子の製造方法に係り、特に比較的径の大きい単分散粒子を製造する方法に関する。
サイズの揃った微少粒子、すなわち微少単分散粒子は、今日種々の科学技術の分野で需要が増大している。例えば、微少単分散粒子として良く知られている、ゾル−ゲル法によって作製されるラテックス粒子は、粒度(粒径)分布の標準偏差が平均粒径の約10%であり、電子顕微鏡観察における標準サイズ粒子として用いられている。半導体工業では、ICチップの小型化や接合のために30μm〜40μmの粒度(粒径)の揃った球形半田粉が要望されている。また、合金粉のHIP成形においても、材料に対して致命的な欠陥となる不均一空隙の形成を防ぐため、粒度(粒径)の揃った球形粉が必要であるとされている。
微小単分散粒子を作るための方法としては、数μm以下の酸化物微粒子に限れば、前述のゾルーゲル法があり、一方、100μm以上の粒子が希望であれば、プラズマ回転電極法(PREP法)がある。また、ある程度の粒度(粒径)幅が許容される場合には、一般的なアトマイズ粉を篩などで機械的に級別する方法も実用的である。
しかし、従来の方法では、級別作業が必要不可欠であり、さらに、粒子サイズを幅広く制御すること、すなわち希望の粒子サイズの単分散粒子を得ることは一般に困難である。ゾルーゲル法は、既に述べた様に0.1μm〜1.2μmの微粒子の作製に限定される。またPREP法では電極の回転安定性から、粒径約100μmがその作製限界である。現状における単分散粒子の応用分野を拡大するためには、級別作業が不要で、かつ、より自由に粒度(粒径)制御を行うことが可能な作製プロセスの開発が望まれていた。
このため、本出願人等は、特開平6−184607号及び特開2002−155305号により、個々の粒子の粒度(粒径)をより幅広く人為的に制御することができ、粒度(粒径)の揃った、より真球に近い球形の単分散粒子を安定して製造することが可能な、球形単分散粒子の製造方法及び装置を提案した。
この特開平6−184607号及び特開2002−155305号に開示した技術は、圧電アクチュエータにパルス圧力を発生させ、このパルス圧力を溶融金属に伝達して、オリフィスから前記溶融金属を1個ずつ単分散粒子として噴射して球状化し、冷却した後、球形単分散粒子を回収するものである。これら先願に係る球形単分散粒子の製造方法、及びこの製造方法を具体化した球形単分散粒子の製造装置によれば、高精度の球形単分散粒子の製造が可能である。
特開平6−184607号 特開2002−155305号
上記先願の単分散粒子の製造方法によると、オリフィス直径の0.9〜1.1倍程度の粒径の単分散粒子が製造される(例えば、特開2002−155305号の請求項25参照)。
このオリフィス径を大きくすれば、それだけ大きな粒径の単分散粒子が製造されるが、オリフィス径が過大であると流動性材料がオリフィスから連続的に流出してしまうので、オリフィス径には自ずと上限があり、製造される単分散粒子の粒径にも制約があった。
本発明は、比較的粒径の大きい単分散粒子を製造することができる単分散粒子の製造方法を提供することを目的とする。
本発明の単分散粒子の製造方法は、流動性材料を貯留するための流動性材料貯留容器と、この流動性材料貯留容器から流動性材料が供給されるオリフィスと、所定のパルス圧力を該流動性材料に印加して流動性材料を該オリフィスから間欠的に流出させるアクチュエータとを有してなる単分散粒子の製造装置を用いて単分散粒子を製造する方法において、該流動性材料のオリフィス構成材料への接触角が100°以上であり、該オリフィスの直径が10〜500μmであり、該オリフィスの直径の1.2倍以上の粒子を形成するように前記パルス圧力を該流動性材料に印加することを特徴とするものである。
かかる本発明の単分散粒子の製造方法によると、流動性材料とオリフィスとの接触角が大きく、また十分に高いパルス圧力を印加することにより、オリフィスの直径(以下、単に径ということがある。)の1.2倍以上の大径の単分散粒子を製造することが可能である。
上記の粒径及びオリフィス材料の組み合わせとしては、溶融シリコンと窒化ホウ素系セラミックスとの組み合わせ(接触角120度)が例示される。
以下、図1〜4を参照して実施の形態について説明する。図1は実施の形態に係る単分散粒子の製造方法に用いられる単分散粒子製造装置(以下、単に本装置ともいう)10の全体構成を示す模式側面図である。なお、この装置は前記特開2002−155305号の図7〜10の装置である。
図1において、シリンダロッド位置調整機構部B3及び単分散粒子形成部B4の一部(圧電アクチュエータからノズル部までの部分)を、点検などのために上方に移動させて分離するリフターAはモータ駆動のスクリュージャッキで構成されている。また、シリンダロッド位置調整機構部B3は後述する単分散粒子形成部B4のシリンダロッドの初期位置を微調節するために設けられ、Fは同じく単分散粒子形成部B4の高周波加熱装置に電源を供給する高周波誘導加熱装置である。
図2は、上述のシリンダロッド位置調整機構部B3及び単分散粒子形成部B4の詳細な構成を示す模式断面図、また、図3及び図4は、上記単分散粒子形成部B4の要部である加熱装置及びノズル部の拡大断面図である。
先ず、シリンダロッド位置調整機構部B3は、図2に示すように、単分散粒子形成部B3の圧電アクチュエータ12、ホルダブロック39、伝達ロッド14及びシリンダロッド14aなどの部分を保持するアダプター55と、このアダプター55を保持し、ベースフランジ13に固定された2本のねじシャフト13aと、同じくベースフランジ13に固定された2本のガイドシャフト13bとに挿通された昇降ベース31とから構成されている。
この昇降ベース31は、その一端に配置されているハンドル13dを回すことにより、ウォームギヤユニット13Cを介してねじシャフト13a、ガイドシャフト13bに沿って上下に移動可能であり、後述するように、シリンダロッドの初期位置(待機位置)を、例えば、0.1mm程度の精度で微調整可能に構成されている。なお、33は位置読み取り用のダイヤルゲージを示している。
次に、単分散粒子形成部B4の概略構成を説明する。図2において、12は上記シリンダロッド位置調整機構部B3のアダプター55に保持された圧電アクチュエータを、また、14はこの圧電アクチュエータ12にホルダブロック39により固定されている伝達ロッドを示しており、この伝達ロッド14の先端部は、後述するノズル部25に嵌挿されるシリンダロッド14aを形成している。なお、この伝達ロッド14の中間部分(圧電アクチュエータ12への接続部とベースフランジ13との間の部分)は、異物などの侵入を防止するため、伸縮性を有するベロース53により被覆されている。
上記ベースフランジ上には、原料供給管60を挿通した原料供給口60aと、温度計測用の熱電対62の挿通口61とが設けられている。また、上記ベースフランジ13の下側には、後述するノズルホルダー46が固定されており、これも後述するるつぼ26やノズル部25が、このノズルホルダー46に保持されている。上記ベースフランジ13の下側からノズル25までの空間は、原料供給管60から供給された原料をその下方の後述する加熱装置20に送る部分でもある。
上記加熱装置20は、その詳細を図3に示すように、加熱され溶融した原料をノズル部25と共に保持する石英製のるつぼ26(これらは、後述するように、加熱装置20内から取り出し(分離)可能に構成されている)の外側に空間28を隔てて配置されている発熱体であるカーボンで構成されているカーボンサセプター20aと、これらを囲むように配置されている断熱材20bと、その外側の保護管20Cと、さらにその外側に配置されている高周波加熱用のワークコイル20dから構成されている。また、加熱装置20の上部には、断熱のための蓋21が備えられている。
上述の加熱装置20は、図1に示した高周波誘導加熱装置Hから供給される励起電流によりワークコイル20dを励起し、これから発生する高周波によりカーボンセプター20aを構成しているカーボンを加熱して、この熱によりカーボンセプター20a内部のるつぼ26やその中に投入されている原料を加熱し、均一加熱特性に優れており、また、1000°C位までの高温を比較的容易に得ることが可能であるという利点を有するものである。この加熱装置20は、さらに、高周波を直接作用させても発熱しない原料を用いる場合にも有効である。
ノズル部25は、外周が上記るつぼ26に支障されて、るつぼ26内(下方)にセットされており、上面には、図4に示すように、加熱され溶融した原料をノズル部25の中央部分に寄せるための逆円錐形状の凹み25aと、加熱され溶融した原料を後述するオリフィス部に送るための複数本のノズル25bとを備えている。このノズル25bは、ノズル部25内の、前記シリンダロッド14aの下方の空間である流動性材料貯蔵容器としてのキャビティ25C内に通じており、かかるキャビティ25Cが実質的な材料溶湯貯溜部となる。供給される加熱され溶融した原料は、ノズル25bを介して、上記キャビティ25C内に貯留される。
ノズル25の下面には、多数の金属ガラス噴射用オリフィスを備えたオリフィスプレー23が、押さえ部材23aにより取り付けられている。このオリフィスプレート23を構成する材料は、対象とする流動性材料の種類に応じて、最適な材質を選択すれば良い。
前記オリフィスプレート23に設けられる金属ガラス原料噴射用オリフィスは着脱自在にされている。これによりオリフィスプレート23に着脱されるオリフィスのオリフィス口径を製造の対象となる粒子径及び上述の指針に基づいて適宜設定して回収される単分散粒子径を高精度且つ簡便に制御することが可能になる。
ノズル部25の上方は、温度計測用の熱電対62を備えたるつぼ26に続いており、全体として、後述するように供給される原料を溶融させ、溶融した原料を蓄える材料容器としての原料溶融部兼溶湯溜め25dを形成している。この原料溶融部兼溶湯溜め25dの下方は、ノズル部25内のノズル25bを介して、ノズル部5内に挿通された状態を保っているシリンダロッド14aのさらに下方のキャビティ25Cに通じている。
るつぼ26の上方には、前述の原料供給口60aにかけて、るつぼ26内の温度維持及び外部への熱の放出を防止するためのリフレクター65が配置されている。このリフレクター65は、上下に金属の薄板を有し、両者を針金状の接続部材で接続したものである。なお、このリフレクター65には、伝達ロッド14及びシリンダロッド14aを挿通するための穴と、原料供給部60から供給される原料の通過用の穴が設けられている。
これらのるつぼ26、ノズル部25、リフレクター65などは、前述の原料供給口60a、熱電対挿通口61を備えたノズルホルダー46に係止されており、また、このノズルホルダー46は前述のベースフランジ13に係止されていて、点検時などには、これらが一体的に、前記リフターAにより加熱装置20内から引き上げる形で引き出されるように構成されている。
一方、ノズル25のオリフィスプレート23の下方には、噴射される単分散粒子を捕捉するための回収部(図1中のC)が設けられている。この回収部Cは、その最上段に、初期噴射サンプル捕捉用のサンプルトレイ40を有し、その下方に不活性ガス流が供給される回収筒41、ゲートバルブ42、噴射された後回収筒41内で冷却された製品(単分散粒子構成粒子特には金属ガラス粒)回収ボックス43などが接続されている。
これらの部分から構成される回収部には、この回収部C並びに単分散粒子形成部B4の周囲を不活性ガスで置換する際に用いる真球吸引機構部Dが接続されており、本装置の駆動前の準備段階で、上述のゲートバルブ42を開いた状態で、真空吸引機構部Dにより回収部C内、並びに単分散粒子形成部B4の周囲を排気し、排気終了後に、ヘリウムガスなどの不活性ガスを図示されていない供給源から所定圧力で供給して、金属ガラス球の通路全てを不活性ガス雰囲気とするものである。
なお、上記サンプルトレイ40は、本装置の駆動開始当初に、噴射されて出てくる金属ガラス粒を受けて、その状況を、例えば金属顕微鏡を用いて観察・確認するためのものである。この状態では、冷却は充分に行われないので、凝集・変形などが発生し、完全な形状の金属ガラス粒球は得られないが、製造条件の適否の確認は充分に可能である。このサンプルトレイ40は、上記製造条件の適否の確認が終了した時点で、主たる通路からは退去させるように構成されている。
単分散粒子形成部B4に用いられる圧電アクチュエータ12としては、積層型圧電素子を好適に用い得る。この圧電アクチュエータ12は、所定周波数(例えば、圧電アクチュエータ12の動作周波数で、10Hzから10KHz程度)の矩形波を発生させるファンクションジェネレータ、上記矩形波を増幅するパワーアンプ(いずれも図示されていない)に接続されており、これらにより、発生され、増幅された矩形波の印加によって、前記所定周波数の変位を発生するものである。
上述の圧電アクチュエータ12の変位は、上記圧電アクチュエータ12に固定されている伝達ロッド14を介してシリンダロッド14aに伝達される。シリンダロッド14aはノズル部25内に挿通されており、このノズル部25内のキャビティ25C内に貯留されている加熱され溶融した原料にその変位を伝達することで、オリフィスから上記溶融原料をこの変位に対応するパルス圧力で噴射して、微細な金属ガラス粒を製造するものである。
なお、上記圧電アクチュエータ12は、例えば、前述のホルダブロック39内にその側面の4つのねじ穴に螺入される4本の止めねじ(図示されていない)で固定されるアクチュエータ押さえにより取り付けられる。また、圧電アクチュエータ12と伝達ロッド14との連結は、圧電アクチュエータ12をアクチュエータ押さえと伝達ロッド14との間に挟み込み、このアクチュエータ押さえと伝達ロッド14とを図示されていないボルト、ナットで固定することによって行われる。
このように圧電アクチュエータ12と伝達ロッド14とを一体構造とすることにより、圧電アクチュエータ12の動きを正確にシリンダロッド14aに伝達することができるので、シリンダロッド14aを、伝達される変位に応じて正確に振動させることが可能になる。また、このような圧電アクチュエータ12を使用する構成により、シリンダロッド14aの正確な変位制御、高速駆動(高周波数パルスにも追従可能)及び任意波形での制御が可能である。
また、一般に圧電素子は、高温になると圧電機能が損なわれるので、冷却を行う必要がある。このため、本実施の形態に係る装置10においても、図1に示したような冷却水循環装置Dを用い、水冷パイプを装置本体の一部(圧電アクチュエータ12、ホルダブロック39周辺など)に取り付けて、圧電アクチュエータ12をその使用限界温度以下に保持するよう構成している。
なお、加熱装置20の上方には、図示されていない供給源に接続されている不活性ガス導入管35が配置されており、後述する単分散粒子形成部B4全体の雰囲気調整とは別に、るつぼ26内の雰囲気の調整を行っている。これは、シリンダロッド14aに伝達される変位に対応し溶融原料に付加されるパルス圧力波と良好な金属ガラス球の安定な形成との均衡をとるため、上記不活性ガス導入管35からの不活性ガス供給を制御して、るつぼ26内のガス圧(およびキャビティ25Cに加わるガス圧)の制御を行うものである。
次に、上記の構成を有する装置を用いて金属ガラス球形単分散粒子を製造する際のプロセスについて順を追って説明する。
まず、前記原料供給管60から製造対象である金属ガラス球の原料をるつぼ26内に投入し、加熱装置20の電源をオンにして投入した原料を溶融させる。溶融した原料(溶湯)は、るつぼ26底部のノズル部25上に溜まり、一部は、シリンダロッド14aを上下に数回往復空動させることにより、前述のノズル25bを通って、キャビティ25Cにも充填される。なお、原料が溶融した後では、加熱装置20は、保温状態にしておいても良い。
一方、圧電アクチュエータ12の温度が上昇しないように、冷却水循環装置Eから供給される冷却水を前記ホルダブロック39などに循環させておく。
次に、ファンクションジェネレータにおいて所定周波数の矩形波を発生させ、パワーアンプで増幅した後に圧電アクチュエータ12に印加し、所定周波数、所定振幅の振動を発生させ、圧電アクチュエータ12と実質的に一体構造の伝達ロッド14を介してシリンダロッド14aを上と同じ周波数のパルスで振動させ、シリンダロッド14aに接触しているキャビティ25C内の溶融金属にパルス圧力波を発生させる。
これにより、圧電アクチュエータ12が下方に所定の変位量以上変位すると、伝達ロッド14を介してシリンダロッド14aが変位して、キャビティ25C内の溶湯をオリフィスプレート23上のオリフィスから液滴状にして噴射する。この噴射は、パルス圧力波の1周期に1回ずつ行われる。
こうして噴射された液滴は、回収部C内の不活性ガス雰囲気によって冷却速度が最適に制御され、回収部C内を下降しつつほぼ真球近くまで球状化し、金属ガラス球となって回収される。こうして、略真球近くまで球状化した金属ガラス球を得ることができる。こうして得られた金属ガラス球の粒度(粒径)分布は、極めてばらつきの少ないものである。
本装置10においては、圧電アクチュエータ12によって、シリンダロッド14aを金属溶湯側に変位(振動)させることにより、オリフィスから、1回の変位(振動)によって複数(多数)の金属ガラス球を噴射させて、オリフィスの口径にほぼ等しい径の金属ガラス球を得ることもできる。ここで、シリンダロッド14aの変位量は、噴射される金属ガラス球の径とその数に応じた総容積に対応したものであることが必要であることはいうまでもない。
また、圧電アクチュエータ12の変位の周波数も特に制限的ではなく、対象とする金属ガラス球(材料)の種類、必要とする製造速度などに応じて、適宜選択すればよい。前述の対象材料に関しては、例えば、10Hz〜1KHz程度が実用可能である。金属ガラス球の量産性の面からは、この周波数は、可能な範囲で高いことが好ましい。
この実施の形態にあっては、オリフィスを構成するノズル部25の構成材料と流動性材料たる溶融金属との接触角は100°以上好ましくは120°以上である。また、オリフィスの直径は10〜500μm特に10〜200μmが好ましい。単分散粒子形成部B4とるつぼ26内との差圧力は、得られる単分散粒子の粒径がオリフィス直径の1.2倍以上例えば1.2〜2倍となるように設定する。
このようにオリフィス構成材料を溶融金属等の流動性材料との接触角の大きい親和性の悪い材料とし、且つ流動性材料に高い差圧力を負荷することにより見かけ上親和性を高くすることによって、オリフィス直径よりも十分に大径の単分散粒子を製造することができる。また、低い差圧力を負荷することにより、オリフィス直径に近い単分散粒子を製造することができるので、ある臨界差圧より高いか低いかで、粒子径に大きな遷移を生じさせることができる。この場合、オリフィス直径が500μmよりも大きいと、溶融金属材料がオリフィスから連続的に流出し易くなる。また、上記接触角が100°未満であると、流動性材料に高い圧力を負荷すると、オリフィス外部にぬれ出すか、流出し易くなるので、上記効果を得ることができない。場合によっては、粒子を形成することができない。
本発明方法によると、10〜1000μm程度の比較的大径の単分散粒子を効率よく製造することができる。
上記説明は本発明の一例であり、本発明は図示以外の単分散粒子製造装置にも適用できる。
[実験例1]
図1〜4に示す装置において、オリフィス径を100μmとし、流動性材料を1100℃に溶融した銅(Cu)とし、オリフィスを構成するノズル部25の構成材料をカーボン(両者の接触角は165度)とし、アクチュエータのパルスを10Hzとし、印加最大圧力を0.21kgf/cmとした場合、平均粒径315μm、標準偏差5μmと、オリフィス径の3倍の径を有した単分散粒子が製造された。
[実験例2]
これに対し、同じ装置において印加最大圧力を0.13kgf/cmとした場合、平均粒径106μm、標準偏差9μmと、オリフィス径とほぼ同じ単分散粒子となった。
[実験例3]
オリフィス径を300μmとし、流動性材料を1460℃に溶融したシリコン(Si)とし、オリフィスを構成するノズル部25の構成材料を石英ガラス(溶融シリコンとの接触角は92度)とし、アクチュエータのパルスを10Hzとし、印加最大圧力を3.3MPaとした場合、単分散粒子の平均粒径は484μm、標準偏差は17μmであった。
本発明の実施の形態に用いられる単分散粒子の製造装置の全体構成を示す模式側面図である。 図1中のシリンダロッド位置調整機構部B3および単分散粒子形成部B4の詳細な構成を示す模式断面図である。 図1中の単分散粒子形成部B4の要部である加熱装置の拡大断面図である。 図1中の単分散粒子形成部B4の要部であるノズル部分の拡大断面図である。
符号の説明
10 単分散粒子の製造装置(金属ガラス球製造装置)
12 圧電アクチュエータ
13 ベースフランジ
14 伝達ロッド
15 ダイアフラム
15a ダイアフラム保持部分
16 シール部材
20 加熱装置
20a カーボンサセプター
20b 断熱材
20d ワークコイル
21a、b スラリー貯留部
22 ノズル部
23 オリフィスプレート
23a 押さえ部材
25 ノズル部
25b ノズル
25C キャビティ
26 るつぼ
33 ダイヤルゲージ
35 不活性ガス導入管
39 ホルダブロック
40 サンプルトレイ
41 加熱装置
42 ゲートバルブ
43 回収ボックス
48 CCDカメラ

Claims (2)

  1. 流動性材料を貯留するための流動性材料貯留容器と、この流動性材料貯留容器から流動性材料が供給されるオリフィスと、所定のパルス圧力を該流動性材料に印加して流動性材料を該オリフィスから間欠的に流出させるアクチュエータとを有してなる単分散粒子の製造装置を用いて単分散粒子を製造する方法において、
    該流動性材料のオリフィス構成材料への接触角が100°以上であり、
    該オリフィスの直径が10〜500μmであり、
    該オリフィスの直径の1.2倍以上の粒子を形成するように前記パルス圧力を該流動性材料に印加することを特徴とする単分散粒子の製造方法。
  2. 請求項1において、該流動性材料は溶融シリコンであり、該オリフィスは窒化珪素質セラミックス製であることを特徴とする単分散粒子の製造方法。
JP2003403203A 2003-12-02 2003-12-02 単分散粒子の製造方法 Pending JP2005163103A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403203A JP2005163103A (ja) 2003-12-02 2003-12-02 単分散粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403203A JP2005163103A (ja) 2003-12-02 2003-12-02 単分散粒子の製造方法

Publications (1)

Publication Number Publication Date
JP2005163103A true JP2005163103A (ja) 2005-06-23

Family

ID=34726578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403203A Pending JP2005163103A (ja) 2003-12-02 2003-12-02 単分散粒子の製造方法

Country Status (1)

Country Link
JP (1) JP2005163103A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191344A (ja) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd シリコン溶湯用耐火物及びその製造方法
KR20180100946A (ko) * 2017-03-03 2018-09-12 주식회사 에이치에스하이테크 진동체 스프레이 노즐을 이용한 서스펜션 중합 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191344A (ja) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd シリコン溶湯用耐火物及びその製造方法
KR20180100946A (ko) * 2017-03-03 2018-09-12 주식회사 에이치에스하이테크 진동체 스프레이 노즐을 이용한 서스펜션 중합 방법
KR101965889B1 (ko) * 2017-03-03 2019-04-04 주식회사 에이치에스하이테크 진동체 스프레이 노즐을 이용한 서스펜션 중합 방법

Similar Documents

Publication Publication Date Title
JP2002155305A (ja) 単分散粒子の製造装置及び単分散粒子の製造方法及びその製造方法で製造された単分散粒子
CN101745763B (zh) 一种精密焊球的高效制备方法
EP0996521A1 (en) Apparatus and method for making uniformly sized and shaped spheres
US4966737A (en) Method and a device for manufacturing a powder of amorphous ceramic or metallic particles
CN110842209B (zh) 一种压差调控+电磁扰动制备均一金属颗粒的装置
KR100800505B1 (ko) 금속분말 제조장치
US6554166B2 (en) Apparatus for producing fine metal balls
JP2004529268A (ja) ボール状の金属粒子を製造するための方法および装置
CN113020607A (zh) 电磁扰动与流动聚焦制备芯片级封装用微焊球的装置
JP2001107113A (ja) 金属ガラス球の製造方法およびこの方法で製造された金属ガラス球、並びにその製造装置
JP2005163103A (ja) 単分散粒子の製造方法
JP2001226706A (ja) 微細金属球製造装置
JPH06184607A (ja) 球形単分散粒子の製造方法および装置
TWI603793B (zh) 混合型霧化裝置
CN217412451U (zh) 一种静电效应下制备100μm以下均一焊球的装置
CN210359259U (zh) 一种超声波制备金属球形粉体装置
JP2001353436A (ja) 単分散粒子及びその単分散粒子の製造方法及びその製造方法で製造された単分散粒子、並びにその製造装置
JP2001294907A (ja) 金属ガラス球の製造方法およびこの方法で製造された金属ガラス球、並びにその製造装置
CN210429739U (zh) 一种金属焊球的制备装置
JP2001064702A (ja) 微細球状金属粉末の製造方法
KR100528367B1 (ko) 간극조절이 가능한 노즐 조립체
Chao et al. Experimental analysis of a pneumatic drop-on-demand (DOD) injection technology for 3D printing using a gallium-indium alloy
JP2017190516A (ja) 金属粒子の製造方法、及び、金属粒子の製造装置
JP2001226705A (ja) 微細金属球の製造方法並びに微細金属球製造装置
JP2008156719A (ja) 単分散粒子製造装置、単分散粒子製造装置用オリフィスプレート、及び単分散粒子集合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061215

A521 Written amendment

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Effective date: 20090114

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901