JP2005162562A - Method for manufacturing crystalline ceramic particle - Google Patents

Method for manufacturing crystalline ceramic particle Download PDF

Info

Publication number
JP2005162562A
JP2005162562A JP2003406302A JP2003406302A JP2005162562A JP 2005162562 A JP2005162562 A JP 2005162562A JP 2003406302 A JP2003406302 A JP 2003406302A JP 2003406302 A JP2003406302 A JP 2003406302A JP 2005162562 A JP2005162562 A JP 2005162562A
Authority
JP
Japan
Prior art keywords
oxide
particles
crystalline
ceramic particles
crystalline ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003406302A
Other languages
Japanese (ja)
Inventor
Atsunori Matsuda
厚範 松田
Hiroyuki Muto
浩行 武藤
Mototsugu Sakasai
基次 逆井
Kazuhiko Mori
和彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2003406302A priority Critical patent/JP2005162562A/en
Publication of JP2005162562A publication Critical patent/JP2005162562A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a crystalline ceramic particle useful for a catalyst, a photocatalyst and the like without high temperature firing and a crushing step from the amorphous particle of a compound or a composite compound containing each element among Ti, Zr, Zn, Sn, In and Si. <P>SOLUTION: A crystalline TiO<SB>2</SB>or SiO<SB>2</SB>-TiO<SB>2</SB>particle is manufactured by applying impulse force, for example with ball milling, to the amorphous particle of the compound, for example a TiO<SB>2</SB>or SiO<SB>2</SB>-TiO<SB>2</SB>particle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、結晶性セラミックス粒子の製造方法に関するものである。更に詳しく述べるならば、本発明は、高温焼成を必要とせずに、結晶性セラミックス粒子を製造する方法に関するものである。本発明方法により得られる結晶性セラミックス粒子は、例えば酸化物系触媒粒子、光触媒粒子並びに、電子及び電気材料用透明導電性セラミックス粒子として有用なものである。   The present invention relates to a method for producing crystalline ceramic particles. More specifically, the present invention relates to a method for producing crystalline ceramic particles without the need for high temperature firing. The crystalline ceramic particles obtained by the method of the present invention are useful as, for example, oxide-based catalyst particles, photocatalyst particles, and transparent conductive ceramic particles for electronic and electrical materials.

従来、触媒、光触媒、並びに導電性酸化物として使用される高機能結晶性セラミックス微粒子の製造方法としては、原料塩を水に溶解させ、これにアルカリ溶液を加えて、非晶質の水和酸化物の沈殿を生成させ、これを洗浄乾燥、粉砕したものを原料粉体とし、さらに数百度〜千数百度の温度で焼成して、結晶化し、再度粉砕、微粒化する方法が最も一般的である。   Conventionally, as a method for producing highly functional crystalline ceramic fine particles used as a catalyst, a photocatalyst, and a conductive oxide, a raw material salt is dissolved in water, an alkali solution is added thereto, and amorphous hydration oxidation is performed. The most common method is to form a precipitate of the product, wash, dry and pulverize it into a raw material powder, calcinate at a temperature of several hundred to several thousand degrees, crystallize, pulverize and atomize again. is there.

しかし、この方法によれば、多くの工程を要すること、高温焼成により結晶が粗大化し、微細結晶を得るためには再度長時間の粉砕を行わなければならないこと、及び結晶粒径も不揃いになることなどの問題点があった。   However, according to this method, many steps are required, the crystal is coarsened by high-temperature firing, and it is necessary to pulverize again for a long time in order to obtain a fine crystal, and the crystal grain size becomes uneven. There was a problem such as.

これに対し、酸化チタンなどのように、比較的結晶化しやすい酸化物粒子の場合には、特開5−163022号公報(特許文献1)などに、チタン水和化合物原料をオートクレーブ反応容器にいれ、170℃以上の温度で加熱加水分解する方法が開示されており、このような水熱合成反応による結晶化によれば、結晶性の比較的良好な酸化物微粒子が、焼成、粉砕工程を経ることなく合成できることが知られている。   On the other hand, in the case of oxide particles that are relatively easy to crystallize, such as titanium oxide, titanium hydrate compound raw material is placed in an autoclave reaction vessel in Japanese Patent Application Laid-Open No. 5-163022. , A method of hydrolyzing at a temperature of 170 ° C. or higher is disclosed, and according to crystallization by such a hydrothermal synthesis reaction, oxide fine particles having relatively good crystallinity undergo a firing and pulverization step. It is known that it can be synthesized without any problems.

しかし、SiO2の−TiO2系非晶質複合酸化物、及び水和複合酸化物並びに、ZrO2、及びSnO2などでは水熱反応による結晶化が困難であって、これらの結晶性粒子を製造するためには、高温焼成工程及び粉砕工程が不可欠となっていた。 However, it is difficult to crystallize by SiO 2 -TiO 2 -based amorphous composite oxide, hydrated composite oxide, ZrO 2 , SnO 2, etc. because of hydrothermal reaction. In order to produce, the high temperature baking process and the grinding | pulverization process were indispensable.

これらの従来の製造方法に対し、光学材料であるイットリウム・アルミニウム・鉄系酸化物を、ボールミル中で機械的衝撃力を与えつつ、低温合成する技術が特開2003−73125号公報(特許文献2)に開示されている。しかし、Ti,Zr,Zn,Sn,In、およびSiを含む化合物粒子、及び触媒・光触媒材料、導電性材料を、この方法によって合成することの可能性については前記特許文献2には開示されていない。しかも、特許文献2には、予め合成された非結晶質粒子を、メカニカルミリング処理により、結晶質粒子に変換することについては、全く記載も示唆もない。   In contrast to these conventional manufacturing methods, Japanese Patent Application Laid-Open No. 2003-73125 (Patent Document 2) discloses a technique for synthesizing an optical material yttrium / aluminum / iron-based oxide at a low temperature while applying a mechanical impact force in a ball mill. ). However, the possibility of synthesizing compound particles containing Ti, Zr, Zn, Sn, In, and Si, and catalyst / photocatalyst materials and conductive materials by this method is disclosed in Patent Document 2. Absent. In addition, Patent Document 2 has no description or suggestion about converting amorphous particles synthesized in advance into crystalline particles by mechanical milling treatment.

また、公表特許公報2003−507300号(特許文献3)には、塩化チタン溶液に化学制御剤を添加した原料溶液を結晶化温度よりも低い温度で加水分解したのち、生成物を焼成して結晶化し、これをミリングして酸化チタン結晶粉粒子を得る方法が開示されているが、この方法における結晶化は450℃以上の焼成によって行われるため、加熱により結晶が粗大化するのを防止することは困難であった。   Also, in published patent publication 2003-507300 (Patent Document 3), a raw material solution obtained by adding a chemical control agent to a titanium chloride solution is hydrolyzed at a temperature lower than the crystallization temperature, and then the product is baked to produce crystals. Although a method for obtaining titanium oxide crystal powder particles by milling this is disclosed, crystallization in this method is performed by firing at 450 ° C. or higher, so that the crystal is prevented from being coarsened by heating. Was difficult.

特開5−163022号公報「球状アナタース型二酸化チタンおよびその製造方法」JP-A-5-163022 “Spherical anatase type titanium dioxide and method for producing the same” 特開2003−73125号公報「イットリウム・アルミニウム・鉄複合酸化物の製造方法」JP 2003-73125 A “Method for Producing Yttrium / Aluminum / Iron Composite Oxide” 特公表2003−507300号公報「塩化チタン水溶液から超微細二酸化チタンを製造する方法」Japanese Patent Publication No. 2003-507300 “Method for producing ultrafine titanium dioxide from aqueous titanium chloride solution”

本発明は、高温焼成しなければ結晶化が困難であったTi,Zr,Zn,Sn,In、およびSiを含む化合物の粒子、並びに触媒・光触媒材料、導電性材料の結晶性セラミックス粒子を、複雑で長時間の製造工程や特殊な装置を必要とすることなく、常温環境下で製造する方法を提供しようとするものである。   In the present invention, particles of a compound containing Ti, Zr, Zn, Sn, In, and Si, which have been difficult to crystallize unless fired at a high temperature, and crystalline ceramic particles of a catalyst / photocatalyst material and a conductive material, It is an object of the present invention to provide a method for manufacturing in a room temperature environment without requiring a complicated and long manufacturing process or special equipment.

本発明の結晶性セラミックス粒子の製造方法は、Ti,Zr,Zn,Sn,In及びSiから選択された少なくとも1元素を含む化合物及び複合化合物の非晶質粒子の少なくとも1種を、衝撃力を付加する処理に供して、前記非晶質粒子を結晶質セラミックス粒子に変換することを特徴とするものである。
本発明の結晶質セラミックス粒子の製造方法において、前記化合物が、前記元素の少なくとも1種を含む酸化物及び水和酸化物から選ばれることが好ましい。
本発明の結晶質セラミックス粒子の製造方法において、前記酸化物及び水和酸化物のそれぞれが液相反応法により合成されたものであることが好ましい。
本発明の結晶性セラミックス粒子の製造方法において、前記衝撃力を付加する処理が、メカニカルミリング法により施されることが好ましい。
本発明の結晶性セラミックス粒子の製造方法において、前記衝撃力を付加する処理が、大気中又は非酸化性雰囲気中で施されることが好ましい。
本発明の結晶性セラミックス粒子の製造方法において、前記結晶性セラミックス粒子が、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化すず、酸化インジウム、酸化珪素及びインジウム−すず配合酸化物から選ばれた少なくとも1種を含むことが好ましい。
According to the method for producing crystalline ceramic particles of the present invention, at least one of a compound containing at least one element selected from Ti, Zr, Zn, Sn, In, and Si and an amorphous particle of a composite compound is applied with an impact force. The amorphous particles are converted into crystalline ceramic particles by subjecting to an additional treatment.
In the method for producing crystalline ceramic particles of the present invention, the compound is preferably selected from an oxide containing at least one of the elements and a hydrated oxide.
In the method for producing crystalline ceramic particles of the present invention, it is preferable that each of the oxide and the hydrated oxide is synthesized by a liquid phase reaction method.
In the method for producing crystalline ceramic particles of the present invention, the treatment for applying the impact force is preferably performed by a mechanical milling method.
In the method for producing crystalline ceramic particles of the present invention, the treatment for applying the impact force is preferably performed in the air or in a non-oxidizing atmosphere.
In the method for producing crystalline ceramic particles of the present invention, the crystalline ceramic particles are at least one selected from titanium oxide, zirconium oxide, zinc oxide, tin oxide, indium oxide, silicon oxide, and indium-tin mixed oxide. It is preferable to contain.

本発明の結晶性セラミックス粒子の製造方法は、高温焼成工程及び粉砕工程を必要とせずに、結晶性が高く、粒子径の均一な、セラミックス粒子を製造することができ、本発明方法により製造された結晶性セラミックス粒子は、化学反応用触媒、光触媒、可視光応答性触媒、透明導電性粒子などとして実用上有用なものである。   The method for producing crystalline ceramic particles of the present invention can produce ceramic particles having a high crystallinity and a uniform particle size without the need for a high-temperature firing step and a pulverizing step, and is produced by the method of the present invention. The crystalline ceramic particles are practically useful as chemical reaction catalysts, photocatalysts, visible light responsive catalysts, transparent conductive particles, and the like.

本発明方法に用いられる原料は、Ti,Zr,Zn,Sn,In及びSiからなる元素群から選ばれた少なくとも1元素を含む化合物及び/又は複合化合物の非晶質粒子である、この非晶質粒子を構成する化合物は、上記元素の1種を含む化合物であってもよく、その2種以上を含む複合化合物であってもよく、また、上記元素の少なくとも1種と、前記元素とは異種の元素の少なくとも1種とを含む複合化合物であってもよい。上記化合物及び複合化合物は単一種で用いられてもよく、或はその2種以上の混合物として用いられてもよい。上記複合化合物は、錯化合物であってもよく、或は、前記元素の1種、又は前記元素とは異種の元素又はその化合物によりドープされたドープ化合物であってもよい。   The raw material used in the method of the present invention is an amorphous particle of a compound and / or a composite compound containing at least one element selected from the element group consisting of Ti, Zr, Zn, Sn, In and Si. The compound constituting the particle may be a compound containing one of the above elements, or a composite compound containing two or more thereof, and at least one of the above elements and the element It may be a complex compound containing at least one kind of different elements. The above compounds and composite compounds may be used alone or as a mixture of two or more thereof. The complex compound may be a complex compound, or may be a doped compound doped with one of the elements, an element different from the element, or a compound thereof.

本発明方法の原料として用いられる化合物又は複合化合物は、酸化物、水和酸化物、窒化物、ホウ化物などを包含し、これらの中でも、酸化物及び水和酸化物から選ばれることが好ましい。
例えば、前記元素群の1種以上のアルコキシド、例えば、チタニウムブトキシド、ジルコニウムイソプロポキシド、テトラエチルオルソシリケートなどを、低温(例えば0〜80℃)において加水分解して、非晶質の水和二酸化チタン、水和酸化ジルコニウム又は水和二酸化珪素粒子を形成し、これを、結晶化しない温度(例えば50〜300℃)で乾燥したもの、或は、塩化チタン、硝酸ジルコニウム、硝酸亜鉛、塩化第一すず、塩化インジウムなどの金属塩水溶液に、例えばアンモニア水などのアルカリ性水溶液を添加し、生成した水和酸化物の非晶質沈殿粒子を、分別洗浄したものなどが用いられる。
The compound or composite compound used as a raw material for the method of the present invention includes oxides, hydrated oxides, nitrides, borides and the like, and among these, it is preferable to be selected from oxides and hydrated oxides.
For example, one or more alkoxides of the above element group, for example, titanium butoxide, zirconium isopropoxide, tetraethylorthosilicate, etc. are hydrolyzed at a low temperature (for example, 0 to 80 ° C.) to form amorphous hydrated titanium dioxide. Hydrated zirconium oxide or hydrated silicon dioxide particles formed and dried at a temperature not crystallizing (eg 50 to 300 ° C.), or titanium chloride, zirconium nitrate, zinc nitrate, stannous chloride For example, an aqueous solution of a metal salt such as indium chloride is added with an alkaline aqueous solution such as aqueous ammonia, and the resulting amorphous precipitated particles of the hydrated oxide are separated and washed.

本発明方法の原料として用いられる化合物又は複合化合物の非晶質粒子は、それが結晶化しない温度で、予め乾燥しておくことが好ましいが、それが、水分を含むゲル又はスラリーの状態にあるものであってもよい。
上記非晶質粒子の粒子サイズ及び粒子形状に制限はない、一般に非晶質粒子の粒子サイズは1〜1000μmの範囲内にあることが好ましく、より好ましくは10〜100μmである。
The amorphous particles of the compound or composite compound used as the raw material of the method of the present invention are preferably dried in advance at a temperature at which they do not crystallize, but they are in a gel or slurry containing water. It may be a thing.
The particle size and particle shape of the amorphous particles are not limited. In general, the particle size of the amorphous particles is preferably in the range of 1 to 1000 μm, more preferably 10 to 100 μm.

本発明方法において、原料として用いられる前記元素群の化合物又は複合化合物の非晶質粒子は、機械的衝撃力を付加する処理に供される。この衝撃力付加処理において、非晶質粒子に付加される衝撃力の加速度は、9.8〜9.8×102m/s2(1〜100G)であることが好ましく、より好ましくは49〜490m/s2(5〜50G)である。衝撃力の加速度が、9.8×102m/s2をこえると、被衝撃材料中に、衝撃付与材の一部が、混入(コンタミネーション)することがある。また、それが9.8m/s2未満であると、所望の非晶質→結晶質変換が不十分になることがある。
本発明方法において、非晶質粒子に機械的衝撃力を付加する手段には、制限がないが、メカニカルミリング法及び製造、或は衝撃プレス法及び装置などを用いることができる。これらのなかでも、メカニカルミリング法及び製造、例えばボールミル又はビーズミルを用いることが好ましくミリング用ボール及びビーズはガラス、ジルコニア、チタニア、アルミナ及びステンレスなどの硬質材料により形成されることが好ましい。
In the method of the present invention, the amorphous particles of the compound or composite compound of the element group used as a raw material are subjected to a treatment for applying a mechanical impact force. In this impact force addition treatment, the acceleration of the impact force applied to the amorphous particles is preferably 9.8 to 9.8 × 10 2 m / s 2 (1 to 100 G), more preferably 49. It is -490m / s < 2 > (5-50G). When the acceleration of the impact force exceeds 9.8 × 10 2 m / s 2 , a part of the impact imparting material may be mixed (contaminated) in the impacted material. On the other hand, if it is less than 9.8 m / s 2 , the desired amorphous to crystalline conversion may be insufficient.
In the method of the present invention, means for applying a mechanical impact force to the amorphous particles is not limited, but a mechanical milling method and production, or an impact press method and apparatus can be used. Among these, it is preferable to use a mechanical milling method and production, for example, a ball mill or a bead mill, and the milling balls and beads are preferably formed of a hard material such as glass, zirconia, titania, alumina, and stainless steel.

本発明方法において、衝撃力付加処理は、200℃以下の温度で行われることが好ましく、より好ましい処理温度は0〜80℃であり、より好ましくは常温である。また衝撃力付加処理は、大気中において行われてもよく、或は非酸化性雰囲気で行われてもよい。本発明方法の衝撃力は付加工程において、非晶質粒子に構成原子の欠陥、例えば酸素原子欠陥を与えて、導電性結晶性粒子又は触媒粒子を製造する場合には、衝撃力付加処理は、非酸化性雰囲気内で施されることが好ましい。この非酸化性雰囲気には脱酸素剤(例えばアンモニア及びメチルエチルケトオキシムなど)及び/又は 還元剤(例えばヒドラジン及び硫酸ヒドロキシルアミンなど)が含まれていてもよく、或は、窒素ガス、又はアルゴンガスなどの、原料粒子及び生成物粒子に対し不反応性のガスを用いてもよい。
本発明方法の衝撃力付加処理の際の雰囲気圧力に格別の制限はなく、一般に大気圧±500hPaの範囲内で行われることが好ましく、より好ましくは大気圧である。
In the method of the present invention, the impact force addition treatment is preferably performed at a temperature of 200 ° C. or lower, more preferably a treatment temperature of 0 to 80 ° C., more preferably a normal temperature. Further, the impact force addition treatment may be performed in the air, or may be performed in a non-oxidizing atmosphere. When the impact force of the method of the present invention is to produce conductive crystalline particles or catalyst particles by giving defects of constituent atoms, for example, oxygen atom defects, to the amorphous particles in the addition step, the impact force addition treatment is performed as follows: It is preferably applied in a non-oxidizing atmosphere. This non-oxidizing atmosphere may contain oxygen scavengers (such as ammonia and methyl ethyl ketoxime) and / or reducing agents (such as hydrazine and hydroxylamine sulfate), or nitrogen gas or argon gas, etc. A gas that is unreactive with the raw material particles and the product particles may be used.
There is no particular limitation on the atmospheric pressure during the impact force addition treatment of the method of the present invention, and it is generally preferably carried out within the range of atmospheric pressure ± 500 hPa, more preferably atmospheric pressure.

本発明方法により得られる結晶性セラミックス粒子は、例えば結晶性酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化すず、酸化インジウム、ITO(シンジウム−すず、複合酸化物)、及び酸化珪素などの結晶性セラミックス粒子を包含する。   The crystalline ceramic particles obtained by the method of the present invention are crystalline ceramic particles such as crystalline titanium oxide, zirconium oxide, zinc oxide, tin oxide, indium oxide, ITO (cindium-tin, composite oxide), and silicon oxide. Is included.

上記酸化チタンは、結晶性アナターゼ型二酸化チタン、結晶性ルチル型二酸化チタン、結晶性ブルッカイト型二酸化チタン、酸素原子不足(欠陥)型結晶性二酸化チタン(アナターゼ型ルチル型の両方を包含する)、並びに窒素ドープ結晶性二酸化チタンなどの結晶性可視光反応性二酸化チタンを包含する。   The titanium oxide includes crystalline anatase-type titanium dioxide, crystalline rutile-type titanium dioxide, crystalline brookite-type titanium dioxide, oxygen atom-deficient (defect) -type crystalline titanium dioxide (including both anatase-type rutile type), and Includes crystalline visible light reactive titanium dioxide such as nitrogen doped crystalline titanium dioxide.

上記酸化亜鉛は、結晶性ZnO及び酸素不足型結晶性酸化亜鉛、異種元素ドープ型結晶性酸化亜鉛(例えばAl−ドープ型結晶性導電性酸化亜鉛)を包含し、
本発明方法において、Ti,Zr,Zn,Sn,In及びSi元素の2種以上を含む複合化合物の非晶質粒子を原料として用いた場合、これらの複合化合物の結晶性粒子又はドープ型結晶性粒子を得ることができる。例えば、本発明方法において、Snの非晶質化合物粒子と、Inの非晶質化合物粒子との混合物を出発原料として用いた場合、SnドープIn化合物(ITO)の結晶性粒子を得ることができる。
The zinc oxide includes crystalline ZnO, oxygen-deficient crystalline zinc oxide, heterogeneous element doped crystalline zinc oxide (eg, Al-doped crystalline conductive zinc oxide),
In the method of the present invention, when amorphous particles of a composite compound containing two or more of Ti, Zr, Zn, Sn, In and Si elements are used as raw materials, the crystalline particles or doped crystallinity of these composite compounds Particles can be obtained. For example, in the method of the present invention, when a mixture of Sn amorphous compound particles and In amorphous compound particles is used as a starting material, Sn-doped In compound (ITO) crystalline particles can be obtained. .

実施例
本発明方法を下記実施例により更に説明する。
Examples The process of the present invention is further illustrated by the following examples.

17.9gのSi(OC254 を19.8gのエタノール中に溶解し、この溶液に希塩酸(3.9%,6.4g)を添加した。この溶液を十分に撹拌した後、これに9.74gのTi(OC494 と26.4gのエタノールとを混合し、この混合物を、オーブン中で撹拌して、温度50℃において、ゲル化させた。
得られたSi−Ti水和酸化物混合ゲル2gを、遊星型ボールミル(ボールの径:10nm、ボール数;10個、ボール材質:めのう、回転数:720rpm)中に入れ、これに、室温、大気中において、ボールミリング処理を0時間及び1〜20時間施してゲル化させた。得られたゲル(処理時間:0の場合は、混合物)を、X線回折装置に供して、粒子の結晶性を測定した。測定結晶を図1に示す。
図1において、ボールミル処理時間:0の場合には、結晶性粒子の生成は認められなかったが、処理時間が長くなるにつれて、二酸化チタンの結晶構造の生成認められ、その前期においては、SiO2−TiO2ゲルから、アナターゼ型TiO2結晶粒子の生成が認められ、その後期においては、ルチル型TiO2結晶粒子の生成が認められた。
17.9 g Si (OC 2 H 5 ) 4 was dissolved in 19.8 g ethanol and dilute hydrochloric acid (3.9%, 6.4 g) was added to this solution. After the solution is thoroughly stirred, 9.74 g Ti (OC 4 H 9 ) 4 and 26.4 g ethanol are mixed with it, and the mixture is stirred in an oven at a temperature of 50 ° C. Gelled.
2 g of the obtained Si—Ti hydrated oxide mixed gel was placed in a planetary ball mill (ball diameter: 10 nm, number of balls: 10, ball material: agate, number of revolutions: 720 rpm). In the atmosphere, ball milling was performed for 0 hour and 1 to 20 hours to cause gelation. The obtained gel (mixture in the case of processing time: 0) was subjected to an X-ray diffractometer to measure the crystallinity of the particles. The measured crystal is shown in FIG.
In Figure 1, a ball mill processing time in the case of 0, although not observed formation of crystalline grains, as the processing time increases, observed generation of the crystal structure of titanium dioxide, in the previous period, SiO 2 from -TiO 2 gels, generation of anatase TiO 2 crystal grains was observed, in the latter, formation of rutile TiO 2 crystal grains were observed.

実施例1と同様にして、結晶性粒子を製造した。但し、原料としてSi(OC254 を用いなかった。またボールミリング処理時間を0,1〜5時間の範囲内で変化させたX−線回折結果を図2に示す。
図2において、ルチル型TiO2結晶粒子の生成が確認された。
Crystalline particles were produced in the same manner as in Example 1. However, Si (OC 2 H 5 ) 4 was not used as a raw material. FIG. 2 shows the results of X-ray diffraction in which the ball milling time was changed within the range of 0 to 1 to 5 hours.
In FIG. 2, the generation of rutile TiO 2 crystal particles was confirmed.

実施例1において、遊星型ボールミルによる処理回転数及び処理時間を、下記4段階:
なし、
720rpm×40時間、
720rpm×5時間、
360rpm×80時間、
に変化させ、得られた、SiO2−TiO2混合ゲルを、青色染料(メチレンブルー)の水溶液中に、分散させ、これに強度1mW/cm2の紫外線を照射して、吸光度の経時変化を測定し、これによりゲル中に含まれているSiO2−TiO2結晶粒子の光触媒作用によるメチレンブルーの分解速度を測定した。測定結果を図3に示す。
図3は、SiO2−TiO2非晶質粒子の混合ゲルのメカニカルミリング処理によりアナターゼ型TiO2結晶性粒子が生成し、この結晶性粒子が、光触媒活性を有することが確認された。
In Example 1, the processing rotation speed and processing time by the planetary ball mill are set to the following four stages:
None,
720 rpm x 40 hours,
720 rpm x 5 hours,
360 rpm x 80 hours,
The resulting SiO 2 —TiO 2 mixed gel was dispersed in an aqueous solution of a blue dye (methylene blue) and irradiated with ultraviolet light having an intensity of 1 mW / cm 2 to measure the change in absorbance over time. Thus, the decomposition rate of methylene blue due to the photocatalytic action of the SiO 2 —TiO 2 crystal particles contained in the gel was measured. The measurement results are shown in FIG.
In FIG. 3, it was confirmed that anatase TiO 2 crystalline particles were generated by mechanical milling of the mixed gel of SiO 2 —TiO 2 amorphous particles, and the crystalline particles had photocatalytic activity.

塩化チタン水溶液(濃度:50g/リットル)中にアンモニア水(濃度:200g/リットル)を添加してこれを中和し、水和二酸化チタンの非晶質粒子を含むゲルを生成させ、これを分別して、室温において乾燥した。この乾燥ゲル20gを、遊星型ボールミルに装入しアンモニア含有還元性ガス雰囲気中において、室温において、直径10mmのメノーボール20個を使用して、20時間のメカニカルミリング処理を施した。得られた粒子のX線回折分析により、二酸化チタン結晶粒子の生成及び、これか窒素によりドープされていることを確認した。   Ammonia water (concentration: 200 g / liter) is added to an aqueous solution of titanium chloride (concentration: 50 g / liter) to neutralize it to produce a gel containing amorphous particles of hydrated titanium dioxide. Separately, it was dried at room temperature. 20 g of this dried gel was placed in a planetary ball mill and subjected to mechanical milling for 20 hours using 20 meno balls having a diameter of 10 mm at room temperature in an ammonia-containing reducing gas atmosphere. By X-ray diffraction analysis of the obtained particles, it was confirmed that titanium dioxide crystal particles were produced and doped with nitrogen.

塩化第一すずと、塩化インジウムとの質量比1:9の混合物20gを、1000mlの水中に溶解し、この水溶液をアンモニア水により中和して、沈澱を生成させた。この沈澱粒子を分別し、水洗し、温度80℃において乾燥した。この乾燥したゲル10gを、実施例4と同一のボールミリング処理に供した。得られた粒子を、X線回折分析に供したところ、インジウム−すず、複合化合物の結晶が生成していることを確認した。   20 g of a 1: 9 mass ratio mixture of stannous chloride and indium chloride was dissolved in 1000 ml of water, and this aqueous solution was neutralized with aqueous ammonia to form a precipitate. The precipitated particles were separated, washed with water and dried at a temperature of 80 ° C. 10 g of this dried gel was subjected to the same ball milling treatment as in Example 4. When the obtained particles were subjected to X-ray diffraction analysis, it was confirmed that indium-tin and composite compound crystals were formed.

本発明方法は、各種機能性を有するTi,Zr,Zn,Sn,In,Siの少なくとも1元素を含有する結晶性粒子を、高温焼成工程及び粉砕工程などの、煩雑で長時間にわたる工程を必要とすることなく容易に製造することを可能にするものである。また本発明方法は、その原料として用いられる非結晶質粒子の種類、及び衝撃力付加処理の処理条件を適宜に設定することにより、触媒、光触媒、可視光応答性光触媒、導電性セラミックス粒子の製造が可能であり、本発明方法により製造される結晶性粒子は、酸化物、複合酸化物、窒化物、ほう化物などのセラミックス及びサイアロンセラミックス粒子を包含する。   The method of the present invention requires complicated and long-time processes such as a high-temperature firing process and a pulverizing process for crystalline particles containing at least one element of Ti, Zr, Zn, Sn, In, and Si having various functions. This makes it possible to manufacture easily. In addition, the method of the present invention can produce a catalyst, a photocatalyst, a visible light responsive photocatalyst, and conductive ceramic particles by appropriately setting the kind of amorphous particles used as the raw material and the treatment conditions for the impact force addition treatment. The crystalline particles produced by the method of the present invention include ceramics such as oxides, composite oxides, nitrides, borides, and sialon ceramic particles.

実施例1における、SiO2−TiO2複合化合物のボールミリング処理において、各種ボールミリング条件の変化と得られた粒子のX線回折パターの変化の関係を示すチャート。In Example 1, the ball milling of SiO 2 -TiO 2 composite compound, various ball chart showing the relationship between the change in X-ray diffraction pattern of variation between the obtained particles of milling conditions. 実施例2において、TiO2のボールミル処理において、ボールミリング時間の変化と、得られた粒子のX線回折パターンの変化の関係を示すチャート。In Example 2, the chart showing the ball milling of TiO 2, and the change of the ball milling time, the relationship between the change in X-ray diffraction pattern of the obtained particles. 実施例1におけるSiO2−TiO2複合化合物のボールミリング処理において、ボールミリング処理条件の変化と、メチレンブルー水溶液の濃度変化との関係を示すチャート。3 is a chart showing a relationship between a change in ball milling treatment conditions and a change in concentration of a methylene blue aqueous solution in the ball milling treatment of the SiO 2 —TiO 2 composite compound in Example 1.

符号の説明Explanation of symbols

R…ルチル型TiO2
A…アナターゼ型TiO2
Q…SiO2(クオーツ)
R.T.…回転数(rpm)
MB…メチレンブルー
M…モル
R ... rutile TiO 2
A ... anatase TiO 2
Q ... SiO 2 (Quartz)
R. T.A. ... rotation speed (rpm)
MB ... Methylene blue M ... mol

Claims (6)

Ti,Zr,Zn,Sn,In及びSiから選択された少なくとも1元素を含む化合物の非晶質粒子の少なくとも1種を、衝撃力を付加する処理に供して、前記非晶質粒子を結晶質セラミックス粒子に変換することを特徴とする結晶性セラミックス粒子の製造方法。   At least one amorphous particle of a compound containing at least one element selected from Ti, Zr, Zn, Sn, In and Si is subjected to a treatment for applying an impact force, and the amorphous particle is converted into a crystalline material. A method for producing crystalline ceramic particles, characterized by converting into ceramic particles. 前記化合物が、前記元素の少なくとも1種を含む酸化物及び水和酸化物から選ばれる、請求項1に記載の結晶質セラミックス粒子の製造方法。   The method for producing crystalline ceramic particles according to claim 1, wherein the compound is selected from an oxide containing at least one of the elements and a hydrated oxide. 前記酸化物及び水和酸化物のそれぞれが液相反応法により合成されたものである、請求項2に記載の結晶質セラミックス粒子の製造方法。   The method for producing crystalline ceramic particles according to claim 2, wherein each of the oxide and the hydrated oxide is synthesized by a liquid phase reaction method. 前記衝撃力を付加する処理が、メカニカルミリング法により施される、請求項1に記載の結晶性セラミックス粒子の製造方法。   The method for producing crystalline ceramic particles according to claim 1, wherein the treatment for applying the impact force is performed by a mechanical milling method. 前記衝撃力を付加する処理が、大気中又は非酸化性雰囲気中で施される、請求項1又は4に記載の結晶性セラミックス粒子の製造方法。   The manufacturing method of the crystalline ceramic particle of Claim 1 or 4 with which the process which adds the said impact force is performed in air | atmosphere or non-oxidizing atmosphere. 前記結晶性セラミックス粒子が、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化すず、酸化インジウム、酸化珪素及びインジウム−すず配合酸化物から選ばれた少なくとも1種を含む、請求項1〜5のいずれか1項に記載の結晶性セラミックス粒子の製造方法。   The crystalline ceramic particles include at least one selected from titanium oxide, zirconium oxide, zinc oxide, tin oxide, indium oxide, silicon oxide, and indium-tin mixed oxide. The manufacturing method of the crystalline-ceramics particle | grains of description.
JP2003406302A 2003-12-04 2003-12-04 Method for manufacturing crystalline ceramic particle Pending JP2005162562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406302A JP2005162562A (en) 2003-12-04 2003-12-04 Method for manufacturing crystalline ceramic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406302A JP2005162562A (en) 2003-12-04 2003-12-04 Method for manufacturing crystalline ceramic particle

Publications (1)

Publication Number Publication Date
JP2005162562A true JP2005162562A (en) 2005-06-23

Family

ID=34728720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406302A Pending JP2005162562A (en) 2003-12-04 2003-12-04 Method for manufacturing crystalline ceramic particle

Country Status (1)

Country Link
JP (1) JP2005162562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054692A (en) * 2005-08-22 2007-03-08 Sony Corp Photocatalyst, its manufacturing method and photocatalyst film
WO2012127669A1 (en) 2011-03-23 2012-09-27 エム・テクニック株式会社 Highly efficient method for producing ceramic microparticles
JP2012201569A (en) * 2011-03-28 2012-10-22 Hiroshima Univ Titanium oxide particle and method for producing the same
JP2018187592A (en) * 2017-05-11 2018-11-29 国立大学法人広島大学 Method for producing titanium oxide for photocatalysts, and photocatalytic material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054692A (en) * 2005-08-22 2007-03-08 Sony Corp Photocatalyst, its manufacturing method and photocatalyst film
WO2012127669A1 (en) 2011-03-23 2012-09-27 エム・テクニック株式会社 Highly efficient method for producing ceramic microparticles
US9371236B2 (en) 2011-03-23 2016-06-21 M. Technique Co., Ltd. Highly efficient method for producing ceramic microparticles
JP2012201569A (en) * 2011-03-28 2012-10-22 Hiroshima Univ Titanium oxide particle and method for producing the same
JP2018187592A (en) * 2017-05-11 2018-11-29 国立大学法人広島大学 Method for producing titanium oxide for photocatalysts, and photocatalytic material
JP7064231B2 (en) 2017-05-11 2022-05-10 国立大学法人広島大学 Manufacturing method of titanium oxide for photocatalyst

Similar Documents

Publication Publication Date Title
Ding et al. Synthesis and microstructure control of nanocrystalline titania powders via a sol—gel process
CN101062780B (en) Nano titanium oxide and mechanical force chemical reaction preparation method for its composite powder
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
CN106536415B (en) Fine titanium oxide particle and preparation method thereof
JPH01301518A (en) Production of titanium dioxide
DE102004027549A1 (en) Carbonaceous titania photocatalyst and process for its preparation
WO2000035811A1 (en) Perovskite type composite oxide containing titanium
EP1719737A1 (en) Process for the preparation of a temperature-stable TiO2/SiO2 mixed-oxide and its use as a catalyst carrier
CN108906107A (en) A kind of preparation method of sulfur and nitrogen co-doped titanium dioxide
JP3055684B1 (en) Method for producing anatase-type titanium oxide
JP2005162562A (en) Method for manufacturing crystalline ceramic particle
JP3482461B2 (en) Potassium titanate photocatalyst and method for producing the same
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
JPH08257399A (en) Production of titania catalyst
JPH0881223A (en) Production of anatase type titanium oxide
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JP3616927B1 (en) Method for producing titanium oxide-based fine wire product
JP4565160B2 (en) New titanium dioxide and method for producing the same
JP2000095521A (en) Production of titanium dioxide
JPH09202620A (en) Rutile-type titanium dioxide particle and its production
JP4447241B2 (en) Visible light responsive photocatalyst particles and method for producing the same
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JP5603304B2 (en) Photocatalyst production method
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production