JP2005161391A - Welding defect detecting apparatus for series spot welding - Google Patents

Welding defect detecting apparatus for series spot welding Download PDF

Info

Publication number
JP2005161391A
JP2005161391A JP2003407533A JP2003407533A JP2005161391A JP 2005161391 A JP2005161391 A JP 2005161391A JP 2003407533 A JP2003407533 A JP 2003407533A JP 2003407533 A JP2003407533 A JP 2003407533A JP 2005161391 A JP2005161391 A JP 2005161391A
Authority
JP
Japan
Prior art keywords
welding
electrode
metal plates
metal plate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407533A
Other languages
Japanese (ja)
Inventor
Shinya Kato
慎也 加藤
Seiichi Kamiya
誠一 神谷
Kazuhiro Noma
一浩 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2003407533A priority Critical patent/JP2005161391A/en
Publication of JP2005161391A publication Critical patent/JP2005161391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding defect detecting apparatus capable of easily and surely detecting welding defects in series spot welding. <P>SOLUTION: On the basis of a voltage between respective electrode chips 26, 27 detected by a voltmeter 44 at the time of energization of a welding current to the respective electrode chips 26. 27 and on the basis of the welding current value, a control circuit 46 calculates an electric resistance between the respective electrode chips 26, 27 by the Ohm's law, discriminates that normal welding is carried out when the electric resistance is a prescribed value Vt or below, and discriminates that welding defects are caused when the electric resistance is greater than the prescribed value Vt. The prescribed value Vt is set to the electric resistance by carrying out an experiment in which welding strength of respective metallic plates Wa, Wb is examined by varying an electric resistance between the respective electrode chips 26, 27, and by finding the electric resistance at which a sufficient welding strength can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はシリーズスポット溶接の溶接不良検出装置に関するものである。   The present invention relates to a welding failure detection apparatus for series spot welding.

従来より、金属板同士の溶接方法としては、ダイレクトスポット溶接法およびシリーズスポット溶接法が知られている。   Conventionally, a direct spot welding method and a series spot welding method are known as welding methods for metal plates.

ダイレクトスポット溶接では、重ね合わせた2枚の金属板を直接、上下の電極で挟みながら加圧して板厚方向に溶接電流を流すことで発生する金属板の抵抗発熱を利用し、点状の溶接部を得ている。すなわち、溶接電流を流した際に両金属板の接触箇所に金属板の溶融した部分(一般に「溶接ナゲット」と呼ばれる)が生成され、その溶接ナゲットによって両金属板が点状に溶接される。   In direct spot welding, spot welding is performed by using the resistance heating of the metal plate that is generated by applying pressure while sandwiching the two metal plates between the upper and lower electrodes and flowing the welding current in the plate thickness direction. Have gained a part. That is, when a welding current is passed, a melted portion of the metal plate (generally referred to as “weld nugget”) is generated at the contact point between the two metal plates, and the two metal plates are welded in a spot shape by the weld nugget.

シリーズスポット溶接法は、重ね合わせた2枚の金属板を離間する一対の電極により一方向から加圧しながら両電極間に溶接電流を流すことによって点状の溶接部を得るものである。このシリーズスポット溶接法には、バック電極を用いるタイプと用いないタイプとがある。
バック電極を用いるタイプでは、電極の加圧側とは反対側に位置する金属板の裏側にバック電極を配置し、一方の電極→重ね合わせた金属板→バック電極→重ね合わせた金属板→他方の電極という電流経路を構成し、その電流経路に溶接電流を流すことにより、重ね合わせた両金属板に点状に溶接を行う。
In the series spot welding method, a point-like welded portion is obtained by flowing a welding current between two electrodes while applying pressure from one direction by a pair of electrodes that separate two stacked metal plates. This series spot welding method includes a type using a back electrode and a type not using it.
In the type using the back electrode, the back electrode is arranged on the back side of the metal plate located on the opposite side to the pressure side of the electrode, one electrode → superposed metal plate → back electrode → superposed metal plate → the other By constructing a current path called an electrode, and flowing a welding current through the current path, welding is performed in a dotted manner on the two metal plates that are overlapped.

それに対して、バック電極を用いないタイプでは、一方の電極→重ね合わせた金属板→他方の電極という電流経路を構成し、その電流経路に溶接電流を流すことにより、重ね合わせた両金属板に点状に溶接を行う。そのため、溶接の前工程で組み付けられた別部材等が金属板の裏側を覆って閉断面部位を形成し、金属板の裏側にバック電極を配置できない場合に用いられる。   On the other hand, in the type that does not use the back electrode, a current path of one electrode → superimposed metal plate → the other electrode is configured, and a welding current is passed through the current path, so that both superposed metal plates Weld in a spot shape. Therefore, it is used when a separate member or the like assembled in the pre-welding process covers the back side of the metal plate to form a closed cross-section and the back electrode cannot be arranged on the back side of the metal plate.

しかし、バック電極を用いないシリーズスポット溶接法には、十分なナゲットを形成することが困難であることに加え、ブローホールが形成されることから、十分な溶接強度が得られないという欠点があった。
そこで、本出願人は、重ね合わせた2枚の金属板の一方の表面に、離間する一対の電極を加圧接触させて両電極間に溶接電流を流し、これらの2枚の金属板を溶接するシリーズスポット溶接方法であって、前記一方の金属板の前記電極を加圧接触させる部位に、部分的に一般部より一段高い座面を形成するとともに、前記電極は先端を球面に形成し、前記電極を前記座面に、前記座面を押しつぶすように加圧接触させて溶接することを特徴とするシリーズスポット溶接方法を開発した(特許文献1参照)。
特開2002−239742号公報(第2〜6頁、図1〜図4)
However, the series spot welding method that does not use a back electrode has a drawback that it is difficult to form a sufficient nugget and a blow hole is formed, so that a sufficient welding strength cannot be obtained. It was.
Therefore, the applicant of the present invention presses and contacts a pair of spaced apart electrodes on one surface of two superimposed metal plates and causes a welding current to flow between the two electrodes, and welds the two metal plates. A series spot welding method, wherein the electrode of the one metal plate is press-contacted with a part of the seat surface that is partially higher than the general part, and the electrode has a spherical tip. A series spot welding method has been developed in which the electrode is welded to the seating surface under pressure contact so as to crush the seating surface (see Patent Document 1).
JP 2002-239742 A (pages 2 to 6, FIGS. 1 to 4)

ダイレクトスポット溶接では、重ね合わせた2枚の金属板を上下の電極で挟みながら高い加圧力(300kgf程度)で加圧しながら板厚方向に溶接電流を流すため、2枚の金属板のいずれかが変形しているなどの理由により金属板間に隙間がある場合でも、高い加圧力により両金属板が密着させられて隙間が無くなり、確実な溶接を行うことができる。   In direct spot welding, one of the two metal plates is used because a welding current flows in the plate thickness direction while pressing with a high pressure (about 300 kgf) while sandwiching the two metal plates between the upper and lower electrodes. Even when there is a gap between the metal plates due to deformation or the like, the two metal plates are brought into close contact with each other by a high pressure, and the gap is eliminated, so that reliable welding can be performed.

また、バック電極を用いるシリーズスポット溶接法では、重ね合わせた2枚の金属板を離間する一対の電極により一方向から加圧しながら両電極間に電流を流す際に、電極の加圧側とは反対側に位置する金属板の裏側にバック電極が配置されている。そのため、バック電極を用いるシリーズスポット溶接法における電極の加圧力は、ダイレクトスポット溶接と同様に高くなり、2枚の金属板のいずれかが変形しているなどの理由により金属板間に隙間がある場合でも、当該加圧力により両金属板が密着させられて隙間が無くなり、確実な溶接を行うことができる。   Also, in the series spot welding method using a back electrode, when a current is passed between both electrodes while applying pressure from one direction by a pair of electrodes that separate two stacked metal plates, it is opposite to the pressure side of the electrode. A back electrode is disposed on the back side of the metal plate located on the side. Therefore, the applied pressure of the electrode in the series spot welding method using the back electrode is high as in the direct spot welding, and there is a gap between the metal plates because one of the two metal plates is deformed. Even in this case, both the metal plates are brought into close contact with each other by the applied pressure, and there is no gap, so that reliable welding can be performed.

それに対して、特許文献1の技術を含むバック電極を用いないシリーズスポット溶接法では、重ね合わせた2枚の金属板を一対の電極により一方向のみから比較的低い加圧力(50kgf程度)で加圧するため、2枚の金属板のいずれかが変形しているなどの理由により金属板間に隙間がある場合、その隙間が大きくなるほど各金属板の密着面積が小さくなる。そして、各金属板の密着部分にしか溶接ナゲットが形成されず当該密着部分しか溶接できないため、密着面積が小さくなると溶接強度が低下して溶接不良が発生する。   On the other hand, in the series spot welding method that does not use the back electrode including the technique of Patent Document 1, two superposed metal plates are applied with a relatively low pressure (about 50 kgf) from only one direction by a pair of electrodes. Therefore, when there is a gap between the metal plates because one of the two metal plates is deformed or the like, the larger the gap, the smaller the contact area of each metal plate. And since a welding nugget is formed only in the contact | adherence part of each metal plate and only the said contact | adherence part can be welded, when an adhesion | attachment area becomes small, welding strength will fall and a welding defect will generate | occur | produce.

ところで、特許文献1の技術では、加圧された電極の先端が座面を押しつぶすことで、まず、座面を球面状に変形させ、次に、球面状に変形した座面を他方の金属板に対して点接触させる。その結果、一方の金属板と他方の金属板との間には、球面状に変形した座面により点状に絞られた通電経路が形成され、その通電経路を流れる溶接電流の密度が高められるため、両金属板の接触部分に十分な溶接ナゲットを生成可能になり、バック電極を用いなくても十分な溶接強度が得られる。   By the way, in the technique of Patent Document 1, the tip of the pressurized electrode crushes the seat surface, so that the seat surface is first deformed into a spherical shape, and then the seat surface deformed into a spherical shape is used as the other metal plate. Make point contact with. As a result, between the one metal plate and the other metal plate, an energization path narrowed in a dot shape by the spherically deformed bearing surface is formed, and the density of the welding current flowing through the energization path is increased. Therefore, a sufficient weld nugget can be generated at the contact portion between both metal plates, and a sufficient weld strength can be obtained without using a back electrode.

そのため、特許文献1の技術では、一方の金属板に形成された座面の高さに最適値が存在する。つまり、座面が高すぎる場合には、電極を座面に加圧接触させた際に電極が座面を十分に押しつぶすことができず、球面状に変形した座面と他方の金属板との点接触の面積(密着面積)が小さくなり、2枚の金属板に隙間がある場合と同様に、溶接強度が低下して溶接不良が発生する。   Therefore, in the technique of Patent Document 1, there is an optimum value for the height of the seating surface formed on one metal plate. In other words, if the seating surface is too high, the electrode cannot sufficiently crush the seating surface when the electrode is brought into pressure contact with the seating surface, and the seat surface deformed into a spherical shape and the other metal plate As the point contact area (adhesion area) is reduced, and there is a gap between the two metal plates, the welding strength is reduced and welding failure occurs.

そして、特許文献1の技術を含むバック電極を用いないシリーズスポット溶接法において、溶接の前工程で組み付けられた別部材等が金属板の裏側を覆う閉断面部位に溶接箇所が位置する場合には、その溶接箇所における2枚の金属板の間が隠れて見えないことから、目視で溶接不良を確認できず、破壊試験を行うしか溶接不良を確認できない。しかし、破壊試験では全数検査を行うことができない。そこで、破壊試験を行うことなく、上記のような溶接不良を簡便かつ確実に検出する技術が要求されている。   And in the series spot welding method which does not use the back electrode including the technique of patent document 1, when a welding part is located in the closed cross-section part which the other member assembled | attached by the pre-process of welding covers the back side of a metal plate, etc. Since the gap between the two metal plates at the welding location is hidden and cannot be seen, the welding failure cannot be confirmed visually, and the welding failure can be confirmed only by performing a destructive test. However, 100% inspection cannot be performed in the destructive test. Therefore, there is a demand for a technique for easily and reliably detecting the above-described welding failure without performing a destructive test.

本発明は上記要求を満足するためになされたものであって、その目的は、溶接不良を簡便かつ確実に検出可能なシリーズスポット溶接の溶接不良検出装置を提供することにある。   The present invention has been made to satisfy the above-described requirements, and an object of the present invention is to provide a welding defect detection device for series spot welding that can easily and reliably detect welding defects.

請求項1に記載の発明は、重ね合わせた2枚の金属板の一方の表面に、離間する一対の電極を加圧接触させて両電極間に溶接電流を流し、これらの2枚の金属板を溶接するシリーズスポット溶接の溶接不良検出装置であって、前記一方の金属板の前記電極を加圧接触させる部位には部分的に一般部より一段高い座面が形成されていると共に、前記電極は先端が球面に形成され、当該座面を押しつぶすように前記電極の先端を当該座面に加圧接触させた状態で両電極間に溶接電流が流され、前記両電極間に溶接電流を流しているときの前記両電極間の電圧を検出する電圧検出手段と、その電圧検出手段の検出した電圧と、両電極間の溶接電流とに基づいて、両電極間の電気抵抗を検出する抵抗検出手段と、その抵抗検出手段が検出した電気抵抗が所定値より大きい場合に、前記2枚の金属板に溶接不良が発生していると判定する判定手段とを備えたことを技術的特徴とする。   According to the first aspect of the present invention, a pair of spaced apart electrodes are brought into pressure contact with one surface of two superimposed metal plates, and a welding current is passed between the two electrodes. A welding failure detection device for series spot welding, wherein a seat surface that is partially higher than a general part is formed at a portion where the electrode of the one metal plate is in pressure contact, and the electrode The tip is formed into a spherical surface, and a welding current flows between the electrodes while the tip of the electrode is in pressure contact with the seat so as to crush the seat, and a welding current flows between the electrodes. Resistance detection for detecting the electrical resistance between the two electrodes based on the voltage detection means for detecting the voltage between the two electrodes, the voltage detected by the voltage detection means, and the welding current between the two electrodes Means and electric resistance detected by the resistance detecting means It is larger than a predetermined value, and technical features in that the two welding defects in the metal plate is a and determination means has occurred.

請求項1に記載の発明によれば、2枚の金属板を溶接するために一対の電極へ溶接電流を通電させているときの両電極間の電気抵抗を求め、その電気抵抗が所定値より大きい場合は溶接不良が発生していると判定することにより、破壊検査を行うことなく溶接不良の有無を確実に検出できる。   According to the first aspect of the present invention, the electric resistance between the two electrodes when the welding current is applied to the pair of electrodes in order to weld the two metal plates is obtained from the predetermined value. If it is larger, it is possible to reliably detect the presence or absence of welding failure without performing a destructive inspection by determining that welding failure has occurred.

ここで、両電極間の電気抵抗は、両電極間の電圧と溶接電流とに基づき、オームの法則により簡単に算出することができる。そして、両電極間の電気抵抗は当該電極への溶接電流の通電時に算出され、電気抵抗を測定するための特別の作業工程を設ける必要がない。そのため、請求項1に記載の発明によれば、溶接不良を簡便に検出できる。   Here, the electrical resistance between both electrodes can be easily calculated by Ohm's law based on the voltage between the electrodes and the welding current. And the electrical resistance between both electrodes is calculated at the time of energization of the welding current to the said electrode, and it is not necessary to provide the special work process for measuring electrical resistance. Therefore, according to the first aspect of the present invention, it is possible to easily detect defective welding.

尚、電気抵抗の前記所定値は、両電極間の電気抵抗を変化させて2枚の金属板の溶接強度を調べる実験を行い、十分な溶接強度が得られる電気抵抗値を見つけて当該電気抵抗値に設定すればよい。   The predetermined value of the electrical resistance is obtained by conducting an experiment for examining the welding strength of the two metal plates by changing the electrical resistance between both electrodes, and finding an electrical resistance value at which a sufficient welding strength can be obtained. Set it to a value.

(用語の説明)
尚、上述した[課題を解決するための手段]に記載した構成要素と、後述する[発明を実施するための最良の形態]に記載した構成部材との対応関係は以下のようになっている。
「溶接不良検出装置」は、溶接装置20に該当する。
「電圧検出手段」は、電圧検出器44に該当する。
「抵抗検出手段」は、制御回路46のマイコン56が実行するS102の処理に該当する。
「判定手段」は、制御回路46のマイコン56が実行するS103,S106の処理に該当する。
(Explanation of terms)
The correspondence between the constituent elements described in [Means for Solving the Problems] described above and the constituent members described in [Best Mode for Carrying Out the Invention] described below is as follows. .
The “welding failure detection device” corresponds to the welding device 20.
The “voltage detection means” corresponds to the voltage detector 44.
The “resistance detection unit” corresponds to the process of S102 executed by the microcomputer 56 of the control circuit 46.
The “determination means” corresponds to the processing of S103 and S106 executed by the microcomputer 56 of the control circuit 46.

[実施形態の構成]
図1は、本発明を具体化した一実施形態に係るシリーズスポット溶接の溶接装置20の概略構成を示す斜視図である。
溶接装置20は、6軸ロボットアーム22、エアシリンダ24,25、電極チップ26,27、制御装置40などから構成されている。
[Configuration of the embodiment]
FIG. 1 is a perspective view showing a schematic configuration of a welding apparatus 20 for series spot welding according to an embodiment of the present invention.
The welding device 20 includes a six-axis robot arm 22, air cylinders 24 and 25, electrode tips 26 and 27, a control device 40, and the like.

電極チップ26はエアシリンダ24から突出したピストン先端に取り付けられ、電極チップ27はエアシリンダ25から突出したピストン先端に取り付けられている。平行に配置された各エアシリンダ24,25は、6軸ロボットアーム22の手首部分22aに取り付けられている。そして、各エアシリンダ24,25には、エアポンプ(図示略)から圧搾空気が供給されるようになっている。   The electrode tip 26 is attached to the piston tip protruding from the air cylinder 24, and the electrode tip 27 is attached to the piston tip protruding from the air cylinder 25. The air cylinders 24 and 25 arranged in parallel are attached to the wrist portion 22 a of the 6-axis robot arm 22. The air cylinders 24 and 25 are supplied with compressed air from an air pump (not shown).

6軸ロボットアーム22は、各エアシリンダ24,25に支持された各電極チップ26,27を、重ね合わせた2枚の金属板(例えば、鋼板やアルミニウム合金板など)Wa,Wbの所定位置に移動させる。各エアシリンダ24,25はそれぞれ、エアポンプから供給される圧搾空気のエア圧によりピストンを伸縮させることにより、当該ピストンの先端に取り付けられている各電極チップ26,27を進退移動させ、各電極チップ26,27の先端部26a,27aを金属板Waに対して加圧接触させる。   The 6-axis robot arm 22 has the electrode chips 26 and 27 supported by the air cylinders 24 and 25 at predetermined positions on two metal plates Wa and Wb (for example, a steel plate and an aluminum alloy plate, for example). Move. Each of the air cylinders 24 and 25 expands and contracts the piston by the air pressure of the compressed air supplied from the air pump, thereby moving the electrode tips 26 and 27 attached to the tip of the piston forward and backward. The tip portions 26a and 27a of 26 and 27 are brought into pressure contact with the metal plate Wa.

金属板Waにおいて、各電極チップ26,27の先端部26a,27aが加圧接触される部位には、部分的に一般部35より一段高い座面30aを有する凸部30が形成されている。   In the metal plate Wa, a convex portion 30 having a seating surface 30a that is partially higher than the general portion 35 is formed at a portion where the tip portions 26a, 27a of the electrode tips 26, 27 are in pressure contact.

図2(A) は、各電極チップ26,27の先端部26a,27aの側面図である。図2(B) は、金属板Waに形成された座面30aを有する凸部30の平面図である。図2(C) は、図2(B) に示す凸部30の側面図である。   FIG. 2A is a side view of the tip portions 26a, 27a of the electrode tips 26, 27. FIG. FIG. 2B is a plan view of the convex portion 30 having a seating surface 30a formed on the metal plate Wa. FIG.2 (C) is a side view of the convex part 30 shown in FIG.2 (B).

各電極チップ26,27の先端部26a,27aは球面に形成されている。
凸部30は中空円錐台形状に形成されており、その頂部には円形状の座面30aを有する。すなわち、凸部30は、金属板Waの一般部35から縮径しながら盛り上がるように形成されるテーパ部30bを介して、頂部に円形状の平坦面に形成された座面30aを有するように構成されている。
The tip portions 26a and 27a of the electrode tips 26 and 27 are formed into spherical surfaces.
The convex part 30 is formed in the shape of a hollow truncated cone, and has a circular seating surface 30a on the top. That is, the convex portion 30 has a seat surface 30a formed on a circular flat surface at the top via a tapered portion 30b formed so as to rise while being reduced in diameter from the general portion 35 of the metal plate Wa. It is configured.

このように、各電極チップ26,27の先端部26a,27aが球面に形成されると共に、座面30aの頂部には円形状の平坦面が形成されているため、後述するように、電極チップ26、27の先端部26a,27bにより、座面30aを球面状に容易に変形させることができる。尚、凸部30は、金属板Waにプレス加工を施すことにより作成される。   As described above, the tip portions 26a, 27a of the electrode tips 26, 27 are formed in a spherical shape, and a circular flat surface is formed on the top portion of the seating surface 30a. The seating surface 30a can be easily deformed into a spherical shape by the tip portions 26a and 27b of 26 and 27. In addition, the convex part 30 is created by giving press work to the metal plate Wa.

ここで、金属板Waの板厚は0.65mm、金属板Wbの板厚は0.8mmまたは2mmに設定されている。また、電極チップ26,27の先端部26a,27bの先端径D0は16mmに形成され、各先端部26a,27bの離間距離は35mm程度に設定されている。そして、座面30aの直径である座面径D1を22mmに設定した場合、凸部30の直径である凸部径D2は28mmに設定され、一般部35から座面30aまでの高さである座面高Hは0.4〜1mmに設定されている。   Here, the plate thickness of the metal plate Wa is set to 0.65 mm, and the plate thickness of the metal plate Wb is set to 0.8 mm or 2 mm. The tip diameters D0 of the tip portions 26a, 27b of the electrode tips 26, 27 are formed to 16 mm, and the separation distance between the tip portions 26a, 27b is set to about 35 mm. And when the seat surface diameter D1 which is the diameter of the seat surface 30a is set to 22 mm, the convex part diameter D2 which is the diameter of the convex part 30 is set to 28 mm, and is the height from the general part 35 to the seat surface 30a. The seat height H is set to 0.4 to 1 mm.

尚、座面30aの座面径D1 は、電極チップ26,27の先端部26a,27aの先端径D0の1倍以上3倍以下の範囲で設定され、具体的には14〜48mmに設定される。
このように、最小でも座面径D1を先端径D0の1倍に設定することで、電極チップ26,27と座面30aの位置が多少ばらついても電極チップ26,27の先端部26a,27bの球面により座面30aを球面状に変形させることができる。また、最大でも座面径D1を先端径D0の3倍に設定することで、座面30a全体を緩やかに撓ませることなく、座面30aを部分的に球面状に変形させることができる。
The seating surface diameter D1 of the seating surface 30a is set in the range of 1 to 3 times the tip diameter D0 of the tip portions 26a and 27a of the electrode tips 26 and 27, specifically 14 to 48 mm. The
Thus, by setting the seating surface diameter D1 to be one times the tip diameter D0 at least, even if the positions of the electrode tips 26, 27 and the seating surface 30a vary somewhat, the tip portions 26a, 27b of the electrode tips 26, 27 are arranged. The seating surface 30a can be deformed into a spherical shape by the spherical surface. Further, by setting the seat surface diameter D1 to be three times the tip diameter D0 at the maximum, the seat surface 30a can be partially deformed into a spherical shape without gently bending the entire seat surface 30a.

図3は、溶接装置20の各電極チップ26,27へ供給する溶接電流を制御すると共に溶接不良を検出する制御装置40の電気的構成を示す回路図である。   FIG. 3 is a circuit diagram showing an electrical configuration of the control device 40 that controls the welding current supplied to the electrode tips 26 and 27 of the welding device 20 and detects a welding failure.

制御装置40は、溶接トランス42、電圧検出器44、制御回路46、交流電源48、サイリスタSCR1,SCR2などから構成されている。尚、電圧検出器44、制御回路46、サイリスタSCR1,SCR2からなる装置は「タイマコンタクタ」と呼ばれる。
溶接トランス42の二次側巻線には各電極チップ26,27が電気的に接続されている。また、溶接トランス42の一次側巻線には、各サイリスタSCR1,SCR2を介して交流電源48が電気的に接続されている。
The control device 40 includes a welding transformer 42, a voltage detector 44, a control circuit 46, an AC power supply 48, thyristors SCR1 and SCR2, and the like. A device including the voltage detector 44, the control circuit 46, and the thyristors SCR1 and SCR2 is referred to as a “timer contactor”.
The electrode tips 26 and 27 are electrically connected to the secondary winding of the welding transformer 42. An AC power supply 48 is electrically connected to the primary winding of the welding transformer 42 via the thyristors SCR1 and SCR2.

電圧検出器44は、各電極チップ26,27間の電圧(溶接トランス42の二次側電圧)を検出し、その電圧値(電圧データ)を制御回路46へ出力する。そして、制御回路46は、後述するように、各電極チップ26,27間の電圧から各電極チップ26,27間の電気抵抗を検出し、その電気抵抗に基づいて各金属板Wa,Wbの溶接不良を検出する。   The voltage detector 44 detects the voltage between the electrode tips 26 and 27 (secondary voltage of the welding transformer 42) and outputs the voltage value (voltage data) to the control circuit 46. Then, as will be described later, the control circuit 46 detects the electrical resistance between the electrode tips 26 and 27 from the voltage between the electrode tips 26 and 27, and welds the metal plates Wa and Wb based on the electrical resistance. Detect defects.

互いに逆方向に並列接続された各サイリスタSCR1,SCR2のゲート端子は制御回路46に接続されている。そして、制御回路46は、各サイリスタSCR1,SCR2のゲート端子にトリガ信号を出力して制御することにより、交流電源48から溶接トランス42の一次側に供給される溶接電流の通電・遮断の切り替えと位相制御とを行う。   The gate terminals of the thyristors SCR 1 and SCR 2 that are connected in parallel in opposite directions are connected to the control circuit 46. The control circuit 46 outputs and controls a trigger signal to the gate terminals of the thyristors SCR1 and SCR2, thereby switching energization / interruption of the welding current supplied from the AC power supply 48 to the primary side of the welding transformer 42. Phase control is performed.

図4は、制御回路46の内部構成を示す回路図である。
制御回路46は、表示装置52、音声再生装置53、操作装置54、マイクロコンピュータ(以下、「マイコン」と略称する)56から構成されている。尚、各装置52〜54をマイコン56に一体化した一体型ティーチングボックスとして構成してもよい。
表示装置52は、ディスプレイや表示ランプなどから構成され、後述するように、マイコン56による溶接不良の判定処理結果を表示する。
操作装置54は、押しボタン群などから構成され、溶接装置20の操作者による当該押しボタン群の操作結果に対応した操作信号を生成してマイコン56へ出力する。
FIG. 4 is a circuit diagram showing the internal configuration of the control circuit 46.
The control circuit 46 includes a display device 52, a sound reproduction device 53, an operation device 54, and a microcomputer (hereinafter abbreviated as “microcomputer”) 56. In addition, you may comprise each apparatus 52-54 as an integrated teaching box integrated with the microcomputer 56. FIG.
The display device 52 is composed of a display, a display lamp, and the like, and displays a welding failure determination processing result by the microcomputer 56, as will be described later.
The operation device 54 includes a push button group and the like, and generates an operation signal corresponding to the operation result of the push button group by the operator of the welding device 20 and outputs the operation signal to the microcomputer 56.

マイコン56は、中央演算処理装置(CPU)56a、メモリ56b、外部記憶装置(外部記録装置)56c、インターフェース(I/O)56d,56eなどから構成されている。
メモリ56bには、溶接電流の制御処理を行うプログラムや溶接不良の判定処理を行うプログラムなどが記憶されている。インタフェース56dは、各装置52,54,56cとCPU56aとのデータ信号のやり取りを制御する。また、インタフェース56eは、電圧検出器44および各サイリスタSCR1,SCR2とCPU56aとのデータ信号のやり取りを制御する。
外部記憶装置56cは、コンピュータで読み取り可能な記録媒体を備え、その記録媒体にはメモリ56bと同様のプログラムなどが記憶されている。ちなみに、コンピュータで読み取り可能な記録媒体には、半導体メモリ(スマートメディア,メモリスティックなど)、ハードディスク、FD(Floppy Disk)、データカード(ICカード(IC:Integrated Circuit),磁気カードなど)、光ディスク(CD−ROM,DVDなど)、光磁気ディスク(MOなど)、相変化ディスク、磁気テープなどがある。ところで、前記記録媒体の具体例の名称には登録商標が含まれる。尚、外部記憶装置56cを省いてもよい。
The microcomputer 56 includes a central processing unit (CPU) 56a, a memory 56b, an external storage device (external recording device) 56c, and interfaces (I / O) 56d and 56e.
The memory 56b stores a program for performing a welding current control process, a program for performing a welding failure determination process, and the like. The interface 56d controls the exchange of data signals between the devices 52, 54, and 56c and the CPU 56a. The interface 56e controls the exchange of data signals between the voltage detector 44 and each thyristor SCR1, SCR2 and the CPU 56a.
The external storage device 56c includes a computer-readable recording medium, and a program similar to the memory 56b is stored in the recording medium. Incidentally, computer-readable recording media include semiconductor memory (smart media, memory stick, etc.), hard disk, FD (Floppy Disk), data card (IC card (IC: Integrated Circuit), magnetic card, etc.), optical disk ( CD-ROM, DVD, etc.), magneto-optical disk (MO, etc.), phase change disk, magnetic tape, etc. By the way, the names of specific examples of the recording medium include registered trademarks. The external storage device 56c may be omitted.

[スポット溶接工程]
図5は、溶接装置20の電極チップ26,27による金属板Wa,Wbのスポット溶接工程を説明するための一部断面図である。
[Spot welding process]
FIG. 5 is a partial cross-sectional view for explaining a spot welding process of the metal plates Wa and Wb by the electrode tips 26 and 27 of the welding apparatus 20.

まず、図5(A)に示すように、重ね合わせた2枚の金属板Wa,Wbに対して、各電極チップ26,27の先端部26a,27aが鋼板Waにおける凸部30の上方に位置するように、6軸ロボットアーム22によって各電極チップ26,27が移動されて位置決めされる。   First, as shown in FIG. 5A, the tip portions 26a, 27a of the electrode tips 26, 27 are positioned above the convex portion 30 of the steel plate Wa with respect to the two metal plates Wa, Wb that are superimposed. As described above, the electrode tips 26 and 27 are moved and positioned by the six-axis robot arm 22.

次に、図5(B)に示すように、各エアシリンダ24,25のピストンを伸長させることにより、当該ピストンの先端に取り付けられている各電極チップ26,27を移動させ、各電極チップ26,27の先端部26a,27aを金属板Waに対して加圧接触させる。   Next, as shown in FIG. 5 (B), by extending the pistons of the air cylinders 24 and 25, the electrode tips 26 and 27 attached to the tips of the pistons are moved, and the electrode tips 26 are moved. , 27 are brought into pressure contact with the metal plate Wa.

このとき、各電極チップ26,27の先端部26a,27aが座面30aに当接した後も、各エアシリンダ24,25のピストンを伸長させて各電極チップ26,27による加圧が続けられ、座面30aは鋼板Wb方向に向かって押しつぶされる。つまり、凸部30が存在することにより、各金属板Wa,Wbの間に形成された空間Kを狭くするように、各電極チップ26,27が座面30aを押しつぶす。その結果、座面30aには球面状の窪みを有する凹部が形成され、座面30aの裏側には金属板Wbに向かって球面状に突出する接触面30cが形成される。   At this time, even after the tip portions 26a, 27a of the electrode tips 26, 27 are in contact with the seating surface 30a, the pistons of the air cylinders 24, 25 are extended and the pressurization by the electrode tips 26, 27 is continued. The seating surface 30a is crushed in the direction of the steel plate Wb. In other words, the presence of the convex portion 30 causes the electrode tips 26 and 27 to crush the seating surface 30a so as to narrow the space K formed between the metal plates Wa and Wb. As a result, a concave portion having a spherical recess is formed on the seat surface 30a, and a contact surface 30c that protrudes spherically toward the metal plate Wb is formed on the back side of the seat surface 30a.

続いて、図5(C)に示すように、各電極チップ26,27による加圧が更に続けられ、座面30aの裏側に形成された球面状の接触面30cの頂部を金属板Wbに接触させる。つまり、接触面30cのうちの最も突出した部分を他の部分よりもいち早く金属板Wbに点接触させる。その結果、接触面30cは点接触部30dを介して金属板Wbに点接触される。   Subsequently, as shown in FIG. 5C, pressurization by the electrode tips 26 and 27 is further continued, and the top of the spherical contact surface 30c formed on the back side of the seating surface 30a is brought into contact with the metal plate Wb. Let That is, the most protruding portion of the contact surface 30c is brought into point contact with the metal plate Wb earlier than the other portions. As a result, the contact surface 30c is in point contact with the metal plate Wb through the point contact portion 30d.

この状態で、制御回路46が各サイリスタSCR1,SCR2を制御して交流電源48から溶接トランス42の一次側に溶接電流を通電させることにより、溶接トランス42の二次側から各電極チップ26,27間へ溶接電流を通電させる。
すると、点接触部30dにより点状に絞られた接触抵抗の大きな通電経路(図示の矢印付き実線)が形成され、その通電経路を流れる溶接電流は、面接触による通電経路よりも電流密度が高められる。その溶接電流によって抵抗発熱量が増大し、点接触部30dにおける各金属板Wa,Wbが溶融して溶接ナゲットNaが生成され、その溶接ナゲットNaによって両金属板Wa,Wbが点状に溶接される。
In this state, the control circuit 46 controls the thyristors SCR1 and SCR2 to energize the welding current from the AC power supply 48 to the primary side of the welding transformer 42, so that the electrode tips 26 and 27 from the secondary side of the welding transformer 42 are supplied. Energize the welding current in between.
Then, an energization path (solid line with an arrow in the figure) having a large contact resistance narrowed in a dot shape by the point contact portion 30d is formed, and the welding current flowing through the energization path has a higher current density than the energization path by surface contact. It is done. The resistance heating value is increased by the welding current, and the metal plates Wa and Wb at the point contact portion 30d are melted to produce a weld nugget Na, and both the metal plates Wa and Wb are welded in a spot shape by the weld nugget Na. The

その後、各電極チップ26,27による加圧および通電が継続されることにより、金属板Waの点接触部30dが金属板Wbにめり込むように沈み込み、球面状の接触面30cに沿った表面方向に向かうように溶接ナゲットNaが順次形成され、スポット溶接が完了される。
尚、各電極チップ26,27の先端部26a,27aが金属板Waを加圧する際の加圧力は、比較的低い圧力(例えば、50kgf程度)に設定されている。
After that, by continuing the pressurization and energization by the electrode tips 26 and 27, the point contact portion 30d of the metal plate Wa sinks so as to sink into the metal plate Wb, and the surface direction along the spherical contact surface 30c. The welding nugget Na is sequentially formed so as to go to, and spot welding is completed.
Note that the pressure applied when the tip portions 26a, 27a of the electrode tips 26, 27 pressurize the metal plate Wa is set to a relatively low pressure (for example, about 50 kgf).

[溶接不良の検出]
図6は、溶接不良を検出するために制御回路46のマイコン56が実行する処理の流れを示すフローチャートである。
溶接装置20が設置されている自動ラインにて自動仕掛指示により溶接装置20の設備が始動されると、マイコン56は、まず、CPU56aを起動させ、次に、メモリ56bに記録(記憶)されているコンピュータプログラムをCPU56aにロードさせ、続いて、当該コンピュータプログラムに従い、CPU56aが実行する各種演算処理により、以下の各ステップ(以下、「S」と記載する)の処理を実行させる。尚、前記コンピュータプログラムを、メモリ56bではなく、外部記憶装置56cに記録(記憶)しておき、当該コンピュータプログラムを必要に応じて外部記憶装置56cからCPU56aにロードして用いるようにしてもよい。
[Detection of welding defects]
FIG. 6 is a flowchart showing a flow of processing executed by the microcomputer 56 of the control circuit 46 in order to detect welding failure.
When the equipment of the welding apparatus 20 is started by an automatic work instruction on the automatic line where the welding apparatus 20 is installed, the microcomputer 56 first activates the CPU 56a and then records (stores) it in the memory 56b. The computer program is loaded on the CPU 56a, and then the following steps (hereinafter referred to as "S") are executed by various arithmetic processes executed by the CPU 56a according to the computer program. The computer program may be recorded (stored) in the external storage device 56c instead of the memory 56b, and the computer program may be loaded from the external storage device 56c to the CPU 56a and used as necessary.

まず、マイコン56は、メモリ56bから読み出した溶接電流の制御処理を行うプログラムに基づき、溶接トランス42の二次側から各電極チップ26,27間へ流す溶接電流を決定し、その溶接電流を通電させるために各サイリスタSCR1,SCR2のゲート端子へ出力するトリガ信号を生成して出力する(S101)。
尚、溶接電流は所定時間(例えば、5/60秒間)連続して通電され、その溶接電流の電流値は、例えば10kAに設定されている。
First, the microcomputer 56 determines a welding current to flow between the electrode tips 26 and 27 from the secondary side of the welding transformer 42 based on a program for controlling the welding current read from the memory 56b and energizes the welding current. Therefore, a trigger signal to be output to the gate terminals of the thyristors SCR1 and SCR2 is generated and output (S101).
The welding current is energized continuously for a predetermined time (for example, 5/60 seconds), and the current value of the welding current is set to, for example, 10 kA.

このとき、電圧検出器44は、各電極チップ26,27間の電圧(溶接トランス42の二次側電圧)を検出し、その電圧値を制御回路46へ出力している。
マイコン56は、各電極チップ26,27間に溶接電流を流しているときに電圧検出器44が検出した各電極チップ26,27間の電圧値(電極間電圧)と、S101の処理で決定した溶接電流とに基づき、オームの法則により各電極チップ26,27間の電気抵抗(電極間抵抗)を算出する(S102)。
At this time, the voltage detector 44 detects the voltage between the electrode tips 26 and 27 (secondary voltage of the welding transformer 42) and outputs the voltage value to the control circuit 46.
The microcomputer 56 determines the voltage value (electrode voltage) between the electrode tips 26 and 27 detected by the voltage detector 44 when the welding current is flowing between the electrode tips 26 and 27 and the processing of S101. Based on the welding current, the electrical resistance (interelectrode resistance) between the electrode tips 26 and 27 is calculated according to Ohm's law (S102).

続いて、マイコン56は、各電極チップ26,27間の電気抵抗が、後述する所定値Vt以下かどうかを判定する(S103)。
そして、マイコン56は、各電極チップ26,27間の電気抵抗が所定値Vt以下の場合(S103:Yes)には、正常な溶接が行われていると通電が完了した時点で判定し(S104)、溶接工程を完了する。
また、マイコン56は、各電極チップ26,27間の電気抵抗が所定値Vtより大きい場合(S103:No)には、溶接不良が発生していると通電が完了した時点で判定し、その判定結果を表示装置52に表示させると共に、音声再生装置53から異常アラームを発生させ(S105)、溶接工程を中断する。
Subsequently, the microcomputer 56 determines whether or not the electrical resistance between the electrode chips 26 and 27 is equal to or less than a predetermined value Vt described later (S103).
If the electrical resistance between the electrode tips 26 and 27 is equal to or less than the predetermined value Vt (S103: Yes), the microcomputer 56 determines that normal welding has been performed when energization is completed (S104). ) Complete the welding process.
Further, when the electrical resistance between the electrode tips 26 and 27 is larger than the predetermined value Vt (S103: No), the microcomputer 56 determines that the welding failure has occurred when the energization is completed, and the determination The result is displayed on the display device 52, an abnormal alarm is generated from the sound reproduction device 53 (S105), and the welding process is interrupted.

溶接装置20のオペレータは、S105の処理で表示装置52に溶接不良が表示された場合、溶接を行っていた各金属板Wa,Wbを不良品として製造ラインから取り除き、補修する。   When a welding failure is displayed on the display device 52 in the process of S105, the operator of the welding device 20 removes the metal plates Wa and Wb that have been welded from the production line as defective products and repairs them.

[実施形態の作用・効果]
図7〜図10の(A)は、溶接中の各電極チップ26,27および各金属板Wa,Wbの状態を説明するための説明図であり、図示点線は溶接電流の通電経路を示すものである。また、図7〜図10の(B)は、同図(A)における金属板Waの一方の凸部30近傍の状態を説明するための断面図である。
[Operations and effects of the embodiment]
FIG. 7A to FIG. 10A are explanatory diagrams for explaining the states of the electrode tips 26 and 27 and the metal plates Wa and Wb during welding, and the dotted lines in the figure indicate the current path of the welding current. It is. Moreover, (B) of FIGS. 7-10 is sectional drawing for demonstrating the state of one convex part 30 vicinity of the metal plate Wa in the same figure (A).

図7(A)は、各金属板Wa,Wb間に、2枚の金属板のいずれかが変形しているなどの理由による隙間がなく、各電極チップ26,27からの加圧力により両金属板Wa,Wbが密着させられて隙間が無くなっている状態を示す。この状態では、両金属板Wa,Wbに溶接電流が流れて通電経路が形成されている。
このとき、図7(B)に示すように、各金属板Wa,Wbの点接触部30dの面積Mは所定値Mt以上になっている。
そして、各電極チップ26,27間の電気抵抗は所定値Vt以下になり、図5に示すように各金属板Wa,Wbは正常に溶接される。
FIG. 7A shows that there is no gap between the metal plates Wa and Wb because one of the two metal plates is deformed or the like, and both metals are applied by the applied pressure from the electrode tips 26 and 27. A state where the plates Wa and Wb are brought into close contact with each other and the gap is eliminated is shown. In this state, a welding current flows through both the metal plates Wa and Wb to form an energization path.
At this time, as shown in FIG. 7B, the area M of the point contact portion 30d of each metal plate Wa, Wb is equal to or greater than a predetermined value Mt.
And the electrical resistance between each electrode tip 26 and 27 becomes below predetermined value Vt, and as shown in FIG. 5, each metal plate Wa and Wb is normally welded.

図8(A)は、各金属板Wa,Wb間に、2枚の金属板のいずれかが変形しているなどの理由による隙間があり、各電極チップ26,27から加圧力が印加されても各金属板Wa,Wb間に小さな隙間が残り、各金属板Wa,Wbが点接触部30dでのみ接触している状態を示す。   In FIG. 8A, there is a gap between the metal plates Wa and Wb because one of the two metal plates is deformed or the like, and pressure is applied from the electrode tips 26 and 27. Also, a small gap remains between the metal plates Wa and Wb, and the metal plates Wa and Wb are in contact with each other only at the point contact portion 30d.

このとき、図8(B)に示すように、各金属板Wa,Wbの点接触部30dの面積Mは、各金属板Wa,Wb間の隙間が大きくなるほど小さくなる。そして、点接触部30d(密着部分)にしか溶接ナゲットが形成されず点接触部30dしか溶接できないため、点接触部30dの面積Mが所定値Mt未満になると溶接強度が低下して溶接不良が発生する。
尚、所定値Mtは、スポット溶接の規格で必要値が決められている。
At this time, as shown in FIG. 8B, the area M of the point contact portion 30d of each metal plate Wa, Wb decreases as the gap between the metal plates Wa, Wb increases. And since a weld nugget is formed only at the point contact part 30d (contact part) and only the point contact part 30d can be welded, when the area M of the point contact part 30d becomes less than a predetermined value Mt, the welding strength is reduced, resulting in poor welding. Occur.
The predetermined value Mt is determined as a required value according to the spot welding standard.

そして、両金属板Wa,Wbに溶接電流が流れて通電経路が形成されるものの、金属板Wbには溶接電流が流れにくくなる。そのため、各電極チップ26,27間の電気抵抗は、各金属板Wa,Wb間の隙間が大きくなるほど(つまり、点接触部30dの面積Mが小さくなるほど)増大し、その電気抵抗が所定値Vtより大きくなると各金属板Wa,Wbの溶接強度が低下して溶接不良が発生する。
後述するように、所定値Vtは、各電極チップ26,27間の電気抵抗を変化させて各金属板Wa,Wbの溶接強度を調べる実験を行い、十分な溶接強度が得られる電気抵抗値を見つけて当該電気抵抗値に設定すればよい。
And although a welding current flows into both metal plates Wa and Wb and an energization path is formed, a welding current becomes difficult to flow into metal plate Wb. Therefore, the electrical resistance between the electrode tips 26 and 27 increases as the gap between the metal plates Wa and Wb increases (that is, as the area M of the point contact portion 30d decreases), and the electrical resistance increases to a predetermined value Vt. If it is larger, the welding strength of each metal plate Wa, Wb is lowered, resulting in poor welding.
As will be described later, the predetermined value Vt is an electric resistance value at which a sufficient welding strength can be obtained by conducting an experiment for examining the welding strength of each of the metal plates Wa and Wb by changing the electric resistance between the electrode tips 26 and 27. Find and set the electrical resistance value.

図9(A)は、各金属板Wa,Wb間に、2枚の金属板のいずれかが変形しているなどの理由による隙間があり、各電極チップ26,27から加圧力が印加されても各金属板Wa,Wb間に大きな隙間が残り、各金属板Wa,Wbが全く接触していない状態を示す。
この状態では、金属板Waにのみ溶接電流が流れて通電経路が形成されている。そのため、各電極チップ26,27間の電気抵抗は所定値Vtより大きくなり、各金属板Wa,Wbは溶接不能である。
In FIG. 9A, there is a gap between the metal plates Wa and Wb because one of the two metal plates is deformed or the like, and pressure is applied from the electrode tips 26 and 27. Also, a large gap remains between the metal plates Wa and Wb, and the metal plates Wa and Wb are not in contact at all.
In this state, a welding current flows only in the metal plate Wa and an energization path is formed. Therefore, the electrical resistance between the electrode tips 26 and 27 is greater than the predetermined value Vt, and the metal plates Wa and Wb are not weldable.

図10は、座面30aの座面高Hが高すぎ、各電極チップ26,27を座面30aに加圧接触させた際に各電極チップ26,27が座面30aを十分に押しつぶすことができず、球面状に変形した座面30aと金属板Wbとの点接触部30dの面積Mが小さくなっている状態を示す。   FIG. 10 shows that the seating surface height H of the seating surface 30a is too high, and the electrode tips 26, 27 can sufficiently crush the seating surface 30a when the electrode tips 26, 27 are brought into pressure contact with the seating surface 30a. This shows a state in which the area M of the point contact portion 30d between the seat surface 30a deformed into a spherical shape and the metal plate Wb is small.

このとき、点接触部30dの面積Mは、座面高Hが高くなるほど小さくなり、面積Mが所定値Mt未満になると溶接強度が低下して溶接不良が発生する。
そして、各電極チップ26,27間の電気抵抗は、座面高Hが高くなるほど(つまり、点接触部30dの面積Mが小さくなるほど)増大し、その電気抵抗が所定値Vtより大きくなると各金属板Wa,Wbの溶接強度が低下して溶接不良が発生する。
At this time, the area M of the point contact portion 30d becomes smaller as the seating surface height H becomes higher, and when the area M becomes less than the predetermined value Mt, the welding strength is lowered and poor welding occurs.
The electrical resistance between the electrode tips 26 and 27 increases as the seat height H increases (that is, as the area M of the point contact portion 30d decreases), and when the electrical resistance exceeds a predetermined value Vt, each metal is increased. The welding strength of the plates Wa and Wb is reduced, resulting in poor welding.

図11および図12は、各金属板Wa,Wb間の隙間を0〜3mmまで1mm間隔で変化させると共に、座面30aの座面高Hを0.2mm,0.4mm,0.7mm,1.0mm,1.2mmに変化させて溶接を行った場合における各電極チップ26,27間の電気抵抗を示すグラフである。
尚、前記のように、電極チップ26,27の先端部26a,27bの先端径D0は16mmに形成され、各先端部26a,27bの離間距離は35mmに設定され、座面30aの座面径D1は22mmに設定され、凸部30の凸部径D2は28mmに設定され、各電極チップ26,27間に流す溶接電流は10kAに設定されている。
11 and 12, the gap between the metal plates Wa and Wb is changed from 0 to 3 mm at intervals of 1 mm, and the seating surface height H of the seating surface 30a is 0.2 mm, 0.4 mm, 0.7 mm, 1 It is a graph which shows the electrical resistance between each electrode tip 26,27 at the time of changing and welding to 0.0 mm and 1.2 mm.
As described above, the tip diameters D0 of the tip portions 26a and 27b of the electrode tips 26 and 27 are formed to 16 mm, the separation distance between the tip portions 26a and 27b is set to 35 mm, and the seat surface diameter of the seat surface 30a. D1 is set to 22 mm, the projection diameter D2 of the projection 30 is set to 28 mm, and the welding current flowing between the electrode tips 26 and 27 is set to 10 kA.

図11では、金属板Waの板厚が0.65mm、金属板Wbの板厚が2mmに設定されている。
図11の各測定ポイントにおける各金属板Wa,Wbの溶接強度を破壊試験によって調べたところ、各電極チップ26,27間の電気抵抗が200μΩより大きくなると溶接不良が発生することがわかった。また、座面高Hが1.2mmの場合には、各金属板Wa,Wb間の隙間が零でも溶接不良が発生することがわかった。
つまり、図11において、正常な溶接が行われるのは、座面高Hが0.4mmまたは0.7mmの場合は各金属板Wa,Wb間の隙間が2mm以下、座面高Hが1mmの場合は前記隙間が1mm以下のときである。
In FIG. 11, the thickness of the metal plate Wa is set to 0.65 mm, and the thickness of the metal plate Wb is set to 2 mm.
When the welding strength of each of the metal plates Wa and Wb at each measurement point in FIG. 11 was examined by a destructive test, it was found that a welding failure occurred when the electrical resistance between the electrode tips 26 and 27 was greater than 200 μΩ. Further, it was found that when the seat surface height H is 1.2 mm, poor welding occurs even when the gap between the metal plates Wa and Wb is zero.
That is, in FIG. 11, normal welding is performed when the seat surface height H is 0.4 mm or 0.7 mm, the gap between the metal plates Wa and Wb is 2 mm or less, and the seat surface height H is 1 mm. The case is when the gap is 1 mm or less.

図12では、金属板Waの板厚が0.65mm、金属板Wbの板厚が0.8mmに設定されている。
図12の各測定ポイントにおける各金属板Wa,Wbの溶接強度を破壊試験によって調べたところ、各電極チップ26,27間の電気抵抗が240μΩ以上になると溶接不良が発生することがわかった。また、座面高Hが1.2mmの場合には、各金属板Wa,Wb間の隙間が零でも溶接不良が発生することがわかった。
つまり、図12において、正常な溶接が行われるのは、座面高Hが0.4〜1mmで各金属板Wa,Wb間の隙間が2mm以下のときである。
In FIG. 12, the plate thickness of the metal plate Wa is set to 0.65 mm, and the plate thickness of the metal plate Wb is set to 0.8 mm.
When the welding strength of each metal plate Wa, Wb at each measurement point in FIG. 12 was examined by a destructive test, it was found that poor welding occurred when the electrical resistance between each electrode tip 26, 27 was 240 μΩ or more. Further, it was found that when the seat surface height H is 1.2 mm, poor welding occurs even when the gap between the metal plates Wa and Wb is zero.
That is, in FIG. 12, normal welding is performed when the seat height H is 0.4 to 1 mm and the gap between the metal plates Wa and Wb is 2 mm or less.

このように、図11の場合(金属板Waの板厚が0.65mm、金属板Wbの板厚が2mmの場合)には所定値Vtを200μΩに設定し、図12の場合(金属板Waの板厚が0.65mm、金属板Wbの板厚が0.8mmの場合)には所定値Vtを240μΩに設定すればよい。
尚、図11の場合に比べて図12の場合の方が所定値Vtが高くなるのは、金属板Wbの板厚が薄くなっている分だけ金属板Wbに溶接電流が流れにくいためである。
Thus, in the case of FIG. 11 (when the thickness of the metal plate Wa is 0.65 mm and the thickness of the metal plate Wb is 2 mm), the predetermined value Vt is set to 200 μΩ, and in the case of FIG. 12 (the metal plate Wa When the plate thickness of the metal plate Wb is 0.85 mm), the predetermined value Vt may be set to 240 μΩ.
The reason why the predetermined value Vt is higher in the case of FIG. 12 than in the case of FIG. 11 is that the welding current hardly flows to the metal plate Wb as much as the thickness of the metal plate Wb is reduced. .

以上詳述したように、本実施形態によれば、各金属板Wa,Wbを溶接するために各電極チップ26,27へ溶接電流を通電させているときの各電極チップ26,27間の電気抵抗を求め、その電気抵抗が所定値Vtより大きい場合は溶接不良が発生していると判定することにより、破壊検査を行うことなく溶接不良の有無を確実に検出できる。   As described above in detail, according to the present embodiment, the electric current between the electrode tips 26 and 27 when the welding current is applied to the electrode tips 26 and 27 in order to weld the metal plates Wa and Wb. The resistance is obtained, and when the electrical resistance is larger than the predetermined value Vt, it is determined that a welding failure has occurred, so that the presence or absence of the welding failure can be reliably detected without performing a destructive inspection.

ここで、各電極チップ26,27間の電気抵抗は、電圧検出器44が検出した各電極チップ26,27間の電圧値と、各電極チップ26,27へ通電させている溶接電流とに基づき、オームの法則により簡単に算出することができる。
そして、各電極チップ26,27間の電気抵抗は各電極チップ26,27への溶接電流の通電時に算出され、電気抵抗を測定するための特別の作業工程を設ける必要がない。
そのため、本実施形態によれば、溶接不良を簡便に検出できる。
Here, the electrical resistance between the electrode tips 26 and 27 is based on the voltage value between the electrode tips 26 and 27 detected by the voltage detector 44 and the welding current applied to the electrode tips 26 and 27. It can be easily calculated by Ohm's law.
And the electrical resistance between each electrode tip 26 and 27 is calculated at the time of energization of the welding current to each electrode tip 26 and 27, and it is not necessary to provide the special work process for measuring electrical resistance.
Therefore, according to the present embodiment, a welding failure can be easily detected.

また、各電極チップ26,27間の電気抵抗は、各金属板Wa,Wbの点接触部30dの面積Mが小さくなるほど増大する。そのため、溶接装置20のオペレータは、各電極チップ26,27間の電気抵抗に基づいて、各金属板Wa,Wbの点接触部30dの面積Mを知ることができる。   In addition, the electrical resistance between the electrode tips 26 and 27 increases as the area M of the point contact portion 30d of the metal plates Wa and Wb decreases. Therefore, the operator of the welding apparatus 20 can know the area M of the point contact portion 30d of each metal plate Wa, Wb based on the electrical resistance between the electrode tips 26, 27.

本発明を具体化した一実施形態に係るシリーズスポット溶接の溶接装置20の概略構成を示す斜視図。The perspective view which shows schematic structure of the welding apparatus 20 of the series spot welding which concerns on one Embodiment which actualized this invention. 図2(A) は、各電極チップ26,27の先端部26a,27aの側面図。図2(B) は、金属板Waに形成された座面30aを有する凸部30の平面図。図2(C) は、図2(B) に示す凸部30の側面図。2A is a side view of the tip portions 26a and 27a of the electrode tips 26 and 27. FIG. FIG. 2B is a plan view of the convex portion 30 having a seating surface 30a formed on the metal plate Wa. FIG.2 (C) is a side view of the convex part 30 shown in FIG.2 (B). 溶接装置20の各電極チップ26,27へ供給する溶接電流を制御すると共に溶接不良を検出する制御装置40の電気的構成を示す回路図。The circuit diagram which shows the electric constitution of the control apparatus 40 which detects the welding defect while controlling the welding current supplied to each electrode tip 26,27 of the welding apparatus 20. FIG. 溶接装置20が備える制御回路46の内部構成を示す回路図。The circuit diagram which shows the internal structure of the control circuit 46 with which the welding apparatus 20 is provided. 溶接装置20の電極チップ26,27による金属板Wa,Wbのスポット溶接工程を説明するための一部断面図。The partial cross section figure for demonstrating the spot welding process of the metal plates Wa and Wb by the electrode tips 26 and 27 of the welding apparatus 20. FIG. 溶接不良を検出するために制御回路46のマイコン56が実行する処理の流れを示すフローチャート。The flowchart which shows the flow of the process which the microcomputer 56 of the control circuit 46 performs in order to detect a welding defect. 図7(A)は、溶接中の各電極チップ26,27および各金属板Wa,Wbの状態を説明するための説明図であり、図示点線は溶接電流の通電経路を示す。また、図7(B)は、図7(A)における金属板Waの一方の凸部30近傍の状態を説明するための断面図。FIG. 7A is an explanatory diagram for explaining the states of the electrode tips 26 and 27 and the metal plates Wa and Wb during welding, and the dotted line in the figure indicates a current path for welding current. FIG. 7B is a cross-sectional view for explaining a state in the vicinity of one convex portion 30 of the metal plate Wa in FIG. 図8(A)は、溶接中の各電極チップ26,27および各金属板Wa,Wbの状態を説明するための説明図であり、図示点線は溶接電流の通電経路を示す。図8(B)は、図8(A)における金属板Waの一方の凸部30近傍の状態を説明するための断面図。FIG. 8A is an explanatory diagram for explaining the states of the electrode tips 26 and 27 and the metal plates Wa and Wb during welding, and the dotted lines in the figure indicate the energization paths of the welding current. FIG. 8B is a cross-sectional view for explaining a state in the vicinity of one convex portion 30 of the metal plate Wa in FIG. 図9(A)は、溶接中の各電極チップ26,27および各金属板Wa,Wbの状態を説明するための説明図であり、図示点線は溶接電流の通電経路を示す。図9(B)は、図9(A)における金属板Waの一方の凸部30近傍の状態を説明するための断面図。FIG. 9A is an explanatory diagram for explaining the states of the electrode tips 26 and 27 and the metal plates Wa and Wb during welding, and the dotted lines in the figure indicate the energization paths of the welding current. FIG. 9B is a cross-sectional view for explaining a state in the vicinity of one convex portion 30 of the metal plate Wa in FIG. 図10(A)は、溶接中の各電極チップ26,27および各金属板Wa,Wbの状態を説明するための説明図であり、図示点線は溶接電流の通電経路を示す。図10(B)は、図10(A)における金属板Waの一方の凸部30近傍の状態を説明するための断面図。FIG. 10A is an explanatory diagram for explaining the states of the electrode tips 26 and 27 and the metal plates Wa and Wb during welding, and the dotted lines in the figure indicate the energization paths of the welding current. FIG. 10B is a cross-sectional view for explaining a state in the vicinity of one convex portion 30 of the metal plate Wa in FIG. 金属板Waの板厚が0.65mm、金属板Wbの板厚が2mmの場合に、各金属板Wa,Wb間の隙間を0〜3mmまで1mm間隔で変化させると共に、座面30aの座面高Hを0.2mm,0.4mm,0.7mm,1.0mm,1.2mmに変化させて溶接を行った場合における各電極チップ26,27間の電気抵抗を示すグラフ。When the plate thickness of the metal plate Wa is 0.65 mm and the plate thickness of the metal plate Wb is 2 mm, the gap between the metal plates Wa and Wb is changed from 0 to 3 mm at intervals of 1 mm, and the seat surface of the seat surface 30a The graph which shows the electrical resistance between each electrode tips 26 and 27 at the time of welding by changing high H into 0.2 mm, 0.4 mm, 0.7 mm, 1.0 mm, and 1.2 mm. 金属板Waの板厚が0.65mm、金属板Wbの板厚が0.8mmの場合に、各金属板Wa,Wb間の隙間を0〜3mmまで1mm間隔で変化させると共に、座面30aの座面高Hを0.2mm,0.4mm,0.7mm,1.0mm,1.2mmに変化させて溶接を行った場合における各電極チップ26,27間の電気抵抗を示すグラフ。When the thickness of the metal plate Wa is 0.65 mm and the thickness of the metal plate Wb is 0.8 mm, the gap between the metal plates Wa and Wb is changed from 0 to 3 mm at intervals of 1 mm, and the seat surface 30a The graph which shows the electrical resistance between each electrode tip 26,27 at the time of welding by changing the seat surface height H to 0.2 mm, 0.4 mm, 0.7 mm, 1.0 mm, and 1.2 mm.

符号の説明Explanation of symbols

20…溶接装置
24,25…エアシリンダ
26,27…電極チップ
26a,27a…電極チップの先端部
30…凸部
30a…座面
35…一般部
40…制御装置
42…溶接トランス
44…電圧検出器
46…制御回路
48…交流電源
56…マイコン
SCR1,SCR2…サイリスタ
Wa,Wb金属板
DESCRIPTION OF SYMBOLS 20 ... Welding device 24, 25 ... Air cylinder 26, 27 ... Electrode tip 26a, 27a ... Tip part of electrode tip 30 ... Convex part 30a ... Seating surface 35 ... General part 40 ... Control device 42 ... Welding transformer 44 ... Voltage detector 46 ... Control circuit 48 ... AC power supply 56 ... Microcomputer SCR1, SCR2 ... Thyristor Wa, Wb metal plate

Claims (1)

重ね合わせた2枚の金属板の一方の表面に、離間する一対の電極を加圧接触させて両電極間に溶接電流を流し、これらの2枚の金属板を溶接するシリーズスポット溶接の溶接不良検出装置であって、
前記一方の金属板の前記電極を加圧接触させる部位には部分的に一般部より一段高い座面が形成されていると共に、前記電極は先端が球面に形成され、当該座面を押しつぶすように前記電極の先端を当該座面に加圧接触させた状態で両電極間に溶接電流が流され、
前記両電極間に溶接電流を流しているときの前記両電極間の電圧を検出する電圧検出手段と、
その電圧検出手段の検出した電圧と、両電極間の溶接電流とに基づいて、両電極間の電気抵抗を検出する抵抗検出手段と、
その抵抗検出手段が検出した電気抵抗が所定値より大きい場合に、前記2枚の金属板に溶接不良が発生していると判定する判定手段と
を備えたことを特徴とするシリーズスポット溶接の溶接不良検出装置。
Welding failure of series spot welding in which a pair of spaced electrodes are brought into pressure contact with one surface of two superimposed metal plates and a welding current flows between the two electrodes to weld these two metal plates A detection device,
A portion of the one metal plate that is in pressure contact with the electrode is partially formed with a seating surface that is one step higher than the general part, and the tip of the electrode is formed into a spherical surface so that the seating surface is crushed. A welding current is passed between both electrodes in a state where the tip of the electrode is in pressure contact with the seating surface,
Voltage detecting means for detecting a voltage between the electrodes when a welding current is passed between the electrodes;
Based on the voltage detected by the voltage detection means and the welding current between both electrodes, resistance detection means for detecting the electrical resistance between both electrodes,
Series spot welding welding, comprising: a judging means for judging that welding failure has occurred in the two metal plates when the electrical resistance detected by the resistance detecting means is larger than a predetermined value. Defect detection device.
JP2003407533A 2003-12-05 2003-12-05 Welding defect detecting apparatus for series spot welding Pending JP2005161391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407533A JP2005161391A (en) 2003-12-05 2003-12-05 Welding defect detecting apparatus for series spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407533A JP2005161391A (en) 2003-12-05 2003-12-05 Welding defect detecting apparatus for series spot welding

Publications (1)

Publication Number Publication Date
JP2005161391A true JP2005161391A (en) 2005-06-23

Family

ID=34729553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407533A Pending JP2005161391A (en) 2003-12-05 2003-12-05 Welding defect detecting apparatus for series spot welding

Country Status (1)

Country Link
JP (1) JP2005161391A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073703A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method of and system for determining quality of spot welding
JP2014057979A (en) * 2012-09-18 2014-04-03 Nec Corp Resistance-welding device and resistance-welding method
CN104043896A (en) * 2013-03-13 2014-09-17 本田技研工业株式会社 Method for single-sided resistance welding
CN106112244A (en) * 2016-07-07 2016-11-16 北汽福田汽车股份有限公司 A kind of welder and welding method
JP7479757B2 (en) 2020-03-25 2024-05-09 ダイハツ工業株式会社 Spot welding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073703A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method of and system for determining quality of spot welding
JP2014057979A (en) * 2012-09-18 2014-04-03 Nec Corp Resistance-welding device and resistance-welding method
CN104043896A (en) * 2013-03-13 2014-09-17 本田技研工业株式会社 Method for single-sided resistance welding
JP2014176897A (en) * 2013-03-13 2014-09-25 Honda Motor Co Ltd Single-sided resistance welding method
US9815136B2 (en) 2013-03-13 2017-11-14 Honda Motor Co., Ltd. Method for single-sided resistance welding
CN106112244A (en) * 2016-07-07 2016-11-16 北汽福田汽车股份有限公司 A kind of welder and welding method
JP7479757B2 (en) 2020-03-25 2024-05-09 ダイハツ工業株式会社 Spot welding method

Similar Documents

Publication Publication Date Title
CN101566546B (en) Online weld inspection and repair method for resistance welding and weld-bonding
JP2011104628A (en) Resistance welding method, resistance welding material, resistance welding device and control device for the same, control method and program for resistance welding device, and evaluation method and program for resistance welding
JP3396636B2 (en) Control method of resistance welding machine
WO2014209839A2 (en) Method of monitoring thermal response, force and current during resistance welding
JP2008142739A (en) Ultrasonic welder and method for controlling the same, and welding inspection apparatus for ultrasonic welding and welding inspection method therefor
JP2005161391A (en) Welding defect detecting apparatus for series spot welding
KR20180130173A (en) System and Method for Real time Monitoring of Electric Resistance Welding
JP6971724B2 (en) One-sided spot welding equipment and one-sided spot welding method
JPH11104848A (en) Spot welding electrode inspecting method, its device and spot welding equipment
De et al. An experimental study of resistance spot welding in 1 mm thick sheet of low carbon steel
US5399827A (en) Method and device for determining the temperature at a spot-welded joint and a method for assessing the quality of a spot-welded joint
JP2007050442A (en) Resistance welding method
JP2011240368A (en) Method and system for determining weld quality
JP2012115888A (en) Method of setting welding condition in spot welding apparatus
JP2006055893A (en) Spot welding judgment system and judgment method
JP6931692B2 (en) Connection structure of resistance detecting means in resistance welding equipment and resistance welding method
JP4527566B2 (en) Spot welding quality judgment method and spot welding machine
JP2005319486A (en) Method for series spot welding
JP3540125B2 (en) Quality inspection method for resistance welding
JP4380447B2 (en) Spot welding evaluation method and spot welding evaluation system
Stavropoulos et al. Welding Challenges and Quality Assurance in Electric Vehicle Battery Pack Manufacturing
JP2024029548A (en) Quality inspection device, resistance spot welding system, quality inspection program, and quality inspection method
KR20140126572A (en) System for monitoring of spot welding and method thereof
JP2001321959A (en) Nondestructive testing method for projection welding
JP2009028786A (en) Method of and apparatus for determining quality of resistance brazing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701