JP2005159768A - Branch structure of waveguide structural body and antenna substrate - Google Patents

Branch structure of waveguide structural body and antenna substrate Download PDF

Info

Publication number
JP2005159768A
JP2005159768A JP2003396135A JP2003396135A JP2005159768A JP 2005159768 A JP2005159768 A JP 2005159768A JP 2003396135 A JP2003396135 A JP 2003396135A JP 2003396135 A JP2003396135 A JP 2003396135A JP 2005159768 A JP2005159768 A JP 2005159768A
Authority
JP
Japan
Prior art keywords
waveguide
coupling window
thin
conductor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396135A
Other languages
Japanese (ja)
Other versions
JP4203405B2 (en
Inventor
Naoyuki Shino
直行 志野
Hiroshi Uchimura
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003396135A priority Critical patent/JP4203405B2/en
Publication of JP2005159768A publication Critical patent/JP2005159768A/en
Application granted granted Critical
Publication of JP4203405B2 publication Critical patent/JP4203405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a branch structure in a compact waveguide structural body having excellent transmission characteristics and a waveguide power distributing function. <P>SOLUTION: A second waveguide structural body 1 is overlapped and arranged at the end of a first waveguide structural body 2 so that the transmission direction of high-frequency signals becomes orthogonal, and coupling windows 3 are formed on each of waveguide walls of the overlapped site. A thin portion in which the distance between the wall surface on which the coupling window 3 is formed near the portion of overlapping the first and second waveguides 1 and the wall surface opposing this is smaller than the distance of the other portion is provided, and the waveguide structural body 1 is disposed so that the center in the transmission direction of the thin portion 5 in the second waveguide is deviated from the center of the coupling window. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はマイクロ波帯やミリ波帯等の高周波信号を伝達するための導波管構造体の分岐構造に関するものである。   The present invention relates to a branched structure of a waveguide structure for transmitting a high frequency signal such as a microwave band or a millimeter wave band.

近年、マイクロ波帯やミリ波帯等の高周波信号を用いた移動体通信および車間レーダ等の研究が盛んに進められている。これらの高周波回路において高周波信号を伝送するための伝送線路には小型で伝送損失が小さいことが求められている。特に、高周波回路を構成する基板上または基板内に形成できると小型化の面で有利となることから、従来、そのような伝送線路としてストリップ線路やマイクロストリップ線路・コプレーナ線路・誘電体導波管線路等が用いられてきた。   In recent years, researches on mobile communication and inter-vehicle radar using high-frequency signals such as microwave band and millimeter wave band have been actively promoted. In these high-frequency circuits, transmission lines for transmitting high-frequency signals are required to be small and have low transmission loss. In particular, since it is advantageous in terms of miniaturization if it can be formed on or in a substrate constituting a high-frequency circuit, conventionally, such transmission lines include strip lines, microstrip lines, coplanar lines, and dielectric waveguides. Tracks and the like have been used.

これらのうちストリップ線路・マイクロストリップ線路・コプレーナ線路は誘電体基板と線路導体層とグランド(接地)導体層とで構成されており、線路導体層とグランド導体層の周囲の空間および誘電体基板中を高周波信号の電磁波が伝播するものである。これらの線路は例えば30GHz帯域までの信号伝送に対しては問題ないが、30GHz以上では伝送損失が生じやすいという問題点がある。   Of these, the strip line, microstrip line, and coplanar line are composed of a dielectric substrate, a line conductor layer, and a ground (ground) conductor layer. The space around the line conductor layer and the ground conductor layer and in the dielectric substrate The electromagnetic wave of the high-frequency signal propagates through. These lines have no problem for signal transmission up to, for example, 30 GHz band, but there is a problem that transmission loss tends to occur at 30 GHz or more.

これに対して特許文献1に記載されるような、平面導体と、ビアホール導体によって形成される導波管型の伝送線路は30GHz以上のミリ波帯域においても伝送損失が小さく、しかも多層基板内に自由に形成することができる点で有利である。   On the other hand, a waveguide type transmission line formed by a planar conductor and a via-hole conductor as described in Patent Document 1 has a small transmission loss even in a millimeter wave band of 30 GHz or more, and in a multilayer substrate. This is advantageous in that it can be formed freely.

また、導波管線路を用いた構造において、特許文献2、3には、同一平面内で導波管線路を2つの導波管線路に分岐する構造が、また、特許文献4には、z方向に分岐可能な構造が提案されている。
特開平6−53711号 米国特許第5532661号 特開平11−112210号 特開平12−77912号
In addition, in a structure using a waveguide line, Patent Documents 2 and 3 describe a structure in which a waveguide line is branched into two waveguide lines in the same plane. A structure that can be branched in the direction has been proposed.
JP-A-6-53711 US Pat. No. 5,532,661 JP-A-11-112210 JP-A-12-77912

一般に、伝送線路を用いて高周波回路を構成する場合、特にアレイアンテナの給電線等を形成する場合等には、伝送線路の配線回路において伝送線路同士を接続し、あるいは分岐を設け、その電力分配比率を制御する必要がある。   Generally, when configuring a high-frequency circuit using a transmission line, especially when forming a feeder line of an array antenna, etc., the transmission lines are connected to each other in the wiring circuit of the transmission line, or branches are provided to distribute the power. It is necessary to control the ratio.

しかしながら、ストリップ線路やマイクロストリップ線路・コプレーナ線路は線路導体層がグランド導体層で完全に覆われていないため、伝送線路の途中に分岐を設けるとその分岐から電磁波の放射が起こり、伝送損失が大きくなるのに対して、誘電体導波管線路の場合には、伝送損失が低減できる点で有利であるが、この誘電体導波管線路を用いて、電力を分配するための構造については、これまで提案されていない。   However, the strip conductor, microstrip line, and coplanar line do not completely cover the line conductor layer with the ground conductor layer, so if a branch is provided in the middle of the transmission line, radiation of electromagnetic waves occurs from that branch, resulting in a large transmission loss. On the other hand, in the case of a dielectric waveguide line, it is advantageous in that transmission loss can be reduced, but a structure for distributing power using this dielectric waveguide line is as follows. So far it has not been proposed.

したがって、本発明は上記事情に鑑みて案出されたものであり、その目的は、コンパクトで優れた伝送特性を有する導波管電力分配機能を有する導波管構造体における分岐構造を提供することを目的とするものである。   Therefore, the present invention has been devised in view of the above circumstances, and an object thereof is to provide a branch structure in a waveguide structure having a waveguide power distribution function that is compact and has excellent transmission characteristics. It is intended.

また、本発明の他の目的は、従来の多層化技術によって容易に作製することのできる導波管構造体における分岐構造を提供することを目的とするものである。   Another object of the present invention is to provide a branched structure in a waveguide structure that can be easily manufactured by a conventional multilayer technology.

さらに、本発明のさらに他の目的は、誘電体導波管構造体における分岐構造を具備したアンテナ基板を提供することを目的とするものである。   Still another object of the present invention is to provide an antenna substrate having a branch structure in a dielectric waveguide structure.

本発明の導波管構造体における分岐構造は、第1の導波管構造体の終端部に第二の導波管構造体を高周波信号の伝送方向が直交するように重ねて配置し、この重ねた部位の導波管壁にそれぞれ結合窓を形成してなるとともに、前記第1および第2の導波管の重ねた部位付近に前記結合窓を形成した壁面とこれと対向する壁面との間隔を他の部位における間隔よりも狭くした薄肉部をそれぞれ設けてなり、前記第2の導波管における前記薄肉部の伝送方向の中心を前記結合窓の中心からずらして配置したことを特徴とする。   The branching structure in the waveguide structure of the present invention is arranged such that the second waveguide structure is overlapped at the terminal portion of the first waveguide structure so that the transmission direction of the high-frequency signal is orthogonal, A coupling window is formed on each of the overlapped waveguide walls, and a wall surface formed with the coupling window in the vicinity of the overlapped portion of the first and second waveguides and a wall surface facing the wall. The thin-walled portion is provided with a space narrower than the space at the other part, and the center of the thin-walled portion in the second waveguide is shifted from the center of the coupling window. To do.

また、本発明の他の誘電体導波管構造体における分岐構造は、第1の導波管構造体の終端部に第二の導波管構造体を高周波信号の伝送方向が平行になるように重ねて配置し、この重ねた部位の導波管壁にそれぞれ結合窓を形成してなるとともに、前記第1および第2の導波管の重ねた部位付近に前記結合窓を形成した壁面とこれと対向する壁面との間隔を他の部位における間隔よりも狭くした薄肉部をそれぞれ設けてなり、前記第2の導波管における前記薄肉部の伝送方向の中心を前記結合窓の中心からずらして配置したことを特徴とするものである。   Further, the branching structure in another dielectric waveguide structure of the present invention is such that the transmission direction of the high-frequency signal is parallel to the second waveguide structure at the terminal end of the first waveguide structure. And a wall surface in which the coupling window is formed in the vicinity of the overlapped portion of the first and second waveguides. Each of the thin-walled portions is provided with a space between the opposing wall surfaces that is narrower than that of the other portion, and the center of the thin-walled portion in the second waveguide is shifted from the center of the coupling window. It is characterized by having been arranged.

本発明の導波管構造体分岐構造によれば、上記いずれの構成によっても薄肉部の中心位置の調整で、分岐のインピーダンスを変更することにより所望の電力比率で電力分配できる。すなわち、薄肉部の中心を前記結合窓の中心からずらして配置することにより、各分岐構造のインピーダンスを調整することが可能となり、また薄肉部の存在によって分岐過程における導波管の厚み変化が小さく信号伝送がスムーズに進むため、効率よく信号を伝送できる。またインピーダンス整合をするに際して、2つの導波管の重なり部の幅変更や結合窓によっても調整可能であるが、薄肉部を用いることにより、より柔軟に整合可能となる。また薄肉部の大きさを結合窓の大きさよりも大きくすることにより、薄肉部の配置位置の変位に対する電力分配比の変化が小さくなり、層間ズレなどの製造ズレに対する許容量を広げることができる。また薄肉部を片方の導波管に設けるだけでなく、もう一方の導波管に設けることにより、一方の薄肉部の変位によりずれるインピーダンスをもう一方の導波管の薄肉部で整合可能となり、伝送損失の低減を図ることができる。また導波管厚みが大きいとき、導波管重なり部でのZ方向の厚みが厚くなり、通常の導波管と導波管重なり部の厚み変化が大きいことから反射が発生しやすくなるが、両導波管部に薄肉部を設けることにより、厚みの不連続性を抑制でき伝送損失を低減できる。また、以下に示すように誘電体導波管を用いて分岐構造を形成するとき、薄肉部を用いることで側面貫通導体の数を減らすことができ加工数が減り低コストにつながる。   According to the waveguide structure branching structure of the present invention, power can be distributed at a desired power ratio by changing the impedance of the branch by adjusting the center position of the thin portion in any of the above-described configurations. That is, by disposing the center of the thin portion from the center of the coupling window, it becomes possible to adjust the impedance of each branch structure, and the thickness change of the waveguide in the branching process is small due to the presence of the thin portion. Since signal transmission proceeds smoothly, signals can be transmitted efficiently. Further, when impedance matching can be performed by changing the width of the overlapping portion of the two waveguides or by a coupling window, matching can be made more flexibly by using a thin portion. Further, by making the size of the thin portion larger than the size of the coupling window, the change in the power distribution ratio with respect to the displacement of the arrangement position of the thin portion is reduced, and the allowable amount for manufacturing deviation such as interlayer deviation can be widened. Moreover, by providing not only the thin wall portion in one waveguide but also in the other waveguide, the impedance shifted by the displacement of one thin wall portion can be matched in the thin wall portion of the other waveguide, Transmission loss can be reduced. In addition, when the waveguide thickness is large, the thickness in the Z direction at the waveguide overlap portion becomes large, and the change in thickness between the normal waveguide and the waveguide overlap portion is large, so reflection tends to occur. By providing thin portions in both waveguide portions, discontinuity in thickness can be suppressed and transmission loss can be reduced. Moreover, when forming a branch structure using a dielectric waveguide as shown below, the number of side surface through conductors can be reduced by using a thin portion, resulting in a reduction in the number of processing and a reduction in cost.

また、薄肉部を片方の導波管に設けるだけでなく、もう一方の導波管に設けることにより、導波管の厚み変化が小さくなり信号伝送の損失を低減することができる。   Further, by providing the thin portion not only in one waveguide but also in the other waveguide, a change in the thickness of the waveguide is reduced, and loss of signal transmission can be reduced.

なお、上記導波管線路は、誘電体基板を挟持する一対の主導体層と、高周波信号の伝送方向に信号波長の2分の1未満の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で前記主導体層間を電気的に接続して形成された2列の側壁用貫通導体群と、前記主導体層間に主導体層と平行に形成され、前記側壁用貫通導体群と電気的に接続された副導体層とを具備してなることによって、従来の多層化技術を用いてあらゆる多層基板内に小さなサイズで容易に形成することができる。   The waveguide line includes a pair of main conductor layers sandwiching the dielectric substrate, a repetition interval of less than one half of the signal wavelength in the transmission direction of the high frequency signal, and a direction orthogonal to the transmission direction. Two rows of through-hole conductor groups for side walls formed by electrically connecting the main conductor layers with a predetermined width, and formed in parallel with the main conductor layer between the main conductor layers, The sub-conductor layers connected to each other can be easily formed in a small size in any multilayer substrate using a conventional multilayer technology.

また、前記誘電体基板が、低温焼成セラミックスからなることによって、導体材料として、銀、銅などの低抵抗導体を用いて同時焼成によってできることから、高周波特性の向上および製造の点で有利である。また、有機基板に比べて誘電率が高く小型化が可能なこと、フッ素樹脂などと異なり曲がらず形状を保持しやすいこと、耐水性が高いので高信頼性が得られる。   Further, since the dielectric substrate is made of low-temperature fired ceramics, it can be fired simultaneously using a low-resistance conductor such as silver or copper as a conductor material, which is advantageous in terms of improving high-frequency characteristics and manufacturing. In addition, the dielectric constant is higher than that of the organic substrate, the size can be reduced, the shape is not bent unlike the fluororesin, and the shape is easily maintained.

また、上記の分岐構造を具備することによって、容易にかつ簡便な構造でZ方向への配線ができかつ効率の高い分岐構造を得られるために、それをアンテナ基板に用いることにより、小型化が可能で高効率のアンテナ基板を容易に得ることができる。   In addition, by providing the above branch structure, it is possible to easily and easily wire in the Z direction and to obtain a highly efficient branch structure. A possible and highly efficient antenna substrate can be easily obtained.

以下、本発明の導波管線路の分岐構造について図面を参照しながら説明する。図1は、導波管を高周波信号の伝送方向が直交するように重ねて配置した場合の本発明の分岐構造である。図2(a)は、図1の分岐構造におけるA−A断面図,図2(b)は、図1の分岐構造におけるB−B断面図である。   The waveguide line branching structure of the present invention will be described below with reference to the drawings. FIG. 1 shows a branching structure of the present invention in the case where waveguides are arranged so that the transmission directions of high-frequency signals are orthogonal to each other. 2A is a cross-sectional view taken along line AA in the branched structure of FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB in the branched structure of FIG.

図1、図2によれば、導波管2の終端部に、導波管1が、互いに直交するように導波管の側壁同士を重ねて配置されており、その重ねた部位の導波管壁には、それぞれ結合窓3が形成され、互いの結合窓が一致するように配置されている。この結合窓3の中心は導波管1、2の重なり部の中心とほぼ同じ位置に設けられている。また、この結合窓3の形状は、導波管1の伝送方向に平行な辺を長辺とする長方形となり、その大きさは、強度等の問題がない限り、導波管1,2の重なり部分と同じ大きさで形成されることが望ましい。   According to FIGS. 1 and 2, the waveguide 1 is disposed at the end portion of the waveguide 2 so that the side walls of the waveguide are overlapped so as to be orthogonal to each other. The pipe walls are respectively formed with coupling windows 3 and are arranged so that the coupling windows coincide with each other. The center of the coupling window 3 is provided at substantially the same position as the center of the overlapping portion of the waveguides 1 and 2. Further, the shape of the coupling window 3 is a rectangle having a side parallel to the transmission direction of the waveguide 1 as a long side. The size of the coupling window 3 overlaps the waveguides 1 and 2 unless there is a problem such as strength. It is desirable to form the same size as the portion.

なお、図1、2の分岐構造は、導波管2からの信号が導波管1内で方向1aと方向1bに電力分配する、あるいは導波管1における方向1a、方向1bからの信号を電力合成し導波管2に信号伝送する分岐構造である。   1 and 2, the signal from the waveguide 2 distributes power in the direction 1a and the direction 1b in the waveguide 1, or the signals from the direction 1a and the direction 1b in the waveguide 1 are distributed. This is a branching structure that combines power and transmits signals to the waveguide 2.

導波管1と導波管2とが重なる部位付近には、結合窓3を形成した壁面とこれと対向する反対側の導波管壁面との間隔a’を他の部位における間隔aよりも狭くした伝送方向の長さLの薄肉部5a、5bがそれぞれ形成されている。   In the vicinity of the portion where the waveguide 1 and the waveguide 2 overlap, the interval a ′ between the wall surface on which the coupling window 3 is formed and the opposite waveguide wall surface facing this is larger than the interval a in other portions. Narrow thin portions 5a and 5b each having a length L in the transmission direction are formed.

そして、この第2の導波管における薄肉部5bの伝送方向に対する中心Xと、結合窓3の中心Yは、mだけずれて形成されている。このずれ幅mによって薄肉部5bにおける導波管2の壁面2aから、薄肉部5bの両端までのそれぞれの長さb1,b2が変化するが、本発明によれば、このずれ幅mおよび導波管2の壁面2aによる長さb1、b2を変更することで、結合窓3から見たときの1a方向と1b方向のインピーダンスを変更でき、結果的に導波管2から導波管1の1a方向、1b方向に伝送する信号の電力比率を制御可能となるのである。   And the center X with respect to the transmission direction of the thin part 5b in this 2nd waveguide and the center Y of the coupling window 3 are shifted | deviated by m. Depending on the shift width m, the lengths b1 and b2 from the wall surface 2a of the waveguide 2 in the thin portion 5b to both ends of the thin portion 5b change. According to the present invention, the shift width m and the waveguide By changing the lengths b1 and b2 of the wall surface 2a of the tube 2, the impedance in the 1a direction and the 1b direction when viewed from the coupling window 3 can be changed. This makes it possible to control the power ratio of signals transmitted in the direction 1b.

なお、かかる分岐構造においては、図4のように、導波管2における導波管1と重なる部位における導波管の幅L3を、導波管2の他の部位の導波管幅L2と異なるように形成することが望ましい。このように、L、L1、L2、L3を制御することによって結合部分での共振を発生させ、効果的に信号伝送することが可能となる。図4の例では、導波管2の結合部分の幅L3を他の部位の幅L2よりも広くした幅広部2aを形成したものである。   In this branching structure, as shown in FIG. 4, the waveguide width L3 in the portion overlapping the waveguide 1 in the waveguide 2 is set to the waveguide width L2 in the other portion of the waveguide 2. It is desirable to form them differently. In this way, by controlling L, L1, L2, and L3, resonance at the coupling portion is generated, and signal transmission can be effectively performed. In the example of FIG. 4, a wide portion 2a is formed in which the width L3 of the coupling portion of the waveguide 2 is wider than the width L2 of other portions.

同様な理由で、導波管1と導波管2とが重なる部位の入り口においてもその径を変更することも可能である。たとえば、図5に示すように、重なる部位の入り口において、その幅が小さい幅狭部2bを形成してインピーダンスを制御することも可能である。   For the same reason, it is possible to change the diameter at the entrance of the portion where the waveguide 1 and the waveguide 2 overlap. For example, as shown in FIG. 5, it is also possible to control the impedance by forming a narrow portion 2b having a small width at the entrance of the overlapping portion.

また図2に示す薄肉部5bの長さLは、導波管1と2の重なり部の幅L2よりも大きく図示しているが、これは小さくても特性上電力分配可能な分岐構造となるが、L>L3であることが望ましい。これは、L>L3の場合、薄肉部5のシフト量に対し電力分配比が緩やかなため、製造上のずれなどに対する許容性が大きいのに対して、L<L3の場合、電力分配比のシフト量に対する変化が大きくなるために、ずれなどによる特性の変化も大きくなりやすく、特性が不安定になる可能性がある。   The length L of the thin wall portion 5b shown in FIG. 2 is larger than the width L2 of the overlapping portion between the waveguides 1 and 2, but this is a branch structure that can distribute power even if it is small. However, it is desirable that L> L3. This is because, when L> L3, the power distribution ratio is gradual with respect to the shift amount of the thin portion 5, so that the tolerance for manufacturing deviation is large, whereas when L <L3, the power distribution ratio Since a change with respect to the shift amount becomes large, a change in characteristics due to a shift or the like tends to be large, and the characteristics may become unstable.

一方、第1の導波管2において薄肉部5aを設けることによって、導波管1の薄層部5bの中心位置を変えたときにずれるインピーダンスをもう一方の導波管の薄肉部5aで整合可能となり、伝送損失の低減を図ることができる。また導波管1の厚み、導波管1、2の重なり部分の厚み、および導波管2の厚みを近似させることが可能となり、より電磁界の流れがスムーズになり反射が低減でき伝送特性が向上する。   On the other hand, by providing the thin portion 5a in the first waveguide 2, the impedance that is shifted when the center position of the thin layer portion 5b of the waveguide 1 is changed is matched with the thin portion 5a of the other waveguide. Thus, transmission loss can be reduced. Further, the thickness of the waveguide 1, the thickness of the overlapping portion of the waveguides 1 and 2, and the thickness of the waveguide 2 can be approximated, and the flow of the electromagnetic field becomes smoother and reflection can be reduced. Will improve.

また、薄肉部5bの幅L1は、導波管1と導波管2の重なり部分で、導波管2の厚みを薄くした部位の長さL2aに比べ長いことが好ましい。これはL2aがL1より長いと、図3の導波管1の上部導体端部1cと重なり部分の下部導体端部2bの間隔が狭くなり電磁界の流れがスムーズでなくなり、その箇所が信号の反射を引き起こしやすくなるためである。   Further, the width L1 of the thin portion 5b is preferably longer than the length L2a of the portion where the thickness of the waveguide 2 is reduced at the overlapping portion of the waveguide 1 and the waveguide 2. If L2a is longer than L1, the distance between the upper conductor end 1c of the waveguide 1 shown in FIG. This is because it tends to cause reflection.

さて、電力分配比率制御のために薄肉部5bを結合窓3に対しシフトさせることを述べてきたが、さらに導波管2の薄肉部5aを導波管2の信号伝送方向に対してシフトさせても良い。このとき薄肉部5aと5bの中心が同じである必要性は無い。   Now, it has been described that the thin portion 5b is shifted with respect to the coupling window 3 in order to control the power distribution ratio. However, the thin portion 5a of the waveguide 2 is further shifted with respect to the signal transmission direction of the waveguide 2. May be. At this time, it is not necessary that the centers of the thin portions 5a and 5b are the same.

(第2の実施態様)
次に、図6,7は、本発明の第2の分岐構造を示す図であり、2つの導波管を高周波信号の伝送方向が平行するように重ねて配置した分岐構造であり、図6は、その概略斜視図、図7は図6のC−C線断面図である。
(Second Embodiment)
Next, FIGS. 6 and 7 are views showing a second branching structure of the present invention, which is a branching structure in which two waveguides are arranged so that the transmission directions of high-frequency signals are parallel to each other. Is a schematic perspective view thereof, and FIG. 7 is a cross-sectional view taken along the line CC of FIG.

図6、図7によれば、導波管12と導波管13の伝送方向が平行になるように、導波管13の終端部の上部に、導波管12が、導波管13の終端の距離Sが、λ/8以上となる長さ位置に各導波管12、13の導波管壁に結合窓14が形成され、互いの結合窓14が一致するように配置されている。この結合窓14の形状は、信号伝送方向の幅L5が、信号伝送方向に対して直交する方向の幅L4よりも短いことが望ましい。   According to FIGS. 6 and 7, the waveguide 12 is disposed above the terminal end of the waveguide 13 so that the transmission directions of the waveguide 12 and the waveguide 13 are parallel to each other. A coupling window 14 is formed on the waveguide wall of each of the waveguides 12 and 13 at a length position where the end distance S is λ / 8 or more, and the coupling windows 14 are arranged to coincide with each other. . As for the shape of the coupling window 14, it is desirable that the width L5 in the signal transmission direction is shorter than the width L4 in the direction orthogonal to the signal transmission direction.

この図6、7の分岐構造は、導波管13からの信号が導波管12内で方向12aと方向12bに電力分配する、あるいは導波管12における方向12a、方向12bからの信号を電力合成し導波管13に信号伝送する分岐構造である。   6 and 7, the signal from the waveguide 13 distributes the power in the direction 12a and the direction 12b in the waveguide 12, or the signal from the direction 12a and the direction 12b in the waveguide 12 is the power. It is a branching structure that combines and transmits a signal to the waveguide 13.

導波管12と導波管13の重なり部分における導波管12側には、結合窓14を形成した壁面とこれと対向する導波管12の反対側の壁面との間隔b’が他の部位における間隔bよりも狭くした薄肉部15bが形成されている。   On the waveguide 12 side in the overlapping portion of the waveguide 12 and the waveguide 13, the distance b ′ between the wall surface on which the coupling window 14 is formed and the wall surface on the opposite side of the waveguide 12 facing the other is b. A thin portion 15b that is narrower than the interval b in the part is formed.

この薄肉部15bの伝送方向に対する中心Xと、結合窓14の中心Yは、n1だけずれて形成されている。このずれ幅n1によって、導波管12の12a方向と12b方向に分配される電力比率を制御できる。つまり、電力分配の原理は図1、2に示した構造と同様に、結合窓からみたインピーダンスが異ならしめることによって電力を分配するものであって、結合窓14に対して薄肉部15bをずらすことで、導波管13から見たときの方向12aと方向12bのインピーダンスが変わり、これにより方向12aと方向12bへの電力分配比率を制御することができる。   The center X of the thin portion 15b in the transmission direction and the center Y of the coupling window 14 are formed so as to be shifted by n1. The power ratio distributed in the 12a direction and the 12b direction of the waveguide 12 can be controlled by the shift width n1. That is, the principle of power distribution is to distribute power by making the impedance viewed from the coupling window different as in the structure shown in FIGS. 1 and 2, and the thin portion 15 b is shifted with respect to the coupling window 14. Thus, the impedance in the direction 12a and the direction 12b when viewed from the waveguide 13 is changed, whereby the power distribution ratio in the direction 12a and the direction 12b can be controlled.

一方、第12の導波管13において薄肉部15aを設けることによって、導波管12の薄肉部15b中心位置を変化させたときずれるインピーダンスをもう一方の導波管の薄肉部15aで整合可能となり、伝送損失の低減を図ることができる。また導波管12の厚み、導波管12、13の重なり部分の厚み、および導波管13の厚みを近似させることが可能となり、より電磁界の流れがスムーズになり反射が低減でき伝送特性が向上する。   On the other hand, the provision of the thin portion 15a in the twelfth waveguide 13 makes it possible to match the impedance shifted when the center position of the thin portion 15b of the waveguide 12 is changed in the thin portion 15a of the other waveguide. Thus, transmission loss can be reduced. Further, the thickness of the waveguide 12, the thickness of the overlapping portion of the waveguides 12 and 13, and the thickness of the waveguide 13 can be approximated, and the flow of the electromagnetic field becomes smoother and reflection can be reduced. Will improve.

なお、薄肉部15aの中心Zは、結合窓14の中心Yや薄肉部15bの中心Xと同じである必要はなく、結合窓14の中心Yからn2ずれていてもよい。   The center Z of the thin portion 15a does not have to be the same as the center Y of the coupling window 14 and the center X of the thin portion 15b, and may be shifted from the center Y of the coupling window 14 by n2.

本発明の分岐構造における導波管としては、誘電体基板を挟持する一対の主導体層と、高周波信号の伝送方向に信号波長の2分の1未満の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で前記主導体層間を電気的に接続して形成された2列の側壁用貫通導体群と、前記主導体層間に主導体層と平行に形成され、前記側壁用貫通導体群と電気的に接続された副導体層とを具備して構成される導波管構造体を用い、本発明の導波管分岐構造を得ることができる。この場合、従来の導波管に比べ回路を小型化可能であり、また複雑な金属加工が不必要なため作製容易となり量産に適する。また本発明ではZ方向への信号伝播をしながら、かつ電力分配可能なため、従来の誘電体導波管で構成した回路に対しても小型化できる。   The waveguide in the branch structure of the present invention includes a pair of main conductor layers sandwiching a dielectric substrate, a repetition interval of less than half of the signal wavelength in the transmission direction of the high-frequency signal, and orthogonal to the transmission direction. Two side wall through conductor groups formed by electrically connecting the main conductor layers with a predetermined width in a direction to be formed, and the side wall through conductors formed in parallel to the main conductor layer between the main conductor layers. The waveguide branch structure of the present invention can be obtained by using a waveguide structure configured to include a sub-conductor layer electrically connected to the group. In this case, the circuit can be reduced in size as compared with the conventional waveguide, and since complicated metal processing is unnecessary, it is easy to manufacture and suitable for mass production. Further, in the present invention, since power can be distributed while propagating signals in the Z direction, it is possible to reduce the size of a circuit constituted by a conventional dielectric waveguide.

以下に本発明の分岐構造を誘電体導波管を用いて形成した場合について述べる。   The case where the branch structure of the present invention is formed using a dielectric waveguide will be described below.

図8は本発明に用いる誘電体導波管線路の構成例を説明するための概略斜視図である。図8において、16は誘電体層、17および18は誘電体層16を挟持する一対の導体層、19は信号伝送方向に信号波長の2分の1未満の繰り返し間隔cで、かつ信号伝送方向と直交する方向に所定の幅dで一対の導体層17、18間を電気的に接続するように形成された2列の貫通導体群である。また、20は貫通導体群19の各列を形成する貫通導体同士を電気的に接続する、導体層17、18と平行に形成された補助導体層であり、必要に応じて適宜設けられる。21はこれら一対の導体層17、18と貫通導体群19および補助導体層20により形成される誘電体導波管線路である。このように一対の導体層17、18と貫通導体群19とで囲まれた領域に対してさらに補助導体層20を形成することにより、誘電体導波管線路21の内部から見るとその側壁は貫通導体群19と補助導体層20とによって細かな格子状になり、様々な方向の電磁波が遮蔽される。   FIG. 8 is a schematic perspective view for explaining a configuration example of a dielectric waveguide line used in the present invention. In FIG. 8, 16 is a dielectric layer, 17 and 18 are a pair of conductor layers sandwiching the dielectric layer 16, 19 is a repetitive interval c less than half the signal wavelength in the signal transmission direction, and the signal transmission direction. Are two rows of through conductor groups formed so as to electrically connect the pair of conductor layers 17 and 18 with a predetermined width d in a direction perpendicular to the line. Reference numeral 20 denotes an auxiliary conductor layer formed in parallel with the conductor layers 17 and 18 for electrically connecting the through conductors forming each row of the through conductor group 19, and is provided as necessary. Reference numeral 21 denotes a dielectric waveguide line formed by the pair of conductor layers 17 and 18, the through conductor group 19, and the auxiliary conductor layer 20. As described above, when the auxiliary conductor layer 20 is further formed in the region surrounded by the pair of conductor layers 17 and 18 and the through conductor group 19, when viewed from the inside of the dielectric waveguide line 21, the side wall is The through conductor group 19 and the auxiliary conductor layer 20 form a fine lattice, and shield electromagnetic waves in various directions.

図8に示すように、所定の厚みeの誘電体層16を挟持する位置に一対の導体層17、18が形成されており、導体層17、18は誘電体層16の少なくとも伝送線路形成位置を挟む上下面に形成されている。また、導体層17、18間には両者を電気的に接続するスルーホール導体やビアホール導体等の貫通導体が多数設けられ、これら多数の貫通導体により2列の貫通導体群19を形成している。   As shown in FIG. 8, a pair of conductor layers 17 and 18 are formed at a position sandwiching the dielectric layer 16 having a predetermined thickness e, and the conductor layers 17 and 18 are at least transmission line formation positions of the dielectric layer 16. It is formed on the upper and lower surfaces sandwiching. A large number of through conductors such as through-hole conductors and via-hole conductors that electrically connect the conductor layers 17 and 18 are provided, and a plurality of through conductors 19 form two rows of through conductor groups 19. .

2列の貫通導体群19は、図示するように、高周波信号の伝送方向すなわち線路形成方向に信号波長の2分の1未満の所定の繰り返し間隔cで、かつ伝送方向と直交する方向に所定の一定の間隔(幅)dをもって形成されている。これにより、この誘電体導波管線路21における電気的な側壁を形成している。   As shown in the figure, the two rows of through conductor groups 19 have a predetermined repetition interval c that is less than a half of the signal wavelength in the transmission direction of the high-frequency signal, that is, the line formation direction, and a predetermined direction in the direction orthogonal to the transmission direction. It is formed with a constant interval (width) d. Thereby, an electrical side wall in the dielectric waveguide line 21 is formed.

ここで、誘電体層1の厚みe、すなわち一対の導体層17、18間の間隔に対する制限は特にないが、シングルモードで用いる場合には間隔dに対して2分の1程度または2倍程度とすることがよく、図8の例では誘電体導波管線路21のH面に当たる部分が導体層17、18で、E面に当たる部分が貫通導体群19および補助導体層20でそれぞれ形成される。また、間隔dに対して厚みeを2倍程度とすれば、誘電体導波管線路21のE面に当たる部分が導体層17、18で、H面に当たる部分が貫通導体群19および補助導体層20でそれぞれ形成されることとなる。   Here, there is no particular limitation on the thickness e of the dielectric layer 1, that is, the distance between the pair of conductor layers 17 and 18, but about half or twice the distance d when used in a single mode. In the example of FIG. 8, the portions corresponding to the H surface of the dielectric waveguide line 21 are formed by the conductor layers 17 and 18, and the portions corresponding to the E surface are formed by the through conductor group 19 and the auxiliary conductor layer 20, respectively. . Further, if the thickness e is about twice as large as the distance d, the portions corresponding to the E surface of the dielectric waveguide 21 are the conductor layers 17 and 18, and the portions corresponding to the H surface are the through conductor group 19 and the auxiliary conductor layer. 20 respectively.

また、間隔dが信号波長の2分の1未満の間隔に設定されることで貫通導体群19により電気的な壁が形成できる。この間隔cは、電磁波のもれを防止するうえで信号波長の4分の1未満であることが望ましい。平行に配置された一対の導体層17、18間にはTEM波が伝播できるため、貫通導体群19の各列における貫通導体の間隔cが信号波長λの2分の1(λ/2)よりも大きいと、この誘電体導波管線路21に電磁波を給電しても電磁波は貫通導体群19の間から漏れてしまい、ここで作られる疑似的な導波管線路に沿って伝播しない。しかし、貫通導体群19の間隔cがλ/2よりも小さいと、電気的な側壁を形成することとなって電磁波は誘電体導波管線路21に対して垂直方向に伝播することができず、反射しながら誘電体導波管線路21の信号伝送方向に伝播される。   In addition, an electrical wall can be formed by the through conductor group 19 by setting the distance d to be less than one half of the signal wavelength. The interval c is preferably less than a quarter of the signal wavelength in order to prevent leakage of electromagnetic waves. Since TEM waves can propagate between the pair of conductor layers 17 and 18 arranged in parallel, the distance c between the through conductors in each row of the through conductor group 19 is less than half the signal wavelength λ (λ / 2). If it is larger, even if electromagnetic waves are fed to the dielectric waveguide 21, the electromagnetic waves leak from between the through conductor groups 19 and do not propagate along the pseudo waveguide formed here. However, if the distance c between the through conductor groups 19 is smaller than λ / 2, an electric side wall is formed, and the electromagnetic wave cannot propagate in the direction perpendicular to the dielectric waveguide line 21. The light is propagated in the signal transmission direction of the dielectric waveguide 21 while being reflected.

その結果、図8のような構成によれば、一対の導体層17、18と2列の貫通導体群19および補助導体層20とによって囲まれる断面積がd×eのサイズの領域が誘電体導波管線路21となる。   As a result, according to the configuration shown in FIG. 8, the region having a cross-sectional area of d × e surrounded by the pair of conductor layers 17 and 18 and the two rows of through conductor groups 19 and the auxiliary conductor layer 20 is a dielectric. It becomes the waveguide line 21.

図8に示した態様では、貫通導体群19は導波管の片側1列づつに形成したが、この貫通導体群19を片側2列以上に配設して、貫通導体群19による疑似的な導体壁を2重、3重に形成することにより導体壁からの電磁波の漏れをより効果的に防止することもできる。   In the embodiment shown in FIG. 8, the through conductor groups 19 are formed in one row on each side of the waveguide. However, the through conductor groups 19 are arranged in two or more rows on one side, By forming the conductor wall in a double or triple manner, leakage of electromagnetic waves from the conductor wall can be more effectively prevented.

このような誘電体導波管線路21によれば、誘電体導波管による伝送線路となるので、誘電体基板16の比誘電率をεrとするとその導波管サイズは通常の導波管の1/(εr)1/2の大きさになる。従って、誘電体基板16を構成する材料の比誘電率εrを大きいものとするほど導波管サイズを小さくすることができて高周波回路の小型化を図ることができる。 According to the dielectric waveguide line 21 as described above, the transmission line is a dielectric waveguide. Therefore, when the dielectric constant of the dielectric substrate 16 is εr, the waveguide size is that of a normal waveguide. The size is 1 / (εr) 1/2 . Therefore, the waveguide size can be reduced as the relative dielectric constant εr of the material constituting the dielectric substrate 16 is increased, and the high-frequency circuit can be reduced in size.

なお、貫通導体群19を構成する貫通導体は前述のように信号波長の2分の1未満の繰り返し間隔cで配設されており、この間隔cは良好な伝送特性を実現するためには一定の繰り返し間隔とすることが望ましいが、信号波長の2分の1未満の間隔であれば、適宜変化させたりいくつかの値を組み合わせたりしてもよい。   Note that the through conductors constituting the through conductor group 19 are arranged at a repetition interval c of less than half of the signal wavelength as described above, and this interval c is constant in order to realize good transmission characteristics. However, as long as the interval is less than half the signal wavelength, it may be changed as appropriate or some values may be combined.

このような誘電体導波管線路21を構成する誘電体基板16としては、誘電体として機能し高周波信号の伝送を妨げることのない特性を有するものであればとりわけ限定するものではないが、伝送線路を形成する際の精度および製造の容易性の点からは、誘電体基板16はセラミックスから成ることが望ましい。   The dielectric substrate 16 constituting the dielectric waveguide line 21 is not particularly limited as long as it has a characteristic that functions as a dielectric and does not hinder the transmission of a high-frequency signal. The dielectric substrate 16 is preferably made of ceramics from the viewpoint of accuracy in forming the line and ease of manufacture.

このようなセラミックスとしてはこれまで様々な比誘電率を持つセラミックスが知られているが、本発明に係る誘電体導波管線路によって高周波信号を伝送するためには常誘電体であることが望ましい。これは、一般に強誘電体セラミックスは高周波領域では誘電損失が大きく伝送損失が大きくなるためである。従って、誘電体基板1の比誘電率εrは4〜100程度が適当である。   As such ceramics, ceramics having various relative dielectric constants have been known so far, but in order to transmit a high frequency signal by the dielectric waveguide line according to the present invention, it is desirable to be a paraelectric material. . This is because ferroelectric ceramics generally have a large dielectric loss and a large transmission loss in the high frequency region. Accordingly, the relative dielectric constant εr of the dielectric substrate 1 is suitably about 4 to 100.

また、一般に多層配線基板や半導体素子収納用パッケージあるいは車間レーダに形成される配線層の線幅は最大でも1mm程度であることから、比誘電率が100の材料を用い、上部がH面すなわち磁界が上側の面に平行に巻く電磁界分布になるように用いた場合は、用いることのできる最小の周波数は15GHzと算出され、マイクロ波帯の領域でも利用可能となる。   In general, since the line width of a wiring layer formed in a multilayer wiring board, a semiconductor element storage package, or an inter-vehicle radar is at most about 1 mm, a material having a relative dielectric constant of 100 is used, and the upper part is an H plane, that is, a magnetic field. Is used so as to have an electromagnetic field distribution that wraps parallel to the upper surface, the minimum frequency that can be used is calculated as 15 GHz, and can also be used in the microwave band region.

誘電体基板16としては、例えばアルミナセラミックスや窒化アルミニウムセラミックス、ガラスセラミックスなどの低温焼成セラミックス等がある。これらによる誘電体基板16は、例えばセラミックス原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状になすとともに、これを従来周知のドクターブレード法やカレンダーロール法等を採用してシート状となすことによって複数枚のセラミックグリーンシートを得て、しかる後、これらセラミックグリーンシートの各々に適当な打ち抜き加工を施すとともにこれらを積層し、アルミナセラミックスの場合は1500〜1700℃、低温焼成セラミックスの場合は850〜1000℃、窒化アルミニウムセラミックスの場合は1600〜1900℃の温度で焼成することによって製作される。   Examples of the dielectric substrate 16 include low-temperature fired ceramics such as alumina ceramics, aluminum nitride ceramics, and glass ceramics. The dielectric substrate 16 is formed into a slurry shape by adding and mixing an appropriate organic solvent and solvent to the ceramic raw material powder, and this is formed into a sheet shape by employing a conventionally known doctor blade method, calendar roll method or the like. To obtain a plurality of ceramic green sheets, and after that, each of these ceramic green sheets is appropriately punched and laminated, and in the case of alumina ceramics, 1500 to 1700 ° C., in the case of low-temperature fired ceramics Is manufactured by firing at a temperature of 850 to 1000 ° C., and in the case of aluminum nitride ceramics at a temperature of 1600 to 1900 ° C.

これらの中でも誘電体基板16は低温焼成セラミックスを用いて作製されることが望ましい。低温焼成セラミックスは、導体として、導電率の高い銅、あるいは銀を用いることができるため導体損を低減できる利点があり、また一般的な有機基板に比べて誘電率が高く構造をコンパクトにできるメリットもある。さらに、信頼性の観点から有機基板と異なり耐水蒸気性が高いため高信頼性が得られる。低温焼成セラミックスの例として例えばホウ珪酸系ガラスやアルカリ土類含有ガラスなどのガラス成分とAl、SiO、ZnO、MgOなどのセラミックス粉末を混合焼成して得られる。 Among these, it is desirable that the dielectric substrate 16 is manufactured using low-temperature fired ceramics. Low-temperature fired ceramics have the advantage that copper or silver with high conductivity can be used as a conductor, so that the conductor loss can be reduced, and the advantage is that the dielectric constant is high and the structure can be made compact compared to general organic substrates. There is also. Further, from the viewpoint of reliability, unlike the organic substrate, the steam resistance is high, so that high reliability can be obtained. Examples of the low-temperature fired ceramics are obtained by mixing and firing glass components such as borosilicate glass and alkaline earth-containing glass and ceramic powders such as Al 2 O 3 , SiO 2 , ZnO, and MgO.

また、一対の導体層17、18は、例えば誘電体基板16がアルミナセラミックスから成る場合には、タングステン、モリブデン等の金属粉末に適当なアルミナ、シリカ、マグネシア等の酸化物や有機溶剤・溶媒等を添加混合してペースト状にしたものを用いて厚膜印刷法により少なくとも伝送線路を完全に覆うようにセラミックグリーンシート上に印刷し、しかる後、約1600℃の高温で焼成し、厚み10〜15μm以上となるようにして形成する。   Further, the pair of conductor layers 17 and 18 are, for example, when the dielectric substrate 16 is made of alumina ceramics, oxides such as alumina, silica, and magnesia, organic solvents and solvents suitable for metal powders such as tungsten and molybdenum. Is added on and mixed to form a paste, and is printed on a ceramic green sheet so as to completely cover at least the transmission line by a thick film printing method, and then fired at a high temperature of about 1600 ° C. It is formed to be 15 μm or more.

なお、金属粉末としては、低温焼成セラミックスの場合は銅、銀、金が、窒化アルミニウムセラミックスの場合はタングステン、モリブデンが好適である。また、導体層17、18の厚みは一般的に5〜50μm程度とされる。   As the metal powder, copper, silver and gold are suitable for low-temperature fired ceramics, and tungsten and molybdenum are suitable for aluminum nitride ceramics. The thickness of the conductor layers 17 and 18 is generally about 5 to 50 μm.

また、貫通導体群19を構成する貫通導体は、例えばビアホール導体やスルーホール導体等により形成すればよい。その断面形状は製作が容易な円形の他、矩形や菱形等の多角形であってもよい。これら貫通導体は、例えばセラミックグリーンシートに打ち抜き加工を施して作製した貫通孔に導体層17、18と同様の金属ペーストを埋め込み、しかる後、誘電体基板16と同時に焼成して形成する。なお、貫通導体は直径50〜300μmが適当である。   The through conductors constituting the through conductor group 19 may be formed of, for example, a via hole conductor or a through hole conductor. The cross-sectional shape may be a polygon that is easy to manufacture, or a polygon such as a rectangle or a rhombus. These through conductors are formed, for example, by embedding a metal paste similar to the conductor layers 17 and 18 in a through hole produced by punching a ceramic green sheet, and then firing simultaneously with the dielectric substrate 16. The through conductor has a diameter of 50 to 300 μm.

次に、このような誘電体導波管線路を用いた図1の本発明の導波管分岐構造の実施の形態の一例を図9に示す。   Next, FIG. 9 shows an example of an embodiment of the waveguide branching structure of the present invention of FIG. 1 using such a dielectric waveguide line.

ここで導波管1’及び導波管2’は、貫通導体群19と副導体層20および導体層17、18より構成されており、その接合部において結合窓3’を有し、その結合部付近に薄肉部5’が形成されている。図9の基本的な導波管配置や薄肉部の構成は図1と同様であり、薄肉部5’の中心は結合窓3’の中心と異なり、これにより一定の比率での電力分配を実現している。なお、ここで導波管1の上部主導体層4’は薄肉部5b’において切り欠きを設けている。しかし、薄肉部5b’における上部は導体層4’’で封じられているために、導体層4’は、薄肉部5b’の部分で切り欠く必要はない。   Here, the waveguide 1 ′ and the waveguide 2 ′ are composed of the through conductor group 19, the sub conductor layer 20, and the conductor layers 17, 18, and have a coupling window 3 ′ at the joint portion. A thin portion 5 ′ is formed in the vicinity of the portion. The basic waveguide arrangement and thin wall configuration in FIG. 9 are the same as in FIG. 1, and the center of the thin wall portion 5 ′ is different from the center of the coupling window 3 ′, thereby realizing power distribution at a constant ratio. doing. Here, the upper main conductor layer 4 ′ of the waveguide 1 is notched in the thin portion 5 b ′. However, since the upper portion of the thin portion 5 b ′ is sealed with the conductor layer 4 ″, the conductor layer 4 ′ does not need to be cut out at the thin portion 5 b ′.

また、二つの誘電体導波管を高周波信号の伝送方向が平行するように重ねて配置した図6の本発明の導波管分岐構造もここには図示しないが、図9と同様に実現できる。   Further, the waveguide branching structure of the present invention of FIG. 6 in which two dielectric waveguides are arranged so as to be parallel to each other in the transmission direction of the high-frequency signal is not shown here, but can be realized as in FIG. .

また、上で詳述した本発明の2つの導波管線路の接続構造を図10に示すように、多層配線基板からなるアンテナ基板22内に内蔵してもよい。アンテナ基板22では、ビーム形状を所望の形状にするために、例えばサイドローブを低減するために、各アンテナ素子23の放射比率を変化させる必要があり、そのために、各アンテナ素子23への給電線路24として導波管を用いた場合、本発明の電力分配構造を利用することによって容易にビーム形状を設計できる。なお、この図10では誘電体導波管の片側の導体層に切り欠きを設けてなるスロットアンテナ25を示したが、スロットあるいはビア導体を介して給電するパッチアンテナを用いても問題は無く、アンテナ形態には依存しない。   Further, as shown in FIG. 10, the connection structure of the two waveguide lines of the present invention described in detail above may be incorporated in an antenna substrate 22 made of a multilayer wiring substrate. In the antenna substrate 22, it is necessary to change the radiation ratio of each antenna element 23 in order to reduce the side lobe, for example, in order to make the beam shape a desired shape. For this reason, the feed line to each antenna element 23 is required. When a waveguide is used as 24, the beam shape can be easily designed by using the power distribution structure of the present invention. 10 shows the slot antenna 25 in which a notch is provided in the conductor layer on one side of the dielectric waveguide, but there is no problem even if a patch antenna that feeds power through the slot or via conductor is used. It does not depend on the antenna configuration.

本発明の導波管分岐構造について、高周波特性を評価するためにSパラメータのシミュレーションを行った。用いたのは図4,9に示す二つの導波管構造体を高周波信号の伝送方向が直交するように重ねて配置したタイプのものであり、導波管を誘電体導波管で形成した形状である。誘電体基板16には比誘電率εrが4.9のガラスセラミックスを用い、貫通導体はφ0.2mmのビアで形成した。2列の貫通導体群19の間隔幅つまり導波管幅L1、L2は、ビア中心間距離で、導波管1ではL1=1.6mm、導波管2ではL2=1.79mmとした。ただし導波管1、2の重なり部においては、導波管2の幅L3を2.21mmとしている。導波管1、2の厚みはともに0.6mmであり、導波管1内の薄肉部は厚み0.3mm、導波管2の薄肉部も同様に0.3mmとした。導波管1側の薄肉部5bの大きさLは1.369mm、導波管2側の薄肉部5aの大きさL2aは1.38mmである。薄肉部5bの開口窓3に対するズレmは0.14mmとした。開口窓3の大きさは導波管1と平行側が2.006mm、直交側が1.386mmとした。結果を図11、12に示す。図において実線がS11、破線がS21、点線がS31である。図11、12の結果から反射を抑えつつ、S21が約−4.8dB、S31が約−1.8dBと電力分配できていることがわかる。   In order to evaluate the high frequency characteristics of the waveguide branch structure of the present invention, S parameters were simulated. The type used was a type in which the two waveguide structures shown in FIGS. 4 and 9 are stacked so that the transmission directions of the high-frequency signals are orthogonal to each other, and the waveguide is formed of a dielectric waveguide. Shape. The dielectric substrate 16 was made of glass ceramics having a relative dielectric constant εr of 4.9, and the through conductors were formed with vias having a diameter of 0.2 mm. The interval width between the two rows of through conductor groups 19, that is, the waveguide widths L1 and L2, is the distance between the via centers, L1 = 1.6 mm for the waveguide 1 and L2 = 1.79 mm for the waveguide 2. However, in the overlapping part of the waveguides 1 and 2, the width L3 of the waveguide 2 is set to 2.21 mm. The thicknesses of the waveguides 1 and 2 are both 0.6 mm, the thickness of the thin portion in the waveguide 1 is 0.3 mm, and the thickness of the thin portion of the waveguide 2 is also 0.3 mm. The size L of the thin portion 5b on the waveguide 1 side is 1.369 mm, and the size L2a of the thin portion 5a on the waveguide 2 side is 1.38 mm. The misalignment m of the thin portion 5b with respect to the opening window 3 was 0.14 mm. The size of the opening window 3 was 2.006 mm on the side parallel to the waveguide 1 and 1.386 mm on the orthogonal side. The results are shown in FIGS. In the figure, the solid line is S11, the broken line is S21, and the dotted line is S31. From the results of FIGS. 11 and 12, it can be seen that S21 is approximately −4.8 dB and S31 is approximately −1.8 dB while the reflection is suppressed.

本発明の導波管の分岐構造の第1の発明の一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating an example of 1st invention of the branched structure of the waveguide of this invention. 図1におけるA−A線の概略断面図である。It is a schematic sectional drawing of the AA in FIG. 図1におけるB−B線の概略断面図である。It is a schematic sectional drawing of the BB line in FIG. 本発明の導波管分岐構造の他の一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating another example of the waveguide branch structure of this invention. 本発明の導波管分岐構造の他の一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating another example of the waveguide branch structure of this invention. 本発明の導波管分岐構造の第2の発明の一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating an example of 2nd invention of the waveguide branch structure of this invention. 図6のC−C線概略断面図である。It is CC sectional schematic sectional drawing of FIG. 誘電体導波管線路の基本構造を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the basic structure of a dielectric waveguide line. 図8の誘電体導波管線路を図1の分岐構造に適用した場合の概略透過斜視図である。FIG. 9 is a schematic transparent perspective view when the dielectric waveguide of FIG. 8 is applied to the branch structure of FIG. 1. 本発明の分岐構造をアンテナ基板に用いる場合の概略透過斜視図である。It is a general | schematic see-through | perspective perspective view in case the branch structure of this invention is used for an antenna board | substrate. 実施例におけるシミュレーションにおける伝送特性図である。It is a transmission characteristic figure in simulation in an example. 実施例におけるシミュレーションにおける伝送特性図である。It is a transmission characteristic figure in simulation in an example.

符号の説明Explanation of symbols

1・・・・・第2の導波管
1a・・・・導波管1のひとつのport
1b・・・・導波管1のもうひとつのport
2・・・・・第1の導波管
3・・・・・結合窓
4・・・・・上部主導体
5・・・・・薄肉部
6・・・・・下部主導体
12・・・・導波管
13・・・・導波管
14・・・・結合窓
15・・・・薄肉部
16・・・・誘電体基板
17,18・・主導体
19・・・・・貫通導体
20・・・・副導体層
21・・・・誘電体導波管
DESCRIPTION OF SYMBOLS 1 ... 2nd waveguide 1a ... One port of the waveguide 1
1b... Another port of the waveguide 1
2... First waveguide 3... Coupling window 4... Upper main conductor 5... Thin portion 6. Waveguide 13... Waveguide 14... Coupling window 15... Thin portion 16... Dielectric substrates 17 and 18. .... Subconductor layer 21 ... Dielectric waveguide

Claims (5)

第1の導波管構造体の終端部に第2の導波管構造体を高周波信号の伝送方向が直交するように重ねて配置し、この重ねた部位の導波管壁にそれぞれ結合窓を形成してなるとともに、前記第1および第2の導波管の重ねた部位付近に前記結合窓を形成した壁面とこれと対向する壁面との間隔を他の部位における間隔よりも狭くした薄肉部をそれぞれ設けるとともに、前記第2の導波管における前記薄肉部の伝送方向の中心を前記結合窓の中心からずらして配置したことを特徴とする導波管構造体の分岐構造。 The second waveguide structure is placed on the terminal end of the first waveguide structure so that the transmission direction of the high-frequency signal is perpendicular to each other, and a coupling window is formed on each of the waveguide walls of the overlapped portion. A thin-walled portion that is formed and has a space between the wall surface in which the coupling window is formed in the vicinity of the overlapped portion of the first and second waveguides and a wall surface facing the wall, which is narrower than the space at other portions. And a branch structure of the waveguide structure, wherein a center of the thin-walled portion in the second waveguide is shifted from a center of the coupling window. 第1の導波管構造体の終端部に第2の導波管構造体を高周波信号の伝送方向が平行になるように重ねて配置し、この重ねた部位の導波管壁にそれぞれ結合窓を形成してなるとともに、前記第1および第2の導波管の重ねた部位付近に前記結合窓を形成した壁面とこれと対向する壁面との間隔を他の部位における間隔よりも狭くした薄肉部をそれぞれ設けてなり、前記第2の導波管における前記薄肉部の伝送方向の中心を前記結合窓の中心からずらして配置したことを特徴とする導波管構造体の分岐構造。 A second waveguide structure is placed on the terminal portion of the first waveguide structure so that the transmission direction of the high-frequency signal is parallel, and a coupling window is formed on each waveguide wall of the overlapped portion. A thin wall in which the interval between the wall surface in which the coupling window is formed in the vicinity of the overlapped portion of the first and second waveguides and the wall surface facing this is narrower than the interval in other portions A branching structure of a waveguide structure, wherein a portion is provided, and a center in a transmission direction of the thin portion in the second waveguide is shifted from a center of the coupling window. 前記導波管構造体が、誘電体基板を挟持する一対の主導体層と、高周波信号の伝送方向に信号波長の2分の1未満の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で前記主導体層間を電気的に接続して形成された2列の側壁用貫通導体群と、前記主導体層間に主導体層と平行に形成され、前記側壁用貫通導体群と電気的に接続された副導体層とを具備してなることを特徴とする請求項1または請求項2記載の導波管構造体の分岐構造。 The waveguide structure has a pair of main conductor layers sandwiching a dielectric substrate and a predetermined interval in a direction orthogonal to the transmission direction at a repetition interval of less than half of the signal wavelength in the transmission direction of the high-frequency signal. And two rows of through conductor groups for side walls formed by electrically connecting the main conductor layers with the width of the main conductor layers, and formed in parallel with the main conductor layers between the main conductor layers. The branch structure of the waveguide structure according to claim 1, further comprising: a sub-conductor layer connected to the waveguide. 前記誘電体基板が、低温焼成セラミックスからなることを特徴とする請求項1乃至請求項3のいずれか記載の導波管構造体の分岐構造。 The branched structure of the waveguide structure according to any one of claims 1 to 3, wherein the dielectric substrate is made of low-temperature fired ceramics. 請求項1乃至請求項4記載の分岐構造を具備することを特徴とするアンテナ基板。 An antenna substrate comprising the branch structure according to claim 1.
JP2003396135A 2003-11-26 2003-11-26 Branch structure of waveguide structure and antenna substrate Expired - Fee Related JP4203405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396135A JP4203405B2 (en) 2003-11-26 2003-11-26 Branch structure of waveguide structure and antenna substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396135A JP4203405B2 (en) 2003-11-26 2003-11-26 Branch structure of waveguide structure and antenna substrate

Publications (2)

Publication Number Publication Date
JP2005159768A true JP2005159768A (en) 2005-06-16
JP4203405B2 JP4203405B2 (en) 2009-01-07

Family

ID=34721716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396135A Expired - Fee Related JP4203405B2 (en) 2003-11-26 2003-11-26 Branch structure of waveguide structure and antenna substrate

Country Status (1)

Country Link
JP (1) JP4203405B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288283A (en) * 2006-04-12 2007-11-01 Japan Radio Co Ltd Slot antenna
JP2012256967A (en) * 2011-06-07 2012-12-27 Mitsubishi Electric Corp Waveguide microstrip line converter
KR20170093075A (en) * 2016-02-04 2017-08-14 주식회사 아도반테스토 Multiple waveguide structure with single flange for automatic test equipment for semiconductor testing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288283A (en) * 2006-04-12 2007-11-01 Japan Radio Co Ltd Slot antenna
JP2012256967A (en) * 2011-06-07 2012-12-27 Mitsubishi Electric Corp Waveguide microstrip line converter
KR20170093075A (en) * 2016-02-04 2017-08-14 주식회사 아도반테스토 Multiple waveguide structure with single flange for automatic test equipment for semiconductor testing
KR102466245B1 (en) 2016-02-04 2022-11-10 주식회사 아도반테스토 Multiple waveguide structure with single flange for automatic test equipment for semiconductor testing

Also Published As

Publication number Publication date
JP4203405B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP2008271295A (en) Body structure connecting microstrip line and layered waveguide line and wiring board with the same
US6380825B1 (en) Branch tee dielectric waveguide line
JP3464116B2 (en) High frequency transmission line coupling structure and multilayer wiring board having the same
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JPH10107518A (en) Dielectric waveguide line and wiring board
JP2007274236A (en) Branch structure of waveguide structure and antenna board
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP4203405B2 (en) Branch structure of waveguide structure and antenna substrate
JPH1174701A (en) Connection structure for dielectric waveguide line
JP3522120B2 (en) Connection structure of dielectric waveguide line
JPH11308025A (en) Directional coupler
JP3439973B2 (en) Branch structure of dielectric waveguide
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP4731520B2 (en) Connection structure of laminated waveguide line and laminated waveguide line and wiring board having the same
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP3517097B2 (en) Branch structure of dielectric waveguide
JP2004104816A (en) Dielectric waveguide line and wiring board
JP3512626B2 (en) Branch structure of dielectric waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees