JP2005159067A - Solid-state imaging apparatus - Google Patents

Solid-state imaging apparatus Download PDF

Info

Publication number
JP2005159067A
JP2005159067A JP2003396682A JP2003396682A JP2005159067A JP 2005159067 A JP2005159067 A JP 2005159067A JP 2003396682 A JP2003396682 A JP 2003396682A JP 2003396682 A JP2003396682 A JP 2003396682A JP 2005159067 A JP2005159067 A JP 2005159067A
Authority
JP
Japan
Prior art keywords
conductive region
photodiode
type
conductivity type
transfer gates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396682A
Other languages
Japanese (ja)
Other versions
JP2005159067A5 (en
JP4407257B2 (en
Inventor
Masanori Funaki
正紀 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003396682A priority Critical patent/JP4407257B2/en
Publication of JP2005159067A publication Critical patent/JP2005159067A/en
Publication of JP2005159067A5 publication Critical patent/JP2005159067A5/ja
Application granted granted Critical
Publication of JP4407257B2 publication Critical patent/JP4407257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional solid-state imaging apparatus provided with a photo diode that electric charges cannot have been completely transferred at a low voltage by arranging a plurality of transfer gates to one photo diode. <P>SOLUTION: Immediately beneath the respective transfer gates 19a, 19b, n-type through-channel layers 21a, 21b are formed on a substrate adjacent to a surface shield region 17, p-type barrier layers 22a, 22b are formed inside the substrate adjacent to an n-type conductive region 16 of a PD 18, and n-type channel forming layers 23 are consecutively formed above the barrier layers 22a, 22b and under the through-channel layers 21a, 21b in a way that the n-type channel forming layers 23 are partly protruded from the n-type conductive region 16 of the PD 18 downwardly to the transfer gates 19a, 19b. The concentration of the n-type channel forming layer 23 is selected a little higher than the concentration of the n-type conductive region 16 of the PD 18. Electric charges generated / stored in a conduction region of the n-type conductive region 16 can be completely transferred even when a plurality of the transfer gates are arranged to the PD 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は固体撮像装置に係り、特に完全転送フォトダイオードの構造を備えた固体撮像装置に関する。   The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device having a complete transfer photodiode structure.

シリコン(Si)を用いた撮像素子には、電荷転送素子(CCD)やCMOSイメージセンサなどがある。このうち、CCDの電源電圧は通常の大規模半導体集積回路(LSI)のそれに比較して一般に高く、通常は6V以上である。一方、CMOSイメージセンサは、LSIで使われるCMOS技術を用いて構成されているため、LSIと同じ電源電圧であり、一般に5V以下、多くは3.3V以下である。なお、CCDについても、携帯端末用などに使われる例が増え、低電圧化への要求は大きい。   Examples of the image pickup element using silicon (Si) include a charge transfer element (CCD) and a CMOS image sensor. Among these, the power supply voltage of the CCD is generally higher than that of a normal large-scale semiconductor integrated circuit (LSI), and is usually 6 V or more. On the other hand, since the CMOS image sensor is configured using the CMOS technology used in the LSI, the power supply voltage is the same as that of the LSI, and is generally 5 V or less, and most is 3.3 V or less. In addition, CCDs are increasingly used for portable terminals and the like, and there is a great demand for lower voltage.

ところで、電源電圧が低くなると、フォトダイオードから転送ゲートを通じて電荷を転送する時に、転送残りが発生し、残像やkTCノイズ等の問題が発生することが知られている。それを解決した固体撮像装置が、従来より知られている(例えば、特許文献1参照)。この固体撮像装置は図8に示す断面構造とされている(なお、基板は煩雑になるので省略してある)。   By the way, it is known that when the power supply voltage is lowered, a transfer residue occurs when charges are transferred from a photodiode through a transfer gate, and problems such as afterimage and kTC noise occur. A solid-state imaging device that solves this problem has been known (see, for example, Patent Document 1). This solid-state imaging device has a cross-sectional structure shown in FIG. 8 (note that the substrate is omitted because it becomes complicated).

この固体撮像装置は、基板上に形成されたpウェル1、pウェル1の上に形成されたn型導電領域2及びn型導電領域2上に形成された表面シールド領域3からなるフォトダイオード(PD)4と、pウェル1上で表面シールド領域3に近接して形成された転送ゲート5と、転送ゲート5に対して表面シールド領域3とは反対側に近接して形成されたドレイン6とを備える固体撮像装置の単位セル部において、転送ゲート5の下で表面シールドに隣接して基板上にn型の貫通チャネル層7を形成し、PD4のn型導電領域2に隣接して基板内部にpウェル1よりも高濃度で同じp型のバリア層8を形成し、更にバリア層8の上部にPD4のn型導電領域2から転送ゲート5下に向けて一部迫り出すように、n型のチャネル形成層9が形成されている。チャネル形成層9はPD4のn型導電領域2よりも若干高濃度とされている。   The solid-state imaging device includes a p-well 1 formed on a substrate, an n-type conductive region 2 formed on the p-well 1, and a photodiode (a surface shield region 3 formed on the n-type conductive region 2). PD) 4, a transfer gate 5 formed on the p-well 1 in the vicinity of the surface shield region 3, and a drain 6 formed in the vicinity of the transfer gate 5 on the opposite side of the surface shield region 3. In the unit cell portion of the solid-state imaging device, the n-type through channel layer 7 is formed on the substrate adjacent to the surface shield under the transfer gate 5 and the substrate is adjacent to the n-type conductive region 2 of the PD 4. The same p-type barrier layer 8 is formed at a higher concentration than the p-well 1, and a portion of the n-type conductive region 2 of the PD 4 protrudes below the transfer gate 5 above the barrier layer 8. A channel forming layer 9 of a mold is formed There. The channel formation layer 9 has a slightly higher concentration than the n-type conductive region 2 of the PD 4.

この固体撮像装置では、転送ゲート5をオンした時の信号電荷10のポテンシャル形状は、図9のようになる。なお、ポテンシャルは電子の場合は電位の高い方に落ちていく性質があるので、本図面では下向きを正に描くものとする。また、本明細書において、今後ポテンシャルが高い低いと記載した場合、それは電子から見てのことで、正負が逆になっている。   In this solid-state imaging device, the potential shape of the signal charge 10 when the transfer gate 5 is turned on is as shown in FIG. In the case of electrons, since the potential has the property of falling to the higher potential, it is assumed that the downward direction is drawn positively in this drawing. Further, in this specification, when it is described that the potential is high and low in the future, it is seen from the electron, and the sign is reversed.

さて、チャネル形成層9は、フォトダイオードのn型導電領域2と転送ゲート5の間のポテンシャルを下げ、信号電荷10を転送ゲート5に導く。貫通チャネル層7は、転送ゲート5の下にポテンシャルポケットと呼ばれるポテンシャルの低い電荷が溜まる現象を防ぎ、ドレイン6までのポテンシャル勾配が滑らかになるように作用するので、転送ゲート5に達した信号電荷10はドレイン6に達する。つまり、図9のように、フォトダイオードからドレイン6まで滑らかにポテンシャルが勾配を作っている。このような工夫により、従来は低電圧下でもフォトダイオードの完全転送が行えるようにしている。   The channel forming layer 9 lowers the potential between the n-type conductive region 2 of the photodiode and the transfer gate 5 and guides the signal charge 10 to the transfer gate 5. The through-channel layer 7 prevents a phenomenon that a low potential charge called a potential pocket accumulates under the transfer gate 5 and acts so that the potential gradient to the drain 6 becomes smooth. Therefore, the signal charge reaching the transfer gate 5 10 reaches the drain 6. That is, as shown in FIG. 9, the potential smoothly forms a gradient from the photodiode to the drain 6. With such a device, the photodiode can be completely transferred even under a low voltage.

特開平11−284166号公報JP-A-11-284166

上記の従来の固体撮像装置は、転送ゲート5が一つのときに有効である。ところが、転送ゲート5が複数になると、従来の固体撮像装置では問題が発生する。このことについて、図10と共に説明する。図10は一つのフォトダイオードの左右に2つの転送ゲート5aと5bを配置した固体撮像装置で、同図(A)は平面図、同図(B)は縦断面図を示す。同図中、図8と同一構成部分には同一符号を付し、また左右対称の構成部分のうち左側部分は添字aを、右側部分には添字bを付してある。   The above-described conventional solid-state imaging device is effective when the number of transfer gates 5 is one. However, when there are a plurality of transfer gates 5, a problem occurs in the conventional solid-state imaging device. This will be described with reference to FIG. 10A and 10B show a solid-state imaging device in which two transfer gates 5a and 5b are arranged on the left and right of one photodiode. FIG. 10A is a plan view and FIG. 10B is a longitudinal sectional view. In FIG. 8, the same components as those in FIG. 8 are denoted by the same reference numerals, and the left-hand portion of the left-right symmetric components is denoted by the suffix “a”, and the right-hand portion is denoted by the suffix “b”.

また、ここでは、上から見たフォトダイオードのn型導電領域2の形状を正方形とし、n型導電領域2及び表面シールド3からなるフォトダイオードと転送ゲート5a、5bの間にも不純物濃度がフォトダイオード部よりも濃いチャネル形成層9a、9bを作っている。   In addition, here, the shape of the n-type conductive region 2 of the photodiode as viewed from above is a square, and the impurity concentration is also between the transfer gates 5a and 5b. Channel formation layers 9a and 9b that are darker than the diode portion are formed.

ここで、転送ゲート5bをオンにすると、チャネル形成層9aにある電荷(電子)11は、図11に示すようにポテンシャルが低くなっているところから逃げられず、これが残留電荷になり、kTCノイズや残像の原因となる。   Here, when the transfer gate 5b is turned on, the charge (electrons) 11 in the channel formation layer 9a cannot escape from the low potential as shown in FIG. 11, and this becomes a residual charge, which causes kTC noise. Or afterimage.

一つのフォトダイオードに転送ゲートを複数設けたいという希望は良くある。例えば、転送する先を選択したいという場合や、フォトダイオードの電荷を捨ててリセットしたいといった場合である。従来構造ではこのような希望に応えることはできない。   There is often a desire to provide a plurality of transfer gates in one photodiode. For example, there is a case where it is desired to select a transfer destination or a case where it is desired to discard the charge of the photodiode and reset it. The conventional structure cannot meet such a request.

本発明は上記の点に鑑みなされたもので、転送ゲートが複数でも低電圧下でフォトダイオードの完全転送が行え得る固体撮像装置を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a solid-state imaging device capable of performing complete transfer of a photodiode even at a plurality of transfer gates under a low voltage.

本発明は上記の目的を達成するため、基板上に形成された第1の導電型のウェル及びこの第1の導電型のウェル内に形成された、上面形状が円形、楕円形又は多角形状の第2の導電型の導電領域からなるフォトダイオードと、フォトダイオードの第2の導電型の導電領域の近傍の第1の導電型のウェルに規則的に配置された複数の第2の導電型のドレインと、フォトダイオードの第2の導電型の導電領域と複数のドレインとの間で、かつ、ウェルの上方に設けられた複数の転送ゲートと、光電変換によりフォトダイオードの第2の導電型の導電領域に発生した電荷を、複数の転送ゲートのうち、オンとされた転送ゲートの直下の基板に誘導する第2の導電型のチャネル形成層とを備えた固体撮像装置であって、チャネル形成層は、フォトダイオードの第2の導電型の導電領域よりも高濃度であり、上面から見た形状がフォトダイオードの第2の導電型の導電領域の外周縁部を含むように外周縁部に沿って連続的に形成された形状で、断面方向ではフォトダイオードの第2の導電型の導電領域内から複数の転送ゲートの直下の基板方向に形成されていることを特徴とする。   To achieve the above object, the present invention has a first conductivity type well formed on a substrate and a top surface formed in the first conductivity type well having a circular shape, an elliptical shape or a polygonal shape. A photodiode comprising a conductive region of the second conductivity type, and a plurality of second conductivity types regularly arranged in a well of the first conductivity type in the vicinity of the second conductivity type conductive region of the photodiode; A plurality of transfer gates provided between the drain, the conductive region of the second conductivity type of the photodiode and the plurality of drains, and above the well; and a second conductivity type of the photodiode by photoelectric conversion A solid-state imaging device comprising: a second conductivity type channel formation layer that guides charge generated in a conductive region to a substrate immediately below an on-state transfer gate among a plurality of transfer gates, Layer die photo Concentration higher than that of the second conductive type conductive region of the diode and continuous along the outer peripheral edge so that the shape seen from above includes the outer peripheral edge of the second conductive type conductive region of the photodiode In the cross-sectional direction, it is formed in the direction of the substrate directly below the plurality of transfer gates from within the conductive region of the second conductivity type of the photodiode.

この発明では、フォトダイオードの第2の導電型の導電領域に発生・蓄積された電荷を低電圧で読み出して転送ゲートに誘導するチャネル形成層を、フォトダイオードの第2の導電型の導電領域よりも高濃度であり、上面から見た形状がフォトダイオードの第2の導電型の導電領域の外周縁部を含むように外周縁部に沿って形成された形状、すなわち、円環状、楕円環状又は中空多角形状に形成するようにしたため、フォトダイオードの第2の導電型の導電領域のポテンシャルよりもチャネル形成層のポテンシャルを相対的に低くすることができる。   In the present invention, a channel forming layer for reading out charges generated and accumulated in the second conductive type conductive region of the photodiode at a low voltage and guiding them to the transfer gate is provided by the second conductive type conductive region of the photodiode. Is a shape formed along the outer peripheral edge so that the shape seen from the upper surface includes the outer peripheral edge of the conductive region of the second conductivity type of the photodiode, that is, an annular shape, an elliptical ring shape, or Since it is formed in a hollow polygonal shape, the potential of the channel formation layer can be made relatively lower than the potential of the conductive region of the second conductivity type of the photodiode.

本発明によれば、フォトダイオードの第2の導電型の導電領域のポテンシャルよりもチャネル形成層のポテンシャルを相対的に低くするようにしたため、フォトダイオードの第2の導電型の導電領域に発生・蓄積された電荷は、転送ゲートが複数でもチャネル形成層を伝って、オンとされた転送ゲートの直下の基板へ集めて転送することができ、よって、低電圧下でフォトダイオードの電荷の完全転送を行うことができる。   According to the present invention, since the potential of the channel formation layer is made relatively lower than the potential of the second conductive type conductive region of the photodiode, it is generated in the second conductive type conductive region of the photodiode. The accumulated charge can be transferred through the channel formation layer even if there are multiple transfer gates, and collected and transferred to the substrate directly below the turned-on transfer gate, so that the complete charge transfer of the photodiode under a low voltage is possible. It can be performed.

次に、本発明を実施するための最良の形態について、図面と共に説明する。図1(A)、(B)はそれぞれ本発明になる固体撮像装置の第1の実施の形態の上面図及び縦断面図を示す。図10に示した固体撮像装置は転送ゲート5a及び5bの近傍だけしかチャネル形成層9a及び9bを作らなかったことが問題であった。そこで、この第1の実施の形態では、フォトダイオードの周囲全てにチャネル形成層を形成した点に特徴がある。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. 1A and 1B are a top view and a longitudinal sectional view, respectively, of a first embodiment of a solid-state imaging device according to the present invention. The problem with the solid-state imaging device shown in FIG. 10 was that channel forming layers 9a and 9b were made only in the vicinity of transfer gates 5a and 5b. Therefore, the first embodiment is characterized in that a channel forming layer is formed all around the photodiode.

図1(A)、(B)に示すように、本実施の形態の固体撮像装置の単位セル部は、図示しない基板上に、pウェル15、pウェル15の上に形成された上面形状が四角形のn型導電領域16及びn型導電領域16上に形成されたpウェル15より高濃度のp型表面シールド領域17からなるフォトダイオード(PD)18が形成されている。従って、PD18もn型導電領域16と同様に上面形状が四角形状となる。また、pウェル15上で表面シールド領域17を挟んで左右対称に転送ゲート19a及び19bが形成され、転送ゲート19a、19bに対して表面シールド領域17とは反対側に近接してドレイン20a、20bが形成されている。   As shown in FIGS. 1A and 1B, the unit cell portion of the solid-state imaging device according to the present embodiment has a top shape formed on a p well 15 and a p well 15 on a substrate (not shown). A rectangular n-type conductive region 16 and a photodiode (PD) 18 including a p-type surface shield region 17 having a higher concentration than the p-well 15 formed on the n-type conductive region 16 are formed. Therefore, similarly to the n-type conductive region 16, the top surface of the PD 18 has a quadrangular shape. Further, transfer gates 19a and 19b are formed symmetrically on the p well 15 with the surface shield region 17 interposed therebetween, and the drains 20a and 20b are adjacent to the transfer gates 19a and 19b on the opposite side to the surface shield region 17. Is formed.

更に、転送ゲート19a、19bのそれぞれの直下には、表面シールド領域17に隣接して基板上にn型の貫通チャネル層21a、21bが形成され、PD18のn型導電領域16に隣接して基板内部にpウェル15よりも高濃度で同じp型のバリア層22a、22bが形成され、更にバリア層22a、22bの上方で、かつ、貫通チャネル層21a、21bの下方の位置に、PD18のn型導電領域16から転送ゲート19a、19b下に向けて一部迫り出すように、中空四角柱状のn型のチャネル形成層23が形成されている。   Further, n-type through channel layers 21 a and 21 b are formed on the substrate adjacent to the surface shield region 17 immediately below the transfer gates 19 a and 19 b, respectively, and the substrate is adjacent to the n-type conductive region 16 of the PD 18. The same p-type barrier layers 22a and 22b having a higher concentration than the p-well 15 are formed inside, and further above the barrier layers 22a and 22b and below the through-channel layers 21a and 21b, A hollow rectangular column-shaped n-type channel forming layer 23 is formed so as to partially protrude from the type conductive region 16 to below the transfer gates 19a and 19b.

すなわち、上から見たときに、上面四角形状のn型導電領域16の外周に沿って、かつ、n型導電領域16の外周縁を含む幅のチャネル形成層23が連続的に形成されている。このチャネル形成層23は、PD18のn型導電領域16よりも若干高濃度とされている。入射光は図1(B)の表面シールド17側からpウェル15方向へ入射する。   That is, when viewed from above, the channel forming layer 23 having a width including the outer peripheral edge of the n-type conductive region 16 is continuously formed along the outer periphery of the n-type conductive region 16 having a rectangular shape on the upper surface. . The channel forming layer 23 is slightly higher in concentration than the n-type conductive region 16 of the PD 18. Incident light enters the p-well 15 from the surface shield 17 side in FIG.

上記の構造の第1の実施の形態の固体撮像装置において、図10と同じように、一方の転送ゲート19bをオンにすると、このときのポテンシャル形状は、立体的に描くと図2の模式図に示すようになる。チャネル形成層23はフォトダイオード18のn型導電領域16と同じn型であるが、その不純物濃度が若干濃く形成されているため、図2に示すように、フォトダイオード18のn型導電領域16の中央部のポテンシャルに比べて、チャネル形成層23のところのポテンシャルが相対的に低くなっているため、入射光を光電変換することにより、図1(B)に示すようにn型導電領域16に発生した信号電荷25は、図2に示すようにチャネル形成層23を伝って、全ての電荷が転送ゲート19bの直下の貫通チャネル層21bを通って排出される。   In the solid-state imaging device of the first embodiment having the above structure, when one transfer gate 19b is turned on as in FIG. 10, the potential shape at this time is schematically illustrated in FIG. As shown. The channel formation layer 23 is the same n-type as the n-type conductive region 16 of the photodiode 18, but its impurity concentration is slightly higher. Therefore, as shown in FIG. 2, the n-type conductive region 16 of the photodiode 18 is formed. Since the potential at the channel formation layer 23 is relatively lower than the potential at the center of the n-type conductive region 16 as shown in FIG. 1B by photoelectrically converting incident light. As shown in FIG. 2, the signal charges 25 generated in the first step are transmitted through the channel forming layer 23, and all the charges are discharged through the through channel layer 21b immediately below the transfer gate 19b.

図3は本発明になる固体撮像装置の第2の実施の形態の上面図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図3に示す第2の実施の形態は、チャネル形成層23に対して、2つの転送ゲート19b及び19cを、互いに直角になるように配置したものである。転送ゲート19cの直下の基板上にはn型の貫通チャネル層が形成され、その貫通チャネル層に隣接してドレイン20cが形成されている。本実施の形態も第1の実施の形態と同様に、n型導電領域16に発生した信号電荷の完全転送ができる。   FIG. 3 is a top view of a second embodiment of the solid-state imaging device according to the present invention. In the figure, the same components as those in FIG. In the second embodiment shown in FIG. 3, two transfer gates 19 b and 19 c are arranged so as to be perpendicular to each other with respect to the channel forming layer 23. An n-type through channel layer is formed on the substrate immediately below the transfer gate 19c, and a drain 20c is formed adjacent to the through channel layer. In the present embodiment as well, the signal charges generated in the n-type conductive region 16 can be completely transferred as in the first embodiment.

図4は本発明になる固体撮像装置の第3の実施の形態の上面図を示す。同図中、図1及び図3と同一構成部分には同一符号を付し、その説明を省略する。図4に示す第3の実施の形態は、チャネル形成層23に対して、フォトダイオードに繋げる転送ゲートが19a、19b、19c及び19dと、互いに直角に全部で4つ配置されている点に特徴がある。   FIG. 4 is a top view of a third embodiment of the solid-state imaging device according to the present invention. In the figure, the same components as those in FIGS. 1 and 3 are denoted by the same reference numerals, and the description thereof is omitted. The third embodiment shown in FIG. 4 is characterized in that a total of four transfer gates 19a, 19b, 19c and 19d, which are connected to the photodiode, are arranged at right angles to the channel forming layer 23. There is.

転送ゲート19dの直下の基板上にはn型の貫通チャネル層が形成され、その貫通チャネル層に隣接してドレイン20dが形成されている。本実施の形態も第1及び第2の実施の形態と同様に、n型導電領域16に発生した信号電荷の完全転送ができる。   An n-type through channel layer is formed on the substrate immediately below the transfer gate 19d, and a drain 20d is formed adjacent to the through channel layer. In the present embodiment, as in the first and second embodiments, the signal charges generated in the n-type conductive region 16 can be completely transferred.

このように、フォトダイオード18の上面形状を四角形状とすると、転送ゲートの配置位置は上記の19a〜19dで示すように、四角形の各辺のいずれか2辺以上に自由に設定することができるが、その反面、上記のようにフォトダイオード18の外周縁に沿ってチャネル形成層23を形成する場合、角の角度が小さいと、この角の部分でチャネル形成層23のポテンシャルの高さが、フォトダイオード18の上面四角形状の辺の部分より高くなったり、逆に低くなる場合がある。   Thus, when the upper surface shape of the photodiode 18 is a square shape, the arrangement position of the transfer gate can be freely set to any two or more sides of the square as shown by the above 19a to 19d. On the other hand, when the channel forming layer 23 is formed along the outer peripheral edge of the photodiode 18 as described above, if the angle of the corner is small, the height of the potential of the channel forming layer 23 at this corner is: There are cases where the height is higher than the side of the square shape of the upper surface of the photodiode 18 or is lower.

ポテンシャルが高いとバリアとなり、電荷が流れにくくなり電荷残りが発生し、逆に低いと電荷がそこに溜まり、やはり電荷残りが発生する。このため、角の部分の角度は大きい方がよい。このため、フォトダイオードの上面形状は、4角形以上の多角形状の方が望ましい。   When the potential is high, it becomes a barrier, and it becomes difficult for the electric charge to flow, and a residual charge is generated. For this reason, it is better that the angle of the corner portion is larger. For this reason, the upper surface shape of the photodiode is preferably a polygonal shape of a quadrangle or more.

4角形以上の多角形の種類は24角形、16角形、12角形などがよいが、実用的には8角形以下が設計上簡単である。多角形は、各頂点の角度が等しい正多角形にすることが望ましい。配置の関係で正多角形にできず、多少いびつな形になってもよいが、各角度は90度よりも大きくするのが望ましい。また、多角形の頂点数が少ない場合、各頂点に電荷残りが発生しやすくなるので、4角形などでは3次元シミュレータで確認するのがよい。   The types of polygons that are quadrangular or more are preferably 24, 16 and 12 but are practically simple in terms of an octagon or less. It is desirable that the polygon is a regular polygon having the same angle at each vertex. Although it may not be a regular polygon due to the arrangement, it may be somewhat distorted, but each angle is preferably larger than 90 degrees. In addition, when the number of vertices of a polygon is small, it is easy to generate a charge residue at each vertex.

図5及び図6は本発明になる固体撮像装置の第4及び第5の実施の形態の上面図を示す。各図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図5及び図6に示す第4及び第5の実施の形態は、フォトダイオードに繋げる転送ゲートがいずれも互いに対向する位置に2つの転送ゲート19a及び19bが設けられているが、図5の第4の実施の形態ではフォトダイオード34の上面形状が正8角形であり、フォトダイオード34のn型導電領域の外周に沿って、かつ、そのn型導電領域の外周縁を含む幅で、n型導電領域から転送ゲート19a、19b下に向けて一部迫り出すように、連続的に形成されているn型のチャネル形成層35は中空8角柱状である。   5 and 6 are top views of the fourth and fifth embodiments of the solid-state imaging device according to the present invention. In each figure, the same components as those in FIG. In the fourth and fifth embodiments shown in FIGS. 5 and 6, two transfer gates 19a and 19b are provided at positions where the transfer gates connected to the photodiodes face each other. In the fourth embodiment, the upper surface shape of the photodiode 34 is a regular octagon, and the width of the photodiode 34 is n-type along the outer periphery of the n-type conductive region and including the outer peripheral edge of the n-type conductive region. The n-type channel forming layer 35 continuously formed so as to partially protrude from the conductive region to below the transfer gates 19a and 19b has a hollow octagonal column shape.

一方、図6の第5の実施の形態ではフォトダイオード36の上面形状が正6角形であり、フォトダイオード36のn型導電領域の外周に沿って、かつ、そのn型導電領域の外周縁を含む幅で、そのn型導電領域から転送ゲート19a、19b下に向けて一部迫り出すように、連続的に形成されているn型のチャネル形成層37は中空6角柱状である。フォトダイオード及びその一部を構成するn型導電領域の上面形状が多角形である場合、転送ゲートをその多角形の角の部分に配置すると、転送時のポテンシャルの形状の予測は難しくなるので、図1、図3〜図6に示したように、上面が四角形状の転送ゲートの一側面部は上面から見て、上記の多角形の辺の部分に配置することが望ましい。   On the other hand, in the fifth embodiment of FIG. 6, the top surface shape of the photodiode 36 is a regular hexagon, and the outer periphery of the n-type conductive region is formed along the outer periphery of the n-type conductive region of the photodiode 36. The n-type channel forming layer 37 that is continuously formed so as to partially protrude from the n-type conductive region to the lower side of the transfer gates 19a and 19b with a width that includes the hollow hexagonal column shape. When the top surface shape of the photodiode and the n-type conductive region constituting the photodiode is a polygon, if the transfer gate is arranged at the corner of the polygon, it becomes difficult to predict the shape of the potential at the time of transfer. As shown in FIGS. 1 and 3 to 6, it is desirable that one side surface portion of the transfer gate having a quadrangular upper surface is disposed on the side portion of the polygon as viewed from the upper surface.

究極的な多角形として、図7に示す本発明になる固体撮像装置の第6の実施の形態の上面図のような、フォトダイオードの上面形状を円形(あるいは楕円形)としてもよい。図7において、フォトダイオード38及びその一部を構成するn型導電領域の形状は、最も理想的な形状である円筒形とされている。また、フォトダイオード38のn型導電領域の外周に沿って、かつ、そのn型導電領域の外周縁を含む幅で、n型導電領域から転送ゲート19a、19b下に向けて一部迫り出すように、連続的に形成されているn型のチャネル形成層39は円形である。   As the ultimate polygon, the top surface shape of the photodiode may be circular (or elliptical) as shown in the top view of the sixth embodiment of the solid-state imaging device according to the present invention shown in FIG. In FIG. 7, the shape of the photodiode 38 and the n-type conductive region constituting a part thereof is a cylindrical shape which is the most ideal shape. Further, a part of the width of the n-type conductive region extends downward from the n-type conductive region to the lower side of the transfer gates 19a and 19b along the outer periphery of the n-type conductive region of the photodiode 38 and including the outer peripheral edge of the n-type conductive region. In addition, the n-type channel forming layer 39 formed continuously is circular.

この場合、別の問題が起こる。転送ゲート19a及び19の上面形状が四角形状である場合、上面図において転送ゲート19a、19bの一部がフォトダイオード38に重なり、図7に41で示すようなオーバーラップ部が生じる。通常、フォトレジスト工程で、マスクずれによりオーバーラップ部41が発生しても、電荷の転送がうまくいくように余裕をもって設計を行うが、この場合はオーバーラップ部41が場所によって異なるという問題がある。従って、設計の余裕度を大きめにとる必要がある。   In this case, another problem arises. When the top surfaces of the transfer gates 19a and 19 are square, a part of the transfer gates 19a and 19b overlaps the photodiode 38 in the top view, and an overlap portion as indicated by 41 in FIG. Normally, even if the overlap portion 41 occurs due to mask displacement in the photoresist process, the design is performed with a margin so that the charge transfer is successful. In this case, however, there is a problem that the overlap portion 41 varies depending on the location. . Therefore, it is necessary to increase the design margin.

他方、フォトダイオード38及びチャネル形成層39を図7のように、円形あるいは楕円形とすることの大きなメリットは、転送ゲートの配置位置を自由に設定することができることである。   On the other hand, a great merit of making the photodiode 38 and the channel forming layer 39 circular or elliptical as shown in FIG. 7 is that the arrangement position of the transfer gate can be freely set.

なお、本発明は以上の実施の形態に限定されるものではなく、フォトダイオードの上面形状は以上の実施の形態以外の多角形状でもよく、また、転送ゲートの数、及び配置位置は図1、図3、図7に限定されるものではない。更に、ウェルやチャネル形成層、貫通チャネル層、バリア層、ドレインなどは、図1とは反対導電型であってもよい。   Note that the present invention is not limited to the above embodiment, and the top surface shape of the photodiode may be a polygonal shape other than the above embodiment, and the number and arrangement position of the transfer gates are as shown in FIG. It is not limited to FIG. 3 and FIG. Further, the wells, channel forming layers, through channel layers, barrier layers, drains, and the like may be of a conductivity type opposite to that shown in FIG.

本発明の第1の実施の形態の上面図及び縦断面図である。It is the top view and longitudinal cross-sectional view of the 1st Embodiment of this invention. 図1のポテンシャル形状の立体的な模式図である。It is a three-dimensional schematic diagram of the potential shape of FIG. 本発明の第2の実施の形態の上面図である。It is a top view of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の上面図である。It is a top view of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の上面図である。It is a top view of the 4th Embodiment of this invention. 本発明の第5の実施の形態の上面図である。It is a top view of the 5th Embodiment of this invention. 本発明の第6の実施の形態の上面図である。It is a top view of the 6th Embodiment of this invention. 従来の固体撮像装置の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the conventional solid-state imaging device. 図8の電荷の流れ(矢印)に沿った(転送ゲートをオンした)時のポテンシャル模式図である。FIG. 9 is a potential schematic diagram when the charge flow (arrow) in FIG. 8 is followed (transfer gate is turned on). 従来の固体撮像装置の問題点を説明する装置上面図及び縦断面図である。It is the apparatus top view and longitudinal cross-sectional view explaining the problem of the conventional solid-state imaging device. 図10の電荷の流れ(矢印)に沿った(一方の転送ゲートをオンした)時のポテンシャル模式図である。FIG. 11 is a potential schematic diagram along the flow of electric charge (arrow) in FIG. 10 (one transfer gate is turned on).

符号の説明Explanation of symbols

15 pウェル
16 フォトダイオードのn型導電領域
17 表面シールド領域
18 フォトダイオード(PD)
19a、19b、19c、19d 転送ゲート
20a、20b、20c、20d ドレイン(n)
21a、21b 貫通チャネル層(n)
22a、22b バリア層(n)
23、35、37、39 チャネル形成層(n)
25 信号電荷
30 電荷の流れ


15 p-well 16 n-type conductive region of photodiode 17 surface shield region 18 photodiode (PD)
19a, 19b, 19c, 19d Transfer gate 20a, 20b, 20c, 20d Drain (n)
21a, 21b Through channel layer (n)
22a, 22b Barrier layer (n)
23, 35, 37, 39 Channel forming layer (n)
25 Signal charge 30 Charge flow


Claims (1)

基板上に形成された第1の導電型のウェル及びこの第1の導電型のウェル内に形成された、上面形状が円形、楕円形又は多角形状の第2の導電型の導電領域からなるフォトダイオードと、前記フォトダイオードの第2の導電型の導電領域の近傍の前記第1の導電型のウェルに規則的に配置された複数の第2の導電型のドレインと、前記フォトダイオードの第2の導電型の導電領域と前記複数のドレインとの間で、かつ、前記ウェルの上方に設けられた複数の転送ゲートと、光電変換により前記フォトダイオードの第2の導電型の導電領域に発生した電荷を、前記複数の転送ゲートのうち、オンとされた転送ゲートの直下の基板に誘導する第2の導電型のチャネル形成層とを備えた固体撮像装置であって、
前記チャネル形成層は、前記フォトダイオードの第2の導電型の導電領域よりも高濃度であり、上面から見た形状が前記フォトダイオードの第2の導電型の導電領域の外周縁部を含むように該外周縁部に沿って連続的に形成された形状で、断面方向では前記フォトダイオードの第2の導電型の導電領域内から前記複数の転送ゲートの直下の前記基板方向に形成されていることを特徴とする固体撮像装置。

A photo of a first conductivity type well formed on a substrate and a second conductivity type conductive region having a top surface of a circular, elliptical or polygonal shape formed in the first conductivity type well. A plurality of drains of the second conductivity type regularly arranged in the well of the first conductivity type in the vicinity of the conductive region of the second conductivity type of the photodiode; and a second of the photodiode Generated in the second conductive type conductive region of the photodiode by photoelectric conversion between the conductive region of the first conductive type and the plurality of drains and above the well and the transfer gate. A solid-state imaging device comprising: a second conductivity type channel forming layer for guiding charges to a substrate directly below the turned-on transfer gate among the plurality of transfer gates;
The channel formation layer is higher in concentration than the second conductive type conductive region of the photodiode, and the shape seen from above includes the outer peripheral edge portion of the second conductive type conductive region of the photodiode. In the cross-sectional direction, it is formed in the direction of the substrate immediately below the plurality of transfer gates from within the conductive region of the second conductivity type of the photodiode. A solid-state imaging device.

JP2003396682A 2003-11-27 2003-11-27 Solid-state imaging device Expired - Lifetime JP4407257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396682A JP4407257B2 (en) 2003-11-27 2003-11-27 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396682A JP4407257B2 (en) 2003-11-27 2003-11-27 Solid-state imaging device

Publications (3)

Publication Number Publication Date
JP2005159067A true JP2005159067A (en) 2005-06-16
JP2005159067A5 JP2005159067A5 (en) 2008-03-06
JP4407257B2 JP4407257B2 (en) 2010-02-03

Family

ID=34722048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396682A Expired - Lifetime JP4407257B2 (en) 2003-11-27 2003-11-27 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4407257B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083704A1 (en) * 2006-01-18 2007-07-26 National University Corporation Shizuoka University Solid-state image pick-up device and pixel signal readout method
GB2477083A (en) * 2010-01-13 2011-07-27 Cmosis Nv Pixel structure with multiple transfer gates to improve dynamic range
US8487259B2 (en) 2009-11-16 2013-07-16 Samsung Electronics Co., Ltd. Infrared image sensor
JP5506683B2 (en) * 2008-08-11 2014-05-28 本田技研工業株式会社 Pixel, method for manufacturing pixel, imaging device, and image forming method
KR20170065935A (en) * 2015-12-04 2017-06-14 에스케이하이닉스 주식회사 Image sensor including vertical transfer gate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083704A1 (en) * 2006-01-18 2007-07-26 National University Corporation Shizuoka University Solid-state image pick-up device and pixel signal readout method
JPWO2007083704A1 (en) * 2006-01-18 2009-06-11 国立大学法人静岡大学 Solid-state imaging device and pixel signal reading method thereof
JP4649623B2 (en) * 2006-01-18 2011-03-16 国立大学法人静岡大学 Solid-state imaging device and pixel signal reading method thereof
US8319166B2 (en) 2006-01-18 2012-11-27 National University Corporation Shizuoka University Solid-state image pick-up device and pixel signal readout method having dual potential well, dual transfer gate electrode and dual floating-diffusion region for separately transferring and storing charges respectively
JP5506683B2 (en) * 2008-08-11 2014-05-28 本田技研工業株式会社 Pixel, method for manufacturing pixel, imaging device, and image forming method
US8860861B2 (en) 2008-08-11 2014-10-14 Honda Motor Co., Ltd. Pixel, pixel forming method, imaging device and imaging forming method
US8487259B2 (en) 2009-11-16 2013-07-16 Samsung Electronics Co., Ltd. Infrared image sensor
GB2477083A (en) * 2010-01-13 2011-07-27 Cmosis Nv Pixel structure with multiple transfer gates to improve dynamic range
US9001245B2 (en) 2010-01-13 2015-04-07 Cmosis Nv Pixel structure with multiple transfer gates
KR20170065935A (en) * 2015-12-04 2017-06-14 에스케이하이닉스 주식회사 Image sensor including vertical transfer gate
KR102462912B1 (en) * 2015-12-04 2022-11-04 에스케이하이닉스 주식회사 Image sensor including vertical transfer gate

Also Published As

Publication number Publication date
JP4407257B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP5967944B2 (en) Solid-state imaging device and camera
JP7365601B2 (en) photodetector
JP4832541B2 (en) Solid-state imaging device and electronic information device
JP4802520B2 (en) Solid-state imaging device and manufacturing method thereof
JP4725095B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
US10367029B2 (en) Image sensors having a separation impurity layer
JP4946147B2 (en) Solid-state imaging device
JP2009135319A (en) Solid-state imaging apparatus and camera
JP2007095917A (en) Solid-state imaging device
JP2006245499A5 (en)
JP3727639B2 (en) Solid-state imaging device
JP2009510777A (en) Photodetector and N-type layer structure for improved collection
JP2016063216A (en) Imaging device
JP2011146714A (en) Unit pixel including photon-refracting microlens, back-side illumination cmos image sensor including the same, and method of forming the unit pixel
JP2007110133A (en) Cmos image sensor and manufacturing method thereof
JP2019145619A (en) Imaging device and camera
TW201336062A (en) Solid-state imaging device
JP2015130533A (en) Solid state imaging device and camera
JP4752193B2 (en) Solid-state image sensor
JP4407257B2 (en) Solid-state imaging device
JP4474962B2 (en) Back-illuminated solid-state imaging device, electronic device module, and camera module
JP2007096084A (en) Solid-state imaging device and its driving method
JP2011054596A (en) Ccd image sensor
WO2020170658A1 (en) Imaging device
JP2002164527A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4407257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250