JP2005157901A - Vehicle detection device - Google Patents

Vehicle detection device Download PDF

Info

Publication number
JP2005157901A
JP2005157901A JP2003397912A JP2003397912A JP2005157901A JP 2005157901 A JP2005157901 A JP 2005157901A JP 2003397912 A JP2003397912 A JP 2003397912A JP 2003397912 A JP2003397912 A JP 2003397912A JP 2005157901 A JP2005157901 A JP 2005157901A
Authority
JP
Japan
Prior art keywords
lane
vehicle
magnetic sensor
output
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003397912A
Other languages
Japanese (ja)
Inventor
Yukio Ikeda
幸雄 池田
Shuichi Sunahara
秀一 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Toyota Motor Corp
Original Assignee
Hitachi Cable Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Toyota Motor Corp filed Critical Hitachi Cable Ltd
Priority to JP2003397912A priority Critical patent/JP2005157901A/en
Publication of JP2005157901A publication Critical patent/JP2005157901A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle detection device capable of certainly deciding a traffic lane with a simple configuration. <P>SOLUTION: This vehicle detection device has: a plurality of magnetic sensors 1a, 1b disposed inside respective traffic lanes 21a, 21b of a road 22 having the plurality of traffic lanes 21a, 21b; and a traffic lane decision part 24 deciding whether a vehicle 5a passes on the desired traffic lane 21a or not, according to whether or not a value Ia-βIb obtained by subtracting a value βIb obtained by multiplying an output Ib of the magnetic sensor 1b of the adjacent traffic lane 21b by a prescribed ratio β from an output Ia of the magnetic sensor 1a of the desired traffic lane 21a is larger than a value obtained by multiplying an output Ib of the magnetic sensor 1b of the adjacent traffic lane 21b by a prescribed ratio γ. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、道路を走行する車両を検知して交通流量の測定に利用される車両検知装置に係り、特に車両による磁場の変化から車両の通過を判定する磁場感応型の車両検知装置に関する。   The present invention relates to a vehicle detection device that detects a vehicle traveling on a road and is used for measuring a traffic flow rate, and more particularly to a magnetic field sensitive vehicle detection device that determines passage of a vehicle from a change in magnetic field by the vehicle.

道路近傍のある地点で磁場を検出すると、時間的に一定なある値が得られる。これは地磁気によるものである。道路上を磁性体の塊である車両が通過すると、磁性体に磁束が集中するため、上記地点での磁場が時間的に変化する。車両が磁化している場合、その磁化の方向と地磁気の方向とが同じであれば磁場が強まり、磁化の方向と地磁気の方向とが逆であれば磁場が弱まるので、検出される磁場はより大きく変化する。このような磁場感応型の車両検知装置が特許文献1〜4に記載されている。   If a magnetic field is detected at a certain point in the vicinity of the road, a certain value that is constant in time is obtained. This is due to geomagnetism. When a vehicle that is a lump of magnetic material passes on the road, magnetic flux concentrates on the magnetic material, so that the magnetic field at the point changes with time. When the vehicle is magnetized, the magnetic field is stronger if the direction of magnetization is the same as the direction of geomagnetism, and the magnetic field is weaker if the direction of magnetization is opposite to the direction of geomagnetism. It changes a lot. Patent Documents 1 to 4 describe such a magnetic field sensitive vehicle detection device.

特許文献1、2では、道路脇の長手方向に間隔を隔てて2つの磁気センサを設置し、1台の車両の通過による磁気センサ出力の極大値と極小値のペアを検出して車両の通過を検出すると共に、2つの磁気センサ出力の位相差から車両の移動方向と速度を検出している。   In Patent Documents 1 and 2, two magnetic sensors are installed at an interval in the longitudinal direction of a road, and a pair of a maximum value and a minimum value of a magnetic sensor output due to the passage of one vehicle is detected to pass the vehicle. And the moving direction and speed of the vehicle are detected from the phase difference between the outputs of the two magnetic sensors.

特許文献3では、道路長手方向に間隔を隔てて2つの磁気センサを埋設し、磁気センサ出力を二値化するタイミングを工夫することにより、連続して来る2台の車両の通過を識別している。   In Patent Literature 3, two magnetic sensors are embedded at intervals in the longitudinal direction of the road, and the timing of binarizing the magnetic sensor output is devised to identify the passage of two consecutive vehicles. Yes.

特許文献4では、隣接する2車線がある道路の片側車線の幅方向中央から車線境界線までの間と反対側車線の幅方向中央から車線境界線までの間の上空にそれぞれ磁気センサを設置し、各磁気センサの感度軸を互いに対向させるか斜め下に向けさせ、2つの磁気センサは一方が片側車線のみ他方が反対側車線のみの車両による磁場の変化に感応することで車線を判別している。   In Patent Document 4, magnetic sensors are respectively installed in the sky between the center in the width direction of one side lane of a road having two adjacent lanes and the lane boundary line and between the center in the width direction of the opposite lane and the lane boundary line. The sensitivity axis of each magnetic sensor is made to face each other or obliquely downward, and the two magnetic sensors detect the lane by sensing the change in the magnetic field due to the vehicle with one side only and the other side only. Yes.

特開平6−325288号公報JP-A-6-325288 特許第2729977号公報Japanese Patent No. 2729977 特開2001−076119号公報JP 2001-076119 A 実用新案登録第2524593号公報Utility Model Registration No. 2524593

特許文献1〜3において、複数車線を有する道路のうちの所望車線を通過する車両だけを検知しようとしても、車両が強く磁化している場合とそうでない場合とで磁気センサの出力の大きさが異なるため、磁気センサから車両までの距離の違いを磁気センサの出力の大きさで判別することはできず、他の車線を通過する車両までも当該車線を通過したと誤検知してしまう。つまり車両を検知する精度が低い。このため、通行量を実際の通行量よりも多くカウントしてしまうという問題がある。   In Patent Documents 1 to 3, even if only a vehicle passing through a desired lane among roads having a plurality of lanes is detected, the magnitude of the output of the magnetic sensor depends on whether the vehicle is strongly magnetized or not. Because of the difference, the difference in distance from the magnetic sensor to the vehicle cannot be determined by the magnitude of the output of the magnetic sensor, and even a vehicle that passes through another lane is erroneously detected as passing through the lane. That is, the accuracy of detecting the vehicle is low. For this reason, there is a problem that the traffic volume is counted more than the actual traffic volume.

特許文献4では、車線の判別が可能であるが、磁気センサの感度軸の向きだけで隣車線の車両による磁場変化を遮断しなければならないので、互いの磁気センサの場所や姿勢を厳密に設定する必要がある。   In Patent Document 4, although the lane can be discriminated, the magnetic field change due to the vehicle in the adjacent lane must be blocked only by the direction of the sensitivity axis of the magnetic sensor, so the location and posture of each magnetic sensor are set strictly. There is a need to.

そこで、本発明の目的は、上記課題を解決し、簡素な構成で車線の判定が確実にできる車両検知装置を提供することにある。   Accordingly, an object of the present invention is to provide a vehicle detection device that solves the above-described problems and can reliably determine a lane with a simple configuration.

上記目的を達成するために本発明は、複数車線を有する道路の各々の車線内に配置された複数の磁気センサと、所望の車線の磁気センサの出力から隣の車線の磁気センサの出力に所定比率を乗じた値を差し引いた値が隣の車線の磁気センサの出力に所定の係数を乗じた値より大きいか否かで前記所望車線を車両が通過したか否かを判定する車線判定部を備えたものである。   In order to achieve the above object, the present invention provides a plurality of magnetic sensors arranged in each lane of a road having a plurality of lanes, and outputs from a magnetic sensor of a desired lane to an output of a magnetic sensor of an adjacent lane. A lane determining unit that determines whether or not the vehicle has passed the desired lane depending on whether or not a value obtained by subtracting a value multiplied by the ratio is greater than a value obtained by multiplying the output of the magnetic sensor of the adjacent lane by a predetermined coefficient; It is provided.

前記比率は、予め前記所望車線を車両が通過した期間中に、前記所望車線の磁気センサ出力の時間的最大値に対する隣車線の磁気センサ出力の時間的最大値の比率として求めておいてもよい。   The ratio may be obtained in advance as a ratio of the temporal maximum value of the magnetic sensor output of the adjacent lane to the temporal maximum value of the magnetic sensor output of the desired lane during a period in which the vehicle has passed through the desired lane. .

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)簡素な構成で車線の判定が確実にできる。   (1) The lane can be reliably determined with a simple configuration.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る車両検知装置は、車線21a,21bを有する道路22の各々の車線内に配置された2つの磁気センサ1a,1bを備える。これら磁気センサ1a,1bは、道路面の下に埋設したり、道路を跨ぐガントリに取り付けたり、高架橋の裏面に取り付けたり、シールドトンネルの床板裏面に取り付けたりすることができる。車線21aを走行する車両を車両5a、車線21bを走行する車両を車両5bとする。   As shown in FIG. 1, the vehicle detection device according to the present invention includes two magnetic sensors 1a and 1b arranged in each lane of a road 22 having lanes 21a and 21b. These magnetic sensors 1a and 1b can be embedded under the road surface, attached to a gantry straddling the road, attached to the back of the viaduct, or attached to the back of the floor plate of the shield tunnel. A vehicle traveling on the lane 21a is referred to as a vehicle 5a, and a vehicle traveling on the lane 21b is referred to as a vehicle 5b.

ここでは、図2に示されるように、磁気センサ1a,1bは、道路面23の下に埋設してある。それぞれの磁気センサ1a,1bは、感度軸の方向(矢印で示す)を道路面23に垂直(y軸方向)にしてある。感度軸(検知軸ともいう)とは磁場を最も強く感じる方向のことであり、感度軸を道路面23に垂直にしておくことにより、磁気センサ1a,1bはそれぞれ真上を通過する車両5a,5bによる磁場を最も強く検出し、斜め上を通過する車両5b,5aによる磁場はその上向きベクトル成分のみ検出することができる。磁気センサ1a,1bは、各々車線21a,21bのほぼ中央に配置される。   Here, as shown in FIG. 2, the magnetic sensors 1 a and 1 b are embedded under the road surface 23. Each of the magnetic sensors 1a and 1b has a sensitivity axis direction (indicated by an arrow) perpendicular to the road surface 23 (y-axis direction). The sensitivity axis (also referred to as the detection axis) is the direction in which the magnetic field is felt most strongly. By keeping the sensitivity axis perpendicular to the road surface 23, the magnetic sensors 1a and 1b are respectively directly above the vehicles 5a and 5a. The magnetic field by 5b is detected most strongly, and only the upward vector component can be detected from the magnetic field by vehicles 5b and 5a passing diagonally upward. The magnetic sensors 1a and 1b are disposed at substantially the center of the lanes 21a and 21b, respectively.

図3に示されるように、本発明に係る車両検知装置は、既に述べた2つの磁気センサ1a,1bに加え、各車線毎に自車線を車両が通過したか否かを判定する車線判定部24を備える。車線判定部24は、隣の車線の磁気センサの出力に予め定めた比率を乗じる乗算器2a,2bと、自車線の磁気センサの出力から前記乗算値を差し引く演算器3a,3bと、この差引値が隣の車線の磁気センサの出力に所定の係数を乗じた値又は予め定めた閾値より大きいか否かで自車線を車両が通過したか否かを判定して車両検知信号を出力する判定器4a,4bとからなる。自車線を車線21aとすると、乗算器2aは隣の車線21bの磁気センサ1bの出力Ibに比率βを乗じて乗算値βIbとし、演算器3aは自車線21aの磁気センサ1aの出力Iaから乗算値βIbを差し引いて差引値Ia−βIbとし、判定器4aは差引値Ia−βIbが隣の車線21bの磁気センサ1bの出力Ibに所定の係数γを乗じた値又は閾値より大きいか否かで自車線を車両が通過したか否かを判定する。自車線を車線21bとすると、乗算器2bは隣の車線21aの磁気センサの1a出力Iaに比率αを乗じて乗算値αIaとし、演算器3bは自車線21bの磁気センサ1bの出力Ibから乗算値αIaを差し引いて差引値Ib−αIaとし、判定器4bは差引値Ib−αIaが隣の車線21aの磁気センサ1aの出力Iaに所定の係数δを乗じた値又は閾値より大きいか否かで自車線を車両が通過したか否かを判定する。   As shown in FIG. 3, the vehicle detection device according to the present invention includes a lane determination unit that determines whether or not the vehicle has passed through its own lane for each lane in addition to the two magnetic sensors 1 a and 1 b described above. 24. The lane determination unit 24 includes multipliers 2a and 2b that multiply the output of the magnetic sensor of the adjacent lane by a predetermined ratio, arithmetic units 3a and 3b that subtract the multiplication value from the output of the magnetic sensor of the own lane, and this subtraction. Judgment that outputs a vehicle detection signal by determining whether the vehicle has passed through the own lane based on whether the value is greater than a value obtained by multiplying the output of the magnetic sensor of the adjacent lane by a predetermined coefficient or a predetermined threshold value And 4a and 4b. When the own lane is the lane 21a, the multiplier 2a multiplies the output Ib of the magnetic sensor 1b of the adjacent lane 21b by the ratio β to obtain a multiplication value βIb, and the calculator 3a multiplies from the output Ia of the magnetic sensor 1a of the own lane 21a. The value βIb is subtracted to obtain a subtraction value Ia−βIb, and the determination unit 4a determines whether the subtraction value Ia−βIb is greater than a value obtained by multiplying the output Ib of the magnetic sensor 1b of the adjacent lane 21b by a predetermined coefficient γ or a threshold value. It is determined whether the vehicle has passed through its own lane. When the own lane is the lane 21b, the multiplier 2b multiplies the 1a output Ia of the magnetic sensor of the adjacent lane 21a by the ratio α to obtain a multiplication value αIa, and the computing unit 3b multiplies from the output Ib of the magnetic sensor 1b of the own lane 21b. The value αIa is subtracted to obtain a subtraction value Ib−αIa, and the determiner 4b determines whether the subtraction value Ib−αIa is greater than a value obtained by multiplying the output Ia of the magnetic sensor 1a of the adjacent lane 21a by a predetermined coefficient δ or a threshold value. It is determined whether the vehicle has passed through its own lane.

まず、図4〜図6を用いて磁気センサ1の近傍を車両5が通過したことによる磁気センサ1の出力の変化について説明する。図4(a)、図4(b)に示されるように、磁性体の塊である車両5は、その構造の特徴から前後方向(道路を基準にすればx軸方向)に磁化している場合が多い。また、車両5が磁化していなくとも磁性体に磁気が集中することから、磁化しているのと同等(等価)の影響を周囲の磁場に与える。なお、車両5の磁化の強さは、車両5の磁性体含有量や磁化の履歴により、車両5の寸法や車種によらない。   First, changes in the output of the magnetic sensor 1 due to the vehicle 5 passing through the vicinity of the magnetic sensor 1 will be described with reference to FIGS. As shown in FIGS. 4 (a) and 4 (b), the vehicle 5, which is a lump of magnetic material, is magnetized in the front-rear direction (x-axis direction based on the road) due to the characteristics of the structure. There are many cases. In addition, even if the vehicle 5 is not magnetized, the magnetism concentrates on the magnetic material, so that an influence equivalent to that of being magnetized is given to the surrounding magnetic field. Note that the strength of magnetization of the vehicle 5 does not depend on the size of the vehicle 5 or the type of vehicle, depending on the magnetic substance content of the vehicle 5 and the history of magnetization.

ここで、車両5を仮想磁石7と仮定すると、この仮想磁石7は両極を端部に有しx軸に平行な棒磁石であり、磁気センサ1からの距離はz軸方向にt、y軸方向にhである。この図4から車両5及び道路面23を取り去り、仮想磁石7が磁気センサ1にもたらす磁場を示したのが図5である。   Assuming that the vehicle 5 is a virtual magnet 7, the virtual magnet 7 is a bar magnet having both poles at the ends and parallel to the x axis, and the distance from the magnetic sensor 1 is t and y axes in the z axis direction. H in the direction. FIG. 5 shows the magnetic field that the virtual magnet 7 brings to the magnetic sensor 1 after removing the vehicle 5 and the road surface 23 from FIG.

図5(a)に示されるように、仮想磁石7が磁気センサ1の真上にあったとした場合(破線丸)に生じる磁場をHとすると、仮想磁石7から見下ろす角度θにある磁気センサ1内の点Pには磁場rが生じる。図5(b)に示されるように、磁気センサ1内の点Pに生じる磁場Hは、仮想磁石7のS極による磁場HsとN極による磁場Hnを合成したものである。これらの関係は次式で与えられる。   As shown in FIG. 5A, when the magnetic field generated when the virtual magnet 7 is directly above the magnetic sensor 1 (dotted circle) is H, the magnetic sensor 1 at an angle θ looking down from the virtual magnet 7. A magnetic field r is generated at the inner point P. As shown in FIG. 5B, the magnetic field H generated at the point P in the magnetic sensor 1 is a combination of the magnetic field Hs due to the S pole of the virtual magnet 7 and the magnetic field Hn due to the N pole. These relationships are given by:

Figure 2005157901
Figure 2005157901

車両5が前に移動することにより仮想磁石7の前後方向中点と磁気センサ1との距離dが連続的に変化する。磁場Hsと磁場Hnは強度が距離dの関数になっているから距離dの変化に伴い強度変化する。この強度変化は経過時間に対する強度の変化波形として描ける。図6に、車両5の速度が一定とした場合のy軸方向の磁場Hの強度の変化波形を示す。横軸は経過時間、縦軸は車両が無いときの磁場強度(地磁気による)を0とした磁場強度である。   As the vehicle 5 moves forward, the distance d between the midpoint of the virtual magnet 7 in the front-rear direction and the magnetic sensor 1 changes continuously. Since the magnetic field Hs and the magnetic field Hn are functions of the distance d, the intensity changes as the distance d changes. This intensity change can be drawn as an intensity change waveform with respect to the elapsed time. FIG. 6 shows a change waveform of the strength of the magnetic field H in the y-axis direction when the speed of the vehicle 5 is constant. The horizontal axis represents the elapsed time, and the vertical axis represents the magnetic field strength when the magnetic field strength (due to geomagnetism) when there is no vehicle is zero.

以上、図4〜図6は従来より知られているとおりである。図6の時間波形から車両の通過を検出する方法については従来公知なので、ここでは説明を省略する。   4 to 6 are as conventionally known. Since the method of detecting the passage of the vehicle from the time waveform of FIG. 6 is conventionally known, the description thereof is omitted here.

次に、ある時点Tにおいて道路面垂直方向の磁場が車線横断方向に分布する様子について説明する。図7(a)は図1において右車線21aを車両5aが通過する場合の配置を示し、図7(b)は図1において左車線21bを車両5bが通過する場合の配置を示す。図7(c)は、それぞれの場合の磁場強度分布を示す。図7(c)の横軸は右車線21aの横断方向中央を0とし、その横断方向中央からの横断方向の距離を表すものであり、縦軸は車両により生じた磁場の磁場強度を表すものであり、車両が無いときの磁場強度を0とする。   Next, how the magnetic field in the direction perpendicular to the road surface is distributed in the lane crossing direction at a certain time T will be described. 7A shows an arrangement when the vehicle 5a passes through the right lane 21a in FIG. 1, and FIG. 7B shows an arrangement when the vehicle 5b passes through the left lane 21b in FIG. FIG. 7C shows the magnetic field strength distribution in each case. In FIG. 7C, the horizontal axis represents the crosswise center of the right lane 21a as 0 and represents the distance in the crossing direction from the crosswise center, and the vertical axis represents the magnetic field strength of the magnetic field generated by the vehicle. The magnetic field strength when there is no vehicle is 0.

図7(c)の分布71aに示されるように、車両5aが右車線21a上を走行するとき、横断方向中央が最も磁場が強く、横断方向中央の両側では横断方向中央からの距離に応じて磁場が曲線的に弱くなっている。また、分布71bに示されるように、車両5bが左車線21b上を走行するとき、横断方向中央から約3.5mの地点(車線21bの横断方向中央)が最も磁場が強く、その地点の両側ではその地点からの距離に応じて磁場が曲線的に弱くなっている。つまり、仮に道路横断方向に微小間隔で多数の磁気センサが感度軸を揃えて配置されていると、車両が通過する車線によって分布71a又は分布71bの分布が観測できる。   As shown in the distribution 71a of FIG. 7C, when the vehicle 5a travels on the right lane 21a, the center in the transverse direction has the strongest magnetic field, and on both sides of the center in the transverse direction, depending on the distance from the center in the transverse direction. The magnetic field is weak in a curve. Further, as shown in the distribution 71b, when the vehicle 5b travels on the left lane 21b, a point about 3.5m from the center in the cross direction (the center in the cross direction of the lane 21b) has the strongest magnetic field, and both sides of the point Then, the magnetic field weakens in a curve according to the distance from that point. That is, if a large number of magnetic sensors are arranged with minute intervals in the direction crossing the road, the distribution 71a or the distribution 71b can be observed by the lane through which the vehicle passes.

なお、図7(c)は時間軸で見ると図6で磁場強度が最大値となる時点Tについて示したものであるが、図6のどの時点においても磁場強度の空間的最大値を1としたときの分布のプロファイルは同じである。   FIG. 7C shows the time T when the magnetic field intensity reaches the maximum value in FIG. 6 when viewed on the time axis. The spatial maximum value of the magnetic field intensity is 1 at any time in FIG. The distribution profile is the same.

さて、本発明にあっては、車線21aに磁気センサ1aを設置し、車線21bに磁気センサ1bを設置している。今、右車線21aを自車線としたとき、自車線を車両5aが通過すると、図7(c)の分布71aにおける磁気センサ1aの設置点である0mの地点での磁場強度は1であるから、磁気センサ1aの出力Iaは図6と相似で最大値が1となる時間変化をする。このとき、分布71aにおける磁気センサ1bの設置点である約3.5mの地点での磁場強度は0.6であるから、磁気センサ1bの出力Ibは図6と相似で最大値が0.6となる時間変化をする。自車線の磁気センサ1aの出力Iaの最大値1に対する隣車線の磁気センサ1bの出力Ibの最大値0.6の比率は0.6である。そこで、乗算器2aには比率βとして0.6を予め設定しておく。   In the present invention, the magnetic sensor 1a is installed in the lane 21a, and the magnetic sensor 1b is installed in the lane 21b. Now, assuming that the right lane 21a is the own lane and the vehicle 5a passes through the own lane, the magnetic field intensity at the point of 0 m, which is the installation point of the magnetic sensor 1a, in the distribution 71a of FIG. The output Ia of the magnetic sensor 1a is similar to that shown in FIG. At this time, since the magnetic field intensity at the point of about 3.5 m, which is the installation point of the magnetic sensor 1b in the distribution 71a, is 0.6, the output Ib of the magnetic sensor 1b is similar to FIG. Change over time. The ratio of the maximum value 0.6 of the output Ib of the magnetic sensor 1b in the adjacent lane to the maximum value 1 of the output Ia of the own-lane magnetic sensor 1a is 0.6. Therefore, 0.6 is previously set as the ratio β in the multiplier 2a.

一方、図7(c)の分布71bに注目すると、左車線21bを自車線としたとき、自車線を車両5bが通過すると、分布71bにおける磁気センサ1aの設置点である0mの地点での磁場強度は0.6であるから、磁気センサ1aの出力Iaは図6と相似で最大値が0.6となる時間変化をする。このとき、分布71aにおける磁気センサ1bの設置点である約3.5mの地点での磁場強度は1であるから、磁気センサ1bの出力Ibは図6と相似で最大値が1となる時間変化をする。自車線の磁気センサ1bの出力Ibの最大値1に対する隣車線の磁気センサ1aの出力Iaの最大値0.6の比率は0.6である。そこで、乗算器2bには比率αとして0.6を予め設定しておく。   On the other hand, paying attention to the distribution 71b of FIG. 7C, when the left lane 21b is the own lane and the vehicle 5b passes through the own lane, the magnetic field at the point of 0 m, which is the installation point of the magnetic sensor 1a in the distribution 71b. Since the intensity is 0.6, the output Ia of the magnetic sensor 1a is similar to that in FIG. 6 and changes over time with a maximum value of 0.6. At this time, since the magnetic field intensity at the point of about 3.5 m, which is the installation point of the magnetic sensor 1b in the distribution 71a, is 1, the output Ib of the magnetic sensor 1b is similar to FIG. do. The ratio of the maximum value 0.6 of the output Ia of the magnetic sensor 1a in the adjacent lane to the maximum value 1 of the output Ib of the magnetic sensor 1b in the own lane is 0.6. Therefore, 0.6 is preset as the ratio α in the multiplier 2b.

この状態で右車線21aを車両5aが通過すると、磁気センサ1aの出力Iaは1、磁気センサ1bの出力Ibは0.6となる。乗算器2bは磁気センサの1a出力Ia=1に比率α=0.6を乗じて乗算値0.6を得る。演算器3bは磁気センサ1bの出力Ib=0.6から乗算値0.6を差し引き、差引値0を得る。判定器4bは差引値0が閾値より小さいので、自車線(左車線21b)には車両が通過しなかったと判定する。乗算器2aは磁気センサの1b出力Ib=0.6に比率β=0.6を乗じて乗算値0.36を得る。演算器3aは磁気センサ1aの出力Ia=1から乗算値0.36を差し引いて差引値0.64を得る。判定器4aは差引値0.64が閾値より大きいので、自車線(右車線21a)を車両が通過したと判定する。   When the vehicle 5a passes through the right lane 21a in this state, the output Ia of the magnetic sensor 1a is 1, and the output Ib of the magnetic sensor 1b is 0.6. The multiplier 2b multiplies the magnetic sensor 1a output Ia = 1 by a ratio α = 0.6 to obtain a multiplication value 0.6. The arithmetic unit 3b subtracts the multiplication value 0.6 from the output Ib = 0.6 of the magnetic sensor 1b to obtain a subtraction value 0. Since the subtraction value 0 is smaller than the threshold value, the determiner 4b determines that the vehicle has not passed through the own lane (left lane 21b). The multiplier 2a multiplies the 1b output Ib = 0.6 of the magnetic sensor by the ratio β = 0.6 to obtain a multiplication value of 0.36. The calculator 3a subtracts the multiplication value 0.36 from the output Ia = 1 of the magnetic sensor 1a to obtain a subtraction value 0.64. Since the subtraction value 0.64 is larger than the threshold value, the determiner 4a determines that the vehicle has passed the own lane (right lane 21a).

逆に左車線21bを車両5bが通過した場合には、磁気センサ1aの出力Iaが0.6、磁気センサ1bの出力Ibが1となり、上記と同様の計算の結果、右車線21aには車両が通過せず、左車線21bを車両が通過したという判定がなされる。   Conversely, when the vehicle 5b passes through the left lane 21b, the output Ia of the magnetic sensor 1a is 0.6 and the output Ib of the magnetic sensor 1b is 1, and as a result of calculation similar to the above, the right lane 21a Is not passed, and it is determined that the vehicle has passed the left lane 21b.

このようにして、本発明の車両検知装置は、所望の車線の磁気センサの出力から隣の車線の磁気センサの出力に所定比率を乗じた値を差し引いた値が所定の閾値より大きいか否かで前記所望車線を車両が通過したか否かを判定することにより、当該所望車線を車両が通過したことを精度よく検出することができる。   Thus, the vehicle detection apparatus of the present invention determines whether or not a value obtained by subtracting a value obtained by multiplying the output of the magnetic sensor of the adjacent lane by the predetermined ratio from the output of the magnetic sensor of the desired lane is greater than the predetermined threshold. By determining whether or not the vehicle has passed the desired lane, it can be accurately detected that the vehicle has passed the desired lane.

上記形態では、道路22が片側通行2車線としたが、両側通行2車線の道路にも本発明は適用できる。また、2車線以上の多車線の道路にも本発明は適用でき、各車線に各々磁気センサを設置し、乗算器、演算器、判定器をそれぞれ設ければ、全ての車線について自車線を車両が通過したか否かの判定が得られる。   In the above embodiment, the road 22 is a one-way two-lane road, but the present invention can also be applied to a two-way two-lane road. The present invention can also be applied to multi-lane roads of two or more lanes. If a magnetic sensor is installed in each lane, and a multiplier, a calculator, and a judgment device are provided, the lanes of all lanes are A determination of whether or not has passed is obtained.

なお、上記の例では車両は車線中央を走行したと仮定したが、実際には車線内で中央側に寄って走行することもある。車線幅が3.5m、車両の幅が約1.5mとする。車両5aが隣車線寄りを走行したとすると、車両5aと磁気センサ1bとの水平方向間隔は3.5/2+1.5/2で与えられ、2.5mとなり、車両5aと磁気センサ1aとの水平方向間隔は1mとなる。従って、磁気センサ1bの出力は車両による磁気変動の最大値の0.75倍となる。一方、磁気センサ1aの出力は、車両による磁気変動の最大値の0.95倍となる。この最大値を1とすると、演算器3bの出力は、0.75−0.6×0.95=0.13となる。そこで、誤検出を防ぐために、閾値を、相対する磁気センサの出力値の0.13値、または十分なS/Nが得られる値のうちどちらか大きい方とする。   In the above example, it is assumed that the vehicle has traveled in the center of the lane, but actually, the vehicle may travel closer to the center in the lane. The lane width is 3.5 m and the vehicle width is about 1.5 m. If the vehicle 5a travels near the adjacent lane, the horizontal distance between the vehicle 5a and the magnetic sensor 1b is given by 3.5 / 2 + 1.5 / 2, which is 2.5 m, and the distance between the vehicle 5a and the magnetic sensor 1a is The horizontal interval is 1 m. Therefore, the output of the magnetic sensor 1b is 0.75 times the maximum value of the magnetic fluctuation caused by the vehicle. On the other hand, the output of the magnetic sensor 1a is 0.95 times the maximum value of the magnetic fluctuation caused by the vehicle. When this maximum value is 1, the output of the arithmetic unit 3b is 0.75−0.6 × 0.95 = 0.13. Therefore, in order to prevent erroneous detection, the threshold value is set to the larger one of the 0.13 value of the output value of the opposing magnetic sensor or the value that provides a sufficient S / N.

本発明の一実施形態を示す磁気センサを配置した道路の平面図である。It is a top view of the road which has arrange | positioned the magnetic sensor which shows one Embodiment of this invention. 図1のA−A´線における道路の断面図である。It is sectional drawing of the road in the AA 'line of FIG. 本発明の一実施形態を示す車両検知装置のブロック構成図である。It is a block block diagram of the vehicle detection apparatus which shows one Embodiment of this invention. 車両の磁化を表したもので、(a)は正面図、(b)は側面図である。It shows the magnetization of the vehicle, (a) is a front view, (b) is a side view. 磁場のベクトルを表したもので、(a)は正面図、(b)は側面図である。It represents the vector of a magnetic field, (a) is a front view, (b) is a side view. 車両通過時における磁場の強度の時間的変化を示す波形図である。It is a wave form diagram which shows the time change of the intensity | strength of the magnetic field at the time of vehicle passing. (a)、(b)はそれぞれ測定条件を示す道路の断面図、(c)は道路面垂直方向の磁場が車線横断方向に分布する磁場強度分布を示す波形図である。(A), (b) is sectional drawing of the road which shows a measurement condition, respectively, (c) is a wave form diagram which shows magnetic field strength distribution in which the magnetic field of a road surface perpendicular direction distributes to a lane crossing direction.

符号の説明Explanation of symbols

1a,1b 磁気センサ
2a,2b 乗算器
3a,3b 演算器
4a,4b 判定器
5,5a,5b 車両
21a,21b 車線
1a, 1b Magnetic sensor 2a, 2b Multiplier 3a, 3b Operation unit 4a, 4b Judgment unit 5, 5a, 5b Vehicle 21a, 21b Lane

Claims (2)

複数車線を有する道路の各々の車線内に配置された複数の磁気センサと、所望の車線の磁気センサの出力から隣の車線の磁気センサの出力に所定比率を乗じた値を差し引いた値が隣の車線の磁気センサの出力に所定の係数を乗じた値より大きいか否かで前記所望車線を車両が通過したか否かを判定する車線判定部を備えたことを特徴とする車両検知装置。   A plurality of magnetic sensors arranged in each lane of a road having multiple lanes, and a value obtained by subtracting a value obtained by multiplying the output of the magnetic sensor of the adjacent lane by a predetermined ratio from the output of the magnetic sensor of the desired lane A vehicle detection apparatus comprising: a lane determination unit that determines whether or not the vehicle has passed through the desired lane based on whether or not the output of the magnetic sensor of the lane is greater than a value obtained by multiplying a predetermined coefficient. 前記比率は、予め前記所望車線を車両が通過した期間中に、前記所望車線の磁気センサ出力の時間的最大値に対する隣車線の磁気センサ出力の時間的最大値の比率として求めておくことを特徴とする請求項1記載の車両検知装置。
The ratio is obtained in advance as a ratio of the temporal maximum value of the magnetic sensor output of the adjacent lane to the temporal maximum value of the magnetic sensor output of the desired lane during a period in which the vehicle passes through the desired lane. The vehicle detection device according to claim 1.
JP2003397912A 2003-11-27 2003-11-27 Vehicle detection device Pending JP2005157901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397912A JP2005157901A (en) 2003-11-27 2003-11-27 Vehicle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397912A JP2005157901A (en) 2003-11-27 2003-11-27 Vehicle detection device

Publications (1)

Publication Number Publication Date
JP2005157901A true JP2005157901A (en) 2005-06-16

Family

ID=34722938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397912A Pending JP2005157901A (en) 2003-11-27 2003-11-27 Vehicle detection device

Country Status (1)

Country Link
JP (1) JP2005157901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111311927A (en) * 2020-01-17 2020-06-19 深圳市戴升智能科技有限公司 Traffic flow detection method and device, computer equipment and storage medium
CN117116060A (en) * 2023-10-24 2023-11-24 四川九通智路科技有限公司 Induction system and induction detection method for detecting multi-lane running vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111311927A (en) * 2020-01-17 2020-06-19 深圳市戴升智能科技有限公司 Traffic flow detection method and device, computer equipment and storage medium
CN117116060A (en) * 2023-10-24 2023-11-24 四川九通智路科技有限公司 Induction system and induction detection method for detecting multi-lane running vehicle
CN117116060B (en) * 2023-10-24 2023-12-26 四川九通智路科技有限公司 Induction system and induction detection method for detecting multi-lane running vehicle

Similar Documents

Publication Publication Date Title
US6336064B1 (en) Magnetic apparatus for detecting position of vehicle
US10969245B2 (en) Magnetic marker detection method and magnetic marker detection device
JP6766527B2 (en) Vehicle system and course estimation method
JP6750482B2 (en) Tire lateral hydro performance evaluation system
JP6928307B2 (en) Marker detection system and marker detection method
US11119500B1 (en) Magnetic marker detection system and magnetic marker detection method
JP7108083B1 (en) On-board device and judgment method
JP2005157901A (en) Vehicle detection device
WO2019054158A1 (en) Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method
JP4263988B2 (en) Vehicle detection device
JP6631385B2 (en) Magnetic marker polarity determination method and polarity determination device
JP2003187381A (en) Vehicle detecting device
JP3875871B2 (en) Vehicle detection device
JP3769250B2 (en) Vehicle detection device
JP3866609B2 (en) Vehicle detection device
JP4224411B2 (en) Vehicle detection device
JP2021012702A (en) System for vehicle and course estimation method
JP2005208742A (en) Roadside vehicle detecting apparatus
JP3820133B2 (en) Vehicle detection device
JP3912309B2 (en) Vehicle detection device
JP2005208743A (en) Passing vehicle detecting system
JP2003132486A (en) Vehicle detector
JPH1123209A (en) Running position sensor
JPH08313261A (en) Detection device of vehicle azimuth
JP2524593Y2 (en) Vehicle detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A02 Decision of refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A02