JP2005156677A - Method for manufacturing optical component - Google Patents

Method for manufacturing optical component Download PDF

Info

Publication number
JP2005156677A
JP2005156677A JP2003391881A JP2003391881A JP2005156677A JP 2005156677 A JP2005156677 A JP 2005156677A JP 2003391881 A JP2003391881 A JP 2003391881A JP 2003391881 A JP2003391881 A JP 2003391881A JP 2005156677 A JP2005156677 A JP 2005156677A
Authority
JP
Japan
Prior art keywords
film
optical component
substrate
etching
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003391881A
Other languages
Japanese (ja)
Inventor
Keiji Iwata
圭司 岩田
Yoshihiro Koshido
義弘 越戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003391881A priority Critical patent/JP2005156677A/en
Publication of JP2005156677A publication Critical patent/JP2005156677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical component, which can precisely and continuously control the etching quantity or the film deposition quantity, without deteriorating the characteristic of the optical component, even in the film for the optical component having the refractive index equivalent to that of a substrate. <P>SOLUTION: A reflective film 3 is prepared between the substrate 1 and the film 2 for the optical component. A monochromatic light is incident on the reflective film. The variation in the reflectance of the reflected light reflected by the interface between the film 2 for the optical component and the reflective film 3 and the variation in the etching thickness are used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信用デバイスに使用される回折格子等の光学部品の製造方法に関する。   The present invention relates to a method for manufacturing an optical component such as a diffraction grating used in an optical communication device.

近年の光通信システムの普及に伴い、回折格子をはじめとする光学部品の開発が進められている。これらの光学部品は、その機能向上や小型化等の特性向上の目的と、基板の加工が困難である等の製造上の問題解決のため、基板上に作製した膜を利用し、その膜を所望の形状に加工することにより得られている。その光学部品の膜厚精度は、回折格子等の形状に影響するため、それを組み込んだ光合分波器等の光通信用デバイスの特性を大きく左右する。そのため光学部品の製造方法において、高精度な膜厚制御方法が必要となっている。この課題を解決するために以下のような方法が提案されている。   With the spread of optical communication systems in recent years, development of optical components such as diffraction gratings has been promoted. These optical components use films made on the substrate for the purpose of improving characteristics such as functional improvement and miniaturization, and solving manufacturing problems such as difficulty in processing the substrate. It is obtained by processing into a desired shape. The film thickness accuracy of the optical component affects the shape of the diffraction grating and the like, and thus greatly affects the characteristics of an optical communication device such as an optical multiplexer / demultiplexer incorporating the optical component. Therefore, a highly accurate film thickness control method is required in the manufacturing method of optical components. In order to solve this problem, the following methods have been proposed.

特許文献1においては、2種類の屈折率をもつ光学部品用膜を基板上に交互に積層して作製する場合の膜厚制御方法として、透過光量を用いた方法が示されている。この方法では成膜中に膜の上部から分光した白色光を照射し、基板と光学部品用膜を透過した光量を基板裏面で検出している。この検出された透過光量が、1/4波長光学膜厚ごとに増減を繰り返すことを利用して膜厚を制御している。さらに光学部品膜の材料定数により決まる所望のセンタ波長の長短両側の2波長の光量を測定し、その光量がクロスする点を用いることにより高精度な膜厚制御を行っている。   In Patent Document 1, a method using transmitted light amount is shown as a film thickness control method in the case of manufacturing by alternately laminating films for optical components having two kinds of refractive indexes on a substrate. In this method, white light dispersed from the upper part of the film is irradiated during film formation, and the amount of light transmitted through the substrate and the optical component film is detected on the back surface of the substrate. The film thickness is controlled by utilizing the fact that the detected transmitted light amount repeatedly increases and decreases for each quarter-wavelength optical film thickness. Further, the light quantity of two wavelengths on both the long and short sides of the desired center wavelength determined by the material constant of the optical component film is measured, and the film thickness is controlled with high accuracy by using the point where the light quantity crosses.

特許文献2においては、基板と光学部品用膜の間に単位時間あたりのエッチング量が光学部品用膜よりも遅いエッチング止めの膜を作製している。このエッチング止めにより、所望の深さ以上にエッチングされず、必要な膜厚の光学部品用膜を得ることができる。またこの方法では透過光を使用していないため、基板と同一の屈折率をもつ光学部品用膜の加工にも使用可能である。
特開2003−215333号公報 特開平7−168023号公報
In Patent Document 2, an etching stop film having an etching amount per unit time slower than that of the optical part film is formed between the substrate and the optical part film. By this etching stop, a film for an optical component having a required film thickness can be obtained without being etched beyond a desired depth. Further, since this method does not use transmitted light, it can be used for processing a film for an optical component having the same refractive index as that of the substrate.
JP 2003-215333 A Japanese Patent Laid-Open No. 7-168023

上記の2つの方法では以下のような課題があった。   The above two methods have the following problems.

特許文献1においては、2波長の光量がクロスする点を利用するため膜厚を離散的な値でしか制御できず、1/4波長光学膜厚以外の任意の膜厚に制御することが難しいという問題がある。また成膜面の裏面に金属膜等の光の透過を妨げるような膜がある場合は、透過光量が測定できないため膜厚制御は行えない。さらに基板と同等の屈折率の光学部品用膜を作製する場合は、透過光量の変化がほとんどないため、光量変化による膜厚制御は困難である。その他に機構的な問題として、2波長を使用するため膜厚の制御系が複雑になることがあげられる。   In Patent Document 1, since the point where the light amounts of two wavelengths cross is used, the film thickness can be controlled only by a discrete value, and it is difficult to control the film thickness to an arbitrary film thickness other than the quarter wavelength optical film thickness. There is a problem. In addition, when there is a film such as a metal film that hinders the transmission of light, such as a metal film, the film thickness cannot be controlled because the amount of transmitted light cannot be measured. Furthermore, when an optical component film having a refractive index equivalent to that of the substrate is produced, there is almost no change in the amount of transmitted light, and it is difficult to control the film thickness by changing the amount of light. Another mechanistic problem is that the use of two wavelengths complicates the film thickness control system.

特許文献2の方法では、基板全面においてエッチング止めが必要となるため、エッチング止めが光学部品の特性に影響するという問題がある。エッチングによる加工方法には、エッチング液による湿式エッチングと反応性イオンエッチングのような乾式エッチングがある。どちらの方法についても、基板全面を同時にエッチングするため、光学部品用膜の膜厚を基板内で均一に制御するには全面にエッチング止めが必要となる。またエッチング止めでエッチングの終点検出を行うため、光学部品用膜の途中でエッチングを止めて所望の膜厚を得ることはできず、膜厚を制御する上で制約がある。   In the method of Patent Document 2, since etching stop is necessary on the entire surface of the substrate, there is a problem that the etching stop affects the characteristics of the optical component. As processing methods by etching, there are wet etching using an etchant and dry etching such as reactive ion etching. In both methods, since the entire surface of the substrate is etched simultaneously, it is necessary to stop etching on the entire surface in order to uniformly control the film thickness of the optical component film within the substrate. Further, since the end point of etching is detected by stopping etching, it is not possible to obtain a desired film thickness by stopping etching in the middle of the optical component film, and there is a restriction in controlling the film thickness.

以上の課題を解決するために本発明は、基板と同等の屈折率をもつ光学部品用膜でも、光学用部品の特性を劣化させることなく、エッチング量あるいは成膜量を高精度にかつ、連続的に制御することができる光学部品の製造方法を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention is capable of continuously adjusting the etching amount or the film forming amount with high accuracy without degrading the characteristics of the optical component even in the optical component film having the same refractive index as that of the substrate. It is an object of the present invention to provide a method for manufacturing an optical component that can be controlled automatically.

上記課題を解決するために本発明における光学部品の製造方法は、基板上に該基板と同等の屈折率をもつ膜を形成する光学部品の製造方法において、該基板と該基板と同等の屈折率をもつ光学部品用膜の間に該基板と異なる屈折率をもつ反射膜を作製し、単一波長光を該光学部品用膜の上部から該反射膜へ入射し、該光学部品用膜と該反射膜の界面で反射する反射光を測定しながら、該光学部品用膜のエッチング量あるいは成膜量に伴い変化する該反射光の反射率の変化をもとに、エッチング量あるいは成膜量を制御することを特徴とする。   In order to solve the above problems, an optical component manufacturing method according to the present invention is an optical component manufacturing method in which a film having a refractive index equivalent to that of the substrate is formed on the substrate. A reflective film having a refractive index different from that of the substrate is made between the optical component films having a single-wavelength light incident on the reflective film from above the optical component film, While measuring the reflected light reflected at the interface of the reflective film, the etching amount or film forming amount is determined based on the change in the reflectance of the reflected light that changes with the etching amount or film forming amount of the optical component film. It is characterized by controlling.

この方法では、反射膜と、基板と同等の屈折率をもつ光学部品用膜の界面における反射光の反射率が、光学部品用膜厚の増減により変化することを利用している。反射率は光学部品用膜が1/4波長光学膜厚ごとに増減を繰り返す。エッチング時間と反射率の変化の関係を図3に例示したが、この現象は実験的に検証されている。また光学部品用膜厚とエッチング時間の関係も事前に実験で求めておくことができる。これら2つの関係より反射率の変化と膜厚の関係を求めることができる。ここで反射率は使用する反射膜と光学部品用膜固有の定数で決まるため、実験条件等に影響されない。したがってエッチング中あるいは成膜中の反射率の変化よりエッチング量あるいは成膜量を正確に把握することができ、実験条件等の外因に依存しない高精度な膜厚制御が行える。また反射率を成膜中あるいはエッチング中、常に測定しているため、任意の膜厚に対応した反射率の変化が確認できた時点でエッチングあるいは成膜を止めることにより、高精度に膜厚を制御することも可能である。さらに反射膜は単一波長光を入射させる部分にのみ作製すればよいため、光学部品の特性に影響を与えることもない。その他に機構的な面でも、単一波長光を使用しているため、膜厚制御系を簡単にすることができる。以上のように基板と同等の屈折率をもつ光学部品用膜において、光学部品の特性に影響を与えずに簡単な膜厚制御機構で、任意の膜厚に高精度に制御することができる。   This method utilizes the fact that the reflectance of reflected light at the interface between the reflective film and the optical component film having the same refractive index as that of the substrate changes as the optical component film thickness increases or decreases. The reflectance of the optical component film repeatedly increases and decreases for each quarter wavelength optical film thickness. The relationship between the etching time and the change in reflectance is illustrated in FIG. 3, and this phenomenon has been experimentally verified. The relationship between the film thickness for optical parts and the etching time can also be obtained in advance by experiments. From these two relationships, the relationship between the change in reflectance and the film thickness can be obtained. Here, since the reflectivity is determined by a constant specific to the reflective film to be used and the optical part film, it is not affected by the experimental conditions. Therefore, the etching amount or film forming amount can be accurately grasped from the change in reflectance during etching or film formation, and highly accurate film thickness control independent of external factors such as experimental conditions can be performed. In addition, since the reflectance is constantly measured during film formation or etching, the film thickness can be accurately adjusted by stopping etching or film formation when the change in reflectance corresponding to an arbitrary film thickness is confirmed. It is also possible to control. Furthermore, since the reflective film only needs to be formed in the portion where the single wavelength light is incident, it does not affect the characteristics of the optical component. In addition, in terms of the mechanism, since the single wavelength light is used, the film thickness control system can be simplified. As described above, a film for an optical component having a refractive index equivalent to that of the substrate can be controlled to an arbitrary film thickness with high accuracy by a simple film thickness control mechanism without affecting the characteristics of the optical component.

また基板上に該基板と異なる屈折率をもつ膜を形成する光学部品の製造方法において、該基板上に形成した光学部品用膜の上部から単一波長光を該反射膜へ入射し、該基板と該光学部品用膜の界面で反射する反射光を測定しながら、該基板上の膜のエッチング量あるいは成膜量に伴い変化する該反射光の反射率の変化をもとに、エッチング量あるいは成膜量を制御することができる。   Further, in a method of manufacturing an optical component that forms a film having a refractive index different from that of the substrate on the substrate, single wavelength light is incident on the reflective film from above the optical component film formed on the substrate, and the substrate And the reflected light reflected at the interface between the optical component film and the etching amount of the film on the substrate, or the amount of etching or The amount of film formation can be controlled.

この方法は基板と異なる屈折率をもつ光学部品用膜により光学部品を製造する場合である。この場合も前記方法と同様に光学部品用膜の上部から単一波長光を入射させる。しかし基板と光学部品用膜の屈折率が異なるため、入射した単一波長光は基板と光学部品用膜の界面で反射する。その反射率の変化を検出することにより、前記方法と同様な効果を得ることができる。   In this method, an optical component is manufactured using a film for an optical component having a refractive index different from that of the substrate. In this case as well, single wavelength light is made incident from above the optical component film in the same manner as described above. However, since the refractive indexes of the substrate and the optical component film are different, the incident single wavelength light is reflected at the interface between the substrate and the optical component film. By detecting the change in reflectance, the same effect as the above method can be obtained.

また前記の製造方法における構成例として、反射膜に金属を用いてもよい。   Further, as a configuration example in the manufacturing method, a metal may be used for the reflective film.

基板と光学部品用膜の屈折率が同じ場合、膜厚制御に反射膜上での反射率の変化を用いるが、その反射率は反射膜と光学部品用膜固有の材料定数により決まる。一般に回折格子などの光学部品には、光学的特性を得るために透明あるいは透明に近い膜が使用される。そこで光が反射しやすい金属のような不透明膜を反射膜として使用することにより、反射光の検出が容易になり、光学部品用膜厚の増減に伴なう反射率の変化をより明確に判断することができる。   When the refractive indexes of the substrate and the optical component film are the same, a change in reflectance on the reflective film is used for controlling the film thickness, and the reflectance is determined by the material constants specific to the reflective film and the optical component film. In general, a transparent or nearly transparent film is used for an optical component such as a diffraction grating in order to obtain optical characteristics. Therefore, by using an opaque film such as a metal that easily reflects light as the reflective film, it becomes easier to detect the reflected light, and the change in reflectivity as the film thickness for optical components increases or decreases can be judged more clearly. can do.

さらに前記製造方法における構成例として、光学部品用膜にTa25を用いてもよい。Ta25は高い屈折率を有しており、光学部品用膜として適しているためである。 Furthermore, as a structural example in the manufacturing method, Ta 2 O 5 may be used for the optical component film. This is because Ta 2 O 5 has a high refractive index and is suitable as a film for optical parts.

以上のように本発明における光学部品の製造方法においては、基板と同等の屈折率をもつ光学部品用膜でも、光学部品の特性に影響を与えずに簡単な膜厚制御機構で、任意の膜厚に高精度に制御することができる。   As described above, in the method of manufacturing an optical component according to the present invention, even a film for an optical component having a refractive index equivalent to that of a substrate can be formed with any film with a simple film thickness control mechanism without affecting the characteristics of the optical component. Thickness can be controlled with high accuracy.

以下において図を参照しつつ本発明の第1の実施例について説明する。図1は本発明の光学部品の製造方法を用いて作製した光学部品の断面図である。光学部品は、光学部品用膜を作製する基板1、光学部品用膜2および反射膜3からなる。これらの製造方法の1例について説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an optical component produced using the method for producing an optical component of the present invention. The optical component includes a substrate 1 on which an optical component film is produced, an optical component film 2 and a reflective film 3. An example of these manufacturing methods will be described.

波長633nmにおいて屈折率が2.07のセラミックス基板1を用意する。基板材料は前記屈折率を持つものであれば、多結晶あるいは単結晶のセラミックスやガラス等の種類は問わない。次に基板1上のゴミや汚れの除去をするため基板洗浄を行う。   A ceramic substrate 1 having a refractive index of 2.07 at a wavelength of 633 nm is prepared. As long as the substrate material has the above-mentioned refractive index, any kind of polycrystalline or single crystal ceramics or glass may be used. Next, the substrate is cleaned to remove dust and dirt on the substrate 1.

その後、反射膜3として使用する材料の成膜を行う。なお本実施例では反射膜の1例としてAlを使用しているが、Alの屈折率は1.0(吸収係数は約6.6)で、前記基板1および光学部品用膜2の屈折率とは充分に異なるため、反射率の検出が可能となる。またAl以外にもAu、Ag、Cuなどの金属や、SiO2(屈折率は1.46)などの誘電体膜でも光学部品用膜と異なる屈折率をもつ膜であれば同様の効果を得ることができる。真空蒸着装置内に配置された前記基板1の片側全面に膜厚30nmのAl膜を真空蒸着法により成膜する。なお成膜方法としては、スパッタリング法や無電解メッキ法などでも構わない。次にフォトリソグラフィーの手法を用いて反射膜の不要な部分のAl膜の除去を行う。具体的には次のようにして行う。成膜したAl膜全面にマスク材を塗布し、このマスク材のうち反射膜3の必要な場所のみ残すように加工する。そのときマスク材は、光学部品の特性に影響しない部分に、例えば直径5〜10mmの円状に作製する。その後、前記基板1を、燐酸、硝酸、酢酸を主成分とする溶液に浸し、マスク材で覆われていない部分のAl膜を湿式エッチング法により除去し、反射膜3のパターンを作製する。なお反射膜3の形状は円形、方形等に限定するものではない。 Thereafter, a material used as the reflective film 3 is formed. In this embodiment, Al is used as an example of the reflective film. The refractive index of Al is 1.0 (absorption coefficient is about 6.6), and the refractive index of the substrate 1 and the optical component film 2 is as follows. Therefore, the reflectance can be detected. In addition to Al, a similar effect can be obtained if a metal such as Au, Ag, Cu, or a dielectric film such as SiO 2 (refractive index is 1.46) is a film having a refractive index different from that of the optical component film. be able to. An Al film having a film thickness of 30 nm is formed on the entire surface of one side of the substrate 1 placed in a vacuum evaporation apparatus by a vacuum evaporation method. As a film forming method, a sputtering method or an electroless plating method may be used. Next, an unnecessary portion of the Al film is removed from the reflective film using a photolithography technique. Specifically, this is performed as follows. A mask material is applied to the entire surface of the formed Al film, and the mask material is processed so that only the necessary portion of the reflective film 3 is left. At that time, the mask material is formed in a circular shape having a diameter of 5 to 10 mm, for example, in a portion that does not affect the characteristics of the optical component. Thereafter, the substrate 1 is immersed in a solution containing phosphoric acid, nitric acid, and acetic acid as main components, and a portion of the Al film not covered with the mask material is removed by a wet etching method, thereby forming a pattern of the reflective film 3. The shape of the reflective film 3 is not limited to a circle, a square, or the like.

以上の反射膜作製工程はエッチング法を用いているが、リフトオフ法により作製しても構わない。リフトオフ法では、最初に基板1上にマスク材を塗布し、フォトリソグラフィー手法を用いて反射膜3を作製する部分のみマスク材を除去する。その後、真空蒸着法、スパッタリング法、無電解メッキ法等によりAl膜を成膜し、その後マスク材を除去して反射膜3を得る。   Although the above reflective film manufacturing process uses an etching method, it may be manufactured by a lift-off method. In the lift-off method, a mask material is first applied on the substrate 1 and the mask material is removed only at a portion where the reflective film 3 is to be formed using a photolithography technique. Thereafter, an Al film is formed by a vacuum deposition method, a sputtering method, an electroless plating method, or the like, and then the mask material is removed to obtain the reflective film 3.

次に光学部品用として使用する材料を成膜する。本実施例では、光学部品用膜2としてTa25を使用した場合を例示する。まず基板を真空蒸着装置内に配置し、基板温度が300℃になるように加熱する。その後、Ta25を基板全面に真空蒸着により成膜する。このときのTa25の膜厚と屈折率を測定した結果、それぞれ1.0μm、2.07となり、屈折率は基板1と同一の値であった。 Next, a material to be used for an optical component is formed. In this embodiment, a case where Ta 2 O 5 is used as the optical component film 2 is illustrated. First, the substrate is placed in a vacuum deposition apparatus and heated so that the substrate temperature becomes 300 ° C. Thereafter, Ta 2 O 5 is formed on the entire surface of the substrate by vacuum deposition. As a result of measuring the film thickness and refractive index of Ta 2 O 5 at this time, they were 1.0 μm and 2.07, respectively, and the refractive index was the same value as that of the substrate 1.

次に成膜した光学部品用膜2を所望の形状に加工する。基板全面に成膜したTa25の膜上にマスク材を塗布し、フォトリソグラフィー手法により所望の光学部品の構造に相応する部分以外のマスク材を除去する。次にその基板を真空装置内に配置し、反応性イオンエッチング法によりマスク材のない部分のTa25膜を除去する。このとき、前記工程により基板の所定位置に作製した反射膜であるAl膜に、その上部から波長633nmの単一波長光を照射する。エッチング中は単一波長光を連続して照射する。Al膜に入射した単一波長光は、Al膜とTa25膜の界面で反射する。この反射光を成膜面の上部で検出し、反射率を測定する。反射率の変化量とエッチング時間との関係は、事前に行った実験により図3のようになることがわかっており、反射率がエッチング時間により周期的に変化することを示している。図3において反射率の変化量が、あるピークから次のピークまでの1周期分に相当する膜厚Tは、光学部品用膜2の屈折率(n)と照射した光の波長(λ)により、T=λ/2nで表される。本実施例においては、使用した633nmの単一波長光を屈折率2.07のTa25膜に照射しているが、その場合、反射率の変化量の1周期分に相当する膜厚は、前記の式より153nmになる。例えばエッチング量を600nmにする場合、反射率の変化量は4周期弱分である。このことより図中の点線部分の反射率の変化量になったときにエッチングを止めれば、膜厚400nmのTa25膜が得られることになる。このように反射率の変化量とエッチング時間、エッチング時間とエッチング量の関係を求めておけば、エッチング中に連続測定している反射率の変化から、エッチング量を導出することができる。 Next, the formed optical component film 2 is processed into a desired shape. A mask material is applied on the Ta 2 O 5 film formed on the entire surface of the substrate, and the mask material other than the portion corresponding to the structure of the desired optical component is removed by a photolithography technique. Next, the substrate is placed in a vacuum apparatus, and the Ta 2 O 5 film without the mask material is removed by reactive ion etching. At this time, a single wavelength light having a wavelength of 633 nm is irradiated from above the Al film, which is a reflective film prepared at a predetermined position of the substrate by the above-described process. During etching, single wavelength light is continuously irradiated. Single wavelength light incident on the Al film is reflected at the interface between the Al film and the Ta 2 O 5 film. This reflected light is detected at the upper part of the film formation surface, and the reflectance is measured. The relationship between the change amount of the reflectance and the etching time is known to be as shown in FIG. 3 by an experiment conducted in advance, and shows that the reflectance periodically changes depending on the etching time. In FIG. 3, the film thickness T corresponding to one period from the peak to the next peak of the change in reflectance depends on the refractive index (n) of the optical component film 2 and the wavelength (λ) of the irradiated light. , T = λ / 2n. In this embodiment, the used single-wavelength light of 633 nm is irradiated onto the Ta 2 O 5 film having a refractive index of 2.07. In this case, the film thickness corresponding to one period of the change amount of the reflectance. Is 153 nm from the above equation. For example, when the etching amount is set to 600 nm, the amount of change in reflectance is less than 4 cycles. Therefore, if the etching is stopped when the amount of change in the reflectance at the dotted line in the figure is reached, a Ta 2 O 5 film having a thickness of 400 nm can be obtained. Thus, if the relationship between the change amount of the reflectance and the etching time and the relationship between the etching time and the etching amount are obtained, the etching amount can be derived from the change in the reflectance continuously measured during the etching.

以上のように所望の膜厚にTa25膜をエッチングした後、マスク材を酸素プラズマを用いて除去することにより、所望の形状の光学部品を得ることができる。 As described above, after etching the Ta 2 O 5 film to a desired film thickness, the mask material is removed using oxygen plasma, whereby an optical component having a desired shape can be obtained.

ここで光学部品としては、例えば図4に示すように、基板21上にTa25から成る光学部品用膜22を形成した後、凹部23を形成した矩形状の回折格子があげられる。このような構造を作製する場合は、まず前記フォトリソグラフィ−手法により、光学特性を得るために必要な間隔で帯状にマスク材を光学部品用膜22の上に作製する。次にマスク材のない部分の光学部品用膜22を前記の反応性イオンエッチング法等によりエッチング量を高精度に制御しながら除去し、凹部23を形成する。その後マスク材を酸素プラズマを用いて除去することにより、高精度に膜厚制御された凹部23を有する回折格子を得ることができる。 Here, as the optical component, for example, as shown in FIG. 4, there is a rectangular diffraction grating in which a concave portion 23 is formed after an optical component film 22 made of Ta 2 O 5 is formed on a substrate 21. In the case of producing such a structure, first, a mask material is produced on the optical component film 22 in a strip shape at intervals necessary for obtaining optical characteristics by the photolithography technique. Next, the optical component film 22 without the mask material is removed while controlling the etching amount with high accuracy by the reactive ion etching method or the like, thereby forming the recesses 23. Thereafter, the mask material is removed using oxygen plasma, whereby a diffraction grating having the recesses 23 whose film thickness is controlled with high accuracy can be obtained.

以上はエッチング法による光学部品の製造方法であるが、Al膜と同様にリフトオフ法を用いても作製することができる。まず反射膜3を前記と同様の方法で作製する。次に光学部品用膜2の作製前にマスク材を基板1の全面に塗布した後、フォトリソグラフィー手法を用いて所望の光学部品の構造に相応する部分のマスク材を除去する。その後、真空蒸着法やスパッタリング法等により光学部品用膜2を成膜し、マスク材を除去することにより所望の形状の光学部品用膜2を作製することができる。   The above is the manufacturing method of the optical component by the etching method, but it can also be manufactured by using the lift-off method in the same manner as the Al film. First, the reflective film 3 is produced by the same method as described above. Next, after the mask material is applied to the entire surface of the substrate 1 before the production of the optical component film 2, the mask material corresponding to the structure of the desired optical component is removed using a photolithography technique. Thereafter, the optical component film 2 is formed by a vacuum vapor deposition method, a sputtering method, or the like, and the optical material film 2 having a desired shape can be produced by removing the mask material.

次に本発明の第2の実施例について図2を用いて説明する。まず光学部品用膜12を作製する基板11を用意する。次に基板11の屈折率と異なる光学部品用膜12を基板上に第1の実施例と同様の方法により成膜、加工する。光学部品用膜12を反応性イオンエッチング等によりエッチングするとき、基板11の成膜されている面の上部から単一波長光を入射する。そして基板11と光学部品用膜12の界面で反射する反射光の反射率をエッチング中、常に測定する。これとあわせて光学部品用膜12のエッチング量とエッチング時間の関係を事前に求めておけば、第1の実施例同様にエッチング中の反射率の変化を測定することにより、光学部品用膜2のエッチング量を高精度に制御することができる。その後、前記実施例1と同様な工程により、光学部品として所望の形状を得ることができる。また前記実施例1と同様にリフトオフ法によっても、所望の形状の光学部品用膜2を作製することができる。   Next, a second embodiment of the present invention will be described with reference to FIG. First, a substrate 11 for preparing the optical component film 12 is prepared. Next, an optical component film 12 having a refractive index different from that of the substrate 11 is formed and processed on the substrate by the same method as in the first embodiment. When the optical component film 12 is etched by reactive ion etching or the like, single wavelength light is incident from above the surface of the substrate 11 on which the film is formed. The reflectance of the reflected light reflected at the interface between the substrate 11 and the optical component film 12 is always measured during etching. At the same time, if the relationship between the etching amount of the optical component film 12 and the etching time is obtained in advance, the change in reflectance during etching is measured in the same manner as in the first embodiment, whereby the optical component film 2 is measured. The etching amount can be controlled with high accuracy. Thereafter, a desired shape as an optical component can be obtained by the same process as in the first embodiment. Similarly to Example 1, the film 2 for optical components having a desired shape can also be produced by the lift-off method.

本発明の第1の製造方法を用いて作製した光学部品の断面図である。It is sectional drawing of the optical component produced using the 1st manufacturing method of this invention. 本発明の第2の製造方法を用いて作製した光学部品の断面図である。It is sectional drawing of the optical component produced using the 2nd manufacturing method of this invention. 本発明の第1の製造方法における反射膜と光学部品用膜の界面で反射する反射光の反射率の変化と光学部品用膜のエッチング時間の関係を示したグラフである。It is the graph which showed the relationship between the change of the reflectance of the reflected light reflected in the interface of the reflecting film in the 1st manufacturing method of this invention, and the film for optical components, and the etching time of the film for optical components. 本発明の製造方法を用いて作製した光学部品の一例である回折格子の一部破断斜視図である。It is a partially broken perspective view of the diffraction grating which is an example of the optical component produced using the manufacturing method of the present invention.

符号の説明Explanation of symbols

1 基板
2 基板と同等の屈折率をもつ光学部品用膜
3 反射膜
11 基板
12 基板と異なる屈折率をもつ光学部品用膜
21 基板
22 光学部品用膜
23 凹部
DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical component film having the same refractive index as the substrate 3 Reflective film 11 Substrate 12 Optical component film having a different refractive index from the substrate 21 Substrate 22 Optical component film 23 Recess

Claims (4)

基板上に該基板と同等の屈折率をもつ光学部品用膜を形成した光学部品の製造方法において、
前記基板と前記光学部品用膜の間に該基板と異なる屈折率をもつ反射膜を作製し、単一波長光を前記光学部品用膜の上部から前記反射膜へ入射し、前記光学部品用膜と前記反射膜の界面で反射する反射光を測定しながら、光学部品用膜のエッチング量あるいは成膜量に伴い変化する前記反射光の反射率の変化をもとに、エッチング量あるいは成膜量を制御するようにしたことを特徴とする光学部品の製造方法。
In a method for manufacturing an optical component in which a film for optical components having a refractive index equivalent to that of the substrate is formed on the substrate,
A reflective film having a refractive index different from that of the substrate is produced between the substrate and the optical component film, and single wavelength light is incident on the reflective film from above the optical component film. Etching amount or film formation amount based on a change in reflectance of the reflected light, which varies with the etching amount or film formation amount of the optical component film, while measuring the reflected light reflected at the interface between and the reflection film A method for manufacturing an optical component, characterized in that the control is performed.
基板上に該基板と異なる屈折率をもつ光学部品用膜を形成する光学部品の製造方法において、
前記基板上に形成した前記光学部品用膜の上部から単一波長光を前記光学部品用膜へ入射し、前記基板と前記光学部品用膜の界面で反射する反射光を測定しながら、前記基板上の前記光学部品用膜のエッチング量あるいは成膜量に伴い変化する前記反射光の反射率の変化をもとに、エッチング量あるいは成膜量を制御する光学部品の製造方法。
In a manufacturing method of an optical component for forming a film for an optical component having a refractive index different from that of the substrate on the substrate,
A single wavelength light is incident on the optical component film from above the optical component film formed on the substrate, and the reflected light reflected at the interface between the substrate and the optical component film is measured. An optical component manufacturing method for controlling an etching amount or a film formation amount on the basis of a change in reflectance of the reflected light which varies with an etching amount or a film formation amount of the optical component film.
請求項1および請求項2記載の光学部品の製造方法において、
前記反射膜として金属を用いたことを特徴とする光学部品の製造方法。
In the manufacturing method of the optical component of Claim 1 and Claim 2,
A method of manufacturing an optical component, wherein a metal is used as the reflective film.
請求項1記載の光学部品の製造方法において、
前記光学部品用膜がTa25で構成されていることを特徴とする光学部品の製造方法。
In the manufacturing method of the optical component of Claim 1,
The method for manufacturing an optical component, wherein the optical component film is made of Ta 2 O 5 .
JP2003391881A 2003-11-21 2003-11-21 Method for manufacturing optical component Pending JP2005156677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391881A JP2005156677A (en) 2003-11-21 2003-11-21 Method for manufacturing optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391881A JP2005156677A (en) 2003-11-21 2003-11-21 Method for manufacturing optical component

Publications (1)

Publication Number Publication Date
JP2005156677A true JP2005156677A (en) 2005-06-16

Family

ID=34718766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391881A Pending JP2005156677A (en) 2003-11-21 2003-11-21 Method for manufacturing optical component

Country Status (1)

Country Link
JP (1) JP2005156677A (en)

Similar Documents

Publication Publication Date Title
US7046442B2 (en) Wire grid polarizer
TWI292856B (en) Method to produce a grating-structure, optical element, evanescent-field-sensor plate, micro-titer-plate and information-technical optical coupler as well as device to suoervise a wavelength
US4009933A (en) Polarization-selective laser mirror
JP3907709B2 (en) Manufacturing method of inorganic diffraction element
JP2004062148A (en) Optical component and manufacturing method therefor
JPH04246825A (en) Method of forming groove to substrate layer
EP0968142A1 (en) Reactive ion etching of silica structures
US11686881B2 (en) Partially etched reflection-modification layer
WO2008144236A1 (en) Thin film filter system and method
JP2011138169A (en) Transmission diffraction optical element
JP2006178312A5 (en)
JP2006178312A (en) Surface reflection type phase grating
JP2001004827A (en) Stepped etalon
CN109270626B (en) Adjustable grating filter based on SOI wafer and preparation method
JP2005156677A (en) Method for manufacturing optical component
JPH0815510A (en) Binary optics and their production
JP2004093634A (en) Method of forming structure
JP6988079B2 (en) Method for manufacturing grid polarizing element and grid polarizing element for ultraviolet rays
KR100291555B1 (en) Substrate etching device, and silicon membrain manufacturing method using the substrate etching device
JP2007316270A (en) Manufacturing method of optical component, retardation element and polarizer
KR940003582B1 (en) Method of making phase shift mask
CN113720493B (en) Sensor based on fiber end face micro-nano resonance structure and preparation method thereof
JPS5812337B2 (en) Bisai pattern no toumeimakunokeiseihouhouhou
WO2002082130A2 (en) Optical grating structures and method for their manufacture
JP2004029422A (en) Polymer optical waveguide having smooth core end face and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Effective date: 20090202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A02