JP2005156491A - Manufacturing method for radiation image conversion panel and radiation image conversion panel - Google Patents

Manufacturing method for radiation image conversion panel and radiation image conversion panel Download PDF

Info

Publication number
JP2005156491A
JP2005156491A JP2003398805A JP2003398805A JP2005156491A JP 2005156491 A JP2005156491 A JP 2005156491A JP 2003398805 A JP2003398805 A JP 2003398805A JP 2003398805 A JP2003398805 A JP 2003398805A JP 2005156491 A JP2005156491 A JP 2005156491A
Authority
JP
Japan
Prior art keywords
vacuum
raw material
vapor deposition
conversion panel
image conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003398805A
Other languages
Japanese (ja)
Inventor
Kiyoshi Akagi
清 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2003398805A priority Critical patent/JP2005156491A/en
Publication of JP2005156491A publication Critical patent/JP2005156491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for radiation image conversion panel of which the granularity and sharpness are improved and image defects are reduced. <P>SOLUTION: In the manufacturing method for the radiation image conversion panel, in which a stimulable phosphor layer is formed on the base plate with gas-phase deposition, its film forming device has an exhaust means for setting an evaporation chamber at a vacuum state, and a vacuum meter for measuring vacuum degree. The evaporation chamber has a base plate arranging means and stuff evaporation means for depositing a stuff with stimulable phosphor on the base plate. The evaporation chamber is depressurized from the atmospheric pressure to a vacuum state, and before the deposition process depositing the stuff to the base plate by evaporating, the evaporation chamber is set at a vacuum degree P<SB>2</SB>higher than the vacuum degree P<SB>1</SB>set in the depositing process. In the manufacturing method, the chamber is set at a base plate temperature T<SB>2</SB>which is higher than the base plate temperature T<SB>1</SB>set in the depositing process and maintained for a certain period. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、X線等の放射線画像を輝尽性蛍光体に蓄積記憶させた後、輝尽性蛍光体を励起光で走査することによる輝尽発光を利用して画像情報を得るのに用いられる放射線画像変換パネルとその製造方法に関し、詳しくは、基材上に気相堆積法によって形成された輝尽性蛍光体を有する放射線画像変換パネルとその製造方法に関するものである。   The present invention is used to obtain image information by using stimulated luminescence by scanning a stimulable phosphor with excitation light after storing and storing a radiation image such as X-rays in the stimulable phosphor. More particularly, the present invention relates to a radiation image conversion panel having a photostimulable phosphor formed on a substrate by a vapor deposition method and a method for manufacturing the same.

従来、放射線画像を得るために銀塩を使用した、いわゆる放射線写真法が利用されているが、銀塩を使用しないで放射線像を画像化する方法が開発されている。即ち、被写体を透過した放射線を蛍光体に吸収せしめ、しかる後この蛍光体をある種のエネルギーで励起してこの蛍光体が蓄積している放射線エネルギーを蛍光として放射せしめ、この蛍光を検出して画像化する方法が開示されている。   Conventionally, so-called radiography using a silver salt has been used to obtain a radiographic image, but a method for imaging a radiographic image without using a silver salt has been developed. That is, the radiation transmitted through the subject is absorbed by the phosphor, and then the phosphor is excited with a certain energy to emit the radiation energy accumulated in the phosphor as fluorescence, and this fluorescence is detected. A method for imaging is disclosed.

上記の画像形成方法としては、例えば、米国特許第3,859,527号及び特開昭55−12144号等に開示された様な基材上に輝尽性蛍光体層を形成した放射線画像変換パネルを使用するものである。この放射線画像変換パネルは、輝尽性蛍光体層に被写体を透過した放射線をあてて被写体各部の放射線透過度に対応する放射線エネルギーを輝尽性蛍光体層に蓄積させて潜像(蓄積像)を形成する。次いで、この輝尽性蛍光体層を、輝尽励起光(レーザ光が用いられる)で走査することによって各部に蓄積された放射線エネルギーを放射させて光に変換し、この光の強弱を読みとって画像を得る方法である。この画像は、CRT等各種のディスプレイ上に再生してもよいし、又ハードコピーとして再生してもよい。   As the above image forming method, for example, radiation image conversion in which a stimulable phosphor layer is formed on a substrate as disclosed in US Pat. No. 3,859,527 and JP-A-55-12144. The panel is used. This radiation image conversion panel applies radiation transmitted through the object to the photostimulable phosphor layer and accumulates radiation energy corresponding to the radiation transmittance of each part of the object in the stimulable phosphor layer to form a latent image (accumulated image). Form. Next, the photostimulable phosphor layer is scanned with stimulated excitation light (laser light is used) to radiate the radiation energy accumulated in each part to convert it into light, and the intensity of the light is read. This is a method for obtaining an image. This image may be reproduced on various displays such as a CRT, or may be reproduced as a hard copy.

この放射線画像変換パネルは、基材上に結着樹脂溶液に蛍光体粒子を分散した液を塗布乾燥する方法によって形成された分散タイプの蛍光体層を有するものと、基材上に気相堆積法によって形成された蒸着タイプの蛍光体層を有するものとがあり、何れの放射線画像変換パネルに要求される特性は、放射線に対する感度と形成される画像の粒状性及び鮮鋭性である。   This radiation image conversion panel has a dispersion type phosphor layer formed by a method of applying and drying a liquid in which phosphor particles are dispersed in a binder resin solution on a substrate, and vapor deposition on the substrate. Some of them have a vapor-deposited phosphor layer formed by the method, and the characteristics required for any radiation image conversion panel are sensitivity to radiation and graininess and sharpness of the formed image.

この放射線像変換方法に用いられる放射線画像変換パネルの輝尽性蛍光体層は、放射線吸収率及び光変換率が高いこと、画像の粒状性がよいこと、高鮮鋭性であることが要求される。通常、放射線に対する感度を高くするには、輝尽性蛍光体層の膜厚を厚くする必要があるが、余り厚くなりすぎると、輝尽性蛍光体粒子間での輝尽発光の散乱のため、発光が外部に出てこなくなる現象があり、自ずと限界がある。また、鮮鋭性については、輝尽性蛍光体層を薄層化するほど向上するが、薄すぎると感度低下が大きくなる。   The stimulable phosphor layer of the radiation image conversion panel used in this radiation image conversion method is required to have high radiation absorption rate and light conversion rate, good image graininess, and high sharpness. . Usually, to increase the sensitivity to radiation, it is necessary to increase the thickness of the photostimulable phosphor layer. However, if the thickness is too large, the photostimulable luminescence is scattered between photostimulable phosphor particles. There is a phenomenon that light emission does not come out, and there is a limit naturally. The sharpness is improved as the stimulable phosphor layer is made thinner. However, if the stimulable phosphor layer is too thin, the sensitivity decreases greatly.

また、画像の粒状性は、放射線量子数の場所的なゆらぎ(量子モトル)、あるいは放射線画像変換パネルの輝尽性蛍光体層の構造的な乱れ(構造モトル)等によって決定される。輝尽性蛍光体層の層厚が薄くなると、輝尽性蛍光体層に吸収される放射線量子数が減少して量子モトルが増加したり、構造的な乱れが顕在化して構造モトルが増加したりして画質低下を生ずる。従って、画像粒状性を向上させるためには、輝尽性蛍光体層の層厚が厚い必要があった。   Further, the granularity of the image is determined by the local fluctuation (quantum mottle) of the radiation quantum number or the structural disorder (structural mottle) of the stimulable phosphor layer of the radiographic image conversion panel. When the thickness of the photostimulable phosphor layer is reduced, the number of radiation quantum absorbed in the photostimulable phosphor layer decreases and the quantum mottle increases, or structural disturbance becomes obvious and the structure mottle increases. The image quality is degraded. Therefore, in order to improve the image granularity, the stimulable phosphor layer needs to be thick.

蒸着タイプの蛍光体層は、分散タイプの蛍光体層に比較すると、蛍光体が100%であるから、蛍光体が同じ場合、同じ層厚では感度が優れ、放射線吸収率が高いことにより相対的に量子モトルが減少して粒状性も優れる放射線画像変換パネルを達成することができ、感度を同じ程度にすれば層厚を薄くできて、層厚内での放射線や励起光の拡散が減少し鮮鋭性の優れた放射線画像変換パネルを得ることができる筈であるが、感度の優れた放射線画像変換パネルを与えることは上述のように容易であっても、粒状性と鮮鋭性とが共に優れた放射線画像変換パネルを与えることは技術的な障害が大きいのが現状である。   The vapor deposition type phosphor layer is 100% phosphor compared to the dispersion type phosphor layer. Therefore, when the phosphor is the same, the sensitivity is excellent at the same layer thickness, and the relative radiation absorption rate is high. In addition, a radiation image conversion panel with a reduced quantum motor and excellent graininess can be achieved. If the sensitivity is the same, the layer thickness can be reduced, and the diffusion of radiation and excitation light within the layer thickness is reduced. Although it should be possible to obtain a radiation image conversion panel with excellent sharpness, it is easy to provide a radiation image conversion panel with excellent sensitivity as described above, but both graininess and sharpness are excellent. Presently, providing a radiographic image conversion panel has a great technical obstacle.

この様に、様々な要因から放射線画像変換パネルを用いた放射線画像変換方法の画質及び感度は決定される。これらの感度や画質に関する複数の因子を調整して、感度や画質を改良するため、これまで様々な気相堆積方法が検討されてきた。   Thus, the image quality and sensitivity of the radiographic image conversion method using the radiographic image conversion panel are determined from various factors. In order to improve sensitivity and image quality by adjusting a plurality of factors related to sensitivity and image quality, various vapor deposition methods have been studied.

通常、大気圧の状態の蒸着室に基材及び原料を準備し、真空ポンプなどで室内の空気を排気して真空状態とする。この際、雰囲気ガスとしてArガスなどの不活性ガスを導入する方法もとられている。更に、基材を加熱しながら原料堆積を行う場合に、基材の加熱を行ってから基材への原料堆積を行う方法が提案されている(例えば、特許文献1参照。)。この方法では、基材への原料堆積を行う際の真空度、基材温度に達すればよく、いずれの測定値も所定値に到達した後、直ちに基材への原料堆積を行う方法であり、得られる放射線画像変換パネルの性能が、十分に引き出せないという課題を抱えている。   Usually, a base material and raw materials are prepared in a vapor deposition chamber in an atmospheric pressure state, and the room air is evacuated by a vacuum pump or the like to form a vacuum state. At this time, a method of introducing an inert gas such as Ar gas as an atmospheric gas is used. Furthermore, in the case of performing material deposition while heating the substrate, a method of performing material deposition on the substrate after heating the substrate has been proposed (for example, see Patent Document 1). In this method, it is only necessary to reach the degree of vacuum when the material is deposited on the substrate and the substrate temperature, and after any measurement value reaches the predetermined value, the material is deposited on the substrate immediately. There is a problem that the performance of the obtained radiation image conversion panel cannot be pulled out sufficiently.

また、上記特許文献1では、基板を加熱器により加熱しながら蒸着膜を形成した後、加熱器の出力を段階的に下げて基板を徐々に冷却する方法が開示されている。しかし、この特許文献1で提案された方法では、基材の加熱を停止した後、基材の自然冷却速度よりも強制的に遅くする、もしくは意図的に基材の冷却速度をコントロールする必要がある場合には有効であるが、一般的には、基材の自然冷却速度で基材を冷却すればよいことであり、一方で、基材の冷却過程ではその膜質を維持するために真空度も変化させることが望ましく、原料堆積時の基材温度・真空度から急激に変化させず一旦インターバルをおいて、常温、常圧へ導くことが効果的であるが、このような技術に関しては一切の開示はない。   Further, Patent Document 1 discloses a method of gradually cooling a substrate by gradually reducing the output of the heater after forming a vapor deposition film while heating the substrate with a heater. However, in the method proposed in Patent Document 1, after the heating of the substrate is stopped, it is necessary to forcibly lower the natural cooling rate of the substrate or to intentionally control the cooling rate of the substrate. Although effective in some cases, it is generally necessary to cool the substrate at the natural cooling rate of the substrate, while in the course of cooling the substrate, the degree of vacuum is maintained in order to maintain the film quality. It is also desirable to change the substrate temperature and the degree of vacuum at the time of raw material deposition, and it is effective to lead to normal temperature and normal pressure at intervals, without abrupt change. There is no disclosure.

また、基材への原料堆積は、所望とする画質および膜質を得るため、その目的に合わせた最適な真空度を設定することが一般的である。例えば、複数の異種蒸着材料をそれぞれ基板の成膜面に蒸着する際に、異種蒸着材料の内の一つの蒸着材料について、その固有の真空度でそれぞれ蒸着を行う技術が開示されている(例えば、特許文献2参照。)。   In addition, in order to obtain the desired image quality and film quality, it is common to set an optimum degree of vacuum in accordance with the purpose of raw material deposition on the substrate. For example, a technique is disclosed in which when a plurality of different vapor deposition materials are vapor-deposited on the film formation surface of the substrate, one vapor deposition material of the different vapor deposition materials is vapor-deposited with its own degree of vacuum (for example, , See Patent Document 2).

上記特許文献2に記載の方法は、基材へ堆積させる原料が異なる場合であり、異なる原料で真空度を変更し、原料を蒸発させ基材へ堆積させることはいわば当然である。本発明のように、同一原料で基材への原料堆積の際に真空度を適宜変化させて、最適条件を達成する方法に関しては、一切言及や示唆がなされてはいない。   The method described in Patent Document 2 is a case where the raw materials to be deposited on the base material are different, and it is natural that the degree of vacuum is changed with different raw materials, and the raw material is evaporated and deposited on the base material. As in the present invention, there is no mention or suggestion regarding a method for achieving the optimum condition by appropriately changing the degree of vacuum when depositing the raw material on the base material with the same raw material.

また、所定の蒸発位置に成膜材料を供給する材料供給装置が開示されている(例えば、特許文献3参照。)。この特許文献3では、成膜材料を回転可能なターレットと、ターレットに装填された成膜材料をターレットの回転軸の延在方向に移動することにより成膜材料を所定の蒸発位置に移動する方法である。この方法では、蒸発位置が一つしかない場合であり、複数の原料蒸発手段から原料蒸発を行う場合とは異なる構成である。本発明のように、複数の原料蒸発手段から原料蒸発を行う場合において、次に蒸発を行う蒸発源をあらかじめ予備加熱を行って保持しておく技術に関しては、一切言及や示唆がなされてはいない。   In addition, a material supply device that supplies a film forming material to a predetermined evaporation position is disclosed (for example, see Patent Document 3). In this Patent Document 3, a method of moving a film forming material to a predetermined evaporation position by moving a film forming material in a turret capable of rotating the film forming material and moving the film forming material loaded in the turret in the extending direction of the rotation shaft of the turret. It is. In this method, there is only one evaporation position, which is different from the case where raw material evaporation is performed from a plurality of raw material evaporation means. As in the present invention, in the case of performing raw material evaporation from a plurality of raw material evaporation means, there is no mention or suggestion regarding the technology for preliminarily heating and holding the evaporation source to be evaporated next. .

この様な状況から、輝尽性蛍光体層の厚さを薄くし、輝尽性蛍光体層厚内での放射線や励起光の拡散が減少して、粒状性、鮮鋭性に優れた放射線画像変換パネルを気相堆積方法により安定して作製できる放射線画像変換パネルの製造方法及び放射線画像変換パネルの製造方法により製造する放射線画像変換パネルの開発が望まれている。
特開2002−107496号公報 特開平6−172998号公報 特開2003−247061号公報
Under such circumstances, the thickness of the stimulable phosphor layer is reduced, and the diffusion of radiation and excitation light within the stimulable phosphor layer thickness is reduced, resulting in a radiation image with excellent granularity and sharpness. Development of a radiation image conversion panel that can be stably manufactured by a vapor deposition method and a radiation image conversion panel that is manufactured by a method of manufacturing a radiation image conversion panel is desired.
JP 2002-104946 A JP-A-6-172998 JP 2003-247061 A

本発明は、上記課題に鑑みなされたものであり、その目的は、粒状性、鮮鋭性が改良され、かつ画像欠陥が低減された放射線画像変換パネルとその製造方法を提供することである。   The present invention has been made in view of the above problems, and an object thereof is to provide a radiation image conversion panel having improved graininess and sharpness and reduced image defects, and a method for manufacturing the same.

本発明の上記目的は、以下の構成により達成される。
(請求項1)
気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
該蒸着室は、基材加熱手段と、基材温度測定または基材温度推定手段とを有し、
該蒸着室を大気圧から減圧して真空状態にし、該原料を蒸発させて該基材へ堆積させる堆積過程の前に、該蒸着室を該堆積過程で設定する真空度P1よりも高い真空度P2に設定し、かつ該堆積過程で設定する基材温度T1よりも高い基材温度T2に設定して一定時間保持することを特徴とする放射線画像変換パネル製造方法。
(請求項2)
前記堆積過程の前に、前記真空度P2及び前記基材温度T2を一定時間保持する際に、同時に蒸着室壁面も加熱することを特徴とする請求項1に記載の放射線画像変換パネル製造方法。
(請求項3)
気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
該蒸着室は、基材加熱手段と、基材温度測定または基材温度推定手段とを有し、該原料を全て蒸発させて該基材上へ堆積させる堆積過程の後、該堆積過程で設定する真空度P1よりも低い真空度P3に設定し、かつ該堆積過程で設定する基材温度T1よりも低い基材温度T3に設定して一定時間保持することを特徴とする放射線画像変換パネル製造方法。
(請求項4)
気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させる堆積過程で用いる原料蒸発手段とを有し、該原料を蒸発させて該基材上へ堆積させる堆積過程で、経過時間により真空度P1を変化させることを特徴とする放射線画像変換パネル製造方法。
(請求項5)
前記原料蒸発手段を複数有し、該原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、それぞれの該原料の蒸発毎に真空度P1を変化させることを特徴とする請求項4に記載の放射線画像変換パネル製造方法。
(請求項6)
前記経過時間または前記原料の蒸発毎に変化させる真空度P1は、初期の真空度が最も低く、その後真空度を高くすることを特徴とする請求項4または5に記載の放射線画像変換パネル製造方法。
(請求項7)
前記基材上へ堆積させる堆積過程における真空度を、低真空から高真空に変化させ、次いで低真空に戻し、再び高真空とする操作を繰り返すことを特徴とする請求項6に記載の放射線画像変換パネル製造方法。
(請求項8)
気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
該原料蒸発手段を複数有し、該原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、次に蒸発を行う該原料蒸発手段をあらかじめ原料の蒸発が起きない範囲で予備加熱を行って保持しておくことを特徴とする放射線画像変換パネル製造方法。
(請求項9)
請求項1〜8のいずれか1項に記載の放射線画像変換パネル製造方法により製造された放射線画像変換パネルであって、基材上に形成された少なくとも1層の輝尽性蛍光体層に含まれる輝尽性蛍光体が柱状結晶を有することを特徴とする放射線画像変換パネル。
(請求項10)
前記柱状結晶の主成分が、下記一般式(1)で表される輝尽性蛍光体であることを特徴とする請求項9に記載の放射線画像変換パネル。
The above object of the present invention is achieved by the following configurations.
(Claim 1)
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material,
The vapor deposition chamber has a substrate heating means, a substrate temperature measurement or a substrate temperature estimation means,
Prior to the deposition process in which the deposition chamber is depressurized from atmospheric pressure to a vacuum state, and the raw material is evaporated and deposited on the substrate, a vacuum higher than the degree of vacuum P 1 set in the deposition process. degrees is set to P 2, and the radiation image conversion panel manufacturing method characterized by and set to a higher substrate temperature T 2 than the base material temperatures T 1 to be set in the deposition process holding a certain time.
(Claim 2)
The radiation image conversion panel manufacturing method according to claim 1, wherein the vacuum chamber P 2 and the substrate temperature T 2 are simultaneously heated for a predetermined time before the deposition process, and the wall surface of the vapor deposition chamber is simultaneously heated. Method.
(Claim 3)
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material,
The vapor deposition chamber has a substrate heating means and a substrate temperature measurement or substrate temperature estimation means, and is set in the deposition process after the deposition process in which all the raw materials are evaporated and deposited on the substrate. The radiation is characterized in that it is set to a vacuum level P 3 lower than the vacuum level P 1 to be set, and is set to a base material temperature T 3 lower than the base material temperature T 1 set in the deposition process and held for a certain period of time. Image conversion panel manufacturing method.
(Claim 4)
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means used in a deposition process for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material. A method of manufacturing a radiation image conversion panel, wherein the degree of vacuum P 1 is changed according to elapsed time in a deposition process of depositing on a material.
(Claim 5)
A plurality of the raw material evaporation means are provided, and when the raw material evaporation means are sequentially evaporated in an arbitrary combination and deposited on the substrate, the degree of vacuum P 1 is changed for each evaporation of the raw materials. The method for producing a radiation image conversion panel according to claim 4.
(Claim 6)
6. The radiation image conversion panel manufacturing method according to claim 4, wherein the vacuum degree P 1 to be changed at each of the elapsed time or the evaporation of the raw material is lowest in the initial vacuum degree and then increased in the vacuum degree. Method.
(Claim 7)
The radiographic image according to claim 6, wherein the vacuum degree in the deposition process of depositing on the base material is changed from low vacuum to high vacuum, then returned to low vacuum, and again set to high vacuum. Conversion panel manufacturing method.
(Claim 8)
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material,
A plurality of the raw material evaporation means, and when the raw material evaporation means are sequentially evaporated in any combination and deposited on the base material, the raw material evaporation means to be evaporated next is a range in which the raw material does not evaporate in advance. A method of manufacturing a radiation image conversion panel, wherein the preheating is carried out and held.
(Claim 9)
It is a radiographic image conversion panel manufactured by the radiographic image conversion panel manufacturing method of any one of Claims 1-8, Comprising: It is contained in the at least 1 layer of photostimulable phosphor layer formed on the base material Radiation image conversion panel, wherein the stimulable phosphor has columnar crystals.
(Claim 10)
The radiation image conversion panel according to claim 9, wherein the main component of the columnar crystal is a stimulable phosphor represented by the following general formula (1).

一般式(1)
CsX:A
〔式中、XはBrまたはIを表し、AはEu、In、TbまたはCsを表す。〕
General formula (1)
CsX: A
[Wherein, X represents Br or I, and A represents Eu, In, Tb or Cs. ]

本発明によれば、粒状性、鮮鋭性が改良され、かつ画像欠陥が低減された放射線画像変換パネルとその製造方法を提供することができる。   According to the present invention, it is possible to provide a radiation image conversion panel with improved graininess and sharpness and reduced image defects and a method for manufacturing the same.

以下、本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.

本発明の放射線画像変換パネル製造方法は、気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法であって、該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
第1の発明においては、蒸着室は、基材加熱手段と、基材温度測定または基材温度推定手段とを有し、蒸着室を大気圧から減圧して真空状態にし、原料を蒸発させて該基材へ堆積させる堆積過程の前に、蒸着室を堆積過程で設定する真空度P1よりも高い真空度P2に設定し、かつ堆積過程で設定する基材温度T1よりも高い基材温度T2に設定して一定時間保持することを特徴とする。
The radiation image conversion panel manufacturing method of the present invention is a radiation image conversion panel manufacturing method in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method. The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit to make a vacuum state, and a vacuum gauge that measures a degree of vacuum in the vapor deposition chamber, And a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the arranged base material,
In the first invention, the vapor deposition chamber has a substrate heating means and a substrate temperature measurement or a substrate temperature estimation means. The vapor deposition chamber is depressurized from the atmospheric pressure to a vacuum state, and the raw material is evaporated. Before the deposition process for depositing on the substrate, the vapor deposition chamber is set to a vacuum degree P 2 higher than the vacuum degree P 1 set in the deposition process, and higher than the substrate temperature T 1 set in the deposition process. The material temperature T 2 is set and held for a predetermined time.

また、第2の発明では、蒸着室は、基材加熱手段と、基材温度測定または基材温度推定手段とを有し、原料を全て蒸発させて該基材上へ堆積させる堆積過程の後、堆積過程で設定する真空度P1よりも低い真空度P3に設定し、かつ堆積過程で設定する基材温度T1よりも低い基材温度T3に設定して一定時間保持することを特徴とする。 In the second invention, the vapor deposition chamber has a substrate heating means and a substrate temperature measurement or substrate temperature estimation means, and after the deposition process in which all the raw materials are evaporated and deposited on the substrate. The vacuum degree P 3 lower than the vacuum degree P 1 set in the deposition process is set, and the base material temperature T 3 lower than the base material temperature T 1 set in the deposition process is set and held for a certain time. Features.

また、第3の発明では、原料を蒸発させて基材上へ堆積させる堆積過程で、経過時間により真空度P1を変化させることを特徴とする。 The third aspect of the invention is characterized in that the degree of vacuum P 1 is changed according to the elapsed time in the deposition process in which the raw material is evaporated and deposited on the substrate.

また、第4の発明では、原料蒸発手段を複数有し、原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、次に蒸発を行う原料蒸発手段をあらかじめ原料の蒸発が起きない範囲で予備加熱を行って保持しておくことを特徴とする。   In the fourth aspect of the present invention, there are a plurality of raw material evaporation means, and when the raw material evaporation means sequentially evaporates the raw materials in any combination and deposits them on the base material, the raw material evaporation means for performing the next evaporation is previously set as the raw material evaporation means. It is characterized in that it is preheated and held within a range where evaporation does not occur.

本発明のおいては、上述の第1〜第4の発明から選ばれる少なくとも1つの発明を、あるいは上述の第1〜第4の発明を適宜複数手段組み合わせた放射線画像変換パネル製造方法を用いることにより、粒状性、鮮鋭性が改良され、かつ画像欠陥が低減された放射線画像変換パネルとその製造方法を提供することができるものである。   In the present invention, at least one invention selected from the first to fourth inventions described above, or a method for manufacturing a radiation image conversion panel in which a plurality of means are appropriately combined with the first to fourth inventions described above is used. Therefore, it is possible to provide a radiation image conversion panel with improved graininess and sharpness and reduced image defects, and a method for manufacturing the same.

以下、本発明の詳細について説明する。   Details of the present invention will be described below.

はじめに、本発明の放射線画像変換パネルついて、図を用いて具体的に説明する。   First, the radiation image conversion panel of the present invention will be specifically described with reference to the drawings.

図1は、本発明の放射線画像変換パネルを構成する気相堆積法により形成した輝尽性蛍光体層の構成の一例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of the configuration of a photostimulable phosphor layer formed by a vapor deposition method that constitutes the radiation image conversion panel of the present invention.

図1において、基材11上に、気相堆積法により輝尽性蛍光体層12が形成され、更にその上部に保護層13を設けて、輝尽蛍光体プレートが構成されている。放射線画像変換パネルは、この輝尽蛍光体プレートを、カーボン繊維強化樹脂(CFRP)、ガラスエポキシ樹脂等で出来たトレー上に接着剤等で固定し、輝尽性蛍光体プレートの周縁部を接着剤(不図示)で封入して、輝尽性蛍光体層が密閉された構造となっている。   In FIG. 1, a photostimulable phosphor layer is formed by forming a photostimulable phosphor layer 12 on a substrate 11 by a vapor deposition method, and further providing a protective layer 13 thereon. In the radiation image conversion panel, this stimulable phosphor plate is fixed on a tray made of carbon fiber reinforced resin (CFRP), glass epoxy resin or the like with an adhesive or the like, and the periphery of the stimulable phosphor plate is bonded. The stimulable phosphor layer is sealed with an agent (not shown).

図2は、本発明の放射線画像変換パネルを用いた放射線像変換方法の一例を示す概略図である。   FIG. 2 is a schematic view showing an example of a radiation image conversion method using the radiation image conversion panel of the present invention.

図2において、21は放射線発生装置、22は被写体、23は本発明の放射線画像変換パネル、24はレーザ等の輝尽励起光源、25は放射線画像変換パネル23により放射された輝尽蛍光を検出する光電変換装置、26は光電変換装置25で検出された信号を画像として再生する再生装置、27は再生された画像を表示する表示装置、28は輝尽励起光と輝尽蛍光とを分離し、輝尽蛍光のみを透過させるフィルタである。なお、25〜27は放射線画像変換パネル23からの光情報を何らかの形で画像として再生できるものであればよく、上記に限定されるものではない。   In FIG. 2, 21 is a radiation generator, 22 is a subject, 23 is a radiation image conversion panel of the present invention, 24 is a stimulated excitation light source such as a laser, and 25 is a stimulated fluorescence emitted by the radiation image conversion panel 23. The photoelectric conversion device 26 reproduces the signal detected by the photoelectric conversion device 25 as an image, 27 displays the reproduced image, and 28 separates the stimulated excitation light and the stimulated fluorescence. A filter that transmits only the photostimulated fluorescence. In addition, 25-27 should just be what can reproduce | regenerate the optical information from the radiation image conversion panel 23 as an image in some form, and is not limited above.

図2に示されるように、放射線発生装置21からの放射線Rは、被写体22を通して放射線画像変換パネル23に入射光RIとして照射される。この入射した放射線は放射線画像変換パネル23の輝尽蛍光体層に吸収され、そのエネルギーが蓄積され、放射線透画像の蓄積像として形成される。   As shown in FIG. 2, the radiation R from the radiation generator 21 is irradiated as incident light RI on the radiation image conversion panel 23 through the subject 22. The incident radiation is absorbed by the photostimulable phosphor layer of the radiation image conversion panel 23, the energy is accumulated, and an accumulated image of a radiographic image is formed.

次いで、この蓄積像を輝尽励起光源24からの輝尽励起光で励起し、輝尽発光として放出せしめる。   Next, this accumulated image is excited by stimulated excitation light from the stimulated excitation light source 24 and emitted as stimulated emission.

放射される輝尽発光の強弱は、蓄積された放射線エネルギー量に比例するので、この光信号を、例えば、光電子倍増管等の光電変換装置25で光電変換し、画像生成装置26によって画像として再生し、画像表示装置27によって表示することで被写体の放射線透過像を観察することができる。   Since the intensity of stimulated emission emitted is proportional to the amount of accumulated radiation energy, this optical signal is photoelectrically converted by a photoelectric conversion device 25 such as a photomultiplier tube and reproduced as an image by the image generation device 26. The radiographic image of the subject can be observed by displaying the image on the image display device 27.

輝尽励起光源24としては、放射線画像変換プレートに使用される輝尽性蛍光体の輝尽励起波長を含む光源が使用される。特にレーザ光を用いると光学系が簡単になり、また、輝尽励起光強度を大きくすることができるために輝尽発光効率を上げることができ、より好ましい結果が得られる。   As the stimulated excitation light source 24, a light source including the stimulated excitation wavelength of the stimulable phosphor used in the radiation image conversion plate is used. In particular, when a laser beam is used, the optical system is simplified, and since the excitation light intensity can be increased, the photostimulative emission efficiency can be increased, and a more preferable result can be obtained.

レーザとしては、He−Neレーザ、He−Cdレーザ、Arイオンレーザ、Krイオンレーザ、N2レーザ、YAGレーザ及びその第2高調波、ルビーレーザ、半導体レーザ、各種の色素レーザ、銅蒸気レーザ等の金属蒸気レーザ等がある。通常はHe−NeレーザやArイオンレーザのような連続発振のレーザが望ましいが、パネル1画素の走査時間とパルスを同期させればパルス発振のレーザを用いることもできる。また、フィルタ28を用いずに特開昭59−22046号に示されるような、発光の遅延を利用して分離する方法によるときは、連続発振レーザを用いて変調するよりもパルス発振のレーザを用いる方が好ましい。上記の各種レーザ光源の中でも、半導体レーザは小型で安価であり、しかも変調器が不要であるので特に好ましく用いられる。 Lasers include He—Ne laser, He—Cd laser, Ar ion laser, Kr ion laser, N 2 laser, YAG laser and its second harmonic, ruby laser, semiconductor laser, various dye lasers, copper vapor laser, etc. There are metal vapor lasers. Normally, a continuous wave laser such as a He—Ne laser or an Ar ion laser is desirable, but a pulsed laser can also be used if the scanning time and pulse of one pixel of the panel are synchronized. Further, when using a method of separating light emission using a delay of light emission as shown in Japanese Patent Laid-Open No. 59-22046 without using the filter 28, a pulsed laser is used rather than modulation using a continuous wave laser. It is preferable to use it. Among the various laser light sources described above, the semiconductor laser is particularly preferably used because it is small and inexpensive and does not require a modulator.

次いで、本発明に係る気相堆積法による輝尽性蛍光体層の形成方法について、図を交えて説明する。   Next, a method for forming a photostimulable phosphor layer by a vapor deposition method according to the present invention will be described with reference to the drawings.

輝尽性蛍光体を基材上に気相堆積させる方法としては、蒸着法、スパッタ法及びCVD法等がある。   Examples of the method for vapor-depositing the photostimulable phosphor on the substrate include vapor deposition, sputtering, and CVD.

蒸着法は、基材を蒸着装置内に設置したのち、蒸着装置内を排気して1.3×10-4Pa程度の真空度とし、次いで、輝尽性蛍光体を抵抗加熱法、エレクトロンビーム法などの方法で加熱蒸発させて、基材表面に輝尽性蛍光体を所望の厚みに堆積させる。この結果、結着剤を含有せずに、輝尽性蛍光体単独で構成された輝尽性蛍光体層が形成されるが、上記の蒸着工程は、複数回に分けて輝尽性蛍光体層を形成することも可能である。また、上記蒸着工程では、複数の抵抗加熱器、あるいはエレクトロンビームを用いて蒸着を行うことも可能である。また、蒸着法においては、輝尽性蛍光体原料を複数の抵抗加熱器、あるいはエレクトロンビームを用いて蒸着し、基材上で目的とする輝尽性蛍光体を合成すると同時に輝尽性蛍光体層を形成することも可能である。更に、蒸着法においては、蒸着時に必要に応じて基材を冷却或いは加熱してもよい。また、蒸着終了後、輝尽性蛍光体層を加熱処理してもよい。 In the vapor deposition method, after the base material is installed in the vapor deposition apparatus, the vapor deposition apparatus is evacuated to a vacuum of about 1.3 × 10 −4 Pa, and then the stimulable phosphor is subjected to resistance heating, electron beam The photostimulable phosphor is deposited to a desired thickness on the surface of the substrate by heating and evaporating by a method such as a method. As a result, a stimulable phosphor layer composed of the stimulable phosphor alone is formed without containing a binder, but the above-described vapor deposition step is divided into a plurality of times and the stimulable phosphor is divided into a plurality of times. It is also possible to form layers. In the vapor deposition step, vapor deposition can be performed using a plurality of resistance heaters or electron beams. In the vapor deposition method, the stimulable phosphor material is vapor-deposited using a plurality of resistance heaters or electron beams to synthesize the desired stimulable phosphor on the substrate, and at the same time, the stimulable phosphor. It is also possible to form layers. Furthermore, in the vapor deposition method, the substrate may be cooled or heated as necessary during vapor deposition. Moreover, you may heat-process a photostimulable phosphor layer after completion | finish of vapor deposition.

スパッタ法は、上記蒸着法と同様に、基材をスパッタ装置内に設置した後、スパッタ装置内を一旦排気して1.3×10-4Pa程度の真空度とし、次いでスパッタ用のガスとしてAr、Ne等の不活性ガスを装置内に導入して1.3×10-1Pa程度のガス圧とする。次いで、輝尽性蛍光体をターゲットとして、スパッタリングすることにより、基材表面に輝尽性蛍光体を所望の厚さ堆積させる。このスパッタ工程では、蒸着法と同様に複数回に分けて輝尽性蛍光体層を形成することも可能であるし、複数の輝尽性蛍光体原料を用いて同時あるいは順次、ターゲットをスパッタリングして輝尽性蛍光体層を形成することも可能である。また、スパッタ法では、複数の輝尽性蛍光体原料をターゲットとして用い、これを同時あるいは順次スパッタリングして、基材上で目的とする輝尽性蛍光体層を形成することも可能である。また、必要に応じてO2、H2等のガスを導入して、反応性スパッタを行ってもよい。更に、スパッタ法においては、スパッタ時に必要に応じて基材を冷却あるいは加熱してもよい。また、スパッタ終了後に輝尽性蛍光体層を加熱処理してもよい。 In the sputtering method, as in the above vapor deposition method, after the base material is placed in the sputtering apparatus, the inside of the sputtering apparatus is once evacuated to a vacuum of about 1.3 × 10 −4 Pa, and then as a sputtering gas. An inert gas such as Ar or Ne is introduced into the apparatus to obtain a gas pressure of about 1.3 × 10 −1 Pa. Next, the photostimulable phosphor is deposited on the surface of the base material with a desired thickness by sputtering using the photostimulable phosphor as a target. In this sputtering process, it is possible to form the photostimulable phosphor layer in a plurality of times in the same manner as the vapor deposition method, and the target is sputtered simultaneously or sequentially using a plurality of photostimulable phosphor materials. It is also possible to form a photostimulable phosphor layer. In the sputtering method, a plurality of photostimulable phosphor materials can be used as targets, and these can be sputtered simultaneously or sequentially to form a desired photostimulable phosphor layer on the substrate. Further, reactive sputtering may be performed by introducing a gas such as O 2 or H 2 as necessary. Furthermore, in the sputtering method, the substrate may be cooled or heated as necessary during sputtering. Alternatively, the photostimulable phosphor layer may be heat-treated after the end of sputtering.

CVD法は、目的とする輝尽性蛍光体あるいは輝尽性蛍光体原料を含有する有機金属化合物を、熱、高周波電力等のエネルギーで分解することにより、基材上に結着剤を含有しない輝尽性蛍光体層を得るものであり、いずれも輝尽性蛍光体層を支持体の法線方向に対して特定の傾きをもって独立した細長い柱状結晶に気相成長させることが可能である。   The CVD method does not contain a binder on the base material by decomposing an organometallic compound containing the desired stimulable phosphor or stimulable phosphor raw material with heat, high-frequency power or the like. A stimulable phosphor layer is obtained. In any case, the stimulable phosphor layer can be vapor-phase grown into independent elongated columnar crystals with a specific inclination with respect to the normal direction of the support.

これらの方法により形成した輝尽性蛍光体層の層厚は目的とする放射線像変換パネルの放射線に対する感度、輝尽性蛍光体の種類等によって異なるが、10μm〜1000μmの範囲から選ばれるのが好ましく、20μm〜800μmから選ばれるのがより好ましい。   The thickness of the stimulable phosphor layer formed by these methods varies depending on the radiation sensitivity of the intended radiation image conversion panel, the type of stimulable phosphor, etc., but is selected from the range of 10 μm to 1000 μm. Preferably, it is selected from 20 μm to 800 μm.

図3は、従来の気相堆積方法における蒸着室の温度及び真空度履歴パターンの一例を示す図である。   FIG. 3 is a diagram showing an example of the temperature and vacuum degree history pattern of the vapor deposition chamber in the conventional vapor deposition method.

通常、蒸発室で、輝尽性蛍光体を主体とする原料を用いて基材上に、輝尽性蛍光体層を形成する場合には、蒸着室を排気手段を用いて所定の真空度P1に減圧を行うと共に、基材を所定の温度T1まで加熱した後、一定の条件下で原料の蒸発及び基材への堆積を行って、輝尽性蛍光体層を形成する。 Usually, when a stimulable phosphor layer is formed on a substrate using a raw material mainly composed of a stimulable phosphor in an evaporation chamber, the vapor deposition chamber is evacuated to a predetermined vacuum degree P While reducing the pressure to 1 and heating the substrate to a predetermined temperature T 1 , the raw material is evaporated and deposited on the substrate under certain conditions to form a photostimulable phosphor layer.

しかしながら、単一の真空度P1及び基材温度T1で蒸着を行った場合には、輝尽性蛍光体層の形成を精密にコントロールすることが難しく、その結果、安定して所望の粒状性、鮮鋭性を両立させることが困難となり、また画像欠陥の発生を引き起こすため、より緻密な真空度と基材温度の設定が必要となる。 However, when vapor deposition is performed at a single degree of vacuum P 1 and substrate temperature T 1 , it is difficult to precisely control the formation of the photostimulable phosphor layer. Therefore, it is difficult to achieve both high quality and sharpness, and the occurrence of image defects is caused. Therefore, it is necessary to set a more precise vacuum degree and substrate temperature.

本発明放射線画像変換パネル製造方法では、上記気相堆積方法による輝尽性蛍光体層の形成において、蒸着室を大気圧から減圧して真空状態にし、原料を蒸発させて基材へ堆積させる堆積過程の前過程である堆積前過程では、蒸着室を堆積過程で設定する真空度P1よりも高い真空度P2に設定し、かつ堆積過程で設定する基材温度T1よりも高い基材温度T2に設定して一定時間保持することが特徴であり、また原料を全て蒸発させて該基材上へ堆積させる堆積過程の後過程である堆積後過程では、堆積過程で設定する真空度P1よりも低い真空度P3に設定し、かつ堆積過程で設定する基材温度T1よりも低い基材温度T3に設定して一定時間保持することを特徴とする。 In the method for producing a radiation image conversion panel according to the present invention, in the formation of the photostimulable phosphor layer by the vapor deposition method, the deposition chamber is depressurized from the atmospheric pressure to a vacuum state, and the raw material is evaporated and deposited on the substrate. In the pre-deposition process, which is a pre-process of the process, the vapor deposition chamber is set to a degree of vacuum P 2 higher than the degree of vacuum P 1 set in the deposition process, and is higher than the base material temperature T 1 set in the deposition process. The temperature is set to T 2 and is maintained for a certain period of time, and in the post-deposition process, which is the post-deposition process in which all the raw materials are evaporated and deposited on the substrate, the degree of vacuum set in the deposition process The vacuum degree P 3 is set lower than P 1 , and the substrate temperature T 3 is set lower than the substrate temperature T 1 set in the deposition process, and is held for a certain time.

本発明においては、堆積前過程、あるいは堆積後過程で、蒸発室の真空度及び温度を特定の条件に設定することにより、より精緻な輝尽性蛍光体層の形成が可能と有り、その結果、画像欠陥がなく、粒状性と鮮鋭性が共に優れた放射線画像変換パネルを得ることができた。   In the present invention, it is possible to form a more precise photostimulable phosphor layer by setting the vacuum degree and temperature of the evaporation chamber to specific conditions in the pre-deposition process or the post-deposition process. Thus, a radiation image conversion panel free from image defects and excellent in both graininess and sharpness could be obtained.

図4は、本発明の蒸発室の堆積前過程及び堆積後過程での温度及び真空度履歴パターンの一例を示す図である。   FIG. 4 is a diagram showing an example of temperature and vacuum degree history patterns in the pre-deposition process and the post-deposition process of the evaporation chamber according to the present invention.

図4に示すように、基材上に輝尽性蛍光体層を形成する堆積過程の前過程である堆積前過程で、堆積過程における真空度P1に対し、より高い真空度P2で、一定時間(保持時間t2)で保持する。同様に、堆積過程における基材温度T1に対し、より高い基材温度T2で、一定時間(保持時間t2)で保持する。 As shown in FIG. 4, in the pre-deposition process, which is a pre-deposition process of forming the photostimulable phosphor layer on the substrate, the degree of vacuum P 2 is higher than the degree of vacuum P 1 in the deposition process. Hold for a certain time (holding time t 2 ). Similarly, the substrate temperature T 1 during the deposition process is maintained at a higher substrate temperature T 2 for a certain time (holding time t 2 ).

本発明においては、堆積過程における真空度P1としては、1.0×10-4〜5.0×10-1Paであることが好ましく、また、基材温度T1としては、50〜300℃の範囲に設定することが好ましい。 In the present invention, the degree of vacuum P 1 in the deposition process is preferably 1.0 × 10 −4 to 5.0 × 10 −1 Pa, and the substrate temperature T 1 is 50 to 300. It is preferable to set in the range of ° C.

この時、堆積前過程における真空度P2としては、堆積過程における真空度P1との真空度差ΔP1(P1−P2)が、1.0×10-7〜1×10-4Paの範囲となるように設定することが好ましく、より好ましくは1.0×10-5〜5×10-1Paである。また、堆積前過程における基材温度T2としては、堆積過程における基材温度T1との温度差ΔT1(T2−T1)が、5〜100℃の範囲となるように設定することが好ましく、より好ましくは10〜50℃である。 At this time, as the degree of vacuum P 2 in the pre-deposition process, the difference ΔP 1 (P 1 -P 2 ) in the degree of vacuum with the degree P 1 in the deposition process is 1.0 × 10 −7 to 1 × 10 −4. It is preferably set to be in the range of Pa, more preferably 1.0 × 10 −5 to 5 × 10 −1 Pa. The substrate temperature T 2 in the pre-deposition process is set so that the temperature difference ΔT 1 (T 2 −T 1 ) with the substrate temperature T 1 in the deposition process is in the range of 5 to 100 ° C. Is more preferable, and it is 10-50 degreeC more preferably.

また、堆積前過程における上記真空度P2及び基材温度T2の保持時間t2としては、堆積過程における処理時間t1の0.01〜0.50倍であることが好ましく、より好ましくは0.01〜0.25倍である。 As the holding time t 2 of the vacuum degree P 2 and the base temperature T 2 in the pre-deposition process is preferably 0.01 to 0.50 times the process time t 1 in the deposition process, and more preferably 0.01 to 0.25 times.

同様に、基材上に輝尽性蛍光体層を形成する堆積過程の後過程である堆積後過程で、堆積過程における真空度P1に対し、より低い真空度P3で、一定時間(保持時間t3)で保持する。同様に、堆積過程における基材温度T1に対し、より低い基材温度T3で、一定時間(保持時間t3)で保持する。 Similarly, in a post-deposition process, which is a process subsequent to the deposition process for forming the photostimulable phosphor layer on the substrate, the vacuum degree P 1 in the deposition process is lower than the vacuum degree P 3 for a certain time (retained). Hold at time t 3 ). Similarly, the substrate temperature T 1 during the deposition process is held at a lower substrate temperature T 3 for a certain time (holding time t 3 ).

この時、堆積過程後過程における真空度P3としては、堆積過程における真空度P1との真空度差ΔP2(P3−P1)が、1.0×10-3〜9×10-1Paの範囲となるように設定することが好ましく、より好ましくは1.0×10-2〜5×10-1Paである。また、堆積過程前過程における基材温度T3としては、堆積過程における基材温度T1との温度差ΔT2(T1−T3)が、5〜100℃の範囲となるように設定することが好ましく、より好ましくは10〜50℃である。 At this time, as the degree of vacuum P 3 in the post-deposition process, the difference ΔP 2 (P 3 -P 1 ) in the degree of vacuum with the degree P 1 in the deposition process is 1.0 × 10 −3 to 9 × 10 −. It is preferably set to be in the range of 1 Pa, more preferably 1.0 × 10 −2 to 5 × 10 −1 Pa. Further, the base material temperature T 3 in the pre-deposition process is set so that the temperature difference ΔT 2 (T 1 −T 3 ) with the base material temperature T 1 in the deposition process is in the range of 5 to 100 ° C. It is preferably 10 to 50 ° C.

また、堆積後過程における上記真空度P3及び基材温度T3の保持時間t3としては、堆積過程における処理時間t1の0.01〜0.50倍であることが好ましく、より好ましくは0.01〜0.25倍である。 Further, the holding time t 3 of the degree of vacuum P 3 and the substrate temperature T 3 in the post-deposition process is preferably 0.01 to 0.50 times the treatment time t 1 in the deposition process, more preferably 0.01 to 0.25 times.

また、本発明放射線画像変換パネル製造方法では、本発明の目的効果をより一層発揮させる観点から、上述の堆積前過程において、真空度P2及び基材温度T2を一定時間t2保持する際に、同時に蒸着室を構成する各壁面も同時に加熱すること好ましく、その加熱温度としては、50〜300℃の範囲に設定することが好ましく、より好ましくは基材温度T2と同じ温度範囲(T2±20℃)に設定することが好ましい。 Further, in the method for producing a radiation image conversion panel of the present invention, from the viewpoint of further exerting the object effect of the present invention, in the above-described pre-deposition process, the vacuum degree P 2 and the substrate temperature T 2 are maintained for a certain time t 2. In addition, it is preferable to simultaneously heat the wall surfaces constituting the vapor deposition chamber, and the heating temperature is preferably set to a range of 50 to 300 ° C., more preferably the same temperature range (T2) as the substrate temperature T 2. It is preferable to set to ± 20 ° C.

また、本発明放射線画像変換パネル製造方法では、原料を蒸発させて基材上へ堆積させる堆積過程で、経過時間により真空度P1を変化させることが特徴である。 In addition, the radiation image conversion panel manufacturing method of the present invention is characterized in that the degree of vacuum P 1 is changed according to the elapsed time in the deposition process in which the raw material is evaporated and deposited on the substrate.

図5は、堆積過程で蒸着室の真空度を変化させる履歴パターンの一例を示す図である。   FIG. 5 is a diagram showing an example of a history pattern for changing the degree of vacuum in the vapor deposition chamber during the deposition process.

堆積過程のおいて、堆積の進行と共に、真空度をP1-1、P1-2、P1-3及びP1-4と順次変化させて、基材上に輝尽性蛍光体層を形成する。図5においては、堆積開始直後は高真空度とし、順次低真空度にシフトさせるパターンを一例として示してあるが、逆に堆積開始直後は低真空度とし、順次高真空度にシフトさせるパターンであっても、あるいはランダムに真空度を変化させるパターンでも良い。 In the deposition process, as the deposition progresses, the degree of vacuum is sequentially changed to P 1-1 , P 1-2 , P 1-3, and P 1-4 to form a photostimulable phosphor layer on the substrate. Form. FIG. 5 shows an example of a pattern in which the degree of vacuum is high immediately after the start of deposition and is sequentially shifted to a low degree of vacuum. Even if it exists, the pattern which changes a vacuum degree at random may be sufficient.

なお、図5において、堆積前過程と堆積後過程の真空度及び基材温度パターンとして、上記図4で示したそれぞれの真空度及び基材温度パターンを組み合わせても良い。   In FIG. 5, the vacuum degree and substrate temperature pattern shown in FIG. 4 may be combined as the vacuum degree and substrate temperature pattern in the pre-deposition process and the post-deposition process.

また、本発明放射線画像変換パネル製造方法では、蒸発室に原料蒸発手段を複数有し、原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、それぞれの原料の蒸発毎に真空度P1を変化させて、基材上に輝尽性蛍光体層を形成することが好ましく、また経過時間または原料の蒸発毎に変化させる真空度P1は、初期の真空度が最も低く、その後真空度を高くするパターンが好ましい。 In the radiation image conversion panel manufacturing method of the present invention, the evaporation chamber has a plurality of raw material evaporation means, and when the raw material evaporation means is sequentially evaporated in any combination and deposited on the substrate, the evaporation of each raw material is performed. It is preferable to change the degree of vacuum P 1 every time to form a photostimulable phosphor layer on the substrate, and the degree of vacuum P 1 to be changed for each elapsed time or evaporation of the raw material depends on the initial degree of vacuum. A pattern that is lowest and then increases the degree of vacuum is preferred.

図6は、複数の原料蒸発手段を有し、堆積過程の真空度を変化させるパターンの一例を示す図である。   FIG. 6 is a diagram showing an example of a pattern having a plurality of raw material evaporation means and changing the degree of vacuum in the deposition process.

堆積過程では、複数の原料蒸発手段36−1、36−2、36−3、36−4を用いて、それぞれ真空度をP1-5、P1-6、P1-7及びP1-8と順次低真空度から高真空度に変化させて、基材上に輝尽性蛍光体層を形成する。上記で規定した条件に従って輝尽性蛍光体層を形成することにより、画像欠陥がなく、粒状性と鮮鋭性が共に優れた放射線画像変換パネルを得ることができる。 In the deposition process, the degree of vacuum is set to P 1-5 , P 1-6 , P 1-7 and P 1− using a plurality of raw material evaporation means 36-1, 36-2, 36-3, 36-4, respectively. 8. The photostimulable phosphor layer is formed on the base material by sequentially changing the degree of vacuum from 8 to 8 . By forming the photostimulable phosphor layer according to the conditions defined above, a radiation image conversion panel free from image defects and excellent in both graininess and sharpness can be obtained.

なお、図6において、堆積前過程と堆積後過程の真空度及び基材温度パターンとして、上記図4で示したそれぞれの真空度及び基材温度パターンを組み合わせても良い。   In FIG. 6, the vacuum degree and substrate temperature pattern shown in FIG. 4 may be combined as the vacuum degree and substrate temperature pattern in the pre-deposition process and the post-deposition process.

また、本発明放射線画像変換パネル製造方法では、蒸発室に原料蒸発手段を複数有し、原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、基材上へ堆積させる堆積過程における真空度を、低真空から高真空に変化させ、次いで低真空に戻し、再び高真空とする操作を繰り返すことが好ましい。   Further, in the radiation image conversion panel manufacturing method of the present invention, the evaporation chamber has a plurality of raw material evaporation means, and when the raw material evaporation means are sequentially evaporated in any combination to deposit on the base material, the material is deposited on the base material. It is preferable to repeat the operation in which the degree of vacuum in the deposition process is changed from low vacuum to high vacuum, then returned to low vacuum, and set to high vacuum again.

図7は、複数の原料蒸発手段を有し、堆積過程の真空度を変化させる他のパターンの一例を示す図である。   FIG. 7 is a diagram showing an example of another pattern having a plurality of raw material evaporation means and changing the degree of vacuum in the deposition process.

堆積過程では、複数の原料蒸発手段36−1、36−2、36−3、36−4を用いて、それぞれ真空度をP1-9、P1-10、P1-11及びP1-12と低真空から高真空に変化させ、次いで低真空に戻し、再び高真空とする操作を繰り返すパターンを採ることにより、画像欠陥がなく、粒状性と鮮鋭性が共に優れた放射線画像変換パネルを得ることができる。 In the deposition process, the degree of vacuum is set to P 1-9 , P 1-10 , P 1-11 and P 1− using a plurality of raw material evaporation means 36-1, 36-2, 36-3, 36-4, respectively. 12 By changing the pattern from low vacuum to high vacuum, then returning to low vacuum and then repeating high vacuum again, a radiation image conversion panel with no image defects and excellent graininess and sharpness can be obtained. Can be obtained.

また、本発明において、原料蒸発手段を複数有し、該原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、次に蒸発を行う原料蒸発手段をあらかじめ原料の蒸発が起きない範囲で予備加熱を行って保持しておくことが特徴であり、この結果、画像欠陥がなく、粒状性と鮮鋭性が共に優れた放射線画像変換パネルを得ることができる。   Further, in the present invention, when there are a plurality of raw material evaporation means, and when the raw material evaporation means sequentially evaporates the raw materials in an arbitrary combination and deposit them on the substrate, the raw material evaporation means for performing the next evaporation is preliminarily evaporated. As a result, it is possible to obtain a radiation image conversion panel free from image defects and excellent in both graininess and sharpness.

なお、図7において、堆積前過程と堆積後過程の真空度及び基材温度パターンとして、上記図4で示したそれぞれの真空度及び基材温度パターンを組み合わせても良い。   In FIG. 7, the vacuum degree and substrate temperature pattern shown in FIG. 4 may be combined as the vacuum degree and substrate temperature pattern in the pre-deposition process and the post-deposition process.

次いで、上記説明した複数からなる原料蒸発手段と、その加熱方法について説明する。   Next, the plurality of raw material evaporation means described above and the heating method thereof will be described.

図8は、本発明に係る気相堆積方法で用いる蒸着室の原料蒸発手段と加熱手段の構成の一例を示す概略図である。   FIG. 8 is a schematic view showing an example of the configuration of the raw material evaporation means and the heating means in the vapor deposition chamber used in the vapor deposition method according to the present invention.

図8では、原料蒸発手段を4箇所配している一例を示してある。図8において、蒸着室31は、不図示の前段排気手段によりメインバルブ32を介して一旦ある値以下の真空にされ、また更に不図示の後段排気手段によりリークバルブ33を介して真空度が設定値以下に維持される。この蒸着室には、必要に応じてガス導入バルブ34を介してN2、Ar、Ne、Heといった不活性ガスが雰囲気ガスとして導入される。更に、蒸着室31には内部真空度を計測する真空計38が設けられている。 FIG. 8 shows an example in which four raw material evaporation means are provided. In FIG. 8, the vapor deposition chamber 31 is once evacuated to a certain value or less by a pre-exhaust means (not shown) via a main valve 32, and further the degree of vacuum is set via a leak valve 33 by a non-illustrated post-exhaust means. Maintained below the value. An inert gas such as N 2 , Ar, Ne, and He is introduced into the vapor deposition chamber as an atmospheric gas through a gas introduction valve 34 as necessary. Further, the vapor deposition chamber 31 is provided with a vacuum gauge 38 for measuring the internal vacuum degree.

蒸着室31には、上部に基材配置手段35が設けられており、基材30が配置可能となっている。基材30は複数枚配置しても、基材配置手段35のいかなる位置に配置してもよく、基材配置手段35は固定である必要は無く、回転や往復運動等を行わせても良い。また、基材配置手段35には、基材30の温度を測定するための温度センサ(不図示)と、基材30を加熱するためのヒータ(不図示)が埋め込まれており、基材30を所定の温度にすることができる。また、下部には、原料を保持した原料蒸発手段36−1〜36−4が配置されている。   The vapor deposition chamber 31 is provided with a base material arrangement means 35 at the top, and the base material 30 can be arranged. A plurality of the substrates 30 may be arranged, or may be arranged at any position of the substrate arrangement means 35. The substrate arrangement means 35 need not be fixed, and may be rotated or reciprocated. . In addition, a temperature sensor (not shown) for measuring the temperature of the base material 30 and a heater (not shown) for heating the base material 30 are embedded in the base material arranging means 35. Can be brought to a predetermined temperature. Moreover, the raw material evaporation means 36-1 to 36-4 which hold | maintained the raw material are arrange | positioned in the lower part.

また、図9は図8におけるB−B′矢視図を示す。基材配置手段(不図示)より下部に複数の原料蒸発手段36−1〜36−4が設けられており、原料容器に原料である輝尽性蛍光体を所定量仕込む。図9においては、原料蒸発手段内の原料加熱手段は、いわゆる抵抗加熱方式であり、電流供給部37−1〜37−4により各原料蒸発手段36−1〜36−4へ電流が供給され加熱される。   FIG. 9 is a view taken along the line BB ′ in FIG. A plurality of raw material evaporation means 36-1 to 36-4 are provided below the base material arranging means (not shown), and a predetermined amount of the stimulable phosphor as the raw material is charged into the raw material container. In FIG. 9, the raw material heating means in the raw material evaporation means is a so-called resistance heating method, and current is supplied to the raw material evaporation means 36-1 to 36-4 by the current supply units 37-1 to 37-4 to heat them. Is done.

次いで、本発明の放射線画像変換パネルの構成について説明する。   Next, the configuration of the radiation image conversion panel of the present invention will be described.

本発明に係る気相堆積法において、蒸発源である輝尽性蛍光体としては、例えば、特開昭48−80487号に記載されているBaSO4:Axで表される蛍光体、特開昭48−80488号記載のMgSO4:Axで表される蛍光体、特開昭48−80489号に記載されているSrSO4:Axで表される蛍光体、特開昭51−29889号に記載されているNa2SO4、CaSO4及びBaSO4等にMn、Dy及びTbの中少なくとも1種を添加した蛍光体、特開昭52−30487号に記載されているBeO、LiF、MgSO4及びCaF2等の蛍光体、特開昭53−39277号に記載されているLi247:Cu,Ag等の蛍光体、特開昭54−47883号に記載されているLi2O・(Be22)x:Cu,Ag等の蛍光体、米国特許第3,859,527号に記載されているSrS:Ce,Sm、SrS:Eu,Sm、La22S:Eu,Sm及び(Zn,Cd)S:Mnxで表される蛍光体があげられる。また、特開昭55−12142号に記載されているZnS:Cu,Pb蛍光体、一般式がBaO・xAl23:Euであげられるアルミン酸バリウム蛍光体、及び、一般式がM(II)O・xSiO2:Aで表されるアルカリ土類金属珪酸塩系蛍光体があげられる。 In the vapor deposition method according to the present invention, examples of the stimulable phosphor as an evaporation source include phosphors represented by BaSO 4 : Ax described in JP-A-48-80487, A phosphor represented by MgSO 4 : Ax described in Japanese Patent No. 48-80488, a phosphor represented by SrSO 4 : Ax described in Japanese Patent Laid-Open No. 48-80489, and a phosphor represented by Japanese Patent Laid-Open No. 51-29889. Phosphors obtained by adding at least one of Mn, Dy, and Tb to Na 2 SO 4 , CaSO 4, BaSO 4, and the like, BeO, LiF, MgSO 4, and CaF described in JP-A-52-30487 2 , phosphors such as Li 2 B 4 O 7 : Cu, Ag described in JP-A-53-39277, Li 2 O. ( Be 2 O 2) x: Cu , Ag Phosphors are described in U.S. Pat. No. 3,859,527 SrS: Ce, Sm, SrS : Eu, Sm, La 2 O 2 S: Eu, Sm and (Zn, Cd) S: Tables in Mnx Phosphors to be used. Further, a ZnS: Cu, Pb phosphor described in JP-A No. 55-12142, a barium aluminate phosphor whose general formula is BaO.xAl 2 O 3 : Eu, and a general formula of M (II ) O.xSiO 2 : An alkaline earth metal silicate phosphor represented by A can be used.

また、特開昭55−12143号に記載されている一般式が(Ba1-x-yMgxCay)Fx:Eu2+で表されるアルカリ土類フッ化ハロゲン化物蛍光体、特開昭55−12144号に記載されている一般式がLnOX:xAで表される蛍光体、特開昭55−12145号に記載されている一般式が(Ba1-xM(II)x)Fx:yAで表される蛍光体、特開昭55−84389号に記載されている一般式がBaFX:xCe,yAで表される蛍光体、特開昭55−160078号に記載されている一般式がM(II)FX・xA:yLnで表される希土類元素賦活2価金属フルオロハライド蛍光体、一般式ZnS:A、CdS:A、(Zn,Cd)S:A,Xで表される蛍光体、特開昭59−38278号に記載されている下記いずれかの一般式
xM3(PO42・NX2:yA
xM3(PO42:yA
で表される蛍光体、特開昭59−155487号に記載されている下記いずれかの一般式
nReX3・mAX′2:xEu
nReX3・mAX′2:xEu,ySm
で表される蛍光体、特開昭61−72087号に記載されている下記一般式
M(I)X・aM(II)X′2・bM(III)X″3:cA
で表されるアルカリハライド蛍光体、及び特開昭61−228400号に記載されている一般式M(I)X:xBiで表されるビスマス賦活アルカリハライド蛍光体等が挙げられる。特に、アルカリハライド蛍光体は、蒸着、スパッタリング等の方法で柱状の輝尽性蛍光体層を形成させやすく好ましい。
Further, an alkaline earth fluorohalide phosphor represented by the general formula (Ba 1-xy Mg x Ca y ) F x : Eu 2+ described in Japanese Patent Laid-Open No. 55-12143, A phosphor in which the general formula described in Japanese Patent No. 55-12144 is represented by LnOX: xA, and a general formula described in Japanese Patent Laid-Open No. 55-12145 is (Ba 1-x M (II) x ) F x : A phosphor represented by yA, a phosphor represented by the general formula described in JP-A-55-84389, BaFX: xCe, yA, a formula represented by JP-A-55-160078 Is a rare earth element activated divalent metal fluorohalide phosphor represented by M (II) FX.xA: yLn, fluorescence represented by the general formula ZnS: A, CdS: A, (Zn, Cd) S: A, X And any one of the following general formulas described in JP-A-59-38278 xM 3 (PO 4 ) 2 · NX 2 : yA
xM 3 (PO 4 ) 2 : yA
A phosphor represented by the general formula nReX 3 · mAX ′ 2 : xEu described in JP-A-59-155487
nReX 3 · mAX ′ 2 : xEu, ySm
In phosphor represented by the following general formula M (I) X · aM that is described in JP-A-61-72087 (II) X '2 · bM (III) X "3: cA
And a bismuth-activated alkali halide phosphor represented by the general formula M (I) X: xBi described in JP-A No. 61-228400. In particular, the alkali halide phosphor is preferable because a columnar photostimulable phosphor layer can be easily formed by a method such as vapor deposition or sputtering.

本発明では、下記一般式(1)で表される輝尽性蛍光体粒子が好ましい。   In the present invention, stimulable phosphor particles represented by the following general formula (1) are preferred.

一般式(1)
1X・aM2X′2・bM3X″3:eA
一般式(1)において、M1はLi、Na、K、Rb及びCsからなる群から選ばれる少なくとも1種のアルカリ金属であり、M2はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiからなる群から選ばれる少なくとも1種の2価金属であり、M3はSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInからなる群から選ばれる少なくとも1種の3価金属であり、X、X′及びX″は各々F、Cl、Br及びIからなる群から選ばれる少なくとも1種のハロゲンであり、Aは、Eu、Tb、In、Cs、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgからなる群から選ばれる少なくとも1種の金属であり、また、a、b、eはそれぞれ0≦a<0.5、0≦b<0.5、0<e≦0.2の範囲の数値を表す。
General formula (1)
M 1 X · aM 2 X ′ 2 · bM 3 X ″ 3 : eA
In the general formula (1), M 1 is at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs, and M 2 is Be, Mg, Ca, Sr, Ba, Zn, Cd. , Cu and Ni, and M 3 is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er. , Tm, Yb, Lu, Al, Ga and In, at least one trivalent metal selected from the group consisting of In, X, X ′ and X ″ are each selected from the group consisting of F, Cl, Br and I At least one halogen, and A is Eu, Tb, In, Cs, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu And at least one selected from the group consisting of Mg A metal, also, a, b, e each represent a number between 0 ≦ a <0.5,0 ≦ b <0.5,0 <e ≦ 0.2.

更に、前記一般式(1)においては、M1がK、Rb及びCsからなる群から選ばれる少なくとも1種のアルカリ金属であること、XがBr及びIから選ばれる少なくとも1種のハロゲンであること、M2がBe、Mg、Ca、Sr及びBaから選ばれる少なくとも1種の2価金属であること、M3がY、Ce、Sm、Eu、Al、La、Gd、Lu、Ga及びInからなる群から選ばれる少なくとも1種の3価金属であること、bが0≦b≦10-2であること、Aが、Eu、Cs、Sm、Tl及びNaからなる群から選ばれる少なくとも1種の金属であることが好ましい。 Further, in the general formula (1), M 1 is at least one alkali metal selected from the group consisting of K, Rb and Cs, and X is at least one halogen selected from Br and I. M 2 is at least one divalent metal selected from Be, Mg, Ca, Sr and Ba, M 3 is Y, Ce, Sm, Eu, Al, La, Gd, Lu, Ga and In At least one trivalent metal selected from the group consisting of: b is 0 ≦ b ≦ 10 −2 , A is at least one selected from the group consisting of Eu, Cs, Sm, Tl and Na A seed metal is preferred.

本発明に係る輝尽性蛍光体としては、柱状結晶を有することが好ましく、また柱状結晶の主成分が、下記一般式(1)で表される輝尽性蛍光体であることが好ましい。   The stimulable phosphor according to the present invention preferably has a columnar crystal, and the main component of the columnar crystal is preferably a stimulable phosphor represented by the following general formula (1).

一般式(1)
CsX:A
一般式(1)において、XはBrまたはIを表し、AはEu、In、TbまたはCeを表す。
General formula (1)
CsX: A
In the general formula (1), X represents Br or I, and A represents Eu, In, Tb, or Ce.

また、本発明において、蒸発源としては必ずしも輝尽性蛍光体のみである必要はなく、輝尽性蛍光体原料を混和したものであってもよい。また、賦活剤は母体(basic substance)に対して賦活剤(actibator)を混合したものを蒸着してもよいし、母体のみを蒸着した後に賦活剤をドープしてもよい。例えば、母体であるRbBrのみを蒸着した後、例えば賦活剤であるTlをドープしてもよい。ドーピングは形成された蛍光体の母体層中にドーピング剤(賦活剤)を熱拡散、イオン注入法によって行うことができる。   In the present invention, the evaporation source is not necessarily limited to the stimulable phosphor, and may be a mixture of the stimulable phosphor material. Moreover, what activator mixed the activator with respect to a base substance (basic substance) may be vapor-deposited, and after depositing only a base material, you may dope an activator. For example, after depositing only RbBr which is a base material, for example, Tl which is an activator may be doped. Doping can be performed by thermal diffusion and ion implantation of a doping agent (activator) in the base layer of the formed phosphor.

また、輝尽性蛍光体層中に高光吸収率の物質、高光反射率の物質等を充填してもよい。これにより輝尽性蛍光体層の補強効果をもたせるほか、輝尽性蛍光体層に入射した輝尽励起光の横方向への光拡散をほぼ完全に防止できる。   Further, the photostimulable phosphor layer may be filled with a substance having a high light absorption rate, a substance having a high light reflectance, or the like. As a result, the stimulable phosphor layer has a reinforcing effect, and the lateral diffusion of the stimulated excitation light incident on the stimulable phosphor layer can be almost completely prevented.

高光反射率の物質とは、輝尽励起光(500〜900nm、特に600〜800nm)に対する反射率の高いものをいい、例えばアルミニウム、マグネシウム、銀、インジウムその他の金属等、白色顔料及び緑色から赤色領域の色材を用いることができる。   A substance having high light reflectance means a material having a high reflectance with respect to stimulated excitation light (500 to 900 nm, particularly 600 to 800 nm), such as white pigment and green to red, such as aluminum, magnesium, silver, indium and other metals. Area colorants can be used.

白色顔料は輝尽発光も反射することができる。白色顔料として、TiO2(アナターゼ型、ルチル型)、MgO、PbCO3・Pb(OH)2、BaSO4、Al23、M(II)FX(但し、M(II)はBa、Sr及びCaの中の少なくとも1種であり、XはCl、及びBrのうちの少なくとも1種である。)、CaCO3、ZnO、Sb23、SiO2、ZrO2、リトポン(BaSO4・ZnS)、珪酸マグネシウム、塩基性珪硫酸鉛、塩基性燐酸鉛、珪酸アルミニウム等が挙げられる。これらの白色顔料は隠蔽力が強く、屈折率が大きいため、光を反射したり、屈折させることにより輝尽発光を容易に散乱し、得られる放射線画像変換パネルの感度を顕著に向上させ得る。 White pigments can also reflect stimulated emission. As white pigments, TiO 2 (anatase type, rutile type), MgO, PbCO 3 .Pb (OH) 2 , BaSO 4 , Al 2 O 3 , M (II) FX (where M (II) is Ba, Sr and At least one of Ca, and X is at least one of Cl and Br.), CaCO 3 , ZnO, Sb 2 O 3 , SiO 2 , ZrO 2 , lithopone (BaSO 4 .ZnS) , Magnesium silicate, basic lead silicic acid sulfate, basic lead phosphate, aluminum silicate and the like. Since these white pigments have strong hiding power and a high refractive index, they can easily scatter stimulated luminescence by reflecting or refracting light, and can significantly improve the sensitivity of the resulting radiation image conversion panel.

また、高光吸収率の物質としては、例えば、カーボン、酸化クロム、酸化ニッケル、酸化鉄等及び青の色材が用いられる。このうちカーボンは輝尽発光も吸収する。   Moreover, as a substance having a high light absorption rate, for example, carbon, chromium oxide, nickel oxide, iron oxide and the like and a blue color material are used. Of these, carbon also absorbs stimulated luminescence.

また、色材は、有機または無機系色材のいずれでもよい。有機系色材としては、ザボンファーストブルー3G(ヘキスト製)、エストロールブリルブルーN−3RL(住友化学製)、D&CブルーNo.1(ナショナルアニリン製)、スピリットブルー(保土谷化学製)、オイルブルーNo.603(オリエント製)、キトンブルーA(チバガイギー製)、アイゼンカチロンブルーGLH(保土ヶ谷化学製)、レイクブルーAFH(協和産業製)、プリモシアニン6GX(稲畑産業製)、ブリルアシッドグリーン6BH(保土谷化学製)、シアンブルーBNRCS(東洋インク製)、ライオノイルブルーSL(東洋インク製)等が用いられる。またカラーインデクスNo.24411、23160、74180、74200、22800、23154、23155、24401、14830、15050、15760、15707、17941、74220、13425、13361、13420、11836、74140、74380、74350、74460等の有機系金属錯塩色材も挙げられる。無機系色材としては群青、コバルトブルー、セルリアンブルー、酸化クロム、TiO2−ZnO−Co−NiO系顔料が挙げられる。 The color material may be either an organic or inorganic color material. Examples of organic colorants include Zavon First Blue 3G (Hoechst), Estrol Brill Blue N-3RL (Sumitomo Chemical), D & C Blue No. 1 (made by National Aniline), Spirit Blue (made by Hodogaya Chemical), Oil Blue No. 1 603 (made by Orient), Kitten Blue A (made by Ciba Geigy), Eisen Katyron Blue GLH (made by Hodogaya Chemical), Lake Blue AFH (made by Kyowa Sangyo), Primocyanin 6GX (made by Inabata Sangyo), Brill Acid Green 6BH (Hodogaya) Chemical Blue), Cyan Blue BNRCS (Toyo Ink), Lionoyl Blue SL (Toyo Ink), etc. are used. The color index No. 24411, 23160, 74180, 74200, 22800, 23154, 23155, 24401, 14830, 15050, 15760, 15707, 17941, 74220, 13425, 13361, 13420, 11836, 74140, 74380, 74350, 74460, etc. Materials are also mentioned. Examples of inorganic color materials include ultramarine blue, cobalt blue, cerulean blue, chromium oxide, and TiO 2 —ZnO—Co—NiO pigments.

本発明の放射線画像変換パネルにおいては、上記の輝尽性蛍光体層上に、保護層を設けても良い。保護層は、保護層用塗布液を輝尽性蛍光体層上に直接塗布して形成してもよいし、あらかじめ別途形成した保護層を輝尽性蛍光体層上に接着してもよい。あるいは別途形成した保護層上に輝尽性蛍光体層を形成する手順を取ってもよい。保護層の材料としては、例えば、酢酸セルロース、ニトロセルロース、ポリメチルメタクリレート、ポリビニルブチラール、ポリビニルホルマール、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニリデン、ナイロン、ポリ四フッ化エチレン、ポリ三フッ化−塩化エチレン、四フッ化エチレン−六フッ化プロピレン共重合体、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−アクリロニトリル共重合体等の通常の保護層用材料が用いられる。また、この保護層は蒸着法、スパッタリング法等により、SiC、SiO2、SiN、Al2O3などの無機物質を積層して形成してもよい。これらの保護層の層厚は一般的には0.1μm〜2000μm程度が好ましい。   In the radiation image conversion panel of the present invention, a protective layer may be provided on the photostimulable phosphor layer. The protective layer may be formed by directly applying a coating solution for the protective layer on the photostimulable phosphor layer, or a protective layer separately formed in advance may be adhered on the photostimulable phosphor layer. Or you may take the procedure of forming a photostimulable phosphor layer on the protective layer formed separately. Examples of the protective layer material include cellulose acetate, nitrocellulose, polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyester, polyethylene terephthalate, polyethylene, polyvinylidene chloride, nylon, polytetrafluoroethylene, and polytrifluoride. Common protective layer materials such as ethylene chloride, ethylene tetrafluoride-hexafluoropropylene copolymer, vinylidene chloride-vinyl chloride copolymer, vinylidene chloride-acrylonitrile copolymer are used. Further, this protective layer may be formed by laminating inorganic substances such as SiC, SiO2, SiN, Al2O3, etc. by vapor deposition, sputtering, or the like. In general, the thickness of these protective layers is preferably about 0.1 μm to 2000 μm.

また、透光性がよくシート状に形成できるものを用いることができ、例えば、石英、ホウ珪酸ガラス、化学的強化ガラスなどの板ガラスや、PET、OPP、ポリ塩化ビニルなどの有機高分子があげられる。   In addition, those having good translucency and capable of being formed into a sheet can be used, and examples thereof include plate glass such as quartz, borosilicate glass and chemically tempered glass, and organic polymers such as PET, OPP and polyvinyl chloride. It is done.

本発明の放射線画像変換パネルに用いられる基材としては、各種のガラス、高分子材料、金属等が用いられるが、例えば石英、ホウ珪酸ガラス、化学的強化ガラスなどの板ガラス、又、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリアミドフィルム、ポリイミドフィルム、トリアセテートフィルム、ポリカーボネートフィルム等のプラスチックフィルム、アルミニウムシート、鉄シート、銅シート等の金属シート或いは該金属酸化物の被覆層を有する金属シートが好ましい。これら基材の表面は滑面であってもよいし、輝尽性蛍光体層との接着性を向上させる目的でマット面としてもよい。また、本発明においては、基材と輝尽性蛍光体層の接着性を向上させるために、必要に応じて基材の表面に予め接着層を設けてもよい。   As the base material used in the radiation image conversion panel of the present invention, various glasses, polymer materials, metals and the like are used. For example, plate glass such as quartz, borosilicate glass, chemically tempered glass, and cellulose acetate film , A polyester film, a polyethylene terephthalate film, a polyamide film, a polyimide film, a triacetate film, a polycarbonate film or other plastic film, an aluminum sheet, an iron sheet, a copper sheet, or a metal sheet having a coating layer of the metal oxide is preferred. . The surface of these base materials may be a smooth surface, or may be a mat surface for the purpose of improving the adhesion to the stimulable phosphor layer. Moreover, in this invention, in order to improve the adhesiveness of a base material and a photostimulable phosphor layer, you may provide an adhesive layer in advance on the surface of a base material as needed.

これら基材の厚みは用いる基材の材質等によって異なるが、一般的には80μm〜2000μmであり、取り扱い上の観点から、更に好ましいのは80μm〜1000μmである。   Although the thickness of these base materials varies depending on the material of the base material used, etc., it is generally 80 μm to 2000 μm, and more preferably 80 μm to 1000 μm from the viewpoint of handling.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

実施例1
《放射線画像変換パネルの作製》
〔試料1の作製〕
基材は1mm厚の結晶化ガラス(日本電気ガラス社製)に、図8及び図9に示した蒸着装置を用いて、輝尽性蛍光体(CsBr:Eu)を有する輝尽性蛍光体層を、図3に記載の真空度及び基材温度パターンで形成した。
Example 1
<Production of radiation image conversion panel>
[Preparation of Sample 1]
A substrate is a stimulable phosphor layer having a stimulable phosphor (CsBr: Eu) on a 1 mm thick crystallized glass (manufactured by Nippon Electric Glass Co., Ltd.) using the vapor deposition apparatus shown in FIGS. Was formed with the degree of vacuum and substrate temperature pattern described in FIG.

なお、輝尽性蛍光体層形成にあたっては、上記基材を蒸着室内に設置し、次いで蛍光体原料を蒸着源として原料容器に入れた。その後、蒸発室内を一旦排気し、その後Arガスを導入して0.133Paの真空度に調整した後、基材の温度を約200℃に保持しながら複数の原料蒸発手段36−1〜36−4を順番に加熱して蒸着を行った。この際、基板と蒸発源の距離を60cmとして輝尽性蛍光体層の厚みが300μmになるように調整した。輝尽性蛍光体層の膜厚が300μmとなったところで蒸発を終了させ、基材の加熱及びArガス導入を停止した後、蒸着室を大気圧に戻し、原料が堆積された基材を取り出した。その後、乾燥空気の雰囲気内で、基材及び硼珪酸ガラスからなる保護層周縁部を接着剤で封入して、蛍光体層が密閉された構造の放射線画像変換パネルである試料1を作製した。   In forming the photostimulable phosphor layer, the substrate was placed in a vapor deposition chamber, and then the phosphor raw material was placed in a raw material container as a vapor deposition source. Thereafter, the evaporation chamber is once evacuated, and then Ar gas is introduced to adjust the degree of vacuum to 0.133 Pa, and then the plurality of raw material evaporation means 36-1 to 36-36 are maintained while maintaining the temperature of the substrate at about 200 ° C. 4 was heated in order and vapor deposition was performed. At this time, the distance between the substrate and the evaporation source was adjusted to 60 cm, and the thickness of the stimulable phosphor layer was adjusted to 300 μm. When the photostimulable phosphor layer has reached a thickness of 300 μm, the evaporation is stopped, the heating of the substrate and the introduction of Ar gas are stopped, the vapor deposition chamber is returned to atmospheric pressure, and the substrate on which the raw material is deposited is taken out. It was. Thereafter, in a dry air atmosphere, the periphery of the protective layer made of a base material and borosilicate glass was sealed with an adhesive to prepare Sample 1, which is a radiation image conversion panel having a structure in which the phosphor layer is sealed.

〔試料2の作製〕
基材は1mm厚の結晶化ガラス(日本電気ガラス社製)に、図8及び図9に示した蒸着装置を用いて、輝尽性蛍光体(CsBr:Eu)を有する輝尽性蛍光体層を、図4に記載の真空度及び基材温度パターン(堆積前過程のパターンのみ適用)で形成した。
[Preparation of Sample 2]
A substrate is a stimulable phosphor layer having a stimulable phosphor (CsBr: Eu) on a 1 mm thick crystallized glass (manufactured by Nippon Electric Glass Co., Ltd.) using the vapor deposition apparatus shown in FIGS. Was formed with the vacuum degree and substrate temperature pattern (applying only the pattern of the pre-deposition process) described in FIG.

蒸着室内に上記基材を設置し、蛍光体原料を蒸着源として原料容器に入れた後、蒸着室内を一旦排気し、その後Arガスを導入し、0.0133Paに真空度を調整した後、基材の温度を250℃に保持して0.5時間経過させた。次いで、0.133Paに真空度を調整し、基材温度を200℃に保持させながら複数の原料蒸発手段36−1〜36−4を順番に加熱して蒸着を行った。この際、基板と蒸発源の距離を60cmとして輝尽性蛍光体層の厚みが300μmになるように調整した。輝尽性蛍光体層の膜厚が300μmとなったところで蒸発を終了させ、基材の加熱及びArガス導入を停止した後、蒸着室を大気圧に戻し、原料が堆積された基材を取り出した。その後、乾燥空気の雰囲気内で、基材及び硼珪酸ガラスからなる保護層周縁部を接着剤で封入して、蛍光体層が密閉された構造の放射線画像変換パネルである試料2を作製した。   After the base material is installed in the vapor deposition chamber, the phosphor raw material is placed in a raw material container as a vapor deposition source, the vapor deposition chamber is once evacuated, Ar gas is then introduced, and the degree of vacuum is adjusted to 0.0133 Pa. The temperature of the material was kept at 250 ° C. for 0.5 hours. Next, the degree of vacuum was adjusted to 0.133 Pa, and the plurality of raw material evaporation means 36-1 to 36-4 were heated in order while the base material temperature was maintained at 200 ° C. to perform evaporation. At this time, the distance between the substrate and the evaporation source was adjusted to 60 cm, and the thickness of the stimulable phosphor layer was adjusted to 300 μm. When the photostimulable phosphor layer has reached a thickness of 300 μm, the evaporation is stopped, the heating of the substrate and the introduction of Ar gas are stopped, the vapor deposition chamber is returned to atmospheric pressure, and the substrate on which the raw material is deposited is taken out. It was. Thereafter, in a dry air atmosphere, the periphery of the protective layer made of a base material and borosilicate glass was sealed with an adhesive to prepare Sample 2, which is a radiation image conversion panel having a structure in which the phosphor layer is sealed.

〔試料3の作製〕
基材は1mm厚の結晶化ガラス(日本電気ガラス社製)に、図8及び図9に示した蒸着装置を用いて、輝尽性蛍光体(CsBr:Eu)を有する輝尽性蛍光体層を、図4に記載の真空度及び基材温度パターン(堆積後過程のパターンのみ適用)で形成した。
[Preparation of Sample 3]
A substrate is a stimulable phosphor layer having a stimulable phosphor (CsBr: Eu) on a 1 mm thick crystallized glass (manufactured by Nippon Electric Glass Co., Ltd.) using the vapor deposition apparatus shown in FIGS. Was formed with the vacuum degree and substrate temperature pattern shown in FIG. 4 (applying only the post-deposition process pattern).

蒸発室内を一旦排気し、その後Arガスを導入して0.133Paの真空度に調整した後、基材の温度を約200℃に保持しながら複数の原料蒸発手段36−1〜36−4を順番に加熱して蒸着を行った。この際、基板と蒸発源の距離を60cmとして輝尽性蛍光体層の厚みが300μmになるように調整した。輝尽性蛍光体層の膜厚が300μmとなったところで蒸発を終了させ、直ちに蒸着室内の真空度を0.5Pa、基材温度を150℃に保持して0.5時間経過させた。その後、基材加熱、Arがス導入を停止した後、蒸着室を大気圧に戻し、原料堆積された基材を取り出した。その後、乾燥空気の雰囲気内で、基材及び硼珪酸ガラスからなる保護層周縁部を接着剤で封入して、蛍光体層が密閉された構造の放射線画像変換パネルである試料3を作製した。   After evacuating the evaporation chamber and then introducing Ar gas to adjust the degree of vacuum to 0.133 Pa, the plurality of raw material evaporation means 36-1 to 36-4 are maintained while maintaining the temperature of the substrate at about 200 ° C. Evaporation was performed by heating in order. At this time, the distance between the substrate and the evaporation source was adjusted to 60 cm, and the thickness of the stimulable phosphor layer was adjusted to 300 μm. Evaporation was terminated when the thickness of the photostimulable phosphor layer reached 300 μm, and the vacuum in the vapor deposition chamber was maintained at 0.5 Pa and the substrate temperature was maintained at 150 ° C. for 0.5 hours. Then, after heating the base material and Ar stopped introducing the gas, the vapor deposition chamber was returned to atmospheric pressure, and the base material on which the raw material was deposited was taken out. Thereafter, in a dry air atmosphere, the periphery of the protective layer made of a base material and borosilicate glass was sealed with an adhesive to prepare Sample 3, which is a radiation image conversion panel having a structure in which the phosphor layer is sealed.

《放射線画像変換パネルの評価》
上記作製した試料1〜3について、下記の各評価を行った。
<< Evaluation of radiation image conversion panel >>
Each of the following samples 1 to 3 was evaluated.

〔鮮鋭性の評価〕
各試料の鮮鋭性は、変調伝達関数(MTF)を測定し、これを鮮鋭性の尺度とした。
[Evaluation of sharpness]
As for the sharpness of each sample, a modulation transfer function (MTF) was measured and used as a measure of sharpness.

MTFは、放射線画像変換パネルである各試料にCTFチャートを貼付した後、各試料に80kVpのX線を10mR(被写体までの距離:1.5m)照射した後、100μmφの直径の半導体レーザ(680nm:パネル上でのパワー40mW)を用いてCTFチャート像を走査して読み取って求めた。鮮鋭性は、試料1の鮮鋭性を1.00としたときの相対値で示す。   In the MTF, after attaching a CTF chart to each sample which is a radiation image conversion panel, each sample is irradiated with 80 kVp X-rays at 10 mR (distance to the subject: 1.5 m), and then a semiconductor laser (680 nm in diameter of 100 μmφ). : Obtained by scanning and reading a CTF chart image using a power of 40 mW on the panel). The sharpness is represented by a relative value when the sharpness of the sample 1 is 1.00.

(粒状性の評価)
各試料の粒状性評価は、放射線画像の形成を下記のX線照射条件にて行い、次いで放射線画像の読み取りを、励起光として680nmの半導体レーザ光を用いて行った。放射線画像を読み取った後、フィルムに出力したX線のベタ露光画像を目視観察し、下記の評価基準に従って粒状性の評価を行った。
(Evaluation of graininess)
The granularity of each sample was evaluated by forming a radiographic image under the following X-ray irradiation conditions, and then reading the radiographic image using a semiconductor laser beam having a wavelength of 680 nm as excitation light. After reading the radiation image, the X-ray solid exposure image output to the film was visually observed, and the graininess was evaluated according to the following evaluation criteria.

X線照射条件:80kVp、200mA、0.1sec
フィルム出力条件:γ(階調)=3.0出力
〈評価基準〉
5:粒状がほとんど認められず、極めて良好な粒状性である
4:若干の粒状が認められるものの、良好が画質である
3:やや粒状が認められる
2:粒状感があり、実用上問題となる品質である
1:明らかに粒状が目立ち、実用に耐えない
以上により得られた結果を、表1に示す。
X-ray irradiation conditions: 80 kVp, 200 mA, 0.1 sec
Film output condition: γ (gradation) = 3.0 output <Evaluation criteria>
5: Almost no graininess is observed, and the graininess is very good. 4: Although some graininess is observed, the quality is good. 3: Some graininess is observed. 2: There is a feeling of graininess. The quality is 1: Graininess is clearly conspicuous and cannot be used practically Table 1 shows the results obtained.

Figure 2005156491
Figure 2005156491

表1の結果より明らかなように、堆積過程の前に、蒸着室を堆積過程で設定する真空度よりも高い真空度に設定し、かつ堆積過程で設定する基材温度よりも高い基材温度に設定して一定時間保持して作製した本発明の試料2、あるいは堆積過程の後、堆積過程で設定する真空度よりも低い真空度に設定し、かつ堆積過程で設定する基材温度よりも低い基材温度に設定して一定時間保持して作製した試料3は、単一条件で形成した比較例に対し、鮮鋭性、粒状性に優れていることが分かる。   As apparent from the results in Table 1, before the deposition process, the deposition chamber is set to a vacuum level higher than the vacuum level set in the deposition process, and the substrate temperature higher than the substrate temperature set in the deposition process is set. Sample 2 of the present invention prepared by holding for a certain period of time, or after the deposition process, set to a vacuum level lower than the vacuum level set in the deposition process, and higher than the substrate temperature set in the deposition process It can be seen that Sample 3 produced by setting the substrate temperature at a low temperature and holding it for a certain period of time is superior in sharpness and graininess to the comparative example formed under a single condition.

実施例2
《放射線画像変換パネルの作製》
〔試料4〜6の作製〕
実施例1に記載の試料1の作製(図3のパターン)において、原料蒸発手段36−1〜36−4を順番に加熱し原料を基材に堆積させる際に、それぞれの真空度を表2に記載の様に変化した以外は同様にして、図5〜図7で示す真空度パターンで輝尽性蛍光体層を形成した以外は同様にして、試料4〜6を作製した。
Example 2
<Production of radiation image conversion panel>
[Preparation of Samples 4 to 6]
In the preparation of the sample 1 described in Example 1 (pattern in FIG. 3), when the raw material evaporation means 36-1 to 36-4 are sequentially heated to deposit the raw material on the base material, the respective vacuum degrees are shown in Table 2. Samples 4 to 6 were prepared in the same manner except that the photostimulable phosphor layer was formed with the vacuum pattern shown in FIGS.

〔試料7の作製〕
実施例1に記載の試料1の作製(図3のパターン)において、原料を基材に堆積させる際の真空度を0.05Paに変更した以外は同様にして、試料7を作製した。
[Preparation of Sample 7]
Sample 7 was prepared in the same manner as in preparation of Sample 1 described in Example 1 (pattern in FIG. 3) except that the degree of vacuum when depositing the raw material on the substrate was changed to 0.05 Pa.

《放射線画像変換パネルの評価》
上記作製した試料4〜7と実施例1で作製した試料1について、実施例1に記載の方法と同様にして鮮鋭性及び粒状性の評価と、下記の方法に従って画像欠陥の評価を行い、得られた結果を表2に示す。
<< Evaluation of radiation image conversion panel >>
For the samples 4 to 7 prepared above and the sample 1 prepared in Example 1, evaluation of sharpness and granularity was performed in the same manner as in Example 1, and image defects were evaluated according to the following method. The results obtained are shown in Table 2.

(画像欠陥の評価)
評価用検査機器:Regius330(コニカミノルタエムジー(株)製)
評価条件:80kVp、70mAの条件下で、X線管球と放射線画像変換パネル間距離を2mにしてX線撮影をした。
(Evaluation of image defects)
Inspection equipment for evaluation: Regius 330 (manufactured by Konica Minolta MG Co., Ltd.)
Evaluation conditions: Under the conditions of 80 kVp and 70 mA, X-ray imaging was performed with the distance between the X-ray tube and the radiation image conversion panel being 2 m.

評価方法:上記撮影条件にて、X線撮影後の画像情報を読み取り、β画像信号を得た。このβ画像信号を2000×2000画素毎に分割して画素毎の信号値を得た。得られた画像信号の中で、隣り合う信号値で50step以上の差がある画素を検出し、10cm2あたりのこの画素数を欠陥数と定義した。信号差のある画素が多い程、欠陥数が多くなり画像診断に影響をする。 Evaluation method: Under the above imaging conditions, image information after X-ray imaging was read to obtain a β image signal. This β image signal was divided every 2000 × 2000 pixels to obtain a signal value for each pixel. Among the obtained image signals, pixels having a difference of 50 steps or more between adjacent signal values were detected, and this number of pixels per 10 cm 2 was defined as the number of defects. As the number of pixels having a signal difference increases, the number of defects increases and affects image diagnosis.

Figure 2005156491
Figure 2005156491

表2の結果より明らかなように、原料蒸発手段を複数有し、原料蒸発手段を任意の組合せで順次原料の蒸発を行う際に、それぞれの原料の蒸発毎に真空度を変化させて作製した本発明の試料は、一定条件で作製した比較例に対し、鮮鋭性、粒状性に優れ、かつ画像欠陥が少ないことが分かる。   As is clear from the results in Table 2, when a plurality of raw material evaporation means are provided and the raw material evaporation means are sequentially evaporated in an arbitrary combination, the degree of vacuum is changed for each evaporation of the raw materials. It can be seen that the sample of the present invention is excellent in sharpness and graininess and has few image defects as compared with the comparative example produced under a certain condition.

実施例3
《放射線画像変換パネルの作製》
〔試料8の作製〕
実施例1に記載の試料1の作製(図3のパターン)において、原料蒸発手段36−1〜36−4を順番に加熱して原料を基材上に堆積させる際に、原料蒸発手段36−1の原料堆積中に原料蒸発手段36−2の予備加熱を行い、原料蒸発手段36−2の原料堆積中に原料蒸発手段36−3の予備加熱を行い、原料蒸発手段36−3の原料堆積中に原料蒸発手段36−4の予備加熱を行う様に変更した以外は同様にして、試料8を作製した。
Example 3
<Production of radiation image conversion panel>
[Preparation of Sample 8]
In the preparation of the sample 1 described in Example 1 (pattern in FIG. 3), when the raw material evaporation means 36-1 to 36-4 are sequentially heated to deposit the raw material on the substrate, the raw material evaporation means 36- The raw material evaporation means 36-2 is preheated during the deposition of one raw material, the raw material evaporation means 36-3 is preheated during the raw material deposition of the raw material evaporation means 36-2, and the raw material deposition of the raw material evaporation means 36-3 is performed. Sample 8 was prepared in the same manner except that the raw material evaporation means 36-4 was preheated.

《放射線画像変換パネルの評価》
上記作製した試料8と実施例1で作製した試料1について、実施例2に記載の方法と同様にして画像欠陥の評価と、総原料堆積時間の比較を行い、得られた結果を表3に示す。なお、総原料堆積時間は、試料1の輝尽性蛍光体層を形成に要した時間を1.00とした相対時間で表示した。
<< Evaluation of radiation image conversion panel >>
For the sample 8 prepared above and the sample 1 prepared in Example 1, evaluation of image defects and comparison of total raw material deposition time were performed in the same manner as in Example 2, and the results obtained are shown in Table 3. Show. The total raw material deposition time was expressed as a relative time with 1.00 being the time required for forming the photostimulable phosphor layer of Sample 1.

Figure 2005156491
Figure 2005156491

表2の結果より明らかなように、原料蒸発手段を複数有し、原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、次に蒸発を行う原料蒸発手段をあらかじめ原料の蒸発が起きない範囲で予備加熱を行って保持して作製した本発明の試料は、比較例に対し、画像欠陥数が少なく、かつ輝尽性蛍光体層を形成に要する時間が短くできることが分かる。   As is clear from the results in Table 2, when the raw material evaporation means has a plurality of raw material evaporation means and the raw material evaporation means are sequentially evaporated in any combination and deposited on the substrate, the raw material evaporation means to be evaporated next is previously set. The sample of the present invention produced by preheating and holding within the range where evaporation of the raw material does not occur has a smaller number of image defects and shorter time required for forming the photostimulable phosphor layer than the comparative example. I understand.

本発明の放射線画像変換パネルを構成する気相堆積法により形成した輝尽性蛍光体層の構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the photostimulable phosphor layer formed by the vapor deposition method which comprises the radiographic image conversion panel of this invention. 本発明の放射線画像変換パネルを用いた放射線像変換方法の一例を示す概略図である。It is the schematic which shows an example of the radiographic image conversion method using the radiographic image conversion panel of this invention. 従来の気相堆積方法における蒸着室の温度及び真空度履歴パターンの一例を示す図である。It is a figure which shows an example of the temperature of a vapor deposition chamber, and a vacuum degree log | history pattern in the conventional vapor deposition method. 本発明の蒸発室の堆積前過程及び堆積後過程での温度及び真空度履歴パターンの一例を示す図である。It is a figure which shows an example of the temperature and vacuum degree log | history pattern in the process before deposition of the evaporation chamber of this invention, and the process after deposition. 本発明の堆積過程で蒸着室の真空度を変化させる履歴パターンの一例を示す図である。It is a figure which shows an example of the log | history pattern which changes the vacuum degree of a vapor deposition chamber in the deposition process of this invention. 複数の原料蒸発手段を有し、堆積過程の真空度を変化させるパターンの一例を示す図である。It is a figure which shows an example of the pattern which has a some raw material evaporation means and changes the vacuum degree of a deposition process. 複数の原料蒸発手段を有し、堆積過程の真空度を変化させる他のパターンの一例を示す図である。It is a figure which shows an example of the other pattern which has a some raw material evaporation means and changes the vacuum degree of a deposition process. 本発明に係る気相堆積方法で用いる蒸着室の原料蒸発手段と加熱手段の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the raw material evaporation means and heating means of a vapor deposition chamber used with the vapor phase deposition method which concerns on this invention. 図8におけるB−B′矢視図である。It is a BB 'arrow line view in FIG.

符号の説明Explanation of symbols

11、30 基材
12 輝尽性蛍光体層
13 保護層
21 放射線発生装置
22 被写体
23 放射線画像変換パネル
24 輝尽励起光源
25 光電変換装置
26 再生装置
27 表示装置
28 フィルタ
31 蒸着室
32 メインバルブ
33 リークバルブ
34 ガス導入バルブ
35 基材配置手段
36−1、36−2、36−3、36−4 原料蒸発手段
37−1、37−2、37−3、37−4 電流供給部
1 堆積過程の基材温度
1 堆積過程の真空度
2 堆積前過程の基材温度
2 堆積前過程の真空度
3 堆積後過程の基材温度
3 堆積後過程の真空度
1 堆積時間
2 堆積前過程の保持時間
3 堆積後過程の保持時間
DESCRIPTION OF SYMBOLS 11, 30 Base material 12 Stimulable phosphor layer 13 Protective layer 21 Radiation generation device 22 Subject 23 Radiation image conversion panel 24 Stimulation excitation light source 25 Photoelectric conversion device 26 Reproduction device 27 Display device 28 Filter 31 Deposition chamber 32 Main valve 33 leak valve 34 gas introduction valve 35 substrate positioning means 36-1,36-2,36-3,36-4 material evaporation means 37-1,37-2,37-3,37-4 current supply unit T 1 deposited Substrate temperature in the process P 1 Degree of vacuum in the deposition process T 2 Substrate temperature in the pre-deposition process P 2 Degree of vacuum in the pre-deposition process T 3 Substrate temperature in the post-deposition process P 3 Degree of vacuum in the post-deposition process t 1 Deposition time t 2 retention time of the pre-deposition process t 3 retention time of the post-deposition process

Claims (10)

気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
該蒸着室は、基材加熱手段と、基材温度測定または基材温度推定手段とを有し、
該蒸着室を大気圧から減圧して真空状態にし、該原料を蒸発させて該基材へ堆積させる堆積過程の前に、該蒸着室を該堆積過程で設定する真空度P1よりも高い真空度P2に設定し、かつ該堆積過程で設定する基材温度T1よりも高い基材温度T2に設定して一定時間保持することを特徴とする放射線画像変換パネル製造方法。
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material,
The vapor deposition chamber has a substrate heating means, a substrate temperature measurement or a substrate temperature estimation means,
Prior to the deposition process in which the deposition chamber is depressurized from atmospheric pressure to a vacuum state, and the raw material is evaporated and deposited on the substrate, a vacuum higher than the degree of vacuum P 1 set in the deposition process. degrees is set to P 2, and the radiation image conversion panel manufacturing method characterized by and set to a higher substrate temperature T 2 than the base material temperatures T 1 to be set in the deposition process holding a certain time.
前記堆積過程の前に、前記真空度P2及び前記基材温度T2を一定時間保持する際に、同時に蒸着室壁面も加熱することを特徴とする請求項1に記載の放射線画像変換パネル製造方法。 The radiation image conversion panel manufacturing method according to claim 1, wherein the vacuum chamber P 2 and the substrate temperature T 2 are simultaneously heated for a predetermined time before the deposition process, and the wall surface of the vapor deposition chamber is simultaneously heated. Method. 気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
該蒸着室は、基材加熱手段と、基材温度測定または基材温度推定手段とを有し、該原料を全て蒸発させて該基材上へ堆積させる堆積過程の後、該堆積過程で設定する真空度P1よりも低い真空度P3に設定し、かつ該堆積過程で設定する基材温度T1よりも低い基材温度T3に設定して一定時間保持することを特徴とする放射線画像変換パネル製造方法。
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material,
The vapor deposition chamber has a substrate heating means and a substrate temperature measurement or substrate temperature estimation means, and is set in the deposition process after the deposition process in which all the raw materials are evaporated and deposited on the substrate. The radiation is characterized in that it is set to a vacuum level P 3 lower than the vacuum level P 1 to be set, and is set to a base material temperature T 3 lower than the base material temperature T 1 set in the deposition process and held for a certain period of time. Image conversion panel manufacturing method.
気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させる堆積過程で用いる原料蒸発手段とを有し、該原料を蒸発させて該基材上へ堆積させる堆積過程で、経過時間により真空度P1を変化させることを特徴とする放射線画像変換パネル製造方法。
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means used in a deposition process for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material. A method of manufacturing a radiation image conversion panel, wherein the degree of vacuum P 1 is changed according to elapsed time in a deposition process of depositing on a material.
前記原料蒸発手段を複数有し、該原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、それぞれの該原料の蒸発毎に真空度P1を変化させることを特徴とする請求項4に記載の放射線画像変換パネル製造方法。 A plurality of the raw material evaporation means are provided, and when the raw material evaporation means are sequentially evaporated in an arbitrary combination and deposited on the substrate, the degree of vacuum P 1 is changed for each evaporation of the raw materials. The method for producing a radiation image conversion panel according to claim 4. 前記経過時間または前記原料の蒸発毎に変化させる真空度P1は、初期の真空度が最も低く、その後真空度を高くすることを特徴とする請求項4または5に記載の放射線画像変換パネル製造方法。 6. The radiation image conversion panel manufacturing method according to claim 4, wherein the vacuum degree P 1 to be changed at each of the elapsed time or the evaporation of the raw material is lowest in the initial vacuum degree and then increased in the vacuum degree. Method. 前記基材上へ堆積させる堆積過程における真空度を、低真空から高真空に変化させ、次いで低真空に戻し、再び高真空とする操作を繰り返すことを特徴とする請求項6に記載の放射線画像変換パネル製造方法。 The radiographic image according to claim 6, wherein the vacuum degree in the deposition process of depositing on the base material is changed from low vacuum to high vacuum, then returned to low vacuum, and again set to high vacuum. Conversion panel manufacturing method. 気相堆積法により原料を堆積させる膜形成装置を用いて、基材上に少なくとも1層の輝尽性蛍光体層を膜形成する放射線画像変換パネル製造方法において、
該膜形成装置は、蒸着室を排気手段で減圧して真空状態とする排気手段及び該蒸着室内の真空度を測定する真空計とを有し、
該蒸着室は、基材配置手段及び配置された基材表面に輝尽性蛍光体を主体とする原料を堆積させるための原料蒸発手段とを有し、
該原料蒸発手段を複数有し、該原料蒸発手段を任意の組合せで順次原料の蒸発を行って基材へ堆積させる際、次に蒸発を行う該原料蒸発手段をあらかじめ原料の蒸発が起きない範囲で予備加熱を行って保持しておくことを特徴とする放射線画像変換パネル製造方法。
In a method for producing a radiation image conversion panel in which at least one photostimulable phosphor layer is formed on a substrate using a film forming apparatus for depositing a raw material by a vapor deposition method,
The film forming apparatus includes an evacuation unit that depressurizes the vapor deposition chamber with an evacuation unit and makes a vacuum state, and a vacuum gauge that measures the degree of vacuum in the vapor deposition chamber,
The vapor deposition chamber has a base material placement means and a raw material evaporation means for depositing a raw material mainly composed of a stimulable phosphor on the surface of the placed base material,
A plurality of the raw material evaporation means, and when the raw material evaporation means are sequentially evaporated in any combination and deposited on the base material, the raw material evaporation means to be evaporated next is a range in which the raw material does not evaporate in advance. A method of manufacturing a radiation image conversion panel, wherein the preheating is carried out and held.
請求項1〜8のいずれか1項に記載の放射線画像変換パネル製造方法により製造された放射線画像変換パネルであって、基材上に形成された少なくとも1層の輝尽性蛍光体層に含まれる輝尽性蛍光体が柱状結晶を有することを特徴とする放射線画像変換パネル。 It is a radiographic image conversion panel manufactured by the radiographic image conversion panel manufacturing method of any one of Claims 1-8, Comprising: It is contained in the at least 1 layer of photostimulable phosphor layer formed on the base material Radiation image conversion panel, wherein the stimulable phosphor has columnar crystals. 前記柱状結晶の主成分が、下記一般式(1)で表される輝尽性蛍光体であることを特徴とする請求項9に記載の放射線画像変換パネル。
一般式(1)
CsX:A
〔式中、XはBrまたはIを表し、AはEu、In、TbまたはCsを表す。〕
The radiation image conversion panel according to claim 9, wherein the main component of the columnar crystal is a stimulable phosphor represented by the following general formula (1).
General formula (1)
CsX: A
[Wherein, X represents Br or I, and A represents Eu, In, Tb or Cs. ]
JP2003398805A 2003-11-28 2003-11-28 Manufacturing method for radiation image conversion panel and radiation image conversion panel Pending JP2005156491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398805A JP2005156491A (en) 2003-11-28 2003-11-28 Manufacturing method for radiation image conversion panel and radiation image conversion panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398805A JP2005156491A (en) 2003-11-28 2003-11-28 Manufacturing method for radiation image conversion panel and radiation image conversion panel

Publications (1)

Publication Number Publication Date
JP2005156491A true JP2005156491A (en) 2005-06-16

Family

ID=34723553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398805A Pending JP2005156491A (en) 2003-11-28 2003-11-28 Manufacturing method for radiation image conversion panel and radiation image conversion panel

Country Status (1)

Country Link
JP (1) JP2005156491A (en)

Similar Documents

Publication Publication Date Title
JP4265139B2 (en) Radiation image conversion panel and radiation image reading apparatus
JP2003248097A (en) Radiation image conversion panel and its production method
JP2004279086A (en) Radiation image conversion panel and method for manufacturing it
JP5119572B2 (en) Radiation image conversion panel and manufacturing method thereof
JP4770737B2 (en) Radiation image conversion panel
JP2004233067A (en) Radiation image conversion panel and method for manufacturing the same
US20040155224A1 (en) Radiographic image conversion panel and method for manufacturing the same
JP4731091B2 (en) Radiation image conversion panel and manufacturing method thereof
JP4650433B2 (en) Radiation image conversion panel reading system and radiation image conversion panel
JP2005083792A (en) Radiation image conversion panel and method for manufacturing it
JP4114369B2 (en) Radiation image conversion panel
JP3915593B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP4321395B2 (en) Radiation image conversion panel and manufacturing method thereof
JP2005156491A (en) Manufacturing method for radiation image conversion panel and radiation image conversion panel
JP2008203252A (en) Radiation image conversion panel, its manufacturing method, and x-ray photographing system
JP2006064383A (en) Radiation image conversion panel and method for manufacturing it
JP4687799B2 (en) Radiation image conversion panel and manufacturing method thereof
JP5212449B2 (en) Radiation image conversion panel and manufacturing method thereof
JP2006125854A (en) Radiation image conversion panel, and manufacturing method therefor
JP2007024817A (en) Radiological image conversion panel and its manufacturing method
JP2006064382A (en) Radiation image conversion panel and method for manufacturing it
JP2008180627A (en) Radiation image conversion panel, method for manufacturing it and radiography system
JP2004257798A (en) Radiation image conversion panel and method of manufacturing the same
JP2002350596A (en) Radiation image conversion panel
JP2005337724A (en) Radiation image conversion panel and its manufacturing method