JP2005154705A - Negatively charged fine particle having electron trap caused by irradiation of radiation - Google Patents

Negatively charged fine particle having electron trap caused by irradiation of radiation Download PDF

Info

Publication number
JP2005154705A
JP2005154705A JP2003431283A JP2003431283A JP2005154705A JP 2005154705 A JP2005154705 A JP 2005154705A JP 2003431283 A JP2003431283 A JP 2003431283A JP 2003431283 A JP2003431283 A JP 2003431283A JP 2005154705 A JP2005154705 A JP 2005154705A
Authority
JP
Japan
Prior art keywords
fine particles
negatively charged
charged fine
kgy
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003431283A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
孝夫 河村
Masahiro Okuda
昌宏 奥田
Takayoshi Doumaru
隆祥 堂丸
Shuichi Okuda
修一 奥田
Kunio Oka
邦雄 岡
Kazuki Wakita
和樹 脇田
Takao Kojima
崇夫 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003431283A priority Critical patent/JP2005154705A/en
Publication of JP2005154705A publication Critical patent/JP2005154705A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize the production of negatively charged fine particles necessary for the constitution of a system capable of eliminating, or the like, secondary coagulation, precipitation and past record images in a transmission electrophoresis device and reflection electrophoresis device by utilizing the electrophoresis of the negatively charged fine particles. <P>SOLUTION: The negatively charged fine particles are formed by adding a resin having an electron trap into a polymeric fine particle material, also making a real spherical fine particle structure in its synthesis, irradiating 10-300 kGy electron beam to form electlet type negatively charged fine particles. Also, by irradiating 5-10 kGy gamma ray to make zero ζ potential, and by overlapping 10-300 kGy electron beam irradiation, it is possible to produce the negatively charged particles having ≥(-)60 mV ζ potential. These particles repulse each other by coulomb force among the fine particles to enable the prevention of the secondary coagulation and precipitation, and a high speed response and the elimination of the past record displaying images. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、石油系、シリコーン油系等透明絶縁性液体を媒体とし、電気泳動現象を用いた透過型電気泳動表示装置及び反射型電気泳動表示装置等において、泳動粒子に関する。更に詳細には、スチレン系、プロピレン系、ポリミイド系、メタアクリル酸エステル系等の高分子微粒子材料に電子トラップ材料を添加、これをコア樹脂とし重合法により製作した真球状超微粒子に放射線を照射して、電子トラップにキャリア(電子)を捕獲し、エレクトレット性負電荷を帯電する、透過型電気泳動型表示装置用及び反射型電気泳動表示装置等用負荷電微粒子に関するものである。  The present invention relates to electrophoretic particles in a transmissive electrophoretic display device and a reflective electrophoretic display device using an electrophoretic phenomenon using a transparent insulating liquid such as petroleum or silicone oil as a medium. More specifically, an electron trap material is added to a polymer fine particle material such as styrene, propylene, polymide, methacrylic ester, etc., and this is used as a core resin to irradiate the spherical ultrafine particles produced by the polymerization method. The present invention also relates to negatively charged fine particles for transmissive electrophoretic display devices and reflective electrophoretic display devices, which trap carriers (electrons) in an electron trap and charge an electret negative charge.

一般に表示装置は、ブラウン管(CRT)から出発し、蛍光表示管(VFD),エレクトロ・ルミネッセンス(EL)表示装置、ライト・エミッタ・ダイオード(LED)表示装置、液晶表示装置(LCD)、及びプラズマディスプレイ・パネル(PDP)等が市販されている。しかし、市販の表示装置は、何れも発光色や透過光を用い、観るための表示装置(透過光型)で物質そのものの色を見るため、長時間凝視に耐えるものではない。
最近のIT化の進展と共に、印刷物のような表示特性を有する、目に優しく、長時間凝視に耐える読むための表示装置(反射光型)の開発が盛んである。特に新聞の電子化技術の進歩は著しく、衛星による配信は、印刷、輸送・配送の一大改革と共に、紙消費の削減は森林資源・地球環境保全にも貢献が期待されている。また、電子書籍事業も実用化の時代が到来した。
Generally, the display device starts from a cathode ray tube (CRT), and is a fluorescent display tube (VFD), an electroluminescence (EL) display device, a light emitter diode (LED) display device, a liquid crystal display device (LCD), and a plasma display. -Panel (PDP) etc. are marketed. However, since all commercially available display devices use luminescent color and transmitted light and see the color of the substance itself with a display device for viewing (transmitted light type), they do not endure long-term staring.
With the recent progress in IT, the development of a display device (reflected light type) for reading that has display characteristics such as printed materials, is easy on the eyes, and can withstand long-time fixations is active. In particular, the progress of computerization technology for newspapers is remarkable. Distribution by satellite is expected to contribute to conservation of forest resources and the global environment as well as major reforms of printing, transportation and delivery, and reduction of paper consumption. The e-book business has also entered an era of practical use.

このような要求を満たすため、表示装置には、大型で低価格、高精細性、省ネルギー性、高速応答性およびフルカラー性等多くの要求がある。このため粒子系、液晶系、リライタブル・マーキング系等多くの方式が開発されているが、大型化、高精細性には、真球状荷電微粒子による電気泳動現象を用いた表示方法が理想的な、読むための表示装置の最先端技術と考える。電気泳動表示装置も、マイクロカプセル中の粒子の厚み方向移動、透明絶縁性液体中の荷電微粒子の媒体面内方向移動によるもの等があるが、書籍の電子的表示や衛星配信による新聞表示のように300dpi以上の高精細性の要求には、真球状荷電微粒子を用いた透過型電気泳動表示装置及び反射型電気泳動表示装置が最適である。  In order to satisfy such demands, display devices have many demands such as large size, low price, high definition, energy saving, high speed response, and full color. For this reason, many systems such as particle system, liquid crystal system, rewritable marking system, etc. have been developed, but for large size and high definition, the display method using electrophoretic phenomenon by spherical charged fine particles is ideal. Think of it as the most advanced display device for reading. There are electrophoretic display devices, such as those based on the movement of particles in microcapsules in the thickness direction and the movement of charged fine particles in a transparent insulating liquid in the medium plane. In addition, for a demand for high definition of 300 dpi or more, a transmission type electrophoretic display device and a reflection type electrophoretic display device using spherically charged fine particles are optimal.

荷電微粒子を電界によって泳動させ表示または記憶装置に利用する考え方は、古くから提案され(太田:特許公報昭50−15115)たが、荷電微粒子の形状、帯電電位(ζ電位)の小さいこと、泳動粒子の二次凝集や沈澱、前歴表示画像の消去及び応答速度等多くの技術的問題があり実現できなかった。  The idea of using charged fine particles for electrophoresis and display or storage devices has been proposed for a long time (Ota: Patent Publication No. 50-15115). However, the shape of charged fine particles, the small charge potential (ζ potential), There were many technical problems such as secondary agglomeration and precipitation of particles, erasure of previous display images, and response speed, which could not be realized.

本格的電気泳動表示法として、水平移動型電気泳動表示法及び装置の提案がある。(郷田:特開2001−56373号公報)しかし、透明絶縁性液体中に分散された荷電粒子の電気泳動を用い、クロストークの発生を押さえ単純マトリックス駆動が可能な表示装置であるが、画素毎に障壁を設けるため、大型の表示装置では、構成が複雑で、二次凝集、沈澱及び前歴表示画像の消去等の解決がなされてない。  As a full-scale electrophoretic display method, there is a proposal of a horizontal movement type electrophoretic display method and apparatus. (Gouda: Japanese Patent Laid-Open No. 2001-56373) However, although it is a display device capable of performing simple matrix driving while suppressing the occurrence of crosstalk using electrophoresis of charged particles dispersed in a transparent insulating liquid, In order to provide a barrier, a large-sized display device has a complicated configuration, and there is no solution such as secondary aggregation, precipitation, and erasure of previous history display images.

発明が解決しようとする課題Problems to be solved by the invention

有機材料の帯電機構は複雑で、電子写真の場合、有機微粒子材料の帯電列と電荷制御剤等により製作した、摩擦帯電による荷電微粒子(現像剤:トナー、粒径5〜20μm)を用い、300〜500dpiの解像度をもつ。透過型電気泳動型表示装置及び反射型電気泳動表示装置等では、透明絶縁性液体中に荷電微粒子を分散、電界を印加し荷電粒子の電気泳動現象を利用して画像表示を行なう。
このため1〜10μmの真球状荷電微粒子が使用でき、極めて高精細の電気泳動画像表示装置が可能となり、将来衛星配信等により受信される電子新聞、CDによる書籍等への透過型電気泳動型表示装置及び反射型電気泳動表示装置等への可能性が示唆される。しかし、透明絶縁性液体中の泳動粒子は、摩擦等による帯電は不可能で、物性的な強固な帯電電荷の保持が必要である。
The charging mechanism of the organic material is complicated. In the case of electrophotography, charged fine particles (developer: toner, particle size 5 to 20 μm) by triboelectric charging produced by a charge train of an organic fine particle material and a charge control agent are used, and 300 It has a resolution of ~ 500 dpi. In a transmissive electrophoretic display device, a reflective electrophoretic display device, and the like, charged fine particles are dispersed in a transparent insulating liquid, and an electric field is applied to display an image using the electrophoretic phenomenon of the charged particles.
For this reason, spherical charged fine particles of 1 to 10 μm can be used, and an extremely high-definition electrophoretic image display device can be realized. Transmission type electrophoretic display on electronic newspapers, books and the like received by satellite distribution in the future. This suggests the possibility of the device and the reflection type electrophoretic display device. However, the electrophoretic particles in the transparent insulating liquid cannot be charged by friction or the like, and it is necessary to maintain a strong physical charge.

透明絶縁性液体中での表示画像の応答性を確保するには、荷電微粒子の媒体中での電気泳動速度υを大きくする必要がある。一般に透明絶縁性液体中における泳動粒子の電気泳動速度υは、クーロン力と透明絶縁性液体の粘性抵抗の関連から次式で表される。
υ=qE/6πrθη
ここにqは粒子の有効表面における荷電量、rは粒子の有効半径、θは泳動粒子の形状、表面状態に関する定数、ηは泳動粒子に作用する分散媒体の粘度、Eは泳動粒子に作用する電界強度である。このため、電気泳動表示装置に用いる泳動粒子は、先ず大きなζ電位をもつ荷電微粒子であること。形状は透明絶縁性液体中で規則的に高速移動し、高濃度の表示画像を得るため真球状超微粒子であること。更に二次凝集、沈澱及び前歴表示画像の消去等のために外力(例えば交流電界等)を加えるには、泳動粒子は半永久的に高い帯電電荷を保持すること等が重要である。このため基本的物性を変化して、エレクトレット性帯電をする手段が必要である。
In order to secure the response of the display image in the transparent insulating liquid, it is necessary to increase the electrophoresis speed υ in the medium of charged fine particles. In general, the electrophoretic velocity υ of the migrating particles in the transparent insulating liquid is expressed by the following equation from the relationship between the Coulomb force and the viscous resistance of the transparent insulating liquid.
υ = qE / 6πrθη
Where q is the amount of charge on the effective surface of the particle, r is the effective radius of the particle, θ is the shape of the migrating particle, a constant related to the surface state, η is the viscosity of the dispersion medium acting on the migrating particle, and E is acting on the migrating particle. Electric field strength. For this reason, the migrating particles used in the electrophoretic display device are first charged fine particles having a large ζ potential. The shape must be regular spherical ultrafine particles in order to obtain a high-density display image by regularly moving at high speed in a transparent insulating liquid. Further, in order to apply an external force (for example, an AC electric field) for secondary aggregation, precipitation, erasure of the previous history display image, etc., it is important that the migrating particles maintain a high charged charge semipermanently. Therefore, there is a need for means for electret charging by changing basic physical properties.

課題を解決するための手段Means for solving the problem

請求項1の発明は、高分子微粒子材料を重合して製作した、粒径1〜10μmの真球状超微粒子のコア樹脂に、電子トラップとなる樹脂を添加、これに10〜300kGyの電子線を照射し、電子トラップにキャリア(電子)を捕獲し、物性的に帯電機構を変化して、エレクトレット性負荷電微粒子を製作するものである。また、コア樹脂材料を所望の色彩に着色してモノクロ及びカラー用表示装置に用いる負荷電微粒子を製作するものである。  In the first aspect of the present invention, a resin that serves as an electron trap is added to a core resin of true spherical ultrafine particles having a particle diameter of 1 to 10 μm produced by polymerizing a polymer fine particle material, and an electron beam of 10 to 300 kGy is added thereto. Irradiation is performed to capture carriers (electrons) in an electron trap, and the electrification negatively charged fine particles are manufactured by changing the charging mechanism in terms of physical properties. Further, negatively charged fine particles used for monochrome and color display devices are manufactured by coloring the core resin material in a desired color.

請求項2の発明は、高分子微粒子材料に電子トラップとなる弗素系樹脂を添加してコア樹脂とし、これを黒色、白色、マゼンタ色、イエロー色及びシアン色等に着色して、着色負荷電微粒子とするものである。電子トラップ樹脂材料に、透明な材料を選択すれば、色調には問題はない。  According to the second aspect of the present invention, a fluorine resin serving as an electron trap is added to the polymer fine particle material to form a core resin, which is colored black, white, magenta, yellow, cyan, etc. Fine particles are used. If a transparent material is selected as the electron trap resin material, there is no problem in color tone.

請求項3の発明は、電子トラップをもつ真球状超微粒子を、常温で電子線を10〜300kGy照射し、100〜150℃で数十分間熱処理を施して徐冷、−60mVのζ電位をもつエレクトレット性負荷電微粒子を製作する。  In the invention of claim 3, the spherical ultrafine particles having an electron trap are irradiated with an electron beam at 10 to 300 kGy at room temperature, subjected to heat treatment at 100 to 150 ° C. for several tens of minutes, and gradually cooled, and a ζ potential of −60 mV is obtained. Produces electret negatively charged fine particles.

請求項4の発明は、電子トラップをもつ真球状超微粒子に100〜150℃で電子線を10〜300kGy照射し、室温まで徐冷すると、−80mVのζ電位をもつエレクトレット性負荷電微粒子を製作する。  According to the invention of claim 4, when the spherical ultrafine particles having an electron trap are irradiated with an electron beam at 10 to 300 kGy at 100 to 150 ° C. and slowly cooled to room temperature, electret negatively charged fine particles having a ζ potential of −80 mV are produced. To do.

請求項5の発明は、電子トラップをもつ真球状超微粒子に5〜10kGyの放射線を照射し、真球状超微粒子のζ電位を0mV近傍とし、次に10〜300kGyの電子線を照射し、更に100〜150℃で数十分間熱処理を施して徐冷すると、−00mVのζ電位をもつエレクトレット性負荷電微粒子が製作できる。重畳の効果は顕著である。  In the invention of claim 5, the spherical ultrafine particles having electron traps are irradiated with 5 to 10 kGy of radiation, the ζ potential of the spherical ultrafine particles is set to around 0 mV, and then irradiated with an electron beam of 10 to 300 kGy. When heat treatment is performed at 100 to 150 ° C. for several tens of minutes and then cooled slowly, electret negatively charged fine particles having a ζ potential of −00 mV can be produced. The effect of superposition is significant.

請求項6の発明は、電子トラップをもつ真球状超微粒子に5〜10kGyの放射線を照射し、次に100〜150℃で電子線を10〜300kGy照射し、室温まで徐冷すると、−150mVと高いζ電位をもつエレクトレット性負荷電微粒子が製作できる。重畳効果は極めて顕著である。  The invention of claim 6 irradiates the spherical ultrafine particles having electron traps with a radiation of 5 to 10 kGy, then irradiates with an electron beam of 10 to 300 kGy at 100 to 150 ° C., and slowly cools to room temperature. It is possible to produce electret negatively charged fine particles having a high ζ potential. The superimposing effect is very remarkable.

請求項7の発明は、この負荷電微粒子は石油系、シリコーン油系等の透明絶縁性液体中で、正の直流電界を印加した場合、高い負のζ電位と真球状超微粒子のため、透明絶縁性液体中で規則的に高速に移動し、高濃度、高画質の画像表示ができる、透過型電気泳動表示装置または反射型電気泳動表示装置用負荷電微粒子である。  According to the invention of claim 7, the negatively charged fine particles are transparent because they have a high negative ζ potential and true spherical ultrafine particles when a positive DC electric field is applied in a transparent insulating liquid such as petroleum or silicone oil. It is a negatively charged fine particle for a transmissive electrophoretic display device or a reflective electrophoretic display device that can regularly move at high speed in an insulating liquid and can display an image with high density and high image quality.

請求項8の発明は、真球状超微粒子は−20mV以上のζ電位を保持することにより絶縁性液体中でクーロン力によって、互いに反発し、二次凝集及び沈澱等の防止の役目をする。  In the invention of claim 8, the spherical ultrafine particles repel each other by the Coulomb force in the insulating liquid by maintaining a ζ potential of −20 mV or more, and serve to prevent secondary aggregation and precipitation.

請求項9の発明は、放射線を10kGy以上照射すると、有機微粒子材料のζ電位は放電されて、正負関係なく何れも零近傍に落ち着く。従ってこの性質を利用して、放射線の照射量により荷電微粒子のζ電位を所望の電位に自由に制御を行なうことができる。  According to the ninth aspect of the present invention, when the radiation is irradiated by 10 kGy or more, the ζ potential of the organic fine particle material is discharged and settles to near zero regardless of the positive or negative relation. Therefore, by utilizing this property, the ζ potential of the charged fine particles can be freely controlled to a desired potential depending on the radiation dose.

請求項10の発明は、負荷電微粒子は、透明絶縁性液体に分散して、電気泳動現象を利用した透過型電気泳動表示装置、反射型電気泳動表示装置等に使用できる。  According to the invention of claim 10, the negatively charged fine particles are dispersed in a transparent insulating liquid and can be used for a transmission type electrophoretic display device, a reflection type electrophoretic display device or the like utilizing an electrophoretic phenomenon.

請求項11の発明は、負荷電微粒子は、正荷電微粒子、無電荷磁性微粒子、無電荷ナノ磁性微粒子等と混合して、電気泳動表示と磁気泳動表示とを同時に駆動させることができる。モノクロ・カラー表示の透過型電気・磁気泳動表示装置または反射型電気・磁気泳動表示装置に使用する負荷電微粒子が製作できる。  According to the eleventh aspect of the present invention, negatively charged fine particles can be mixed with positively charged fine particles, non-charged magnetic fine particles, non-charged nanomagnetic fine particles, etc., and electrophoretic display and magnetophoretic display can be driven simultaneously. It is possible to produce negatively charged fine particles to be used for transmission / electrophoresis display devices for monochrome / color display or for reflection / electrophoresis display devices.

本発明者等は、電気泳動用微粒子材料を研究する中で、スチレン系、プロピレン系、ポリミイド系、メタアクリル酸エステル系等の高分子微粒子材料を重合した真球状超微粒子に、常温で10〜300kGyの電子線の照射と100〜150℃の熱処理を数十分施すと、−60〜−70mVのエレクトレット性負荷電微粒子を生成することを発見した。また5〜10kGyのガンマ線を照射し、10〜300kGyの電子線照射を加えると、更に高い−100〜140mVのエレクトレット性負電荷を帯電することを発見した。電子トラップに電子が捕獲される基本的物性によるもので、摩擦帯電と異なり信頼性が高く、交流電界印加等の外力により消滅するものではない。  The present inventors have studied the fine particle material for electrophoresis in a spherical ultrafine particle obtained by polymerizing polymer fine particle material such as styrene, propylene, polymide, methacrylic ester, etc. at room temperature. It has been found that electret negatively charged fine particles of −60 to −70 mV are produced when irradiation with an electron beam of 300 kGy and heat treatment at 100 to 150 ° C. are performed for several tens of minutes. It was also found that when an electron beam irradiation of 5 to 10 kGy and an electron beam irradiation of 10 to 300 kGy were applied, an even higher electret negative charge of −100 to 140 mV was charged. This is based on the basic physical properties of electrons being trapped in the electron trap. Unlike frictional charging, it is highly reliable and does not disappear due to external force such as application of an alternating electric field.

以下、本発明に係わる放射線照射による負荷電微粒子の実施例を図面によって説明する。
図1は、負荷電微粒子の製作フローチャートである。高分子微粒子材料として、スチレン系、アクリル系、ポリミイド系、プロピレン系メタアクリル酸エステル等の樹脂に電子トラップ材料の弗素樹脂を添加し、黒色、白色,マゼンタ色,イエロ−色、シアン色等に着色して、溶液重合法、乳化重合法、懸濁重合法により粒径が1〜10μmの真球状超微粒子を製作した。
これに放射線照射及び熱処理を行い帯電する。
i.常温で10〜300kGyの電子線を照射し、100〜150℃で数十分間熱処理を行なう。
ii.100〜150℃雰囲気中で、10〜300kGyの電子線を照射、徐冷する。
iii.予め、60Coから放出されるガンマ線を、5〜10kGy照射、常温で10〜300kGyの電子線を照射後100〜150℃で数十分熱処理行なう。
iv.予め60Coから放出されるガンマ線を、5〜10kGy照射、100〜150℃雰囲気中で、10〜300kGyの電子線を照射、徐冷する。
次に、粒径、粒径分布、ζ電位の測定、電気泳動特性及び表示特性等を観測し透過型電気泳動表示装置及び反射型電気泳動表示装置用負荷電微粒子の評価を行なった。
荷電微粒子の測定は、レーザ法によりζ電位、粒径及び粒径分布等の測定を行なう。また横方向、縦方向の粒子の電気泳動及び表示特性を観測する。コア樹脂の着色により、黒色、白色、マゼンタ色、イエロ−色及びシアン色の負荷電微粒子を製作する。
Hereinafter, embodiments of negatively charged fine particles by radiation irradiation according to the present invention will be described with reference to the drawings.
FIG. 1 is a production flowchart of negatively charged particles. As a polymer fine particle material, an electron trap material fluorine resin is added to a resin such as styrene, acrylic, polymide, or propylene methacrylate, resulting in black, white, magenta, yellow, cyan, etc. After coloring, spherical ultrafine particles having a particle diameter of 1 to 10 μm were prepared by a solution polymerization method, an emulsion polymerization method, and a suspension polymerization method.
This is charged by irradiation and heat treatment.
i. A 10-300 kGy electron beam is irradiated at normal temperature, and heat processing is performed for several tens of minutes at 100-150 degreeC.
ii. In a 100 to 150 ° C. atmosphere, an electron beam of 10 to 300 kGy is irradiated and gradually cooled.
iii. In advance, the gamma rays emitted from 60 Co are irradiated with 5 to 10 kGy, irradiated with an electron beam of 10 to 300 kGy at room temperature, and then heat-treated at 100 to 150 ° C. for several tens of minutes.
iv. Gamma rays previously emitted from 60 Co are irradiated with 5 to 10 kGy in an atmosphere of 100 to 150 ° C. and irradiated with an electron beam of 10 to 300 kGy and gradually cooled.
Next, particle size, particle size distribution, measurement of ζ potential, electrophoretic characteristics, display characteristics, and the like were observed, and negatively charged fine particles for transmission type electrophoretic display devices and reflection type electrophoretic display devices were evaluated.
The charged fine particles are measured by measuring the ζ potential, particle size, particle size distribution, and the like by a laser method. In addition, the electrophoresis and display characteristics of particles in the horizontal and vertical directions are observed. Black, white, magenta, yellow, and cyan negatively charged fine particles are produced by coloring the core resin.

図2は、試作した負荷電微粒子の断面の模式図である。最外郭のシェル樹脂1の内部にコア樹脂2としてアクリル系、ポリエステル系及びスチレン系ポリミイド系等の樹脂に電子トラップとして弗素樹脂を添加、これらを所望の色彩に着色し懸濁重合法により粒径1〜10μmの真球性超微粒子を製作した。
電子写真に用いられる現像剤(トナー)は、熱定着のため、軟化点が160℃以下の制限があるが、負荷電微粒子の場合は、軟化点の制約なく、広い範囲で高分子微粒子材料、電子トラリップ材料および着色法等の選択が可能である。
FIG. 2 is a schematic view of a cross section of the prototype negatively charged fine particles. Inside the outermost shell resin 1 is added core resin 2 such as acrylic resin, polyester resin, and styrene polymer resin, and fluorine resin as an electron trap. 1 to 10 μm true spherical ultrafine particles were produced.
Developers (toners) used in electrophotography have a softening point of 160 ° C. or lower due to thermal fixing, but in the case of negatively charged fine particles, there are no restrictions on the softening point, and there are no restrictions on the softening point. The electronic trapping material and the coloring method can be selected.

図3は、粒径5〜10μmの電子トラップを添加したスチレン系樹脂に、懸濁重合により真球状とした超微粒子に、電子線を照射した場合の電子線照射量とζ電位の関係である。
i.○印の特性は、常温で10〜300kGyの電子線を照射、130℃でで20分間熱処理を行い徐冷した場合の負荷電微粉粒子の特性である。電子線照射によるζ電位の飽和は、−70mV近傍で起こる。
ii.◎印の特性は、予め、60Coから放出されるガンマ線を8kGy照射、常温で10〜300kGyの電子線を照射、130℃で20分間熱処理を行ない徐冷した場合の負荷電微粒子の特性である。電子線照射によるζ電位の飽和は−100mV近傍で起こる。
iii.●印の特性は、予め、60Coから放出されるガンマ線を8kGy照射、120℃の雰囲気中で10〜300kGyの電子線を照射、徐冷した場合の負荷電微粒子の特性である。−140mVと高いζ電位の飽和値をもち重畳効果は顕著に認められる。
しかし、何れの場合も250kGy以上の電子線照射は、却って電子トラップが崩壊しζ電位は急激に低下する。電子線照射量は150〜250kGyが最適である。
FIG. 3 shows the relationship between the electron beam dose and the ζ potential when ultrafine particles made spherical by suspension polymerization are irradiated to a styrene resin to which an electron trap with a particle size of 5 to 10 μm is added. .
i. The characteristics marked with ○ are the characteristics of the negatively charged fine powder particles when irradiated with an electron beam of 10 to 300 kGy at room temperature, and heat-treated at 130 ° C. for 20 minutes and gradually cooled. The saturation of ζ potential by electron beam irradiation occurs in the vicinity of −70 mV.
ii. The characteristics marked with ◎ are the characteristics of negatively charged fine particles when gamma rays emitted from 60 Co are irradiated with 8 kGy in advance, irradiated with electron beams of 10 to 300 kGy at room temperature, heat-treated at 130 ° C. for 20 minutes, and gradually cooled. . Saturation of ζ potential due to electron beam irradiation occurs in the vicinity of −100 mV.
iii. The characteristics marked with ● are the characteristics of negatively charged fine particles when gamma rays emitted from 60 Co are irradiated with 8 kGy in advance, irradiated with an electron beam of 10 to 300 kGy in an atmosphere of 120 ° C., and gradually cooled. The superposition effect is noticeable with a high ζ potential saturation value of −140 mV.
However, in any case, irradiation with an electron beam of 250 kGy or more causes the electron trap to collapse, and the ζ potential decreases rapidly. 150-250 kGy is optimal for the electron beam dose.

図4は、負荷電微粒子を粘度2.3ポアズのシリコン−油に分散し、厚さ20μmポリカーボネート樹脂膜で絶縁した、平行電極間の電気泳動特性を示したものである。電極間隔は、200μm、 負荷電微粒子は、−20mV、−60mV、−100mVのζ電位をもつものである。−60mVのζ電位をもつ負荷電微粒子で+100V(電界強度2×10V/m)の電圧印加で5msecの応答がえられる。−100mVのζ電位をもつ負荷電微粒子では、50V(電界強度1×10V/m)の電圧印加で5msecの応答がえられた。粘度の低い透明絶縁性液体を用いれば、更に応答性は改善される。FIG. 4 shows electrophoretic characteristics between parallel electrodes in which negatively charged fine particles are dispersed in silicon-oil having a viscosity of 2.3 poise and insulated with a polycarbonate resin film having a thickness of 20 μm. The electrode interval is 200 μm, and the negatively charged fine particles have ζ potentials of −20 mV, −60 mV, and −100 mV. With negatively charged particles having a ζ potential of −60 mV, a response of 5 msec can be obtained by applying a voltage of +100 V (electric field strength 2 × 10 5 V / m). With negatively charged particles having a ζ potential of −100 mV, a response of 5 msec was obtained when a voltage of 50 V (electric field strength 1 × 10 5 V / m) was applied. If a transparent insulating liquid having a low viscosity is used, the response is further improved.

本発明は上記実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更などをその技術範囲内に包含することは云う迄もない。  The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications, design changes, and the like within the technical scope of the present invention are included in the technical scope.

発明の効果The invention's effect

請求項1によれば、高分子微粒子材料を懸濁重合、溶解懸濁、乳化凝集、及び分散重合など種々の重合法により製作した真球状超微粒子は、小粒径化が容易、粒径分布も狭く、形状も球形化が容易である。特に懸濁重合は、小粒径化、球形化に優れ、本件の負荷電微粒子の製作に最適の技術である。電子トラップとなる樹脂を添加し、これに10〜250kGyの電子線を照射すると、高いζ電位をもつエレクトレット性負電荷を帯電した真球状超微粒子がえられ、所望の色彩に着色し、モノクロ及びカラー等透過型電気泳動表示装置及び反射型電気泳動表示装置用負荷電微粒子が実現する。  According to claim 1, the spherical ultrafine particles produced by various polymerization methods such as suspension polymerization, dissolution suspension, emulsion aggregation, and dispersion polymerization of the polymer fine particle material can be easily reduced in size, and the particle size distribution. Narrow and easy to spheroidize. In particular, suspension polymerization is excellent in reducing the particle size and spheroidizing, and is the most suitable technique for producing the negatively charged fine particles in this case. When a resin to be an electron trap is added and irradiated with an electron beam of 10 to 250 kGy, spherical ultrafine particles charged with an electret negative charge having a high ζ potential are obtained and colored to a desired color. A negatively charged fine particle for a color electro-transmissive electrophoretic display device and a reflective electrophoretic display device is realized.

請求項2によれば、電子トラップとなる樹脂は、弗素系樹脂で、真球状超微粒子の重合時にコア樹脂の高分子微粒子材料に微量添加し、これ等を黒色、白色、マゼンタ色,イエロ−色、シアン色等所望の色彩に着色して、モノクロ、カラー等透過型電気泳動表示装置及び反射型電気泳動表示装置用負荷電微粒子が実現する。  According to the second aspect of the present invention, the resin that becomes an electron trap is a fluorine-based resin, which is added in a small amount to the polymer fine particle material of the core resin during the polymerization of the spherical ultrafine particles, and these are added to black, white, magenta, yellow Colored to a desired color such as color or cyan, a monochromatic, color, etc. transmission type electrophoretic display device and a negatively charged fine particle for a reflection type electrophoretic display device are realized.

請求項3によれば、電子トラップをもつ真球状超微粒子に、常温で電子線を200kGy照射し、100〜150℃で数十分間熱処理を施し徐冷すると、−70mVのζ電位のエレクトレット性帯電特性をもつ負荷電微粒子が製作できる。  According to claim 3, when the spherical ultrafine particles having an electron trap are irradiated with an electron beam of 200 kGy at room temperature, subjected to heat treatment for several tens of minutes at 100 to 150 ° C., and slowly cooled, electret property of −70 mV ζ potential Negatively charged fine particles with charging characteristics can be manufactured.

請求項4によれば、電子トラップをもつ真球状超微粒子を、100〜150℃の雰囲気中で10〜300kGyの電子線を照射すると、キャリア(電子)は、深い電子トラプ準位に捕獲され徐冷すると、−100mVのζ電位のエレクトット性帯電特性をもつ負荷電微粒子が実現する。  According to the fourth aspect, when a spherical ultrafine particle having an electron trap is irradiated with an electron beam of 10 to 300 kGy in an atmosphere of 100 to 150 ° C., carriers (electrons) are trapped in a deep electron trap level and gradually. When cooled, negatively charged fine particles having electret charging characteristics with a ζ potential of −100 mV are realized.

請求項5によれば、電子トラップをもつ真球状超微粒子に、予め8kGyの放射線を照射し、ζ電位を0mV近傍とし、常温で200kGyの電子線を照射し100〜150℃で数十分間熱処理を施し徐冷すると、−140mVのζ電位のエレクトレット性帯電特性をもつ負荷電微粒子が実現する。  According to claim 5, the spherical ultrafine particles having an electron trap are preliminarily irradiated with 8 kGy of radiation, the ζ potential is set to around 0 mV, the electron beam of 200 kGy is irradiated at room temperature, and a few tens of minutes at 100 to 150 ° C. When subjected to heat treatment and slow cooling, negatively charged fine particles having electret charging characteristics with a ζ potential of −140 mV are realized.

請求項6によれば、電子トラップをもつ真球状超微粒子に、予め8kGyの放射線を照射し、次に150℃で200kGyの電子線を照射して、徐冷すると、−140mVのζ電位のエレクトレット性帯電特性をもつ負荷電微粒子が実現する。  According to claim 6, when the spherical ultrafine particles having an electron trap are preliminarily irradiated with 8 kGy of radiation, then irradiated with 200 kGy of electron beam at 150 ° C., and slowly cooled, an electret having a −140 mV ζ potential is obtained. Negatively charged microparticles with negative charge characteristics.

請求項7によれば、石油系、シリコーン油系の透明絶縁性液体に真球状の負荷電微粒子を分散し、正の直流電界を印加すると、真球状超微粒子のため規則的に移動し、泳動時間は短時間、応答性は数msec、表示画質は、高精細、高濃度、高画質が実現する。  According to the seventh aspect, when spherical negatively charged fine particles are dispersed in a petroleum-based or silicone oil-based transparent insulating liquid and a positive DC electric field is applied, the particles move regularly due to the true spherical ultrafine particles. The time is short, the response is several milliseconds, and the display image quality is high definition, high density, and high image quality.

請求項8によれば、負荷電微粒子は−20mV以上のζ電位をもつと、負荷電微粒子同志がクーロン力により反発して、電気泳動表示装置の最大の欠点である、泳動粒子の二次凝集、沈澱の解決に奇与することができる。  According to the eighth aspect, when the negatively charged fine particles have a ζ potential of −20 mV or more, the negatively charged fine particles repel each other due to Coulomb force, which is the greatest drawback of the electrophoretic display device. , Can be a puzzling solution to precipitation.

請求項9によれば、放射線の照射量により、負荷電微粒子のζ電位は所望の電位に制御することができる。  According to the ninth aspect, the ζ potential of the negatively charged fine particles can be controlled to a desired potential depending on the radiation dose.

請求項10によれば、負荷電微粒子は、透明絶縁性溶液体に分散して電気泳動現象を利用して、透過型電気泳動表示装置、反射型電気泳動表示装置等の泳動粒子に使用でき、300dpi以上の高精細の電気泳動表示装置が実現できる。  According to the tenth aspect, the negatively charged fine particles can be used in electrophoretic particles such as a transmissive electrophoretic display device and a reflective electrophoretic display device using the electrophoretic phenomenon by being dispersed in a transparent insulating solution. A high-definition electrophoretic display device of 300 dpi or more can be realized.

請求項11によれば、負荷電微粒子は、無電荷磁性微粒子、無電荷ナノ磁性微粒子等と混合して、電気泳動と磁気泳動とを同時に駆動させる、透過型電気・磁気泳動表示装置及び反射型電気・磁気泳動表示装置を実現する。  According to the eleventh aspect of the invention, the negatively charged fine particles are mixed with uncharged magnetic fine particles, uncharged nanomagnetic fine particles, and the like, and drive electrophoresis and magnetophoresis simultaneously. An electrophoretic display device is realized.

負荷電微粒子の製作フローチャートである。  It is a manufacture flowchart of negatively charged fine particles. 負荷電微粒子の断面図である。  It is sectional drawing of a negatively charged fine particle. 負荷電微粒子の電子線照射量とζ電位の関係である。  It is the relationship between the electron beam irradiation amount of negatively charged fine particles and the ζ potential. 負荷電微粒子の透明絶縁性液体中での電界強度と応答時間の関係である。  It is the relationship between the electric field strength and response time in the transparent insulating liquid of negatively charged fine particles.

符号の説明Explanation of symbols

1・・・・・シェル樹脂
2・・・・・コア樹脂
1. Shell resin 2. Core resin

Claims (11)

高分子微粒子材料を重合して製作した、粒径1〜10μmの真球状超微粒子のコア樹脂に、電子トラップとなる樹脂を添加し、これに10〜300kGyの電子線を照射して、エレクトレット性負電荷を帯電した微粒子で、コア樹脂を所望の色彩に着色したことを特徴とする負荷電微粒子。  A resin that serves as an electron trap is added to a core resin of a spherical ultrafine particle having a particle diameter of 1 to 10 μm produced by polymerizing a polymer fine particle material, and an electron beam of 10 to 300 kGy is irradiated to the resin. Negatively charged fine particles obtained by coloring a core resin in a desired color with fine particles charged with a negative charge. 前記電子トラップとなる樹脂は、弗素系の樹脂で、重合時に高分子微粒子材料に添加してコア樹脂を形成し、このコア樹脂を黒色、白色、マゼンタ色、イエロー色、シアン色等所望の色彩に着色したことを特徴とする請求項1に記載の負荷電微粒子。  The resin that serves as the electron trap is a fluorine-based resin, which is added to the polymer fine particle material during polymerization to form a core resin. The core resin is formed into a desired color such as black, white, magenta, yellow, and cyan. The negatively charged fine particles according to claim 1, wherein the negatively charged fine particles are colored. 前記電子トラップをもつ真球状超微粒子に、電子線を照射する場合、常温で10〜300kGyの電子線を照射した後、100〜150℃で数十分間加熱し、室温まで徐冷してエレクトレット性負電荷を帯電させることを特徴とする負荷電微粒子。  When irradiating a spherical ultrafine particle having an electron trap with an electron beam, it is irradiated with an electron beam of 10 to 300 kGy at room temperature, then heated at 100 to 150 ° C. for several tens of minutes, and gradually cooled to room temperature to be an electret. Negatively charged fine particles characterized by charging a negative charge. 前記電子トラップをもつ真球状超微粒子に、電子線を照射する場合、100〜150℃で10〜300kGyの電子線を照射し、室温まで徐冷してエレクトレット性負電荷を帯電させることを特徴とする負荷電微粒子。  When irradiating the spherical ultrafine particles having the electron trap with an electron beam, the electron beam is irradiated with an electron beam of 10 to 300 kGy at 100 to 150 ° C., and gradually cooled to room temperature to charge an electret negative charge. Negatively charged particles. 前記電子トラップをもつ真球状超微粒子に、5〜10kGyの放射線を照射し、更に常温で10〜300 kGyの電子線を照射した後、100〜150℃で数十分間加熱し、室温まで徐冷してエレクトレット性負電荷を帯電させることを特徴とする負荷電微粒子。  The spherical ultrafine particles having electron traps are irradiated with 5 to 10 kGy of radiation, and further irradiated with an electron beam of 10 to 300 kGy at room temperature, and then heated at 100 to 150 ° C. for several tens of minutes and gradually brought to room temperature. A negatively charged fine particle characterized by being cooled and charged with an electret negative charge. 前記電子トラップをもつ真球状超微粒子に、5〜10kGyの放射線を照射し、更に100〜150℃の温度で10〜300 kGyの電子線を照射して、室温まで徐冷してエレクトレット性負電荷を帯電させることを特徴とする負荷電微粒子。  The spherical ultrafine particles having electron traps are irradiated with 5 to 10 kGy of radiation, and further irradiated with an electron beam of 10 to 300 kGy at a temperature of 100 to 150 ° C. Negatively charged fine particles characterized by charging 前記負荷電微粒子は、真球状の超微粒子からなり、石油系、シリコーン油系等の透明絶縁性液体中で、正電界を印加した場合、短時間で厚み方向に規則的に高速電気泳動し、表示画像の高濃度化をすることを特徴とする請求項1乃至6に記載の負荷電微粒子。  The negatively charged fine particles are composed of spherical ultrafine particles, and when a positive electric field is applied in a transparent insulating liquid such as petroleum-based or silicone oil-based, regular high-speed electrophoresis in the thickness direction in a short time, 7. The negatively charged fine particles according to claim 1, wherein the density of the display image is increased. 前記負荷電微粒子は、−20mV以上のζ電位をもち、微粒子同士はクーロン力により反発して、二次凝集及び沈澱等を防止することを特徴とする請求項1乃至7に記載の負荷電微粒子。  The negatively charged fine particles according to claim 1, wherein the negatively charged fine particles have a ζ potential of −20 mV or more, and the fine particles are repelled by Coulomb force to prevent secondary aggregation and precipitation. . 前記負荷電微粒子は、放射線の照射量によりζ電位値を自由に制御することを特徴とする請求項1乃至8に記載の負荷電微粒子。  The negatively charged fine particles according to any one of claims 1 to 8, wherein the negatively charged fine particles freely control a ζ potential value according to a dose of radiation. 前記負荷電微粒子は、透明絶縁性溶液体に分散し、電気泳動現象を利用した透過型電気泳動表示装置、反射型電気泳動表示装置等に使用できることを特徴とする請求項1乃至9に記載の負荷電微粒子。10. The negatively charged fine particles are dispersed in a transparent insulating solution, and can be used in a transmission type electrophoretic display device, a reflection type electrophoretic display device using an electrophoretic phenomenon, or the like. Negatively charged fine particles. 前記負荷電微粒子は、正荷電微粒子、無電荷磁性微粒子、無電荷ナノ磁性微粒子等と混合して、電気泳動表示と磁気泳動表示とを同時に駆動法させることを特徴とする透過型電気・磁気泳動表示装置及び反射型電気・磁気泳動表示装置等に使用できることを特徴とする請求項1乃至9に記載の負荷電微粒子。  Transmission electrophoretic and magnetophoresis, wherein the negatively charged fine particles are mixed with positively charged fine particles, non-charged magnetic fine particles, non-charged nanomagnetic fine particles, and the like, and electrophoretic display and magnetophoretic display are simultaneously driven. 10. The negatively charged fine particles according to claim 1, which can be used in a display device, a reflection type electrophoretic display device and the like.
JP2003431283A 2003-11-20 2003-11-20 Negatively charged fine particle having electron trap caused by irradiation of radiation Pending JP2005154705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431283A JP2005154705A (en) 2003-11-20 2003-11-20 Negatively charged fine particle having electron trap caused by irradiation of radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431283A JP2005154705A (en) 2003-11-20 2003-11-20 Negatively charged fine particle having electron trap caused by irradiation of radiation

Publications (1)

Publication Number Publication Date
JP2005154705A true JP2005154705A (en) 2005-06-16

Family

ID=34736394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431283A Pending JP2005154705A (en) 2003-11-20 2003-11-20 Negatively charged fine particle having electron trap caused by irradiation of radiation

Country Status (1)

Country Link
JP (1) JP2005154705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940899A (en) * 2009-07-06 2011-01-12 株式会社樱花彩色笔 The manufacture method of electret particulate
CN102162962A (en) * 2010-02-17 2011-08-24 株式会社樱花彩色笔 Process for producing electret coarse powder
JP5014507B1 (en) * 2011-05-13 2012-08-29 株式会社サクラクレパス Electret particulate and method for producing the same
CN103229097A (en) * 2010-12-02 2013-07-31 株式会社櫻花彩色笔 Processes for manufacturing electret fine particles or coarse powders
TWI580711B (en) * 2012-03-21 2017-05-01 Sakura Color Prod Corp Electret polar particles and methods for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940899B (en) * 2009-07-06 2014-06-18 株式会社樱花彩色笔 Process for producing electret fine particles
EP2273316A1 (en) * 2009-07-06 2011-01-12 Sakura Color Products Corporation Process for producing electret fine particles
JP2011012222A (en) * 2009-07-06 2011-01-20 Sakura Color Products Corp Process for producing electret fine particle
TWI472372B (en) * 2009-07-06 2015-02-11 Sakura Color Prod Corp Process for producing electret fine particles
CN101940899A (en) * 2009-07-06 2011-01-12 株式会社樱花彩色笔 The manufacture method of electret particulate
EP2362265A1 (en) * 2010-02-17 2011-08-31 Sakura Color Products Corporation Process for producing electret coarse powder
US8404087B2 (en) 2010-02-17 2013-03-26 Sakura Color Products Corporation Process for producing electret coarse powder
JP2011168678A (en) * 2010-02-17 2011-09-01 Sakura Color Products Corp Method for producing electret coarse powder
CN102162962A (en) * 2010-02-17 2011-08-24 株式会社樱花彩色笔 Process for producing electret coarse powder
CN103229097A (en) * 2010-12-02 2013-07-31 株式会社櫻花彩色笔 Processes for manufacturing electret fine particles or coarse powders
US8940809B2 (en) 2010-12-02 2015-01-27 Sakura Color Products Corporation Processes for manufacturing electret fine particles or coarse powder
US20150034745A1 (en) * 2010-12-02 2015-02-05 Sakura Color Products Corporation Processes for manufacturing electret fine particles or coarse powder
US9074060B2 (en) 2010-12-02 2015-07-07 Sakura Color Products Corporation Processes for manufacturing electret fine particles or coarse powder
CN103229097B (en) * 2010-12-02 2016-02-17 株式会社櫻花彩色笔 The preparation method of electret fine particulate or meal
JP5014507B1 (en) * 2011-05-13 2012-08-29 株式会社サクラクレパス Electret particulate and method for producing the same
TWI580711B (en) * 2012-03-21 2017-05-01 Sakura Color Prod Corp Electret polar particles and methods for producing the same

Similar Documents

Publication Publication Date Title
US6515790B2 (en) Reversible image display medium and image display method
JP4755885B2 (en) Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method
US20050212748A1 (en) Reversible image display medium
US20150177588A1 (en) Recording medium, image recording device, and image recording set
JP2005154705A (en) Negatively charged fine particle having electron trap caused by irradiation of radiation
US20010024577A1 (en) Image display method, image forming apparatus and reversible image display medium
JP2009031794A (en) Shell-type electrophoretic particle and display device including the particle
JP2005157232A (en) Positively charged fine particle having positive hole trap by irradiation with radiation
JP2002174830A (en) Reversible image display medium
JP2005284235A (en) Charged magnetic fine particle by irradiation with radiation
JP2005284234A (en) Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus
JP5336542B2 (en) Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method
JP2001290179A (en) Reversible picture display medium and reversible picture display method
JP2005157231A (en) Non-charged magnetic fine particle by irradiation with radiation
JP2005275221A (en) Method for manufacturing particle, particle and display medium using same
JP4419317B2 (en) Reversible image display medium
JP2001350164A (en) Reversible image display medium
JP2002156664A (en) Method for displaying image and image forming device
JP4296708B2 (en) Image display method
JP2001215538A (en) Reversible image display method and reversible image display medium
JP2002156663A (en) Method for displaying image and image forming device
JP4566624B2 (en) Method for producing particles for image display medium
JP4436600B2 (en) Image display device
JP2006313329A (en) Particle for display medium, and panel for information display using the same
JP5136807B2 (en) Reversible image display medium