JP2005152955A - Welding method and welding system - Google Patents

Welding method and welding system Download PDF

Info

Publication number
JP2005152955A
JP2005152955A JP2003395982A JP2003395982A JP2005152955A JP 2005152955 A JP2005152955 A JP 2005152955A JP 2003395982 A JP2003395982 A JP 2003395982A JP 2003395982 A JP2003395982 A JP 2003395982A JP 2005152955 A JP2005152955 A JP 2005152955A
Authority
JP
Japan
Prior art keywords
welding
gas
pipe
back shield
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395982A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Yasuyuki Shirai
泰雪 白井
Yoshiharu Kishida
好晴 岸田
Yusuke Nakano
祐介 中野
Shinji Miyoshi
伸二 三好
Masakazu Nakamura
雅一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Air Gases Ltd
Original Assignee
Japan Air Gases Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Air Gases Ltd filed Critical Japan Air Gases Ltd
Priority to JP2003395982A priority Critical patent/JP2005152955A/en
Publication of JP2005152955A publication Critical patent/JP2005152955A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding method and welding system by which film qualities of a weld zone and heat affected zone where the corrosion is most likely to occur can be improved, the deterioration due to the corrosion of supply piping and the metal contamination of supply gas can be reduced, and a Cr<SB>2</SB>O<SB>3</SB>passivation film is excellent in non-catalyst property, so that a highly decomposable gas such as hydride can stably be supplied without being decomposed. <P>SOLUTION: In the method, welding is performed by using gaseous argon as a back shielding gas in a welding process and the 100% Cr<SB>2</SB>O<SB>3</SB>passivation film is formed again by switching the gaseous argon to gaseous argon containing about several 10 ppm oxygen in a heat treatment process, following which the back shielding gas is switched to the gaseous argon and the annealing treatment is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶接時に酸化クロム不働態処理を施す溶接技術並びに溶接システムに関する。   The present invention relates to a welding technique and a welding system for performing chromium oxide passivation treatment during welding.

従来から、内面にクロム不動態膜が形成されている一対の配管を突合せ、その配管内部にバックシールドガスとしてアルゴンガスを流しながら溶接を行った後、配管内部に流すバックシールドガスをアルゴンガスに酸化性ガスを添加した酸化性アルゴンガスに切り替えて溶接部を溶融しない程度に熱処理した溶接方法並びに溶接システムが知られている(例えば、特許文献1参照。)。   Conventionally, a pair of pipes with a chromium passivation film formed on the inner surface are butted together, and welding is performed while flowing argon gas as a back shield gas inside the pipe, and then the back shield gas flowing into the pipe is changed to argon gas. A welding method and a welding system are known in which heat treatment is performed to such an extent that the welded portion is not melted by switching to an oxidizing argon gas to which an oxidizing gas is added (for example, see Patent Document 1).

特開平11−104881号公報Japanese Patent Laid-Open No. 11-104881

ところで、上記の如く構成された溶接方法並びに溶接システムにあっては、配管の内部全体に均一な膜質を形成するため、最も腐食しやすい溶接部や熱影響部の膜質形成が不十分であるという問題が生じていた。
本発明は、上記問題を解決するため、溶接と同時に溶接ビード部に良質なCr不働態処理を施すことにより、腐食性ガス並びに分解性ガスを安定且つ安全に供給可能とすることができる溶接方法及び溶接システムを提供することを目的とする。
本発明は、膜質を改善することが可能な溶接方法及び溶接システムを提供することを目的とする。
本発明は、熱処理工程での処理条件を厳密に制御しなくとも100%クロム酸化物の膜の形成が可能な溶接方法及び溶接システムを提供することを目的とする。
By the way, in the welding method and the welding system configured as described above, since a uniform film quality is formed in the entire inside of the pipe, it is said that the film quality formation of the most easily corroded weld and heat affected zone is insufficient. There was a problem.
In order to solve the above-described problem, the present invention is capable of supplying a corrosive gas and a decomposable gas stably and safely by performing a high-quality Cr 2 O 3 passivation process on the weld bead simultaneously with welding. It is an object to provide a welding method and a welding system that can be used.
An object of this invention is to provide the welding method and welding system which can improve film quality.
An object of the present invention is to provide a welding method and a welding system capable of forming a 100% chromium oxide film without strictly controlling the processing conditions in the heat treatment step.

その目的を達成するため、請求項1に記載の溶接方法は、配管を突合せ溶接する際の1溶接工程中に、少なくとも溶接工程、冷却工程、熱処理工程、アニール処理工程をこの順に行い、その各工程中に供給されるバックシールドガスを制御することで溶接と同時に膜厚の制御された金属酸化皮膜を形成すると共に、その連続した溶接工程中にバックシールドガスを不活性ガスに切り替えた後に前記アニール処理工程を行うことを要旨とする。   In order to achieve the object, the welding method according to claim 1 performs at least a welding process, a cooling process, a heat treatment process, and an annealing process process in this order during one welding process when butt welding pipes. By controlling the back shield gas supplied during the process, a metal oxide film having a controlled film thickness is formed simultaneously with welding, and after switching the back shield gas to an inert gas during the continuous welding process, The gist is to perform the annealing process.

請求項2に記載の溶接方法は、前記配管の突合せ溶接で形成される金属酸化皮膜を100%Crとしたことを要旨とする。 The gist of the welding method according to claim 2 is that the metal oxide film formed by butt welding of the pipe is 100% Cr 2 O 3 .

請求項3に記載の溶接方法は、前記配管の突合せ溶接に用いるバックシールドガスに混合される酸化性ガス若しくは酸素ガスが任意な濃度及び流量で混合可能であり、一連の溶接工程中に不活性ガスから混合ガス、混合ガスから不活性ガスに任意の時間で切り替えることを要旨とする。   The welding method according to claim 3, wherein an oxidizing gas or an oxygen gas mixed with a back shield gas used for butt welding of the pipe can be mixed at an arbitrary concentration and flow rate, and is inactive during a series of welding processes. The gist is to switch from a gas to a mixed gas and from a mixed gas to an inert gas at an arbitrary time.

請求項4に記載の溶接方法は、前記配管の突合せ溶接で形成される100%Cr不働態化皮膜の膜厚は、酸素ガスの濃度・入熱温度・入熱時間を制御することにより、1〜100nmの膜厚で任意に形成することを要旨とする。 5. The welding method according to claim 4, wherein the film thickness of the 100% Cr 2 O 3 passivation film formed by butt welding of the pipe controls the concentration of oxygen gas, the heat input temperature, and the heat input time. Therefore, the gist is to arbitrarily form the film with a film thickness of 1 to 100 nm.

請求項5に記載の溶接方法は、前記溶接中のアニール処理工程のバックシールドガスが不活性ガス、好ましくはアルゴンガス中の水分濃度が1ppm以下に制御された不活性ガスであることを要旨とする。   The gist of the welding method according to claim 5 is that the back shield gas in the annealing process during the welding is an inert gas, preferably an inert gas whose moisture concentration in the argon gas is controlled to 1 ppm or less. To do.

請求項6に記載の溶接方法は、前記配管は、クロム含有量が25%以上であるフェライト系ステンレス鋼管であることを要旨とする。   The gist of the welding method according to claim 6 is that the pipe is a ferritic stainless steel pipe having a chromium content of 25% or more.

請求項7に記載の溶接システムは、突合せ状態で配管を溶接する際に供給するバックシールドガス供給系は、溶接工程、冷却工程、アニール処理工程に不活性ガスを供給する不活性ガス供給系と、前記熱処理工程で酸化性雰囲気ガスを供給する酸化性ガス供給系と、前記配管を溶接するためのアークガス供給系とを備えていることを要旨とする。   The welding system according to claim 7, wherein the back shield gas supply system that is supplied when welding the pipes in a butt condition is an inert gas supply system that supplies an inert gas to the welding process, the cooling process, and the annealing process. The gist of the invention is that it comprises an oxidizing gas supply system for supplying an oxidizing atmosphere gas in the heat treatment step and an arc gas supply system for welding the pipe.

請求項8に記載の溶接システムは、前記配管の突合せ溶接を溶接工程、冷却工程、熱処理工程、アニール処理工程の順に行うと共に、前記溶接工程と前記冷却工程、前記アニール処理工程の際には前記不活性ガス供給系により前記バックシールドガスに不活性ガスを用い、前記熱処理工程の際には、前記酸化性ガス供給系よりバックシールドガス供給系に混合ガスを用いることを要旨とする。 The welding system according to claim 8, wherein the butt welding of the pipe is performed in the order of a welding process, a cooling process, a heat treatment process, and an annealing process, and at the time of the welding process, the cooling process, and the annealing process, The gist is that an inert gas is used for the back shield gas by an inert gas supply system, and a mixed gas is used for the back shield gas supply system from the oxidizing gas supply system in the heat treatment step.

請求項9に記載の溶接システムは、前記バックシールドガスを切り替えた際の前記配管内圧の圧力変動が設定圧力の10%未満とする調整機構を備え混合ガスの濃度を任意に調整することを要旨とする。   The welding system according to claim 9 is provided with an adjustment mechanism that causes the pressure fluctuation of the pipe internal pressure when the back shield gas is switched to be less than 10% of a set pressure, and arbitrarily adjusts the concentration of the mixed gas. And

請求項10に記載の溶接システムは、前記熱処理工程における前記配管の回転スピードを10rpm以上、好ましくは15rpm以上としたことを要旨とする。   The gist of the welding system according to claim 10 is that the rotational speed of the pipe in the heat treatment step is 10 rpm or more, preferably 15 rpm or more.

本発明の溶接方法並びに溶接システムにあっては、以上説明したように構成したことにより、最も腐食しやすい溶接部及び熱影響部の膜質を改善し得て、供給配管の腐食による劣化や供給ガスの金属汚染を低減することができ、しかも、Cr不働態化皮膜が非触媒性に優れていることにより、分解性の強い水素化物等のガスを分解することなく安定供給することができる。 In the welding method and the welding system of the present invention, the structure as described above can improve the film quality of the welded part and the heat-affected zone that are most likely to be corroded. In addition, the Cr 2 O 3 passivated film is excellent in non-catalytic properties, so that it is possible to stably supply a gas such as a highly decomposable hydride without decomposing. it can.

次に、本発明の溶接方法並びに溶接システムの実施の形態を図面に基づいて説明する。   Next, embodiments of the welding method and the welding system of the present invention will be described with reference to the drawings.

図1は本発明の溶接システムのシステムブロック図、図2は本発明の溶接システムの作業工程のブロック図である。   FIG. 1 is a system block diagram of the welding system of the present invention, and FIG. 2 is a block diagram of work processes of the welding system of the present invention.

図1において、1及び2は互いに突合せ状態で溶接されるステンレス鋼管(以下、「配管」と称する。)、10は配管1,2を溶接する際に供給されるバックシールドガス供給系、20はバックシールドガス供給系10にアルゴンガスを供給するアルゴンガス供給系、30は溶接用のアークガス供給系である。   In FIG. 1, 1 and 2 are stainless steel pipes (hereinafter referred to as “piping”) that are welded in a butt-matched manner, 10 is a back shield gas supply system that is supplied when welding the pipes 1 and 2, and 20 is An argon gas supply system for supplying argon gas to the back shield gas supply system 10, and 30 is an arc gas supply system for welding.

バックシールドガス供給系10は、ガス供給バルブ11、流体制御器12、流体制御器13、バルブ14、バルブ15をこの順に配している。また、流体制御器12と流体制御器13との間からは、バルブ16及び流量調整バルブ17を備える排気系が分岐されている。さらに、バルブ14とバルブ15との間からは、切り替えバルブ18を有する切替排気系が分岐されている。   The back shield gas supply system 10 includes a gas supply valve 11, a fluid controller 12, a fluid controller 13, a valve 14, and a valve 15 in this order. Further, an exhaust system including a valve 16 and a flow rate adjusting valve 17 is branched from between the fluid controller 12 and the fluid controller 13. Further, a switching exhaust system having a switching valve 18 is branched from between the valve 14 and the valve 15.

アルゴンガス供給系20は、ガス供給バルブ21と、このガス供給バルブ21の下流側で分岐され、流体制御器12とバルブ16との間に接続されて流体制御器22とバルブ23とを備えた第1希釈系と、バルブ14とバルブ15との間に接続されて流体制御器24とバルブ25とを備えた第2希釈系と、バルブ15と配管1との間に接続されて流体制御器26とバルブ27とを備えた溶接ガス供給系と、を備えている。   The argon gas supply system 20 is branched from a gas supply valve 21 and a downstream side of the gas supply valve 21, and is connected between the fluid controller 12 and the valve 16 and includes a fluid controller 22 and a valve 23. A first dilution system, a second dilution system connected between the valve 14 and the valve 15 and having a fluid controller 24 and a valve 25, and a fluid controller connected between the valve 15 and the pipe 1 26 and a welding gas supply system provided with a valve 27.

アークガス供給系30は、ガス供給バルブ31、流量制御バルブ32、バルブ33、溶接ヘッド34をこの順に備えている。また、流量制御バルブ32とバルブ33との間からはバルブ35と流量計36とを有する流量系が分岐されている。   The arc gas supply system 30 includes a gas supply valve 31, a flow rate control valve 32, a valve 33, and a welding head 34 in this order. A flow system having a valve 35 and a flow meter 36 is branched from between the flow control valve 32 and the valve 33.

次に、本発明の溶接システムを用いた溶接工程を説明する。   Next, a welding process using the welding system of the present invention will be described.

(突合せ工程)
突合せ工程では、上流側の配管1を位置決め治具を用いて配管固定用カセット(共に図示せず)に固定した後、その位置決め治具を取り外して下流側の配管2の上流側端面を上流側の配管1の下流側端面に突合せつつ配管固定用カセットに下流側の配管を固定する。
(Matching process)
In the butting process, the upstream pipe 1 is fixed to a pipe fixing cassette (both not shown) using a positioning jig, and then the positioning jig is removed to connect the upstream end face of the downstream pipe 2 to the upstream side. The downstream pipe is fixed to the pipe fixing cassette while abutting the downstream end face of the pipe 1.

(溶接工程)
この状態から、溶接ヘッド34を配管固定用カセットに装着し、溶接機を始動させて、溶接を行う。
(Welding process)
From this state, the welding head 34 is mounted on the pipe fixing cassette, the welding machine is started, and welding is performed.

この際、アークガスは、バルブ35を開、バルブ33を閉とした状態で流量調整バルブ32、流量計36で流量を制御した後、バルブ35を閉、バルブ33を開に切り替え、溶接ヘッド34へとアークガスを導入する。   At this time, the arc gas is controlled by the flow rate adjusting valve 32 and the flow meter 36 with the valve 35 opened and the valve 33 closed, and then the valve 35 is closed and the valve 33 is switched to the open state. And arc gas.

また、通常溶接ガスは、切り替えバルブ15を閉、切り替えバルブ27を開にすることにより供給される。
酸化性ガスは、流量制御器22,24で濃度が正確に制御されており、溶接工程時に切り替えバルブ15を閉、切り替えバルブ18を開にすることにより排気される。
Further, the normal welding gas is supplied by closing the switching valve 15 and opening the switching valve 27.
The concentration of the oxidizing gas is accurately controlled by the flow controllers 22 and 24 and is exhausted by closing the switching valve 15 and opening the switching valve 18 during the welding process.

(冷却工程)
冷却工程は、電流値と回転数を下げてビード部の温度を下げる工程である。バックシールドガスはArのままで、電流値を溶接時の半分以下に下げる。また、回転数は溶接時の6〜8割に下げる。なお、この際、回転数は徐々に減少させることが好ましい。
(Cooling process)
The cooling step is a step of lowering the temperature of the bead portion by lowering the current value and the rotational speed. The back shield gas remains Ar, and the current value is reduced to less than half that during welding. Also, the rotational speed is reduced to 60-80% during welding. At this time, it is preferable to gradually decrease the rotational speed.

(熱処理工程)
冷却工程が済んだ後、ガス供給バルブ11を開き、流体制御器12へと100%の酸素を供給し、この流体制御器12により制御(1cc/min)された後、流体制御器22により制御されたアルゴンで(99cc/min)1段目の希釈が行こなわれる。この時、酸素濃度は1%になる。
(Heat treatment process)
After the cooling process is completed, the gas supply valve 11 is opened, 100% oxygen is supplied to the fluid controller 12, controlled by the fluid controller 12 (1 cc / min), and then controlled by the fluid controller 22. The first stage dilution is performed with the argon (99 cc / min). At this time, the oxygen concentration is 1%.

その後、1段希釈された酸素を流体制御器13により制御(8cc/min)し、流体制御器24により、制御されたアルゴン(3992cc/min)で2段目の希釈を行う。   Thereafter, the oxygen diluted in the first stage is controlled by the fluid controller 13 (8 cc / min), and the second stage dilution is performed by the fluid controller 24 with the controlled argon (3992 cc / min).

これにより、任意に酸素濃度が制御(10ppm〜90ppm以上)された、バックシールドガス(4000cc/min)が得られる。   Thereby, the back shield gas (4000 cc / min) in which the oxygen concentration is arbitrarily controlled (10 ppm to 90 ppm or more) is obtained.

この時、1段希釈された酸素ガス(8cc/min)が流体制御器13を流れる時、流体制御器13の一次側の圧力の増加を抑制する為、バルブ16並びに流量調整バルブ17により、流体制御器13で制御されるガス量以外の1段希釈された酸素ガスが排気される。   At this time, when oxygen gas (8 cc / min) diluted in one stage flows through the fluid controller 13, the valve 16 and the flow rate adjusting valve 17 are used to suppress the increase in pressure on the primary side of the fluid controller 13. One-stage diluted oxygen gas other than the gas amount controlled by the controller 13 is exhausted.

酸化性ガスは、流量制御器22,24で濃度が正確に制御されており、切り替えバルブ18を閉、切り替えバルブ15を開、切り替えバルブ27を閉にすることにより、バックシールドガスを溶接時のアルゴンガスから、酸化クロム不働態処理時の酸化性ガスを含んだバックシールドガスへと切り替える。
また、熱処理工程における配管1,2の回転スピードを10rpm以上、好ましくは15rpm以上とし、熱処理を行った際の溶接ビード部及び熱影響部の円周方向の温度差を小さくすることにより、最適な熱処理温度で処理することができる。
なお、酸化性ガスの導入方法として、ガス濃度を2段階希釈する方法を示したが、もちろん1段階希釈する方法により導入してもよい。
The concentration of the oxidizing gas is accurately controlled by the flow rate controllers 22 and 24. By closing the switching valve 18, opening the switching valve 15, and closing the switching valve 27, the back shield gas is welded. Switch from argon gas to backshield gas containing oxidizing gas during chromium oxide passivation.
Further, the rotation speed of the pipes 1 and 2 in the heat treatment process is set to 10 rpm or more, preferably 15 rpm or more, and the temperature difference in the circumferential direction of the weld bead part and the heat affected part when the heat treatment is performed is optimized. It can process at the heat processing temperature.
In addition, as the method for introducing the oxidizing gas, the method of diluting the gas concentration in two stages has been shown.

(アニール処理工程)
熱処理工程が終了したらばバックシールドガスをArに切り替え、溶接部分のアニール処理が施される。アニール処理工程は膜質の改善を行うための工程であり、膜質改善処理工程とも呼ばれることがある。
(Annealing process)
When the heat treatment step is completed, the back shield gas is switched to Ar, and the welded portion is annealed. The annealing process is a process for improving the film quality, and is sometimes referred to as a film quality improvement process.

この際、バックシールドガスには、熱処理工程の酸化性ガスから通常溶接時と同様の不活性ガス(アルゴンガス)へと切り替えられる。   At this time, the back shield gas is switched from the oxidizing gas in the heat treatment step to an inert gas (argon gas) similar to that during normal welding.

一般的に使用されているステンレス鋼管用の自動溶接機と本願のガス供給システムを用いてクロムを25%以上含むフェライト系ステンレス鋼管の突合せ溶接を行い、溶接ビード部をESCAにて測定した結果、10nm以上の膜厚で100%Cr不働態化処理皮膜が形成されていることが確認された。 As a result of performing butt welding of a ferritic stainless steel pipe containing 25% or more of chromium using an automatic welding machine for a stainless steel pipe generally used and the gas supply system of the present application, and measuring a weld bead portion with ESCA, It was confirmed that a 100% Cr 2 O 3 passivation treatment film was formed with a film thickness of 10 nm or more.

一般的に使用されているステンレス鋼管用の自動溶接機と本願のガス供給システムを用いてクロムを25%以上含むフェライト系ステンレス鋼管の突合せ溶接を行い、溶接ビード部をESCAにて測定し、元素組成比を測定した。従来の溶接技術では表面近傍、特に最表面にFeが3%程度検出されたが、本願の溶接方法を用いた場合では1%未満に低減できていることが確認された。   Butt welds of ferritic stainless steel pipes containing 25% or more of chromium using a commonly used automatic welding machine for stainless steel pipes and the gas supply system of the present application, and the weld bead portion is measured by ESCA. The composition ratio was measured. In the conventional welding technique, about 3% of Fe was detected in the vicinity of the surface, particularly the outermost surface, but it was confirmed that it was reduced to less than 1% when the welding method of the present application was used.

一般的に使用されているステンレス鋼管用の自動溶接機と本願のガス供給システムを用いてフェライト系ステンレス鋼管の突合せ溶接を行い、その溶接配管をHClにて腐食試験を行った。溶接ビード部や熱影響部に対して、ESCAにて測定した結果、Cl元素は最表面に物理吸着しているだけで、深さ方向には検出されておらず、腐食していないことが確認された。   A ferritic stainless steel pipe was butt welded using a commonly used automatic welder for stainless steel pipe and the gas supply system of the present application, and the welded pipe was subjected to a corrosion test with HCl. As a result of ESCA measurement on weld bead and heat-affected zone, it was confirmed that Cl element was only physically adsorbed on the outermost surface and was not detected in the depth direction and was not corroded. It was done.

ところで、本願のガス供給システムのガス切り替え時の内圧変動は設定圧力の10%未満であり、200箇所以上の溶接を行っても、溶接時の破裂や溶接ビード部に外形上の著しい膨らみや凹みが生じないことが確認された。また、溶接部分の引っ張り試験を行った結果、JIS規格を充分に満たす強度を有することも確認された。   By the way, the internal pressure fluctuation at the time of gas switching in the gas supply system of the present application is less than 10% of the set pressure. It was confirmed that no occurred. Moreover, as a result of conducting a tensile test of the welded part, it was also confirmed that it has a strength that sufficiently satisfies the JIS standard.

このように、溶接工程にてバックシールドガスにアルゴンガスを用いて溶接を行い、熱処理工程にてアルゴンガスから数10ppm程度の酸素を含んだアルゴンガスに切り替えることにより100%Cr不働態化処理皮膜を再形成した後、更にバックシールドガスをアルゴンガスに切り替えてアニール処理を施したことにより、表面近傍に3%程度の鉄の酸化物が含まれる溶接条件においても100%Cr不働態化処理皮膜に膜質の改善を図ることが可能となる。 Thus, welding is performed using argon gas as the back shield gas in the welding process, and 100% Cr 2 O 3 passive state is obtained by switching from argon gas to argon gas containing several tens of ppm of oxygen in the heat treatment process. After re-forming the chemical treatment film, the back shield gas was switched to argon gas and annealed, so that even under welding conditions in which about 3% of iron oxide was contained in the vicinity of the surface, 100% Cr 2 O 3 It becomes possible to improve the film quality of the passivation film.

本発明の実施の形態に係わる溶接方法並びに溶接システムを示し、溶接システムのシステムブロック図である。1 is a system block diagram of a welding system, showing a welding method and a welding system according to an embodiment of the present invention.

同じく、作業工程のブロック図である。Similarly, it is a block diagram of a work process.

符号の説明Explanation of symbols

1…配管(上流側)
2…配管(下流側)
10…バックシールドガス供給系
20…アルゴンガス供給系
30…アークガス供給系
1 ... Piping (upstream side)
2 ... Piping (downstream)
10 ... Back shield gas supply system 20 ... Argon gas supply system 30 ... Arc gas supply system

Claims (10)

配管を突合せ溶接する際の1溶接工程中に、少なくとも溶接工程、冷却工程、熱処理工程、アニール処理工程をこの順に行い、その各工程中に供給されるバックシールドガスを制御することで溶接と同時に膜厚の制御された金属酸化皮膜を形成すると共に、その連続した溶接工程中にバックシールドガスを不活性ガスに切り替えた後に前記アニール処理工程を行うことを特徴とする溶接方法。   At least one welding process, cooling process, heat treatment process, and annealing process process are performed in this order during one welding process when butt-welding pipes, and the back shield gas supplied during each process is controlled simultaneously with welding. A welding method comprising: forming a metal oxide film with a controlled film thickness; and performing the annealing treatment step after switching the back shield gas to an inert gas during the continuous welding step. 前記配管の突合せ溶接で形成される金属酸化皮膜を100%Crとしたことを特徴とする請求項1に記載の溶接方法。 The welding method according to claim 1, wherein the metal oxide film formed by butt welding of the pipe is 100% Cr 2 O 3 . 前記配管の突合せ溶接に用いるバックシールドガスに混合される酸化性ガス若しくは酸素ガスが任意な濃度及び流量で混合可能であり、一連の溶接工程中に不活性ガスから混合ガス、混合ガスから不活性ガスに任意の時間で切り替えることを特徴とする請求項1又は請求項2に記載の溶接方法。   The oxidizing gas or oxygen gas mixed with the back shield gas used for the butt welding of the pipe can be mixed at an arbitrary concentration and flow rate. The welding method according to claim 1 or 2, wherein the gas is switched to gas at an arbitrary time. 前記配管の突合せ溶接で形成される100%Cr不働態化皮膜の膜厚は、酸素ガスの濃度・入熱温度・入熱時間を制御することにより、1〜100nmの膜厚で任意に形成することを特徴とする請求項1乃至請求項3の何れか一つに記載の溶接方法。 The film thickness of the 100% Cr 2 O 3 passivation film formed by butt welding of the pipe can be arbitrarily set to a film thickness of 1 to 100 nm by controlling the oxygen gas concentration, heat input temperature, and heat input time. The welding method according to any one of claims 1 to 3, wherein the welding method is formed. 前記溶接中のアニール処理工程のバックシールドガスが不活性ガス、好ましくはアルゴンガス中の水分濃度が1ppm以下に制御された不活性ガスであることを特徴とする請求項1乃至請求項4の何れか一つに記載の溶接方法。   5. The back shield gas in the annealing treatment step during welding is an inert gas, preferably an inert gas whose moisture concentration in argon gas is controlled to 1 ppm or less. The welding method as described in any one. 前記配管は、クロム含有量が25%以上であるフェライト系ステンレス鋼管であることを特徴とする請求項1乃至請求項5の何れか一つに記載の溶接方法。   The welding method according to any one of claims 1 to 5, wherein the pipe is a ferritic stainless steel pipe having a chromium content of 25% or more. 突合せ状態で配管を溶接する際に供給するバックシールドガス供給系は、溶接工程、冷却工程、アニール処理工程に不活性ガスを供給する不活性ガス供給系と、前記熱処理工程で酸化性雰囲気ガスを供給する酸化性ガス供給系と、前記配管を溶接するためのアークガス供給系とを備えていることを特徴とする溶接システム。 The back shield gas supply system that is supplied when welding the pipes in the butt state includes an inert gas supply system that supplies an inert gas to the welding process, the cooling process, and the annealing process, and an oxidizing atmosphere gas in the heat treatment process. A welding system comprising: an oxidizing gas supply system to be supplied; and an arc gas supply system for welding the pipe. 前記配管の突合せ溶接を溶接工程、冷却工程、熱処理工程、アニール処理工程の順に行うと共に、前記溶接工程と前記冷却工程、前記アニール処理工程の際には前記不活性ガス供給系により前記バックシールドガスに不活性ガスを用い、前記熱処理工程の際には、前記酸化性ガス供給系よりバックシールドガス供給系に混合ガスを用いることを特徴とする請求項7に記載の溶接システム。   Butt welding of the pipe is performed in the order of a welding process, a cooling process, a heat treatment process, and an annealing process, and the back shield gas is supplied by the inert gas supply system during the welding process, the cooling process, and the annealing process. The welding system according to claim 7, wherein an inert gas is used, and a mixed gas is used in the back shield gas supply system from the oxidizing gas supply system in the heat treatment step. 前記バックシールドガスを切り替えた際の前記配管内圧の圧力変動が設定圧力の10%未満とする調整機構を備え混合ガスの濃度を任意に調整することを特徴とする請求項7又は請求項8に記載の溶接システム。   9. The concentration of the mixed gas is optionally adjusted by providing an adjustment mechanism that causes the pressure fluctuation of the pipe internal pressure when the back shield gas is switched to be less than 10% of a set pressure. The described welding system. 前記熱処理工程における前記配管の回転スピードを10rpm以上、好ましくは15rpm以上としたことを特徴とする請求項7乃至請求項9の何れか一つに記載の溶接方法。
The welding method according to any one of claims 7 to 9, wherein a rotation speed of the pipe in the heat treatment step is set to 10 rpm or more, preferably 15 rpm or more.
JP2003395982A 2003-11-26 2003-11-26 Welding method and welding system Pending JP2005152955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395982A JP2005152955A (en) 2003-11-26 2003-11-26 Welding method and welding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395982A JP2005152955A (en) 2003-11-26 2003-11-26 Welding method and welding system

Publications (1)

Publication Number Publication Date
JP2005152955A true JP2005152955A (en) 2005-06-16

Family

ID=34721602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395982A Pending JP2005152955A (en) 2003-11-26 2003-11-26 Welding method and welding system

Country Status (1)

Country Link
JP (1) JP2005152955A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178294A (en) * 1990-11-08 1992-06-25 Nisshin Steel Co Ltd Inside sealing tool for manufacturing pipe
JPH0639543A (en) * 1992-05-29 1994-02-15 Tadahiro Omi Method and process device for forming oxide passive state film in weld zone
JPH0760446A (en) * 1993-08-24 1995-03-07 Tadahiro Omi Welding method and welding device for forming chromium oxide passive film in weld zone as well as process device
JPH10204526A (en) * 1991-05-28 1998-08-04 Tadahiro Omi Formation of passivation film on stainless steel and stainless steel
JPH11104881A (en) * 1997-10-03 1999-04-20 Tadahiro Omi Welding technique forming chromium oxide passive state film in weld zone and gas feeding system used in time of welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178294A (en) * 1990-11-08 1992-06-25 Nisshin Steel Co Ltd Inside sealing tool for manufacturing pipe
JPH10204526A (en) * 1991-05-28 1998-08-04 Tadahiro Omi Formation of passivation film on stainless steel and stainless steel
JPH0639543A (en) * 1992-05-29 1994-02-15 Tadahiro Omi Method and process device for forming oxide passive state film in weld zone
JPH0760446A (en) * 1993-08-24 1995-03-07 Tadahiro Omi Welding method and welding device for forming chromium oxide passive film in weld zone as well as process device
JPH11104881A (en) * 1997-10-03 1999-04-20 Tadahiro Omi Welding technique forming chromium oxide passive state film in weld zone and gas feeding system used in time of welding

Similar Documents

Publication Publication Date Title
US9821401B2 (en) High toughness weld metals with superior ductile tearing resistance
US20180169799A1 (en) High Strength Weld Metal for Demanding Structural Applications
CN109689239B (en) Electric resistance welded clad steel pipe and method for manufacturing same
Torbati et al. Optimization procedures for GMAW of bimetal pipes
WO2005023478A1 (en) Welded structure excellent in resistance to stress corrosion cracking
KR20000071542A (en) Stainless Steel Pipe and Joining Method Thereof
Świerczyńska et al. The effect of welding conditions on mechanical properties of superduplex stainless steel welded joints
JPH0760446A (en) Welding method and welding device for forming chromium oxide passive film in weld zone as well as process device
JP2005152955A (en) Welding method and welding system
ATE462523T1 (en) METHOD FOR WELDING TWO DUCTILE IRON WORKPIECES TO PRODUCE A HIGHLY DUCTILE, ERROR-REDUCED WELD
Chiluvuri et al. Evaluation of welding techniques for stainless steels piping without use of backing gas
WO1999034027A1 (en) Welding technique for forming passive chromium oxide film in weld and gas feed system for welding
Bergquist et al. The effect of purging gas on 308L TIG root pass ferrite content
JPH07323374A (en) Material to be welded for butt welding and its cutting method as well as welding method and wire
CN107398688B (en) A kind of multiple tube instrument mouth aperture and welding method
JP2017154150A (en) Method for production of electric resistance welding clad steel tube
TWI703005B (en) Method of producing tig welded stainless steel pipe,tig welded stainless steel pipe,and tig welded stainless steel member
JPH0976062A (en) First layer welding method
JP2000176643A (en) Method for forming oxidized passive state film in weld zone
JPH06210483A (en) Welding method for forming passive film of chromium oxide on weld zone and welded structure
JP3588330B2 (en) Non-consumable electrode type gas shielded arc welding method
JP4016073B2 (en) Method for forming aluminum oxide passive film, welding method, fluid contact member and fluid supply / exhaust system
JP3566863B2 (en) High-speed plasma welding pipe making method for small diameter steel pipes.
KR20170074276A (en) Manufacturing method for stainless welded steel pipe
Aumpiem et al. FMEA for risk assessment in discoloration pipe welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071003

A711 Notification of change in applicant

Effective date: 20071003

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20090122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414