JP3588330B2 - Non-consumable electrode type gas shielded arc welding method - Google Patents

Non-consumable electrode type gas shielded arc welding method Download PDF

Info

Publication number
JP3588330B2
JP3588330B2 JP2001086823A JP2001086823A JP3588330B2 JP 3588330 B2 JP3588330 B2 JP 3588330B2 JP 2001086823 A JP2001086823 A JP 2001086823A JP 2001086823 A JP2001086823 A JP 2001086823A JP 3588330 B2 JP3588330 B2 JP 3588330B2
Authority
JP
Japan
Prior art keywords
gas
volume
welding
welding method
consumable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001086823A
Other languages
Japanese (ja)
Other versions
JP2002283056A (en
Inventor
祐一 池上
英明 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2001086823A priority Critical patent/JP3588330B2/en
Publication of JP2002283056A publication Critical patent/JP2002283056A/en
Application granted granted Critical
Publication of JP3588330B2 publication Critical patent/JP3588330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プラズマアーク溶接方法あるいはガスタングステンアーク(GTAW)溶接方法等の非消耗電極式ガスシールドアーク(TIG)溶接方法に関する。
【0002】
【従来の技術】
従来、溶接箇所を大気から遮断する目的でシールドガスを用いるガスシールドアーク溶接の分野では、シールドガスとしてアルゴン、ヘリウム等の不活性ガスを主成分とした混合ガス、あるいは不活性ガスを単体で用いていた。シールドガスとして不活性ガスを用いる理由は、アーク加熱に伴う高温環境下で、溶融金属および溶融金属周辺の母材金属表面が大気中の酸素および窒素と反応し、溶接欠陥や溶接部性能の劣化を防止するためである。
【0003】
非消耗電極による溶接方法の一種であるプラズマアーク溶接方法においては、シールドガスのうち、少なくともプラズマ動作ガスとしてアルゴンガスを主成分とし、適量の水素ガスを混合した混合ガスを用いるのが一般的である。同様に、ガスタングステンアーク(GTAW)溶接方法においては、シールドガスとして、水素ガス濃度を7〜20容量%に調整したアルゴンガスと水素ガスとの混合ガスまたはアルゴンガスとヘリウムガスと水素ガスとの混合ガスを用いる方法(特許公開2000−190076号公報)が提案されている。
【0004】
アルゴンガス、ヘリウムガス等の不活性ガスを主成分として適量の水素ガスを混合する目的は、100%不活性ガスをを用いる場合に比較し、水素ガスの添加によって熱ピンチ効果が作用してアークの緊縮効果が得られ、溶け込み深さが増加して良好な溶接部を得ることができるためである。
【0005】
【発明が解決しようとする課題】
しかし、シールドガスとして主成分の不活性ガスに適量の水素ガスを添加した混合ガスは、次のような二つの問題点を生じる。
【0006】
(1)溶接中にシールドガス中の水素が大気中の酸素と反応して水滴を生じ、溶接部周辺の表面に付着し、母材を貫通する裏波溶接の場合に溶接部裏面にも水滴が付着する。この付着した水滴は、溶接部周辺に錆あるいは局部腐食の発生する原因となり、配管等閉断面部材の溶接では閉断面内部に水滴が残留する結果、配管等の閉断面部材内部の流体を汚染するという問題がある。
【0007】
(2)溶接部材がオーステナイト系合金材料(オーステナイト系ステンレス鋼、オーステナイト系Ni合金等)以外の低合金鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼の場合は、溶接材料からの水素の侵入によって溶接部の脆化、あるいは割れを生じるという問題がある。
【0008】
本発明の目的は、上記従来技術の問題点を解消し、十分な溶け込み深さを維持しながら、水滴の発生や、低合金鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼からの水素の侵入による溶接部の脆化、あるいは割れを防止できる非消耗電極式ガスシールドアーク溶接方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の請求項1の非消耗電極式ガスシールドアーク溶接方法の特徴は、シールドガスとして、アルゴンガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを使用することにある。このように、シールドガスとして、アルゴンガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを使用することによって、十分な溶け込み深さを維持しながら、水滴の発生や、溶接材料からの水素の侵入による溶接部の脆化、あるいは割れを防止することができる。
【0010】
また、本発明の請求項2の非消耗電極式ガスシールドアーク溶接方法の特徴は、シールドガスとして、アルゴンガスとヘリウムガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを使用することにある。このように、シールドガスとして、アルゴンガスとヘリウムガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを使用することによって、十分な溶け込み深さを維持しながら、水滴の発生や、溶接材料からの水素の侵入による溶接部の脆化、あるいは割れを防止することができる。
【0011】
【発明の実施の形態】
本発明に係る非消耗電極式ガスシールドアーク溶接方法においては、溶接材料端面を突合すことにより形成されたI型開先またはY型開先に対してほぼ垂直にトーチを対向させ、トーチからシールドガスを噴射しつつアーク放電させることにより、溶接材料の突合せ部のI型開先またはY型開先を溶接する。
【0012】
溶接材料としては、オーステナイト系合金材料(オーステナイト系ステンレス鋼、オーステナイト系Ni合金等)、低合金鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼の鋼管、鋼板等が挙げられる。
【0013】
肉厚が4mm以下の溶接材料においては、溶接材料端面を切断面のまま突合せ、溶接端面にI型開先を形成する。一方、肉厚が4mmを超える溶接材料においては、溶接材料端面の上面あるいは外周にそれぞれ45°程度の面取り加工を施し、その溶接端面を突合せてY型開先を形成する。
【0014】
トーチは、一般の非消耗電極式ガスシールドアーク溶接に使用されるトーチと同様の構成であり、溶接材料との間にアーク放電を発生させるタングステン電極と、アーク放電の周囲にシールドガスを噴出するガスノズルとを備えている。
【0015】
トーチによる溶接作業は、一般の非消耗電極式ガスシールドアーク溶接方法と異なり、溶接棒(溶加棒)を使用せずに行う。その際トーチは、溶接材料に対してほぼ垂直に支持し、タングステン電極の先をI型開先またはY型開先に向ける。
【0016】
本発明に係る非消耗電極式ガスシールドアーク溶接方法においては、シールドガスとしてアルゴンと一酸化炭素との混合ガス、またはアルゴンとヘリウムと一酸化炭素との混合ガスを使用する。混合ガスにおける一酸化炭素の濃度は、0.1〜50容量%に調整する。すなわち、シールドガスとしては、例えば、一酸化炭素が0.1〜50容量%、アルゴンが99.9〜50容量%の二種の混合ガス、または、一酸化炭素が0.1〜50容量%、ヘリウムが5〜20容量%およびアルゴンが94.9〜30容量%の三種の混合ガスを使用する。
【0017】
シールドガスにおける一酸化炭素濃度は、非消耗電極式ガスシールドアーク溶接におけるアーク放電の熱効率に大きく影響し、一酸化炭素濃度が上昇すると溶着金属の理想的な溶け込み量を得るのに必要な電流値が低下する。例えば、シールドガスがアルゴン100容量%の場合、必要なパルス電流値は170A程度、ベース電流値は70A程度であるが、シールドガスがアルゴン95容量%、一酸化炭素5容量%の混合ガスの場合、必要なパルス電流値は40A程度、ベース電流値は30A程度に低下する。しかし、一酸化炭素濃度が0.1容量%未満の場合、一酸化炭素添加による熱ピンチ効果が作用することに伴ってアークの緊縮効果が十分でなく、100容量%アルゴンガスあるいはアルゴンガスとヘリウムガスの混合ガスを用いる場合と同等の溶接結果となる。換言すれば、シールドガスにおける一酸化炭素濃度が0.1容量%以上に上昇すると、同じ電流値でもアーク放電の熱効率が上昇して溶着金属の溶け込み量が増大する。したがって、シールドガスにおける一酸化炭素濃度は、0.1容量%以上とする。
【0018】
一方、シールドガスにおける一酸化炭素濃度は、非消耗電極式ガスシールドアーク溶接におけるアーク放電のシール性に影響し、一酸化炭素濃度が50容量%を超えると、シールドガスの比重が軽くなるため上方に拡散し、アーク放電のシール性が低下するばかりでなく、アーク放電の側面付近でシールドガス中の一酸化炭素が燃焼し、タングステン電極が酸化消耗して溶接ビードの外観の悪化およびタングステン混入等の溶接欠陥を生じる。したがって、シールドガスにおける一酸化炭素濃度は、50容量%以下とする。
【0019】
本発明の非消耗電極式ガスシールドアーク溶接方法においては、シールドガスとして一酸化炭素濃度が0.1〜50容量%の混合ガスを使用するため、アーク放電の熱効率が上昇し、溶着金属の溶け込み量が増大する。その結果、小さなY型開先やI型開先によっても、呼び径250A程度までのステンレス鋼管を単層の溶接パスで容易に溶接可能できる。
【0020】
また、単層の溶接パスによりステンレス鋼管に対する総入熱量を低減できるため、溶着部の組織の粗大化を抑制でき、かつ、溶着部の残留応力を低減できる。さらに、溶着部のビード幅も狭くすることができる。しかも、本発明の非消耗電極式ガスシールドアーク溶接方法においては、シールドガスの一酸化炭素濃度が50容量%以下に設定されているため、アーク放電のシール性の低下およびシールドガスの燃焼という問題がなく、良好な状態で溶接作業を行うことができる。
【0021】
【実施例】
実施例1
図1に示すように、外径150mm、肉厚2.8mm、長さ500mmのJIS G3459に規定のSUS316L TPAステンレス鋼管1、1の端面をI型開先で突合わせ、その溶接端面を点付け溶接によって仮止めしたのち、鋼管内面には表1に示すように一定量の100%アルゴン(不純物水分量10ppb)をバックシールドガス2として供給し、事前に鋼管1、1内面を十分にパージした後、トーチ3固定、下向き溶接、パイプ回転方式により、表1に示す各条件でガスタングステンアーク円周自動溶接(GTAW)を実施した。そして、溶接部への水滴の付着量、ビード4の外観品質を評価した。その結果を表1に示す。
【0022】
なお、溶接部への水滴の付着は、溶接開始から終了までの間に、バックシールドガス放出口からの放出ガス5を図示しないAPIMS(Atomosupharic Pressure Ionization Mass Spectrometry)に全量導入して水分量を評価し、10ppm未満を良好(○)とし、10ppm以上を不可(×)とした。ビード4の外観品質は、図2に示すように、外面ビード4のへこみ量hで評価し、h<0.5mmを良好(○)とし、h≧0.5mmを不可(×)とした。
【0023】
【表1】

Figure 0003588330
【0024】
表1に示すように、シールドガスとしてAr:95容量%、CO:5容量%の混合ガスを用いた本発明例1、Ar:70容量%、He:25容量%、CO:5容量%の混合ガスを用いた本発明例2では、管内面ガス中の水分は1ppmを大きく下回り、外面ビードの凹みも問題なく、全周良好な溶け込みが得られた。一方、シールドガスとしてAr:95容量%、H:5容量%の混合ガスを用いた比較例1では、外面ビードの凹みおよび溶け込みは問題なかったが、管内面ガス中の水分が500ppmと高く、塩酸(HCl)等水分の混入によって腐食性をもつガスの配管等、水分の混入を避けるべき用途に使用するには、溶接施工後に別途水分の除去工程が必要となる。シールドガスとしてAr:100容量%を用いた比較例2では、管内面ガス中の水分は本発明例同様に1ppmを大きく下回り問題ないが、管内面まで貫通する溶接ビードを得るためには、溶接電流を高くして幅の広いビードを形成する必要があり、外面ビードの凹みが0.8mmと過大となる。
【0025】
実施例2
肉厚3.2mmのSUS436Lフェライト系ステンレス鋼板の端面をI型開先で突合わせ、表2に示す条件でプラズマアーク溶接を実施した。そして、溶接品質は、溶接部裏側の目視検査およびJIS Z3122に規定の裏曲げ試験によって評価した。その結果を表2に示す。
【0026】
【表2】
Figure 0003588330
【0027】
表2に示すように、シールドガスとしてAr:95容量%、CO:5容量%の混合ガスを用いた本発明例3では、正常なキーホール溶接となり、板裏側に貫通したビードが形成され、裏曲げ試験も良好であった。一方、シールドガスとしてAr:95容量%、H:5容量%の混合ガスを用いた比較例3では、正常なキーホール溶接となり、板裏側に貫通したビードが形成されているが、溶接金属の脆化により裏曲げ試験で割れが生じた。また、シールドガスとしてAr:100容量%を用いた比較例4では、板裏側にビードが貫通せず、裏曲げ試験で破断した。
【0028】
実施例3
図1に示すように、外径150mm、肉厚2.8mm、長さ500mmのJIS G3459に規定のSUS316L TPAステンレス鋼管1、1の端面どうしをI型開先で突合わせ、その溶接端面を点付け溶接によって仮止めしたのち、鋼管内面には100%アルゴン(不純物水分量10ppb)をバックシールドガス2として5l/minで供給し、事前に鋼管1、1内面を十分にパージした後、シールドガスとしてCO濃度0.01〜70容量%、残部Arまたは残部ArとHe20容量%の範囲で変化させ、トーチ3固定、下向き溶接、パイプ回転方式により、ガスタングステンアーク円周自動溶接(GTAW)を実施した。そして、外面ビード4のへこみ量hと一酸化炭素濃度との関係を調査した。その結果を図3に示す。ビード4の外観品質は、前記図2に示すように、外面ビード4のへこみ量hで評価し、h≧0.5mmを不可とした。
【0029】
図3に示すように、CO濃度0.1〜50容量%の本発明の範囲では、外面ビード4のへこみ量は問題なく、全周良好な溶け込みが得られた。しかし、CO濃度が本発明の下限の0.1容量%を下回る0.01容量%では、外面ビード4のへこみ量が0.6〜0.8mmと過大であり、CO濃度が本発明の上限の50容量%を超えると、タングステン電極の酸化消耗が激しく、ビード4の外観品質も悪化して実用にはならなかった。
【0030】
【発明の効果】
本発明の非消耗電極式ガスシールドアーク溶接方法は、シールドガスとしてアルゴンガスあるいはアルゴンガスとヘリウムガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを用いることによって、十分な溶け込み深さを維持しながら、溶接部への水分の付着や、水素による溶接部の劣化のない溶接を行うことができる。
【図面の簡単な説明】
【図1】実施例1における溶接方法の説明図である。
【図2】実施例1におけるビード外観品質の評価方法の外面ビードのへこみ量hの説明図である。
【図3】実施例3における一酸化炭素(CO)濃度と外面ビードのへこみ量との関係を示すグラフである。
【符号の説明】
1 ステンレス鋼管
2 バックシールドガス
3 トーチ
4 ビード
5 放出ガス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-consumable electrode type gas shielded arc (TIG) welding method such as a plasma arc welding method or a gas tungsten arc (GTAW) welding method.
[0002]
[Prior art]
Conventionally, in the field of gas shielded arc welding, which uses a shielding gas for the purpose of shielding a welding portion from the atmosphere, a mixed gas mainly containing an inert gas such as argon or helium, or an inert gas is used alone as a shielding gas. I was The reason for using an inert gas as a shielding gas is that in a high temperature environment associated with arc heating, the molten metal and the base metal surface around the molten metal react with oxygen and nitrogen in the atmosphere, resulting in welding defects and deterioration of welded parts performance. This is to prevent
[0003]
In a plasma arc welding method, which is a type of welding method using a non-consumable electrode, it is common to use a mixed gas obtained by mixing an appropriate amount of hydrogen gas with an argon gas as a main component at least as a plasma operating gas in a shielding gas. is there. Similarly, in a gas tungsten arc (GTAW) welding method, as a shielding gas, a mixed gas of an argon gas and a hydrogen gas whose hydrogen gas concentration is adjusted to 7 to 20% by volume or a mixed gas of an argon gas, a helium gas, and a hydrogen gas is used. A method using a mixed gas (Japanese Patent Laid-Open Publication No. 2000-190076) has been proposed.
[0004]
The purpose of mixing an appropriate amount of hydrogen gas with an inert gas such as an argon gas or a helium gas as a main component is compared with a case where a 100% inert gas is used. Is obtained, and the penetration depth is increased, so that a good weld can be obtained.
[0005]
[Problems to be solved by the invention]
However, a mixed gas obtained by adding an appropriate amount of hydrogen gas to an inert gas as a main component as a shielding gas causes the following two problems.
[0006]
(1) During welding, hydrogen in the shielding gas reacts with oxygen in the atmosphere to produce water droplets, which adhere to the surface around the welded portion, and in the case of Uranami welding, which penetrates the base metal, water droplets also appear on the back surface of the welded portion Adheres. The adhered water droplets cause rust or local corrosion around the welded portion, and when welding a closed cross section member such as a pipe, water droplets remain inside the closed cross section, thereby contaminating the fluid inside the closed cross section member such as a pipe. There is a problem.
[0007]
(2) When the welding member is a low alloy steel other than an austenitic alloy material (austenitic stainless steel, austenitic Ni alloy, etc.), a ferritic stainless steel, or a martensitic stainless steel, hydrogen invades from the welding material. There is a problem that embrittlement or cracking of the weld occurs.
[0008]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to generate water droplets and infiltrate hydrogen from low alloy steel, ferritic stainless steel, and martensitic stainless steel while maintaining a sufficient penetration depth. It is an object of the present invention to provide a non-consumable electrode type gas shielded arc welding method capable of preventing embrittlement or cracking of a welded portion due to welding.
[0009]
[Means for Solving the Problems]
The feature of the non-consumable electrode type gas shielded arc welding method according to claim 1 of the present invention is that, as a shielding gas, a mixed gas containing argon gas as a main component and a carbon monoxide concentration of 0.1 to 50% by volume is used. It is in. As described above, by using a mixed gas containing argon gas as a main component and a carbon monoxide concentration of 0.1 to 50% by volume as a shielding gas, the generation of water droplets and the like can be maintained while maintaining a sufficient penetration depth. In addition, embrittlement or cracking of the weld due to intrusion of hydrogen from the welding material can be prevented.
[0010]
The feature of the non-consumable electrode type gas shielded arc welding method according to claim 2 of the present invention is that a shielding gas mainly containing argon gas and helium gas and having a carbon monoxide concentration of 0.1 to 50% by volume. The use of gas. As described above, by using a mixed gas containing argon gas and helium gas as main components and having a carbon monoxide concentration of 0.1 to 50% by volume as a shielding gas, water droplets can be maintained while maintaining a sufficient penetration depth. , And embrittlement or cracking of the welded portion due to intrusion of hydrogen from the welding material can be prevented.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the non-consumable electrode type gas shielded arc welding method according to the present invention, the torch is substantially perpendicularly opposed to an I-shaped groove or a Y-shaped groove formed by abutting welding material end faces, and the shielding gas is supplied from the torch. And an arc discharge while injecting is performed, thereby welding an I-shaped groove or a Y-shaped groove at a butt portion of a welding material.
[0012]
Examples of the welding material include austenitic alloy materials (such as austenitic stainless steel and austenitic Ni alloy), low alloy steel, ferritic stainless steel, and martensitic stainless steel pipes and steel plates.
[0013]
For a welding material having a wall thickness of 4 mm or less, the welding material end faces are butt-joined while keeping the cut surface, and an I-shaped groove is formed on the welding end face. On the other hand, in the case of a welding material having a thickness exceeding 4 mm, a chamfering process of about 45 ° is performed on the upper surface or the outer periphery of the welding material end face, and the welding end faces are joined to form a Y-shaped groove.
[0014]
The torch has the same configuration as the torch used for general non-consumable electrode type gas shielded arc welding, and discharges a shielding gas around the arc discharge and a tungsten electrode that generates an arc discharge between the welding material. A gas nozzle.
[0015]
The welding operation using a torch is performed without using a welding rod (a filler rod), unlike a general non-consumable electrode type gas shielded arc welding method. At this time, the torch supports the welding material substantially vertically, and points the tip of the tungsten electrode toward the I-shaped groove or the Y-shaped groove.
[0016]
In the non-consumable electrode type gas shielded arc welding method according to the present invention, a mixed gas of argon and carbon monoxide or a mixed gas of argon, helium and carbon monoxide is used as a shielding gas. The concentration of carbon monoxide in the mixed gas is adjusted to 0.1 to 50% by volume. That is, as the shielding gas, for example, two types of mixed gas containing 0.1 to 50% by volume of carbon monoxide and 99.9 to 50% by volume of argon, or 0.1 to 50% by volume of carbon monoxide , 5 to 20% by volume of helium and 94.9 to 30% by volume of argon are used.
[0017]
The carbon monoxide concentration in the shielding gas greatly affects the thermal efficiency of arc discharge in non-consumable electrode type gas shielded arc welding, and when the carbon monoxide concentration increases, the current value required to obtain the ideal penetration amount of the deposited metal Decrease. For example, when the shielding gas is 100% by volume of argon, the necessary pulse current value is about 170A and the base current value is about 70A, but when the shielding gas is a mixed gas of 95% by volume of argon and 5% by volume of carbon monoxide. The required pulse current value is reduced to about 40 A, and the base current value is reduced to about 30 A. However, if the concentration of carbon monoxide is less than 0.1% by volume, the thermal pinch effect due to the addition of carbon monoxide acts and the arc contraction effect is not sufficient, so that 100% by volume argon gas or argon gas and helium The same welding result as in the case of using a gas mixture is obtained. In other words, when the carbon monoxide concentration in the shielding gas increases to 0.1% by volume or more, the thermal efficiency of arc discharge increases even at the same current value, and the amount of the deposited metal increases. Therefore, the concentration of carbon monoxide in the shielding gas is set to 0.1% by volume or more.
[0018]
On the other hand, the concentration of carbon monoxide in the shielding gas affects the sealing performance of arc discharge in non-consumable electrode type gas shielded arc welding. When the concentration of carbon monoxide exceeds 50% by volume, the specific gravity of the shielding gas becomes lighter, and Not only deteriorates the sealing performance of the arc discharge, but also burns carbon monoxide in the shielding gas near the side surface of the arc discharge, oxidizes and depletes the tungsten electrode, deteriorating the appearance of the weld bead and mixing with tungsten. Causes welding defects. Therefore, the concentration of carbon monoxide in the shielding gas is set to 50% by volume or less.
[0019]
In the non-consumable electrode type gas shielded arc welding method of the present invention, a mixed gas having a carbon monoxide concentration of 0.1 to 50% by volume is used as a shielding gas, so that the thermal efficiency of arc discharge is increased and the deposited metal is melted. The amount increases. As a result, even with a small Y-shaped groove or an I-shaped groove, a stainless steel pipe having a nominal diameter of about 250 A can be easily welded with a single-layer welding pass.
[0020]
In addition, since the total heat input to the stainless steel pipe can be reduced by the single-layer welding pass, coarsening of the structure of the welded portion can be suppressed, and the residual stress of the welded portion can be reduced. Further, the bead width of the welded portion can be reduced. Moreover, in the non-consumable electrode type gas shielded arc welding method of the present invention, since the carbon monoxide concentration of the shield gas is set to 50% by volume or less, there is a problem that the sealing performance of the arc discharge is reduced and the shield gas is burned. And the welding operation can be performed in a good condition.
[0021]
【Example】
Example 1
As shown in FIG. 1, the end faces of the SUS316L TPA stainless steel pipes 1, 1 having an outer diameter of 150 mm, a wall thickness of 2.8 mm, and a length of 500 mm specified in JIS G3449 are abutted with an I-shaped groove, and the welded end faces are spotted. After being temporarily fixed by welding, a constant amount of 100% argon (impurity moisture content: 10 ppb) was supplied as a back shield gas 2 to the inner surface of the steel pipe as shown in Table 1, and the inner surfaces of the steel pipes 1 and 1 were sufficiently purged beforehand. Thereafter, gas tungsten arc circumferential automatic welding (GTAW) was performed under the respective conditions shown in Table 1 by the torch 3 fixing, downward welding, and pipe rotating method. Then, the amount of water droplets adhered to the welded portion and the appearance quality of the bead 4 were evaluated. Table 1 shows the results.
[0022]
The adhesion of water droplets to the welded portion is evaluated by measuring the amount of water by introducing all of the gas 5 discharged from the back shield gas discharge port into an APIMS (Atomospheric Pressure Ionization Mass Spectrometry) (not shown) from the start to the end of welding. However, less than 10 ppm was evaluated as good ((), and 10 ppm or more was evaluated as unacceptable (x). As shown in FIG. 2, the appearance quality of the bead 4 was evaluated by the dent amount h of the outer bead 4, where h <0.5 mm was good (良好), and h ≧ 0.5 mm was bad (×).
[0023]
[Table 1]
Figure 0003588330
[0024]
As shown in Table 1, Example 1 of the present invention using a mixed gas of Ar: 95% by volume and CO: 5% by volume as a shielding gas, Ar: 70% by volume, He: 25% by volume, and CO: 5% by volume. In Example 2 of the present invention using the mixed gas, the moisture in the gas on the inner surface of the tube was much lower than 1 ppm, and the outer bead had no problem, and good penetration was obtained all around. On the other hand, Ar as a shield gas: 95 vol%, H 2: In Comparative Example 5 using the volume percent of the gas mixture 1, dents and penetration of the outer surface bead was no problem, high moisture inner surface in the gas and 500ppm For use in applications in which the entry of moisture is to be avoided, such as piping for gas that is corrosive due to the entry of moisture such as hydrochloric acid (HCl), a separate step of removing moisture is required after welding. In Comparative Example 2 in which Ar: 100% by volume was used as the shielding gas, the moisture in the gas on the inner surface of the pipe was not much lower than 1 ppm as in the case of the present invention, but there was no problem in obtaining a weld bead penetrating to the inner surface of the pipe. It is necessary to form a wide bead by increasing the current, and the dent of the outer bead becomes excessively large at 0.8 mm.
[0025]
Example 2
The end surfaces of a 3.2 mm thick SUS436L ferritic stainless steel plate were butted with an I-shaped groove, and plasma arc welding was performed under the conditions shown in Table 2. The welding quality was evaluated by visual inspection of the back side of the welded portion and a back bending test specified in JIS Z3122. Table 2 shows the results.
[0026]
[Table 2]
Figure 0003588330
[0027]
As shown in Table 2, in Example 3 of the present invention using a mixed gas of Ar: 95% by volume and CO: 5% by volume as a shielding gas, normal keyhole welding was performed, and a bead penetrating on the back side of the plate was formed. The back bending test was also good. On the other hand, Ar as a shield gas: 95 vol%, H 2: 5 in Comparative Example 3 using the% by volume of the mixed gas becomes a normal keyhole welding, although beads penetrating into the plate rear side is formed, the weld metal Cracking occurred in the back bending test due to embrittlement. In Comparative Example 4 in which Ar: 100% by volume was used as the shielding gas, the bead did not penetrate the back side of the plate, and was broken in the back bending test.
[0028]
Example 3
As shown in FIG. 1, the end faces of SUS316L TPA stainless steel pipes 1, 1 having an outer diameter of 150 mm, a wall thickness of 2.8 mm, and a length of 500 mm specified in JIS G3449 are butted with an I-shaped groove, and the welded end faces are spotted. After temporarily fixing by welding, 100% argon (impurity water content: 10 ppb) is supplied to the inner surface of the steel pipe at a rate of 5 l / min as a back shield gas 2 and the inner surfaces of the steel pipes 1 and 1 are sufficiently purged in advance, and then the shielding gas is removed. Gas tungsten arc circumferential automatic welding (GTAW) is carried out by changing the CO concentration from 0.01 to 70% by volume and the balance of Ar or the balance of Ar and He to 20% by volume, and fixing the torch 3, welding downward, and rotating the pipe. did. Then, the relationship between the dent amount h of the outer surface bead 4 and the carbon monoxide concentration was investigated. The result is shown in FIG. As shown in FIG. 2, the appearance quality of the bead 4 was evaluated based on the dent amount h of the outer surface bead 4, and h ≧ 0.5 mm was not acceptable.
[0029]
As shown in FIG. 3, in the range of the present invention having a CO concentration of 0.1 to 50% by volume, the dent amount of the outer surface bead 4 was satisfactory, and good penetration was obtained all around. However, when the CO concentration is lower than the lower limit of 0.1% by volume of the present invention, that is, 0.01% by volume, the dent amount of the outer bead 4 is excessively large as 0.6 to 0.8 mm, and the CO concentration is lower than the upper limit of the present invention. If it exceeds 50% by volume, the tungsten electrode is liable to be oxidized and consumed, and the appearance quality of the bead 4 is deteriorated, so that it is not practical.
[0030]
【The invention's effect】
The non-consumable electrode type gas shielded arc welding method of the present invention uses an argon gas or a mixed gas having an argon gas and a helium gas as main components and a carbon monoxide concentration of 0.1 to 50% by volume as a shielding gas. While maintaining a sufficient penetration depth, it is possible to perform welding without adhesion of moisture to the weld and deterioration of the weld due to hydrogen.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a welding method according to a first embodiment.
FIG. 2 is an explanatory diagram of a dent amount h of an outer surface bead in the method for evaluating bead appearance quality in Example 1.
FIG. 3 is a graph showing the relationship between the concentration of carbon monoxide (CO) and the amount of dent of an external bead in Example 3.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stainless steel pipe 2 Back shield gas 3 Torch 4 Bead 5 Emission gas

Claims (2)

非消耗電極式ガスシールドアーク溶接方法であって、シールドガスとして、アルゴンガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを使用することを特徴とする非消耗電極式ガスシールドアーク溶接方法。Non-consumable electrode type gas shielded arc welding method, characterized in that a mixed gas containing argon gas as a main component and a carbon monoxide concentration of 0.1 to 50% by volume is used as a shielding gas. Gas shielded arc welding method. 非消耗電極式ガスシールドアーク溶接方法であって、シールドガスとして、アルゴンガスとヘリウムガスを主成分とし、一酸化炭素濃度が0.1〜50容量%の混合ガスを使用することを特徴とする非消耗電極式ガスシールドアーク溶接方法。A non-consumable electrode type gas shielded arc welding method, characterized in that a mixed gas containing argon gas and helium gas as main components and a carbon monoxide concentration of 0.1 to 50% by volume is used as a shield gas. Non-consumable electrode type gas shielded arc welding method.
JP2001086823A 2001-03-26 2001-03-26 Non-consumable electrode type gas shielded arc welding method Expired - Fee Related JP3588330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001086823A JP3588330B2 (en) 2001-03-26 2001-03-26 Non-consumable electrode type gas shielded arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001086823A JP3588330B2 (en) 2001-03-26 2001-03-26 Non-consumable electrode type gas shielded arc welding method

Publications (2)

Publication Number Publication Date
JP2002283056A JP2002283056A (en) 2002-10-02
JP3588330B2 true JP3588330B2 (en) 2004-11-10

Family

ID=18942145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001086823A Expired - Fee Related JP3588330B2 (en) 2001-03-26 2001-03-26 Non-consumable electrode type gas shielded arc welding method

Country Status (1)

Country Link
JP (1) JP3588330B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570609C2 (en) * 2014-01-09 2015-12-10 Общество с ограниченной ответственностью "Контрольно-Диагностический центр" Gas metal arc welding
JP6606947B2 (en) * 2015-09-24 2019-11-20 日本製鉄株式会社 Manufacturing method of welded joint
JP6407357B2 (en) * 2016-06-03 2018-10-17 日新製鋼株式会社 Method for manufacturing TIG welded stainless steel pipe, TIG welded stainless steel pipe, and TIG welded stainless steel member

Also Published As

Publication number Publication date
JP2002283056A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
KR101320469B1 (en) Metal-core gas metal arc welding of ferrous steels with noble gas shielding
CA2204339C (en) Metal-core weld wire for welding galvanized steels
US6596971B1 (en) Process for the MIG welding of nickel and nickel alloys with a shielding gas based on argon and CO2
JP2004306084A (en) Composite welding method of laser welding and arc welding
KR101360593B1 (en) Gas tungsten arc welding method having improved welding speed and steel material produced by using the same
JP2003220481A (en) Method and welding wire for arc-laser composite welding
US5368223A (en) Pipe welding process using a metallic insert for improved corrosion resistance of the welded zone
JP6801494B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP3330837B2 (en) Consumable electrode type gas shielded arc welding method
JP3588330B2 (en) Non-consumable electrode type gas shielded arc welding method
FR2719514A1 (en) Protective gas mixture and method of arc welding of stainless steel parts.
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP4782979B2 (en) Welding method
US20070045238A1 (en) Method of welding material with reduced porosity
JP3884363B2 (en) Iron filler metal for laser welding
JP2001321938A (en) Welding method for high chrome austenitic stainless steel pipe
US6884963B1 (en) Apparatus and method for welding duplex stainless steel
Krysiak et al. Selection of wrought ferritic stainless steels
US20030230557A1 (en) Use of helium/nitrogen gas mixtures for the laser welding of stainless steel pipes
JP2000190076A (en) Tig welding method for pipe
JP3623442B2 (en) High-speed TIG welding method for austenitic stainless steel
Rizvi et al. Effect of shielding gases on weld quality in GTA & GMA welding-A
JP5579316B1 (en) Welding method and welded structure
WO2017026123A1 (en) Weld joint, welding material used therefor, and welding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees