JP2005150623A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2005150623A
JP2005150623A JP2003389696A JP2003389696A JP2005150623A JP 2005150623 A JP2005150623 A JP 2005150623A JP 2003389696 A JP2003389696 A JP 2003389696A JP 2003389696 A JP2003389696 A JP 2003389696A JP 2005150623 A JP2005150623 A JP 2005150623A
Authority
JP
Japan
Prior art keywords
substrate
flow rate
gas
semiconductor substrate
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003389696A
Other languages
Japanese (ja)
Other versions
JP4313656B2 (en
Inventor
Masanori Sakamoto
正紀 坂本
Seiji Matsumoto
省二 松元
Shiyunsuke Hisakure
俊介 久呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003389696A priority Critical patent/JP4313656B2/en
Publication of JP2005150623A publication Critical patent/JP2005150623A/en
Application granted granted Critical
Publication of JP4313656B2 publication Critical patent/JP4313656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device which can surely make a semiconductor substrate come off from a lower electrode. <P>SOLUTION: The substrate is attracted by electrostatic force and fixed to a substrate support part capable of supplying a gas to the rear face of the substrate. Then, the substrate is subjected to processings, such as etching, and the flow rate of the gas is measured, while the gas is supplied to the rear face of the substrate from the substrate support part on which the substrate is fixed. Then, the measured flow rate of the gas is decided whether it is higher than or equal to a predetermined standard flow rate. If the measured flow rate of the gas is higher than or equal to the predetermined standard flow rate, the coming-off of the substrate from the substrate supporting part is completed. Thus, the transfer trouble resulting from detachment defect can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チャンバー内で静電吸着により半導体基板を保持部に固定してプロセス処理を行う、半導体装置の製造方法に関わり、さらに詳述すると静電吸着力により電極などの保持部に固定された半導体基板を搬送トラブルを生じさせずに脱離させる方法に関するものである。   The present invention relates to a method of manufacturing a semiconductor device in which a semiconductor substrate is fixed to a holding part by electrostatic adsorption in a chamber and processed, and more specifically, the semiconductor substrate is fixed to a holding part such as an electrode by electrostatic adsorption force. The present invention relates to a method for removing a semiconductor substrate without causing a transportation trouble.

半導体集積回路の製造工程におけるドライエッチング、プラズマCVDのようなプラズマ処理において、静電吸着力により半導体基板を下部電極へ固定する技術は、大口径化する半導体基板においてエッチングレートや加工寸法といったプロセス特性の均一性を向上させる上で必須の技術である。   In plasma processing such as dry etching and plasma CVD in the manufacturing process of a semiconductor integrated circuit, the technology for fixing a semiconductor substrate to a lower electrode by electrostatic attraction is a process characteristic such as an etching rate and a processing dimension in a semiconductor substrate having a large diameter. This technique is essential for improving the uniformity of the image.

図1に、従来の機械的に半導体基板を下部電極に固定する方式の半導体基板固定部分の断面図を示す。同図が示す通り半導体基板2は、半導体製造装置の減圧可能な反応室上部に位置する固定部材1(クランプリングなど)によって下部電極3に機械的に固定されている。しかし、このような方法では、この部材1の影響によってプラズマの均一性が低下し、それに伴ってドライエッチングにおいてはエッチングレート、寸法等の均一性も低下してしまうという問題がある。   FIG. 1 is a cross-sectional view of a conventional semiconductor substrate fixing portion that mechanically fixes a semiconductor substrate to a lower electrode. As shown in the figure, the semiconductor substrate 2 is mechanically fixed to the lower electrode 3 by a fixing member 1 (clamp ring or the like) located at the upper part of the reaction chamber capable of depressurization of the semiconductor manufacturing apparatus. However, in such a method, there is a problem that the uniformity of the plasma is lowered due to the influence of the member 1, and the uniformity of the etching rate, dimensions, and the like is also lowered in the dry etching.

図2に、このようなエッチングレート、寸法等の均一性を向上させることを目的とした、静電吸着力により半導体基板を下部電極に固定する方式の半導体基板固定部分の断面図を示す。半導体基板2は、静電吸着力を発生させることが可能な下部電極4によって同下部電極4に電気的に固定されている。また半導体基板温度の制御を目的として半導体基板2と下部電極4の間に、下部電極4に設けられた細孔からチャンバー内部にヘリウムガス5が矢印のように流れ、半導体基板2の裏面温度を制御するようになっている。ヘリウムガス5によって半導体基板2の温度が均一に保たれている。このような技術を用いることにより、エッチングレート、寸法等の均一性を向上させている。このような静電吸着方式の改善については特許文献1に記載されている。
特開平08−236604号公報
FIG. 2 shows a cross-sectional view of a semiconductor substrate fixing portion in which the semiconductor substrate is fixed to the lower electrode by electrostatic attraction for the purpose of improving the uniformity of the etching rate, dimensions, and the like. The semiconductor substrate 2 is electrically fixed to the lower electrode 4 by a lower electrode 4 capable of generating an electrostatic adsorption force. For the purpose of controlling the temperature of the semiconductor substrate, helium gas 5 flows between the semiconductor substrate 2 and the lower electrode 4 from the pores provided in the lower electrode 4 into the chamber as indicated by the arrows, and the temperature of the back surface of the semiconductor substrate 2 is reduced. It comes to control. The temperature of the semiconductor substrate 2 is kept uniform by the helium gas 5. By using such a technique, the uniformity of the etching rate, dimensions, etc. is improved. Such improvement of the electrostatic adsorption method is described in Patent Document 1.
Japanese Patent Laid-Open No. 08-236604

しかし、プラズマによるドライエッチング処理が終了し、半導体基板を下部電極から脱離させる時に、下部電極に吸着固定させるために存在していた電荷が下部電極や半導体基板に残留することがある。この残留電荷の影響により脱離が不完全となる。すなわち、図2には示していないが、下部電極表面のたとえば4カ所には突き上げピンが備えられており、処理が終了するとこの突き上げピンが下部電極から上昇し、半導体基板2を電極から押し上げるようになっている。このとき半導体基板などに電荷が残留していると、残留静電力に抗して突き上げることになるので、基板が跳ね上がりチャンバー内に落下するということになる等の搬送トラブルが発生するといった問題を有していた。このような脱離不良に起因する搬送トラブルは、半導体基板のロスや半導体製造装置内に落下した半導体基板の回収作業による稼働率低下などを発生させる。この問題を解決するには、確実に半導体基板を下部電極より脱離させることが必要である。これに対して上記特許文献1には脱離補助をすることが提案されているが、確実な除電・脱離確認に関する提案はなされていない。   However, when the dry etching process using plasma is completed and the semiconductor substrate is detached from the lower electrode, charges that existed to be adsorbed and fixed to the lower electrode may remain on the lower electrode or the semiconductor substrate. Desorption is incomplete due to this residual charge. That is, although not shown in FIG. 2, push pins are provided at, for example, four places on the surface of the lower electrode, and when the processing is completed, the push pins rise from the lower electrode and push the semiconductor substrate 2 up from the electrode. It has become. At this time, if electric charges remain on the semiconductor substrate or the like, it will be pushed up against the residual electrostatic force, so that there is a problem that a transport trouble such as the substrate jumps up and falls into the chamber occurs. Was. Such a conveyance trouble due to a detachment failure causes a loss of the semiconductor substrate or a reduction in operating rate due to a recovery operation of the semiconductor substrate dropped in the semiconductor manufacturing apparatus. In order to solve this problem, it is necessary to detach the semiconductor substrate from the lower electrode without fail. On the other hand, although the above-mentioned Patent Document 1 proposes assisting desorption, no proposal has been made regarding reliable charge removal / desorption confirmation.

本発明は、上記従来の問題を解決するため、確実に半導体基板を下部電極より脱離させる半導体装置の製造方法を提供する。   In order to solve the above-described conventional problems, the present invention provides a method for manufacturing a semiconductor device in which a semiconductor substrate is reliably detached from a lower electrode.

本発明の第1番目の半導体装置の製造方法は、基板裏面にガスを供給できる基板支持部に、静電力により基板を吸着させて固定し、前記基板を加工処理し、
前記基板が固定された前記基板支持部から前記基板裏面にガスを供給しながら前記ガスの流量を測定し、
前記測定したガス流量が予め決められた規格流量値以上であるか否かを判定し、
前記測定したガス流量が前記規格流量値以上となった場合に、前記基板支持部からの前記基板脱離を完了することを特徴とする。
According to a first method of manufacturing a semiconductor device of the present invention, a substrate is supported by an electrostatic force on a substrate support that can supply gas to the back surface of the substrate, and the substrate is processed.
Measure the flow rate of the gas while supplying the gas from the substrate support part to which the substrate is fixed to the back surface of the substrate,
Determining whether the measured gas flow rate is greater than or equal to a predetermined standard flow rate value;
When the measured gas flow rate becomes equal to or higher than the standard flow rate value, the substrate detachment from the substrate support portion is completed.

本発明の第2番目の半導体装置の製造方法は、基板裏面にガスを供給できる基板支持部に、静電力により基板を吸着させて固定し、前記基板を加工処理し、
前記基板が固定された前記基板支持部から前記基板裏面にガスを供給しながらその増加するガス流量を測定し、
前記測定したガス流量が予め決められた規格流量値以上に達したか否かを判定し、
前記測定したガス流量が前記規格流量値以上となった場合に、前記基板支持部からの前記基板脱離を完了する工程とを含む半導体装置の製造方法であって、
前記ガス流量が前記規格値に達する前に、前記規格流量値よりも小さく、互いに異なり、予め決められた1つ以上の規格流量値のそれぞれに、前記ガス流量が達したか否かを判定することを特徴とする。
According to a second method of manufacturing a semiconductor device of the present invention, the substrate is adsorbed and fixed by an electrostatic force on a substrate support that can supply gas to the back surface of the substrate, and the substrate is processed.
Measure the increasing gas flow rate while supplying gas from the substrate support part to which the substrate is fixed to the back surface of the substrate,
Determining whether the measured gas flow rate has reached or exceeded a predetermined standard flow rate value;
A step of completing the desorption of the substrate from the substrate support portion when the measured gas flow rate is equal to or higher than the standard flow rate value,
Before the gas flow rate reaches the standard value, it is determined whether or not the gas flow rate has reached each of one or more predetermined standard flow rate values which are smaller than the standard flow rate value and different from each other. It is characterized by that.

本発明の第3番目の半導体装置の製造方法は、基板裏面にガスを供給できる基板支持部に、静電力により基板を吸着させて固定し、前記基板を処理し、
前記基板が固定された前記基板支持部から前記基板裏面にガスを供給するとともに前記基板の裏面を押圧し、少なくとも前記基板裏面の一部を前記基板支持部から離し、
前記基板の裏面を押圧しながら前記ガスの流量を測定し、
前記測定したガス流量が予め決められた規格流量値以上となった場合に、前記押圧を除去した後、実質的に前記測定したガス流量からの流量変化量を測定し、
前記流量変化量が、予め定められた流量変化量以内である場合に、前記基板支持部からの前記基板脱離を完了することを特徴とする。
In a third method of manufacturing a semiconductor device according to the present invention, the substrate is adsorbed and fixed by an electrostatic force on a substrate support that can supply gas to the back surface of the substrate, and the substrate is processed.
Supplying gas to the back surface of the substrate from the substrate support portion to which the substrate is fixed, pressing the back surface of the substrate, and separating at least a part of the back surface of the substrate from the substrate support portion;
Measure the flow rate of the gas while pressing the back surface of the substrate,
When the measured gas flow rate is equal to or higher than a predetermined standard flow rate value, after removing the pressure, the flow rate variation from the measured gas flow rate is substantially measured,
When the flow rate change amount is within a predetermined flow rate change amount, the substrate detachment from the substrate support portion is completed.

以上のように本発明は、ドライエッチング等の半導体基板の加工処理後に静電吸着力によって下部電極上に固定された半導体基板などの基板を脱離させる工程において、下部電極のような基板支持部より基板処理を行うチャンバー内部に流出するガスの流量を測定するステップと静電吸着力がほぼ除去された状態でのガス流量の規格を設け、ガス流量が規格に達した時点で次の工程である基板脱離後の半導体など基板搬送に進むことで、脱離不良に起因する搬送トラブルを抑制することが可能となる。   As described above, the present invention provides a substrate support portion such as a lower electrode in a step of detaching a substrate such as a semiconductor substrate fixed on the lower electrode by electrostatic attraction after processing of the semiconductor substrate such as dry etching. A step for measuring the flow rate of the gas flowing out into the chamber for substrate processing and a standard for the gas flow rate in a state in which the electrostatic adsorption force is almost removed are provided, and when the gas flow rate reaches the standard, the next step is performed. By proceeding to the substrate transportation such as a semiconductor after the substrate is detached, it is possible to suppress the transportation trouble caused by the separation failure.

また本発明はドライエッチング等の半導体基板処理後に静電吸着力によって下部電極上に固定された半導体基板を脱離させる工程において、下部電極より基板処理を行うチャンバー内部に流出するガスの流量を複数回測定するステップとそのステップそれぞれにガス流量の規格を設け、全ての測定においてガス流量が規格に達した時点で次の工程である脱離後の半導体基板搬送に進むことで脱離不良に起因する搬送トラブルを抑制することが可能となる。   In the present invention, in the step of detaching the semiconductor substrate fixed on the lower electrode by electrostatic adsorption force after the semiconductor substrate processing such as dry etching, a plurality of gas flows flowing from the lower electrode to the inside of the chamber for substrate processing. Due to the detachment failure by setting the gas flow rate standard for each step and each step, and when the gas flow rate reaches the standard in all measurements, the process proceeds to the next process of semiconductor substrate transport after detachment It becomes possible to suppress the conveyance trouble to carry out.

また本発明はドライエッチング等の半導体基板処理後に静電吸着力によって下部電極上に固定された基板を脱離させる工程において、脱離補助を目的として基板を下部電極からわずかに押圧し、昇降させた時のガスの流量の低下量を測定し、ガス流量の低下量が規格以内になった時点で次の工程である脱離後の半導体基板搬送に進むことで脱離不良に起因する搬送トラブルを抑制することが可能となる。   Further, in the process of detaching the substrate fixed on the lower electrode by electrostatic adsorption force after processing the semiconductor substrate such as dry etching, the present invention slightly lifts and lowers the substrate from the lower electrode for the purpose of detachment assistance. Measure the amount of gas flow reduction at the time, and when the amount of gas flow reduction falls within the standard, proceed to the next step, the semiconductor substrate transport after desorption, which is a transportation trouble due to defective desorption. Can be suppressed.

以上のような方法を用いることによって、安定した半導体装置の生産が可能となり、超高密度集積回路の製造に大きく寄与することができる。   By using the method as described above, a stable semiconductor device can be produced, which can greatly contribute to the manufacture of an ultra-high density integrated circuit.

本発明の第1〜3番目の方法においては、基板支持部には基板を支持部から持ち上げる突き上げピンが設けられ、押圧は前記突き上げピンによって行うことが好ましい。また、ガスは基板の温度を制御するためのガスを利用することができる。また、予め決められた規格流量値は、実質的に基板が自重のみで基板支持部に設置されたときのガス流量値とすることが基板を完全に脱離させる点で好ましい。また、ガス流量の測定は、静電力により基板を吸着させるために基板支持部に印加された電圧を除去した後に行ってもよい。   In the first to third methods of the present invention, it is preferable that the substrate support portion is provided with a push-up pin for lifting the substrate from the support portion, and the pressing is performed by the push-up pin. As the gas, a gas for controlling the temperature of the substrate can be used. In addition, it is preferable that the standard flow rate value determined in advance is substantially the gas flow rate value when the substrate is placed on the substrate support portion under its own weight only, in order to completely desorb the substrate. The measurement of the gas flow rate may be performed after removing the voltage applied to the substrate support in order to adsorb the substrate by electrostatic force.

以下に本発明による実施の形態を図面と共に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図3は、本発明の第1の実施の形態による半導体装置の処理工程を示す工程フロー図である。まず、ドライエッチングなどプラズマ処理する半導体基板を減圧可能なチャンバー内部の下部電極上に搬送設置する。この下部電極はプラズマ処理中の基板温度を制御するために表面に設けられた多数の細孔から、設置された半導体基板と下部電極表面との間にヘリウムガスを流すようになっており、ヘリウムガスは処理中ほぼ一定の圧力に維持されている。また、下部電極は処理終了後半導体基板をチャンバー外へ搬送するためにたとえば基板の裏面4カ所を支持して電極から上方に持ち上げる突き上げピンを備えているものとする。
(First embodiment)
FIG. 3 is a process flow diagram showing the processing steps of the semiconductor device according to the first embodiment of the present invention. First, a semiconductor substrate to be subjected to plasma processing such as dry etching is transported and installed on a lower electrode inside a chamber that can be decompressed. This lower electrode allows helium gas to flow between the installed semiconductor substrate and the lower electrode surface from a large number of pores provided on the surface in order to control the substrate temperature during plasma processing. The gas is maintained at a substantially constant pressure during processing. In addition, the lower electrode is provided with push-up pins that support, for example, four places on the back surface of the substrate and lift it upward from the electrode in order to transport the semiconductor substrate to the outside of the chamber after the processing is completed.

次に下部電極に直流電圧などを印加し静電吸着で半導体基板を下部電極に固定した後、半導体基板に対しプラズマ処理を行い終了させ、続いて半導体基板の下部電極からの脱離工程を開始するが、脱離の方法は、静電吸着していた直流電圧を除き、たとえばArのような不活性ガスの弱いプラズマを発生させて行う方法、自然放置で吸着に寄与した電荷が放電するのを待つ方法などがあり、どちらでも使用可能である。   Next, a DC voltage is applied to the lower electrode and the semiconductor substrate is fixed to the lower electrode by electrostatic adsorption. Then, the semiconductor substrate is subjected to plasma treatment and then the process of detaching the semiconductor substrate from the lower electrode is started. However, the desorption method is a method in which a weak plasma of an inert gas such as Ar is generated, for example, except for the DC voltage that has been electrostatically adsorbed. You can use either method.

本発明の基板脱離工程は、基板温度制御用のヘリウムガスの流量値をモニターしながら行うことが特徴である。図4は半導体基板の吸着固定からプラズマ処理、基板の脱離までのヘリウムガス流量変化を示す図である。縦軸の単位はcc/min.である。まず、半導体基板が下部電極に吸着されるとヘリウムガスの流量が減少し、一定値(約9cc/min.)に維持される。そして55秒経過後プラズマ処理が終了し、脱離工程が開始される。半導体基板および下部電極より電荷が放電されるにしたがって吸着力が低下し、一方、ヘリウムガス圧力は一定であるから流量は増加するが、時間55秒から80秒が脱離期間である。図5は図4の脱離工程部分を拡大して示した図であり、図5の80秒以降はほぼ下部電極と半導体基板間の吸着力がなくなった完全脱離の状態、すなわち静電吸着力を利用せず単に半導体基板が下部電極上に乗っている状態を示している。   The substrate desorption process of the present invention is characterized in that it is performed while monitoring the flow rate value of the helium gas for controlling the substrate temperature. FIG. 4 is a diagram showing a change in the flow rate of helium gas from the adsorption fixation of the semiconductor substrate to the plasma processing and the desorption of the substrate. The unit of the vertical axis is cc / min. It is. First, when the semiconductor substrate is adsorbed on the lower electrode, the flow rate of helium gas decreases and is maintained at a constant value (about 9 cc / min.). After 55 seconds, the plasma treatment is finished and the desorption process is started. As the electric charges are discharged from the semiconductor substrate and the lower electrode, the adsorptive power decreases. On the other hand, the flow rate increases because the helium gas pressure is constant, but the desorption period is from 55 seconds to 80 seconds. FIG. 5 is an enlarged view of the desorption process portion of FIG. 4, and after 80 seconds of FIG. 5, the state of complete desorption with almost no adsorption force between the lower electrode and the semiconductor substrate, that is, electrostatic adsorption It shows a state where the semiconductor substrate is simply on the lower electrode without using force.

図3のフロー図において、ヘリウムガス流量値は常に測定されており、脱離が進むにつれて流量が図5のように増加していくが、流量が予め定められた規格値に達したかどうかを判断し、規格値流量以上になった場合には突き上げピンで半導体基板を持ち上げ搬送を行い、次の処理すべき半導体基板を下部電極へ搬送する。もし規格値に達していなければさらに脱離工程を続け再度流量について判断する。   In the flow chart of FIG. 3, the helium gas flow rate value is always measured, and the flow rate increases as shown in FIG. 5 as desorption progresses, but it is determined whether the flow rate has reached a predetermined standard value. If the flow rate exceeds the standard value flow rate, the semiconductor substrate is lifted and transferred by the push-up pin, and the next semiconductor substrate to be processed is transferred to the lower electrode. If the standard value is not reached, the desorption process is continued and the flow rate is judged again.

ここで予め定められる流量規格値について説明する。脱離工程にて半導体基板が下部電極より脱離が開始した場合、ヘリウムガス流量値が図5のように増加係数2.0(増加係数a=ヘリウムガス流量変化/秒)をもって時間71秒から75秒の間に増加する。その後、図5のようにガス流量が増加係数0.1に変化した時点75秒で若干の電荷が残留しているが半導体基板の脱離が実際には完了する。そこで増加係数が2.0から0.1に変化した時点のヘリウムガス流量値27cc/min.を、脱離終了するための規格として設定し、この時点で搬送用に突き上げピンを上昇させることになる。   Here, the predetermined flow rate standard value will be described. When the semiconductor substrate starts desorption from the lower electrode in the desorption process, the helium gas flow rate value increases from 2.0 seconds (increase coefficient a = helium gas flow rate change / second) as shown in FIG. Increase in 75 seconds. After that, as shown in FIG. 5, a slight charge remains at 75 seconds when the gas flow rate changes to an increase factor of 0.1, but the semiconductor substrate is actually detached. Therefore, the helium gas flow rate at the time when the increase coefficient is changed from 2.0 to 0.1 is 27 cc / min. Is set as a standard for completing the detachment, and at this point, the push-up pin is raised for conveyance.

本実施の形態によれば、電極からの半導体基板脱離の状態をヘリウムガス流量をモニターし、流量規格値を満足した時点で搬送することになるから、十分吸着力が弱くなっており、搬送時に半導体基板がチャンバー内に落下するといった事故を防止することができる。実際に半導体基板10000枚処理当たりの搬送トラブルの回数は従来10回であったが本発明実施後5回まで減少した。   According to the present embodiment, the state of the semiconductor substrate detachment from the electrode is monitored by monitoring the helium gas flow rate, and is transported when the flow rate standard value is satisfied. It is possible to prevent an accident that the semiconductor substrate sometimes falls into the chamber. Actually, the number of conveyance troubles per 10000 semiconductor substrates was 10 times in the past, but has been reduced to 5 times after the present invention is implemented.

(第2の実施の形態)
図6は、本発明の第2の実施の形態による半導体装置の処理工程を示す工程フロー図である。まず、ドライエッチングなどプラズマ処理する半導体基板を減圧可能なチャンバー内部の下部電極上に搬送設置する。この下部電極は第1の実施の形態の場合と同一構造を有している。次に下部電極に直流電圧などを印加し静電吸着で半導体基板を下部電極に固定した後、半導体基板に対しプラズマ処理を行い終了させ、続いて静電吸着していた直流電圧を除き、半導体基板の下部電極からの脱離工程を開始するが、この工程においては複数回ヘリウムガス流量をモニターあるいは測定しながら行うものである。
(Second Embodiment)
FIG. 6 is a process flow diagram showing the processing steps of the semiconductor device according to the second embodiment of the present invention. First, a semiconductor substrate to be subjected to plasma processing such as dry etching is transported and installed on a lower electrode inside a chamber that can be decompressed. This lower electrode has the same structure as in the first embodiment. Next, after applying a DC voltage or the like to the lower electrode and fixing the semiconductor substrate to the lower electrode by electrostatic adsorption, the semiconductor substrate is subjected to plasma treatment, and then the semiconductor is removed except for the DC voltage that has been electrostatically adsorbed. The process of desorbing the substrate from the lower electrode is started. In this process, the helium gas flow rate is monitored or measured a plurality of times.

図7は、半導体基板の吸着固定からプラズマ処理、基板の脱離までのヘリウムガス流量変化のうち、半導体基板脱離工程部分を拡大して示す図である。時間65秒までは基板のプラズマ処理期間であり、65秒以後半導体基板の脱離工程が開始され、電荷が放電することによって時間と共に下部電極と基板との吸着力が弱まるためにヘリウムガス流量が増加していく。図7に示すように、下部電極より半導体基板処理を行うチャンバー内部に流出するヘリウムガス流量の増加係数は半導体基板処理時に0.0、脱離工程が開始されると流量増加係数は0.1→0.5→2.0→0.1と変化する。   FIG. 7 is an enlarged view of the semiconductor substrate desorption process portion in the change in the helium gas flow rate from the adsorption fixation of the semiconductor substrate to the plasma processing and the desorption of the substrate. The time up to 65 seconds is the plasma treatment period of the substrate. After 65 seconds, the semiconductor substrate desorption process is started, and the charge discharge causes the adsorption power between the lower electrode and the substrate to weaken with time. It will increase. As shown in FIG. 7, the increase coefficient of the flow rate of helium gas flowing out from the lower electrode into the chamber for processing the semiconductor substrate is 0.0 at the time of processing the semiconductor substrate, and when the desorption process is started, the increase coefficient of the flow rate is 0.1. → 0.5 → 2.0 → 0.1

本実施の形態では、脱離工程におけるガス流量規格値を13cc/min.と26cc/min.に置き、図6のフロー図に示すように第1回目のヘリウムガス流量測定を70秒から72秒付近の時間で行う。そしてガス流量が第1の規格値13cc/min.以上を満足しているがどうかを判定し、満足している場合は最終脱離工程に進み、満足していない場合は再度ガス流量値の判定を行う。   In the present embodiment, the gas flow rate standard value in the desorption process is 13 cc / min. And 26 cc / min. Then, as shown in the flowchart of FIG. 6, the first helium gas flow rate measurement is performed in the time from about 70 seconds to about 72 seconds. The gas flow rate is the first standard value 13 cc / min. Whether or not the above is satisfied is determined. If satisfied, the process proceeds to the final desorption process. If not satisfied, the gas flow rate value is determined again.

次に最終脱離工程では、時間75秒付近で第2回目のヘリウムガス流量測定を行い、第2の規格値26cc/min.以上を満足しているかどうかを判定し、満足している場合は、電極の突き上げピンを上昇させ、半導体基板をチャンバー外に搬送し、次の処理すべき半導体基板をチャンバー内の電極上に搬送する。第2の規格値付近ではまだ半導体基板あるいは電極に電荷が残留しているが、非常に弱いものであり、搬送には問題がない。第2の規格値を満足していない場合は再度ヘリウムガス流量を測定し、規格値との比較判断を行う。   Next, in the final desorption step, the second helium gas flow rate measurement is performed at a time around 75 seconds, and the second standard value 26 cc / min. Judgment is made if the above is satisfied, and if satisfied, the push-up pin of the electrode is raised, the semiconductor substrate is transferred out of the chamber, and the next semiconductor substrate to be processed is transferred onto the electrode in the chamber To do. In the vicinity of the second standard value, the charge still remains on the semiconductor substrate or the electrode, but it is very weak and there is no problem in transportation. If the second standard value is not satisfied, the helium gas flow rate is measured again, and a comparison with the standard value is made.

このように本実施の形態では、脱離工程におけるヘリウムガス流量の増加係数の変化点のヘリウムガス流量値をそれぞれ13cc/min.、26cc/min.を規格として設定し、段階的にヘリウムガス流量値が増加することを確認し、半導体基板を下部電極より脱離させる。すなわち、脱離工程各ステップにおいて、常時ヘリウムガス流量値の監視を実施し、規格に達した時点で次のステップに進むものである。複数回流量値を確認することで脱離工程がよりいっそう確実なものとすることができ、基板処理後の基板搬送時の事故を防止することができる。   As described above, in the present embodiment, the helium gas flow rate value at the change point of the increase coefficient of the helium gas flow rate in the desorption process is 13 cc / min. 26 cc / min. Is set as a standard, and it is confirmed that the helium gas flow rate value increases stepwise, and the semiconductor substrate is detached from the lower electrode. That is, the helium gas flow rate value is constantly monitored in each step of the desorption process, and when the standard is reached, the process proceeds to the next step. By confirming the flow rate value a plurality of times, the desorption process can be made even more reliable, and accidents during substrate transport after substrate processing can be prevented.

以上は規格値を2個設定したものであるが、図7に示す各段階である10cc/min.、13cc/min.、26cc/min.、27cc/min.と4この規格値を設定し、最終的にヘリウムガス流量の増加係数が0.1を示した時のヘリウムガス流量値27sccmを半導体基板処理条件終了するための規格として設定し、規格に達した時点で半導体基板搬送が開始させてもよい。この実施の形態では、半導体基板10000枚処理当たりの搬送トラブルは、従来の10回に対し0回であったので、第1の実施形態と比較して優れた方法であるといえる。   The above is a set of two standard values, but each stage shown in FIG. 13 cc / min. 26 cc / min. 27 cc / min. 4 This standard value is set, and the helium gas flow rate value 27 sccm when the increase coefficient of the helium gas flow rate finally shows 0.1 is set as the standard for ending the semiconductor substrate processing conditions, and the standard has been reached. The semiconductor substrate conveyance may be started at the time. In this embodiment, the conveyance trouble per 10000 semiconductor substrates processing was 0 times compared with the conventional 10 times, so it can be said that this is an excellent method compared with the first embodiment.

(第3の実施の形態)
図8は、本発明の第3の実施の形態による半導体装置の処理工程を示す工程フロー図である。まず、ドライエッチングなどプラズマ処理する半導体基板を減圧可能なチャンバー内部の下部電極上に搬送設置する。この下部電極は第1の実施の形態の場合と同一構造を有している。次に下部電極に直流電圧などを印加し静電吸着で半導体基板を下部電極に固定した後、半導体基板に対しプラズマ処理を行い終了させ、続いて静電吸着していた直流電圧を除き、半導体基板の下部電極からの脱離工程を開始する。本実施の形態においてはまず、下部電極に具備する突き上げピンを作動させ、静電吸着している半導体基板の裏面を、下部電極から完全に脱離しない程度の圧力で押圧し、わずかに持ち上げることが特徴である。大きい圧力を用いると、従来のように基板が急激に跳ね上がるからである。
(Third embodiment)
FIG. 8 is a process flow diagram showing the processing steps of the semiconductor device according to the third embodiment of the present invention. First, a semiconductor substrate to be subjected to plasma processing such as dry etching is transported and installed on a lower electrode inside a chamber that can be decompressed. This lower electrode has the same structure as in the first embodiment. Next, after applying a DC voltage or the like to the lower electrode and fixing the semiconductor substrate to the lower electrode by electrostatic adsorption, the semiconductor substrate is subjected to plasma treatment, and then the semiconductor is removed except for the DC voltage that has been electrostatically adsorbed. The desorption process from the lower electrode of the substrate is started. In this embodiment, first, the push-up pin provided in the lower electrode is operated, and the back surface of the semiconductor substrate that is electrostatically attracted is pressed with a pressure that does not completely detach from the lower electrode, and is lifted slightly. Is a feature. This is because when a large pressure is used, the substrate jumps abruptly as in the prior art.

図9は下部電極4の構造を示す概略図であり、突き上げピン10が上昇し、半導体基板2を完全に持ち上げた状態を示し、下部電極表面からヘリウムガス5の流量が増加し周辺に流れ出している。脱離の初期段階で行われる基板押圧では図9のようには完全に下部電極4から基板が離れずピン10で突き上げられた中心部のみが0.2mm程度持ち上がり、周辺部は接触したままである。   FIG. 9 is a schematic diagram showing the structure of the lower electrode 4, showing the state where the push-up pin 10 is raised and the semiconductor substrate 2 is completely lifted up, and the flow rate of the helium gas 5 increases from the surface of the lower electrode and flows out to the periphery. Yes. In the substrate pressing performed at the initial stage of detachment, the substrate is not completely separated from the lower electrode 4 as shown in FIG. 9, and only the central portion pushed up by the pin 10 is lifted by about 0.2 mm, and the peripheral portion remains in contact. is there.

図10は、半導体基板の吸着固定からプラズマ処理、基板の脱離までのヘリウムガス流量変化のうち、半導体基板脱離工程部分を拡大して示す図である。時間t1秒までは基板のプラズマ処理期間であり、時間t1〜t2が半導体基板を押圧した期間であり、一定時間押圧することによって徐々に基板が下部電極から離れるのでヘリウムガス流量が増加していき、ある時間で一定となる。この一定となった時間がほぼ完全に基板が下部電極から離れた状態になった時間であり、図10における流量27cc/min.を第1の流量規格値とする。   FIG. 10 is an enlarged view showing the semiconductor substrate desorption process portion in the change in the helium gas flow rate from the adsorption fixation of the semiconductor substrate to the plasma processing and the desorption of the substrate. The time t1 second is the plasma processing period of the substrate, and the time t1 to t2 is the period during which the semiconductor substrate is pressed. The substrate is gradually separated from the lower electrode by pressing for a certain time, and the helium gas flow rate increases. It becomes constant at a certain time. This constant time is the time when the substrate is almost completely separated from the lower electrode, and the flow rate of 27 cc / min. Is a first flow rate standard value.

脱離確認として、常時ヘリウムガス流量値の監視を実施するが、ヘリウムガス流量が規格に達した時点で半導体基板の脱離が完了したと判断する。もし規格値に達していなければ図8に示すようにさらに一定時間の後、ヘリウムガス流量を再度測定し流量規格値と比較する。   As the desorption confirmation, the helium gas flow rate value is constantly monitored. When the helium gas flow rate reaches the standard, it is determined that the desorption of the semiconductor substrate is completed. If the standard value has not been reached, the helium gas flow rate is measured again after a certain period of time as shown in FIG. 8 and compared with the standard flow rate value.

その後に図9において、再度半導体基板2を下部電極4に降下させ、ヘリウムガスの流量を測定する。図11に降下時のヘリウムガス流量の正常なときの変動を示す。図11のようにその低下量が1cc/min.以内、すなわち流量変化量が一定の規格値以内であれば、半導体基板は下部電極からの脱離が完了したと判断する。下部電極または半導体基板の電荷がほとんど放電して残留していなければ静電力が働かず、基板の重量だけでヘリウムガス流量が減少するので、その減少量がわずかであるからである。   Thereafter, in FIG. 9, the semiconductor substrate 2 is again lowered to the lower electrode 4 and the flow rate of helium gas is measured. FIG. 11 shows fluctuations in the normal flow rate of the helium gas during the descent. As shown in FIG. 11, the amount of decrease is 1 cc / min. If the flow rate variation is within a certain standard value, it is determined that the semiconductor substrate is completely detached from the lower electrode. This is because the electrostatic force does not work unless the electric charges of the lower electrode or the semiconductor substrate are almost discharged and remain, and the flow rate of helium gas is reduced only by the weight of the substrate, so that the reduction amount is slight.

これに対して脱離が不完全な場合、再度基板を下部電極に降下させると、相当量の電荷がまだ残留しているので吸着力が働くので、半導体基板降下後のヘリウムガスの流量は図12に示すように、1cc/min.以上低下し、最終的には半導体基板処理中と同等の約9sccmまで低下することになる。図8の脱離工程において、規格を満足しないときは、ここでプラズマ処理装置による自動処理を停止し、チャンバーを大気解放して基板の回収作業を実施する。流量変化量が規格を満足し基板の脱離が完了したと判断したときは、突き上げピンを上昇させ半導体基板をチャンバー外に搬送し、次の処理すべき基板を搬送する。   On the other hand, when desorption is incomplete, if the substrate is lowered again to the lower electrode, a considerable amount of electric charge still remains and adsorption force works, so the flow rate of helium gas after the semiconductor substrate is lowered is 12, 1 cc / min. As a result, the voltage drops to about 9 sccm, which is equivalent to that during processing of the semiconductor substrate. In the desorption process of FIG. 8, when the standard is not satisfied, the automatic processing by the plasma processing apparatus is stopped here, the chamber is opened to the atmosphere, and the substrate is collected. When it is determined that the flow rate change amount satisfies the standard and the removal of the substrate is completed, the push-up pin is raised to transport the semiconductor substrate out of the chamber, and the next substrate to be processed is transported.

本発明の第3の実施形態では、予め半導体基板を機械的・強制的に下部電極からわずかに持ち上げ脱離のための補助をしてほぼ電荷を取り除き、さらにヘリウムガス流量の変化を確認しながら離脱させるので、確実に脱離することができるとともに、強制的に脱離する工程を採用した分だけ脱離時間を短縮することができるという利点がある。本実施の形態を用いた半導体基板の加工処理の場合の結果を表1に示す。   In the third embodiment of the present invention, the semiconductor substrate is slightly lifted mechanically and forcibly from the lower electrode in advance to assist in the detachment, and the charge is substantially removed, while further confirming the change in the helium gas flow rate. Since it is desorbed, there is an advantage that desorption can be surely performed and the desorption time can be shortened by the amount of adopting the forcible desorption step. Table 1 shows the results in the case of processing a semiconductor substrate using this embodiment.

Figure 2005150623
表1から明らかな通り、従来半導体基板処理10000枚毎に10回発生していた搬送トラブルを0回に抑制することが可能となった。また、半導体基板の脱離にかかる時間が10秒短縮され、基板処理時間も10秒短縮されるので1時間当たりの基板処理枚数が36枚から40枚へ増加させることを達成した。
Figure 2005150623
As is apparent from Table 1, it has become possible to suppress the transport trouble that has occurred 10 times for every 10000 wafers processed in the past to 0 times. Further, the time required for desorption of the semiconductor substrate is reduced by 10 seconds, and the substrate processing time is also reduced by 10 seconds, so that the number of processed substrates per hour can be increased from 36 to 40.

以上のように本発明による基板の脱離方法は、ドライエッチング、プラズマCVDプロセスに応用できるだけでなく、この他の静電吸着による基板固定を行う装置にを用いる製造にも応用することができる。   As described above, the substrate detachment method according to the present invention can be applied not only to dry etching and plasma CVD processes, but also to manufacturing using other apparatus for fixing a substrate by electrostatic adsorption.

従来の機械的に半導体基板を下部電極に固定する方式の電極構造を示す図。The figure which shows the conventional electrode structure of the system which fixes a semiconductor substrate to a lower electrode mechanically. 従来の静電吸着力を用い半導体基板を下部電極に固定する方式の電極構造を示す図。The figure which shows the electrode structure of the system which fixes a semiconductor substrate to a lower electrode using the conventional electrostatic attraction force. 本発明の第1の実施の形態による基板脱離工程の工程フロー図。The process flowchart of the board | substrate removal | desorption process by the 1st Embodiment of this invention. 同、半導体基板処理から基板脱離工程に至る間のヘリウムガス流量変化を示すグラフ。The graph which shows the helium gas flow rate change from a semiconductor substrate process to a board | substrate removal | desorption process. 同、半導体基板処理時の半導体基板脱離工程におけるヘリウムガス流量変化を示すグラフ。The graph which shows the helium gas flow rate change in the semiconductor substrate removal | desorption process at the time of a semiconductor substrate process. 本発明の第2の実施の形態による基板脱離工程の工程フロー図。The process flowchart of the board | substrate removal | desorption process by the 2nd Embodiment of this invention. 同、半導体基板処理時の半導体基板脱離工程におけるヘリウムガス流量変化を示すグラフ。The graph which shows the helium gas flow rate change in the semiconductor substrate removal | desorption process at the time of a semiconductor substrate process. 本発明の第3の実施の形態による基板脱離工程の工程フロー図。The process flowchart of the board | substrate removal | desorption process by the 3rd Embodiment of this invention. 同、突き上げピンを有する下部電極の構造を示す図。The figure which shows the structure of the lower electrode which has a push-up pin similarly. 同、半導体基板脱離工程を用いたときのヘリウムガス流量値変化を示すグラフ。The graph which shows a helium gas flow rate value change when a semiconductor substrate detachment | desorption process is used. 同、半導体基板処理時の半導体基板脱離工程において機械的に半導体基板を上昇させた後、再度下部電極に降下させ、脱離完了した時のヘリウムガス流量変化を示すグラフ。FIG. 6 is a graph showing a change in helium gas flow rate when the semiconductor substrate is mechanically raised in the semiconductor substrate detachment process during semiconductor substrate processing and then lowered again to the lower electrode to complete the detachment. 同、半導体基板処理時の半導体基板脱離工程において機械的に半導体基板を上昇させた後、再度下部電極に降下させ、脱離不良になった時のヘリウムガス流量変化を示すグラフ。FIG. 6 is a graph showing a change in helium gas flow rate when the semiconductor substrate is mechanically raised in the semiconductor substrate detachment process during processing of the semiconductor substrate and then lowered again to the lower electrode to cause detachment failure.

符号の説明Explanation of symbols

1 固定部材
2 半導体基板
3 下部電極
4 下部電極
5 ヘリウムガス
10 突き上げピン
DESCRIPTION OF SYMBOLS 1 Fixing member 2 Semiconductor substrate 3 Lower electrode 4 Lower electrode 5 Helium gas 10 Push-up pin

Claims (7)

基板裏面にガスを供給できる基板支持部に、静電力により基板を吸着させて固定し、前記基板を加工処理し、
前記基板が固定された前記基板支持部から前記基板裏面にガスを供給しながら前記ガスの流量を測定し、
前記測定したガス流量が予め決められた規格流量値以上であるか否かを判定し、
前記測定したガス流量が前記規格流量値以上となった場合に、前記基板支持部からの前記基板脱離を完了することを含む半導体装置の製造方法。
A substrate support that can supply gas to the backside of the substrate is fixed by adsorbing the substrate by electrostatic force, processing the substrate,
Measure the flow rate of the gas while supplying the gas from the substrate support part to which the substrate is fixed to the back surface of the substrate,
Determining whether the measured gas flow rate is greater than or equal to a predetermined standard flow rate value;
A method of manufacturing a semiconductor device, comprising: completing the desorption of the substrate from the substrate support portion when the measured gas flow rate becomes equal to or higher than the standard flow rate value.
基板裏面にガスを供給できる基板支持部に、静電力により基板を吸着させて固定し、前記基板を加工処理し、
前記基板が固定された前記基板支持部から前記基板裏面にガスを供給しながらその増加するガス流量を測定し、
前記測定したガス流量が予め決められた規格流量値以上に達したか否かを判定し、
前記測定したガス流量が前記規格流量値以上となった場合に、前記基板支持部からの前記基板脱離を完了する工程とを含む半導体装置の製造方法であって、
前記ガス流量が前記規格値に達する前に、前記規格流量値よりも小さく、互いに異なり、予め決められた1つ以上の規格流量値のそれぞれに、前記ガス流量が達したか否かを判定することを特徴とする半導体装置の製造方法。
A substrate support that can supply gas to the backside of the substrate is fixed by adsorbing the substrate by electrostatic force, processing the substrate,
Measure the increasing gas flow rate while supplying gas from the substrate support part to which the substrate is fixed to the back surface of the substrate,
Determining whether the measured gas flow rate has reached or exceeded a predetermined standard flow rate value;
A step of completing the desorption of the substrate from the substrate support portion when the measured gas flow rate is equal to or higher than the standard flow rate value,
Before the gas flow rate reaches the standard value, it is determined whether or not the gas flow rate has reached each of one or more predetermined standard flow rate values which are smaller than the standard flow rate value and different from each other. A method for manufacturing a semiconductor device.
基板裏面にガスを供給できる基板支持部に、静電力により基板を吸着させて固定し、前記基板を処理し、
前記基板が固定された前記基板支持部から前記基板裏面にガスを供給するとともに前記基板の裏面を押圧し、少なくとも前記基板裏面の一部を前記基板支持部から離し、
前記基板の裏面を押圧しながら前記ガスの流量を測定し、
前記測定したガス流量が予め決められた規格流量値以上となった場合に、前記押圧を除去した後、実質的に前記測定したガス流量からの流量変化量を測定し、
前記流量変化量が、予め定められた流量変化量以内である場合に、前記基板支持部からの前記基板脱離を完了することを特徴とする半導体装置の製造方法。
A substrate support that can supply gas to the backside of the substrate is fixed by adsorbing the substrate by electrostatic force, processing the substrate,
Supplying gas to the back surface of the substrate from the substrate support portion to which the substrate is fixed, pressing the back surface of the substrate, and separating at least a part of the back surface of the substrate from the substrate support portion;
Measure the flow rate of the gas while pressing the back surface of the substrate,
When the measured gas flow rate is equal to or higher than a predetermined standard flow rate value, after removing the pressure, the flow rate variation from the measured gas flow rate is substantially measured,
A method of manufacturing a semiconductor device, comprising: completing the desorption of the substrate from the substrate support portion when the flow rate change amount is within a predetermined flow rate change amount.
前記ガスは前記基板の温度を制御するためのガスである請求項1〜3のいずれかに記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the gas is a gas for controlling a temperature of the substrate. 前記予め決められた規格流量値は、実質的に前記基板が自重のみで前記基板支持部に設置されたときの前記ガス流量値である請求項1〜3のいずれかに記載の半導体装置の製造方法。   The semiconductor device manufacturing method according to claim 1, wherein the predetermined standard flow rate value is the gas flow rate value when the substrate is placed on the substrate support portion under substantially its own weight. Method. 前記基板支持部には前記基板を前記支持部から持ち上げる突き上げピンが設けられ、前記押圧は前記突き上げピンによって行う請求項3に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 3, wherein the substrate support portion is provided with a push-up pin for lifting the substrate from the support portion, and the pressing is performed by the push-up pin. 前記ガス流量の測定は、静電力により前記基板を吸着させるために前記基板支持部に印加された電圧を除去した後に行う請求項1〜3のいずれかに記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the measurement of the gas flow rate is performed after removing a voltage applied to the substrate support portion in order to adsorb the substrate by electrostatic force.
JP2003389696A 2003-11-19 2003-11-19 Manufacturing method of semiconductor device Expired - Fee Related JP4313656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389696A JP4313656B2 (en) 2003-11-19 2003-11-19 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389696A JP4313656B2 (en) 2003-11-19 2003-11-19 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2005150623A true JP2005150623A (en) 2005-06-09
JP4313656B2 JP4313656B2 (en) 2009-08-12

Family

ID=34696357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389696A Expired - Fee Related JP4313656B2 (en) 2003-11-19 2003-11-19 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4313656B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278374A (en) * 2009-06-01 2010-12-09 Tokyo Electron Ltd Adsorption detection resolving method, processing apparatus, and computer-readable storage medium
JP2013504874A (en) * 2009-09-10 2013-02-07 ラム リサーチ コーポレーション Method and apparatus for plasma dechuck optimization based on coupling of plasma signal to substrate position and substrate potential
KR20150002481A (en) * 2013-06-28 2015-01-07 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278374A (en) * 2009-06-01 2010-12-09 Tokyo Electron Ltd Adsorption detection resolving method, processing apparatus, and computer-readable storage medium
KR101118579B1 (en) 2009-06-01 2012-02-27 도쿄엘렉트론가부시키가이샤 Method for detecting and releasing electrostatic attraction, and processing apparatus
JP2013504874A (en) * 2009-09-10 2013-02-07 ラム リサーチ コーポレーション Method and apparatus for plasma dechuck optimization based on coupling of plasma signal to substrate position and substrate potential
KR20150002481A (en) * 2013-06-28 2015-01-07 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
KR101698375B1 (en) 2013-06-28 2017-01-20 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Also Published As

Publication number Publication date
JP4313656B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
TWI567863B (en) Plasma processing device, substrate unloading device and method
KR102174879B1 (en) Suction confirmation method, displacement confirmation method and decompression processing apparatus of wafer
JP4282100B2 (en) Method for removing object to be attracted in electrostatic chuck and electrostatic chuck
JP2015532782A (en) Wafer etching system and wafer etching process using the same
US20060102588A1 (en) Method of processing an object and method of controlling processing apparatus to prevent contamination of the object
JP2008041969A (en) Removal method of substrate
JP4313656B2 (en) Manufacturing method of semiconductor device
JP2002313902A (en) Electrostatic chuck and method of dismounting substrate therefrom
JP4060941B2 (en) Plasma processing method
JP2011040658A (en) Workpiece holding apparatus, method of controlling electrostatic chuck, and method of manufacturing semiconductor device
JP2685006B2 (en) Dry etching equipment
JP6537688B1 (en) Substrate detachment method in plasma processing apparatus
CN110571123B (en) Method for improving etching cavity defect
JP2000200825A (en) Substrate removal control method of vacuum treatment apparatus and vacuum treatment apparatus
KR101087140B1 (en) Chucking/Dechucking Apparatus and Chucking/Dechucking Method in Plasma Processing Apparatus
JP2817585B2 (en) Sample removal method
KR101403850B1 (en) System for holding large scale substrate
CN113192832A (en) Substrate processing method and substrate processing system
JP2014107382A (en) Detachment method of semiconductor substrate
KR101963149B1 (en) Method for sensing a substrate on electro static chuck of thin layer deposition apparatus
JP7526645B2 (en) SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING SYSTEM
JP2972763B1 (en) How to hold plasma treated sample
TWI827962B (en) Electrostatic device, substrate processing system in which it is located and replacement cleaning method thereof
JP2003264224A (en) Vacuum treatment device
JP3371888B2 (en) Electrostatic chuck and method of detaching an object to be attracted from electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees