JP2005150496A - Anisotropic transparent solid material, spherical surface acoustic wave element and its manufacturing method - Google Patents

Anisotropic transparent solid material, spherical surface acoustic wave element and its manufacturing method Download PDF

Info

Publication number
JP2005150496A
JP2005150496A JP2003387569A JP2003387569A JP2005150496A JP 2005150496 A JP2005150496 A JP 2005150496A JP 2003387569 A JP2003387569 A JP 2003387569A JP 2003387569 A JP2003387569 A JP 2003387569A JP 2005150496 A JP2005150496 A JP 2005150496A
Authority
JP
Japan
Prior art keywords
crystal
solid material
axis
surface acoustic
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003387569A
Other languages
Japanese (ja)
Other versions
JP4569097B2 (en
Inventor
Susumu Emori
晋 江森
Hiroatsu Nomura
浩功 野村
Nobutaka Nakaso
教尊 中曽
Shingo Akao
慎吾 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003387569A priority Critical patent/JP4569097B2/en
Publication of JP2005150496A publication Critical patent/JP2005150496A/en
Application granted granted Critical
Publication of JP4569097B2 publication Critical patent/JP4569097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic transparent solid material which can be manufactured only by one crystal axis identification of a crystal material on the basis of a mark even in a post process including surface processing such as a polishing process, by previously forming the mark indicating a crystal axis direction which does not disappear after spherical processing on a crystal sphere, by performing spherical processing after forming the mark indicating the crystal axis in the crystal material in a cut state of the material or before performing spherical processing; to provide a manufactured spherical surface acoustic element; and to provide a method capable of speedy and simply forming a mark indicating the crystal axis of the spherical surface acoustic wave element using the crystal sphere. <P>SOLUTION: The anisotropic transparent solid material is obtained by putting a mark indicating an azimuth axis in a solid material having transparency and anisotropy by using laser light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透明固体材料の内部加工に係わり、詳しくは、結晶材料などの異方性を有する材料の表面に損傷を与えることなく簡便に結晶軸の方向が明らかになる異方性透明固体材料、球状弾性表面波素子およびその製造方法に関する技術に関する。   The present invention relates to internal processing of a transparent solid material, and in particular, an anisotropic transparent solid material in which the direction of crystal axes is easily revealed without damaging the surface of an anisotropic material such as a crystal material. The present invention relates to a technique relating to a spherical surface acoustic wave element and a method for manufacturing the same.

基材上に弾性表面波を発生させるとともに基材上に発生された弾性表面波を受信するものとして弾性表面波素子は従来から良く知られている。弾性表面波素子とは圧電体上に1対の櫛形電極が設けられていて、一方の櫛形電極に高周波電圧を供給することにより一方の櫛形電極の並んでいる方向に弾性表面波を発生させ、他方の櫛形電極が一方の櫛形電極から発生される弾性表面波の移動方向に配置されていて上記弾性表面波を受け取るというものである。弾性表面波素子は、遅延線,発信機の為の発振素子及び共振素子、周波数を選択する為のフィルター、化学センサー、バイオセンサー、またはリモートタグ等に使用されている。   2. Description of the Related Art A surface acoustic wave element has been well known as one that generates surface acoustic waves on a substrate and receives surface acoustic waves generated on the substrate. A surface acoustic wave element is provided with a pair of comb-shaped electrodes on a piezoelectric body. By supplying a high frequency voltage to one comb-shaped electrode, a surface acoustic wave is generated in the direction in which the one comb-shaped electrode is aligned, The other comb-shaped electrode is arranged in the moving direction of the surface acoustic wave generated from the one comb-shaped electrode and receives the surface acoustic wave. The surface acoustic wave element is used for a delay line, an oscillation element and a resonance element for a transmitter, a filter for selecting a frequency, a chemical sensor, a biosensor, a remote tag, or the like.

このような弾性表面波素子において1対の櫛形電極相互間を弾性表面波が伝搬する際の伝搬損失を出来る限り小さくし、共振周波数の精度を高める為の一つの提案として、特許文献1に示すような球状弾性表面波素子がある。このような球状弾性表面波素子においては、基材として異方性のある圧電結晶球を用いるため、結晶球表面においてどの結晶軸に対してどの位置にすだれ状電極(櫛型電極)を設けるかで、発生する弾性表面波やその伝搬速度に大きな違いが生じてしまう。しかし、圧電結晶球を基材にし、その表面にすだれ状電極などを形成して球形の弾性波デバイス(素子)を作成する際に、圧電結晶材料を球形加工すると、その形状により結晶軸方向を見定める事が困難になり、素子の製造にかかせないパターニングや素子の加工を行うために1個1個の結晶球について結晶方向を測定しなくてはならず、特にX線などの測定に時間のかかる方法を採用した場合には装置も高価で、生産速度があがらないという問題があった。   As one proposal for reducing the propagation loss when a surface acoustic wave propagates between a pair of comb-shaped electrodes in such a surface acoustic wave element as much as possible and increasing the accuracy of the resonance frequency, Patent Document 1 discloses. There is such a spherical surface acoustic wave device. In such a spherical surface acoustic wave device, since an anisotropic piezoelectric crystal sphere is used as a base material, an interdigital electrode (comb electrode) is provided at which position with respect to which crystal axis on the surface of the crystal sphere. Thus, a large difference occurs in the generated surface acoustic wave and its propagation speed. However, when creating a spherical acoustic wave device (element) by using a piezoelectric crystal sphere as a base material and forming interdigital electrodes on its surface, if the piezoelectric crystal material is processed into a sphere, the direction of the crystal axis depends on the shape. It becomes difficult to determine, and in order to perform patterning and device processing that are indispensable for device fabrication, the crystal orientation of each crystal sphere must be measured, especially for measuring X-rays, etc. When such a method is adopted, there is a problem that the apparatus is expensive and the production speed is not increased.

結晶球の結晶方位測定方法として一般に考えられるのは、X線ラウエ法と呼ばれる方法が一般的である。   A method called X-ray Laue method is generally considered as a method for measuring the crystal orientation of crystal spheres.

単結晶材料が育成される際には結晶独自の結晶成長速度の結晶方位への依存から単結晶の形から判別出来ることが多いが、一旦結晶球として球形加工されてしまうと、その形状から結晶軸を同定する事は出来なくなる。   When a single crystal material is grown, it can often be discriminated from the shape of the single crystal because of the dependence of the crystal growth rate unique to the crystal on the crystal orientation. The axis can no longer be identified.

X線ラウエ方法とは、X線ビームを結晶の或る方向から照射すると、結晶を構成する原子の配列に従ってX線がその結晶面に従った方向に反射される事から、その反射X線のパターンから結晶方向を測定するもので、水晶発振子の材料切り出し工程等で多く用いられている。   In the X-ray Laue method, when an X-ray beam is irradiated from a certain direction of a crystal, the X-ray is reflected in a direction according to the crystal plane according to the arrangement of atoms constituting the crystal. It measures the crystal direction from a pattern, and is often used in the material cutting process of a crystal oscillator.

球形加工された結晶球の結晶軸測定方法として、図2に示す光の旋回物性を利用した方法がある。特に水晶やLiNbO3、LiTaO3などにおいて、図2(A)に示す方法でZ軸方向に偏光させた光を入射して透過した光を別個の偏光板を通して観察すると、結晶材料の持つ光の旋回性と、球形としての幾何学的特徴から同心円状のマーク(図2(B))が現れる。このマークが球の中心に見える方向がZ軸方向と判断する事が出来る。この方法の欠点は、Z軸方向の測定には用いる事が出来るが、例えば水晶のX結晶軸あるいはY結晶軸をこれによって測定する事は出来ないことにある。また、Z軸の向きまでは判定できないため、裏表が重要になるような結晶球には対応できないという問題がある。 As a method for measuring the crystal axis of a spherically processed crystal sphere, there is a method using the rotating physical properties of light shown in FIG. In particular, in crystal, LiNbO 3 , LiTaO 3, etc., when the light that has been polarized and transmitted in the Z-axis direction by the method shown in FIG. A concentric mark (FIG. 2B) appears due to the swirlability and the geometric feature as a sphere. The direction in which this mark can be seen at the center of the sphere can be determined as the Z-axis direction. The disadvantage of this method is that it can be used for measurement in the Z-axis direction, but for example the X crystal axis or Y crystal axis of quartz cannot be measured. Further, since the direction of the Z-axis cannot be determined, there is a problem that it is not possible to deal with crystal spheres where the front and back are important.

結晶材料を結晶球に加工する一般的な方法を図3を用いて説明する。   A general method of processing a crystal material into a crystal sphere will be described with reference to FIG.

多くの結晶球を取り出す為の図示しない結晶材料からのウエハー材1の切り出しが行われる。   The wafer material 1 is cut out from a crystal material (not shown) for taking out many crystal spheres.

塊状の結晶材料は図3(A)の如く例えば結晶軸のZ方向に垂直な面で一旦平面板に切断される。このウエハー材1をZカット結晶基板と呼ぶ。このZカット結晶基板は更に細かく切断されて、図3(B)に図示するように多数の多角柱チップ(ここでは立方体チップ)に切り落とされる。次いで、図示しない工程で角が取り除かれて、最終的に図示しないイマハシ式丸玉研磨機と呼ばれる、球形の溝の中を圧力をかけられながら回転させて徐々に尖った部位を削り取る。   As shown in FIG. 3A, the massive crystal material is once cut into a flat plate at a plane perpendicular to the Z direction of the crystal axis, for example. This wafer material 1 is called a Z-cut crystal substrate. This Z-cut crystal substrate is further finely cut and cut into a large number of polygonal column chips (here, cubic chips) as shown in FIG. Next, the corners are removed in a process (not shown), and finally a pointed part is gradually scraped off by rotating while applying pressure in a spherical groove called an Imahashi-type round ball polishing machine (not shown).

あるいは最後は適当な研磨物と共に材料を混合し、長時間かき混ぜる事で自然と材料相互間で衝突し、あるいは研磨剤との摩擦によって角がとれて結晶球3にするものである。   Alternatively, the material is mixed with an appropriate polishing object and stirred for a long time, so that the material naturally collides with each other, or the angle is removed by friction with the abrasive to form the crystal sphere 3.

一般に、このような方法を用いて結晶球3を作成する際には、当初の立方体あるいは荒削りした角を取った個々の結晶材料の直径は、目標とする結晶球3の直径の概ね1.4倍の大きさが必要であり、図3(C)に示すように真球状に作り込まれる。   In general, when the crystal sphere 3 is formed using such a method, the diameter of each crystal material having an initial cube or rough corner is approximately 1.4 of the diameter of the target crystal sphere 3. Double size is required, and it is made into a perfect sphere as shown in FIG.

図4に示すように、新しい弾性表面波デバイスの一つとして球状弾性表面波素子4がある。球状弾性表面波素子4は圧電材料でできた円環状に連続する表面に弾性表面波41を発生して多重周回させるもので、円環状表面を弾性表面波41が伝搬する際に、その表面に付着する物質などによって周回速度が変化するのを電気的に測定するセンサーとして期待されている。弾性表面波41が結晶球3の表面を周回して伝搬する為には結晶で決まった方位を軸として弾性表面波を励起する必要がある。この為に、結晶球3の結晶方位により決まった特定の角度に弾性表面波41を励起検出するすだれ状電極42をホトリソグラフィーなどの方法を用いて形成しなくてはならない。   As shown in FIG. 4, there is a spherical surface acoustic wave element 4 as one of new surface acoustic wave devices. The spherical surface acoustic wave element 4 generates a surface acoustic wave 41 on a circular continuous surface made of a piezoelectric material and makes multiple rounds. When the surface acoustic wave 41 propagates on the annular surface, It is expected as a sensor that electrically measures the change of the circulation speed due to the adhered substance. In order for the surface acoustic wave 41 to propagate around the surface of the crystal sphere 3, it is necessary to excite the surface acoustic wave about the orientation determined by the crystal. For this purpose, the interdigital electrode 42 for exciting and detecting the surface acoustic wave 41 at a specific angle determined by the crystal orientation of the crystal sphere 3 must be formed using a method such as photolithography.

球状弾性表面波素子4は、例えば、水晶のZ軸シリンダーと呼ばれる円環状経路43を弾性表面波41を周回させる方法においては、図4(B)に示すように、その円環領域を外れた部位44(円環経路を赤道とすると極に相当する付近)を削っても周回特性に大きな影響を与えない事が知られている。その為、この部分を平らに削って他のICチップ等の電子部品、あるいはすだれ状電極42の結線スペースとして利用する、あるいは基板に固定する為の面として利用が望まれてきた。この極の平面の加工方法としては、樹脂などで固めた状態で樹脂ごと研磨する方法が用いられているが、微細物の高い平面精度での研磨は難しくコスト高になる問題を持っていた。   For example, in the method of rotating the surface acoustic wave 41 through the annular path 43 called a quartz Z-axis cylinder, the spherical surface acoustic wave element 4 is out of the annular region as shown in FIG. It is known that even if the portion 44 (the vicinity corresponding to the pole when the circular path is the equator) is cut, the circular characteristics are not greatly affected. For this reason, it has been desired to use this part as a surface for cutting the surface flatly to use it as an electronic component such as another IC chip, or as a connection space for the interdigital electrode 42, or to fix it to the substrate. As a method for processing the flat surface of the pole, a method of polishing the entire resin while being hardened with a resin or the like is used. However, it is difficult to polish a fine object with high planar accuracy, resulting in a problem of high cost.

以上、詳細に述べたように、結晶球3の結晶軸を高い精度で決定することが要求されているが、簡便で低コストの方式が見いだせていなかった。   As described above in detail, it is required to determine the crystal axis of the crystal sphere 3 with high accuracy, but a simple and low-cost method has not been found.

本発明では、結晶球3内部に刻印を残し、結晶軸を視認により判定するための方法を提案している。結晶軸を示す刻印はウエハー材1あるいは多角柱チップ2の表面に行っても研磨により消えてしまうため、結晶球3の内部に刻印する必要がある。しかし円環部分に刻印を残すと不良品となるため、透明体の表面に損傷を与えることなくマイクロメートルオーダーで透明体内部の微小部分のみに刻印しなければならない。   In the present invention, a method for leaving a mark inside the crystal sphere 3 and determining the crystal axis visually is proposed. Since the marking indicating the crystal axis disappears by polishing even if it is applied to the surface of the wafer material 1 or the polygonal column chip 2, it is necessary to mark the inside of the crystal sphere 3. However, if the engraving is left on the ring portion, it becomes a defective product. Therefore, it is necessary to engrave only a minute portion inside the transparent body on the micrometer order without damaging the surface of the transparent body.

特に、近年、透明材料の内部加工では、超短パルスレーザーの有用性が研究報告されており、非特許文献1に示すように、屈折率を変えることで光導波路を形成したり、特許文献2に示すように、硝子内部にマイクロドットを形成することが可能である。   In particular, in recent years, the usefulness of ultrashort pulse lasers has been reported in the internal processing of transparent materials. As shown in Non-Patent Document 1, an optical waveguide can be formed by changing the refractive index, or Patent Document 2 can be used. As shown in FIG. 5, it is possible to form microdots inside the glass.

本発明による刻印方法は、上記の超短パルスレーザーの基本特性利用に基づいている。   The marking method according to the present invention is based on the use of the basic characteristics of the ultrashort pulse laser described above.

公知文献は以下の通り。
特開2002−26688号公報 特開平11−267861号公報 緑川克美、「フェムト秒レーザーと物質の相互作用」、レーザー加工学会誌 Vol.8,No.3(2001)
Known literature is as follows.
JP 2002-26688 A JP-A-11-267861 Katsumi Midorikawa, “Femtosecond laser interaction with matter”, Journal of Laser Processing Vol. 8, no. 3 (2001)

結晶材料を切断した状態で、あるいは球形加工する前に、その結晶軸を示唆する目印を材料内部に形成してから球状加工を行い、球形加工した後でも消えない結晶軸方向を示唆する刻印を結晶球に形成しておくことで、材料の結晶軸同定作業が1回で済み、且つ研磨工程等の表面加工を含む後工程においてもその刻印を基準に製造することができ、非常に高速で簡便に結晶球を使った球状弾性表面波素子の結晶軸を示す刻印を形成することが出来る材料およびこの材料を用いた球状弾性表面波素子を提供する。   In a state where the crystal material is cut or before spherical processing, a mark indicating the crystal axis is formed inside the material and then spherical processing is performed, and a mark indicating a crystal axis direction that does not disappear even after spherical processing is performed. By forming it on the crystal sphere, it is possible to identify the crystal axis of the material only once, and it can be manufactured on the basis of the inscription in the subsequent process including surface processing such as a polishing process. Provided are a material capable of easily forming a mark indicating the crystal axis of a spherical surface acoustic wave element using a crystal sphere, and a spherical surface acoustic wave element using this material.

上記課題を解決する為に、まず本発明の第1の発明は、透明性と異方性を有する固体材料に、レーザー光を用い該固体材料の内部に方位軸を示す刻印を施したことを特徴とする異方性透明固体材料を提供するものである。   In order to solve the above-mentioned problems, first, the first invention of the present invention is that a solid material having transparency and anisotropy is engraved with a laser beam to indicate an azimuth axis. An anisotropic transparent solid material is provided.

これによって、従来のような素子の製造に欠かせないパターニングや素子の加工を行うために1個1個の結晶球について結晶方向をX線ラウエ法などの高価で時間のかかる測定を不要とすることが出来る。   This eliminates the need for expensive and time-consuming measurements such as the X-ray Laue method for each crystal sphere in order to perform patterning and device processing that are indispensable for the manufacture of devices as in the prior art. I can do it.

また、本発明の第2の発明は、前記レーザー光は瞬時パワーがギガワット、パルス幅が1ピコ秒以下の超短パルスレーザーであることを特徴とする請求項1記載の異方性透明固体材料を提供するものである。   The anisotropic transparent solid material according to claim 1, wherein the laser light is an ultrashort pulse laser having an instantaneous power of GW and a pulse width of 1 picosecond or less. Is to provide.

これによって、材料による光吸収特性問題を解決できる。   This can solve the light absorption characteristic problem due to the material.

また、本発明の第3の発明は、前記刻印は空隙であることを特長とする請求項1または2記載の異方性透明固体材料を提供するものである。   According to a third aspect of the present invention, there is provided the anisotropic transparent solid material according to claim 1 or 2, wherein the inscription is a void.

また、本発明の第4の発明は、請求項1〜3のいずれかに記載の異方性透明固体材料を用いて製造された内部に刻印を有する球状弾性表面波素子を提供するものである。   According to a fourth aspect of the present invention, there is provided a spherical surface acoustic wave device having an inscription inside, produced using the anisotropic transparent solid material according to any one of claims 1 to 3. .

また、本発明の第5の発明は、透明性と異方性を有する球状の固体材料からなる球状弾性表面波素子の製造方法であって、少なくとも以下の工程1から工程3の工程を具備することを特徴とする内部に視認可能な方位軸を刻印された球状弾性表面波素子の製造方法を提供するものである。   The fifth invention of the present invention is a method for manufacturing a spherical surface acoustic wave device made of a spherical solid material having transparency and anisotropy, and includes at least the following steps 1 to 3. It is an object of the present invention to provide a method for manufacturing a spherical surface acoustic wave element having an azimuth axis that is visible inside.

工程1.1つの結晶方位について一定の角度を保つ平面を有した異方性透明固体材料に対し、レーザー光を照射して前記異方性透明固体材料内部に少なくとも1つの方位に関して視認可能な方位軸を刻印する工程
工程2.前記異方性透明固体材料をチップ状に切り出す工程
工程3.前記チップ状の異方性透明固体材料を、内部に工程1で刻印した方位軸を残しながら球状に加工する工程
Step 1. An orientation that is visible with respect to at least one orientation inside the anisotropic transparent solid material by irradiating a laser beam to the anisotropic transparent solid material having a plane that maintains a certain angle with respect to one crystal orientation Step of marking the shaft Step 2. Step of cutting the anisotropic transparent solid material into chips Step 3. A step of processing the tip-shaped anisotropic transparent solid material into a spherical shape while leaving the azimuth axis engraved in step 1 inside

以上の説明から明らかなように、本発明によれば、以下のような効果が得られる。   As is clear from the above description, according to the present invention, the following effects can be obtained.

結晶方位の知られた表面を有する単結晶材料等の異方性透明固体材料の方位を視認するために、その表面からパルス幅がナノ秒以下のエネルギービームを照射して、表面を損傷
することなく、その異方性透明固体材料の内部に刻印し、加工した後にもその刻印の少なくとも一部は残すことで、従来のような素子の製造にかかせないパターニングや素子の加工を行うために1個1個の結晶球について結晶方向をX線ラウエ法などの高価で時間のかかる測定を不要とすることが出来る。
In order to visually confirm the orientation of an anisotropic transparent solid material such as a single crystal material having a surface with a known crystal orientation, the surface is damaged by irradiating an energy beam with a pulse width of nanoseconds or less from the surface. In order to carry out patterning and processing of elements that are indispensable for the manufacture of conventional elements by leaving at least a part of the inscriptions on the inside of the anisotropic transparent solid material. It is possible to eliminate expensive and time-consuming measurement such as X-ray Laue method for each crystal sphere.

異方性透明固体材料内部への刻印を作る工程は、ウエハー材が複数の多角柱チップに、あるいは棒状の材料が円柱もしくは多角柱チップに切断されるより前に行うことで、材料の結晶軸同定作業が1回で済み、且つ後工程においてもその刻印を基準に製造することができる。本発明の異方性透明固体材料は結晶球内部の任意の座標に任意の数の空隙を形成したものであるので、単に結晶軸の存在を示すだけでなく、その方向や、複数の結晶軸の方位も刻印することが可能である。これらの情報にしたがって球状弾性表面波素子への加工を行えば、例えば水晶材料では、すだれ状電極形成位置に大きな影響を及ぼし、その形成位置がずれると弾性表面波の伝搬速度に著しい違いが現れてしまうX軸、Y軸の方位の判断も容易に行うことができる異方性透明固体材料となる。   The process of making the marking inside the anisotropic transparent solid material is performed before the wafer material is cut into a plurality of polygonal column chips or before the rod-shaped material is cut into a cylinder or a polygonal column chip. The identification work can be performed only once, and it can be manufactured based on the stamp in the subsequent process. Since the anisotropic transparent solid material of the present invention has an arbitrary number of voids formed at arbitrary coordinates inside the crystal sphere, it not only indicates the existence of the crystal axis, but also its direction and a plurality of crystal axes. Can also be engraved. If processing into a spherical surface acoustic wave element is performed according to this information, for example, a quartz material has a large influence on the interdigital electrode formation position, and if the formation position is shifted, a significant difference appears in the propagation speed of the surface acoustic wave. Therefore, it becomes an anisotropic transparent solid material that can easily determine the orientation of the X axis and the Y axis.

刻印となる空隙もしくは空隙の集合を形成するエネルギービームは、空隙発生位置において高エネルギー密度となるレーザービームであり、瞬時パワーがギガワットでそのパルス幅が1ピコ秒以下のパルスレーザー(以下、超短パルスレーザー、あるいはフェムト秒レーザーという)によって発生されるので、材料による光吸収特性問題もなく、材料表面に損傷を与えることなく、異方性透明固体材料内部のみに極めて微細な刻印が簡便に出来るので、方位軸特定精度が高くなる。   The energy beam that forms the gap or set of gaps to be engraved is a laser beam that has a high energy density at the gap generation position, a pulse laser (hereinafter referred to as ultrashort) with an instantaneous power of GW and a pulse width of 1 picosecond or less. (This is called a pulse laser or femtosecond laser), so there is no problem with the light absorption characteristics of the material, and extremely fine engraving can be easily performed only inside the anisotropic transparent solid material without damaging the material surface. Therefore, the azimuth axis specifying accuracy is increased.

さらに、異方性透明固体材料表面上に刻印を形成し、その異方性透明固体材料を加工して球基材を製造するにおいて、前記方位面の刻印された表面の少なくとも一部を残すようにして結晶球を製造することで、安価で簡便な検出方法で結晶軸を特定できるようになり、生産性が著しく向上する。   Further, when forming a spherical base material by forming an inscription on the surface of the anisotropic transparent solid material and manufacturing the spherical base material by processing the anisotropic transparent solid material, at least a part of the inscribed surface of the azimuth plane is left. By manufacturing crystal spheres in this way, it becomes possible to specify the crystal axis by an inexpensive and simple detection method, and the productivity is remarkably improved.

図を用いて本発明に係る異方性透明固体材料、球状弾性表面波素子およびその製造方法を説明する。     An anisotropic transparent solid material, a spherical surface acoustic wave device and a method for manufacturing the same according to the present invention will be described with reference to the drawings.

本発明で述べる刻印とは、対象となる固体材料に3次元的な座標を記録すること、あるいはその座標をいい、具体的にはレーザー光の照射を行い、当該固体材料に対し決定した任意の方位軸を、顕微鏡等の装置を用いる程度の視認により固体材料の外形状と空隙形成位置の相対的な比較を行って読み取ることができるような空隙を形成することである。   The inscription described in the present invention refers to recording three-dimensional coordinates on a target solid material, or the coordinates. Specifically, laser light irradiation is performed to determine any arbitrary solid material determined for the solid material. It is to form a void such that the azimuth axis can be read by making a relative comparison between the outer shape of the solid material and the void formation position by visual recognition using a device such as a microscope.

本発明で述べる方位軸とは、対象となる固体材料における3次元的な空間座標情報をいい、当該固体材料中における異方性の方向だけでなく、例えば互いに直交するXYZの3軸のように、当該固体材料中における異方性の方向とは必ずしも並行ではない人為的に決定した軸も含む。   The azimuth axis described in the present invention refers to three-dimensional spatial coordinate information in the target solid material, and not only the direction of anisotropy in the solid material but also, for example, three axes of XYZ orthogonal to each other. Also, an artificially determined axis that is not necessarily parallel to the direction of anisotropy in the solid material is included.

従って、方位軸を刻印するといえば、対象となる固体材料に視認可能なしるしをつける(刻印する)ことによって固体材料の左右、裏表などの向き(方位軸)を、見ただけで判定できるようにすることである。   Therefore, if the azimuth axis is engraved, it is possible to determine the orientation (azimuth axis) of the left and right sides, back and front, etc. of the solid material only by looking at it by marking (indicating) the visible solid material. Is to do.

本発明の異方性透明固体材料とは、以下に詳しく説明する結晶性材料のみならず、透明かつ視認による異方軸の同定が困難である固体材料に対し方向軸を示す刻印の施されたすべての材料を含み、その形状はウエハー状、棒状、多角柱、円柱、球形を問わないものとする。ここで透明とは、空隙である刻印を形成するために使用するエネルギービームに対して透明であればよく、透明の程度は本発明の趣旨を逸脱しない範囲で意図した材料内位
置までエネルギービームが侵入して収束とそれによる加工がなされる程度であれば良い。
The anisotropic transparent solid material of the present invention is not only a crystalline material described in detail below, but also a solid material that is transparent and difficult to identify the anisotropic axis by visual recognition, and is marked with a direction axis. All materials are included, and the shape may be any of wafer, rod, polygonal column, cylinder, and sphere. Here, the term “transparent” is sufficient if it is transparent to the energy beam used for forming the indicia that is a gap, and the degree of transparency is within the range not departing from the gist of the present invention. It is only necessary to penetrate and converge and to be processed accordingly.

本発明における結晶球3とは、図4(A)の球状弾性表面波素子に示されている真球形形状のみならず、円環状経路43を弾性表面波41が周回する形状であればどの様な形状でもよく、例えば図4(B)の球状弾性表面波素子に用いられるような球の1部分を削った太鼓形状などの円環状領域を有する形状のように円環形状が形成を終了された段階の基材も含むものとする。   The crystal sphere 3 in the present invention is not limited to the true spherical shape shown in the spherical surface acoustic wave element of FIG. 4 (A), but can be any shape as long as the surface acoustic wave 41 circulates in the annular path 43. For example, the circular ring shape is completed such as a shape having an annular region such as a drum shape in which a part of a sphere is cut off as used in the spherical surface acoustic wave element of FIG. Including the base material at different stages.

なお、その後その表面の一部を削ったり、あるいは部分的に平面を有していても結晶球3であることには変わらないものとする。   It should be noted that even if a part of the surface is subsequently scraped or partially flat, the crystal sphere 3 is not changed.

多角柱の材料から球加工を行うための詳細な加工手順は周知技術であるので省略する。     A detailed processing procedure for performing sphere processing from a polygonal column material is a well-known technique and will not be described.

なお、厚さ方向に小さな多角柱材料から球加工を開始すると、小さかった一方向の面については、他の材料との接触が非常に小さく削られる機会が小さく、その他の面が削られて最終的に球表面あるいは其れに近い円環状経路を有する結晶球となった場合でも平面として残る事が知られており、
結晶球の結晶軸方向を球面を形成した後でも結晶軸を示唆する面として残す事で、この面を基準に後工程を施せば、結晶球に結晶軸によって決められた方向にパターニングや加工を行うことが出来る。
In addition, when sphere processing is started from a small polygonal column material in the thickness direction, the surface in one direction that was small is less likely to be scraped with contact with other materials, and the other surface is scraped to the end. It is known that even if it becomes a crystal sphere having an annular path close to the sphere surface, it remains as a plane,
By leaving the crystal axis direction of the crystal sphere as a plane that suggests the crystal axis even after forming the spherical surface, if the post-process is performed based on this plane, the crystal sphere is patterned and processed in the direction determined by the crystal axis. Can be done.

特に、結晶軸方向が明白にされたウエハー材1から結晶球3を作成するにおいて、結晶球3として完成された後、あるいはそのプロセス過程で重要となる結晶面を持った結晶板を切断して、結晶面を残したまま加工を行うことで、より多くの結晶軸方向に関する情報を特段の操作なく結晶球に残すことができる。   In particular, when the crystal sphere 3 is formed from the wafer material 1 whose crystal axis direction is clarified, a crystal plate having a crystal plane which is important in the process process is cut after the crystal sphere 3 is completed. By performing the processing while leaving the crystal plane, it is possible to leave more information on the crystal axis direction in the crystal sphere without any special operation.

本発明においては、結晶材料から切り出したウエハー材1面内における軸方位をまず判定し、その軸方位に基づいて刻印された空隙13の座標位置を結晶球形成後も保持しなければならない。通常は結晶球を作る為にウエハー材が切断、球面加工されて結晶球になった後に、その内部に少なくとも複数の刻印としての空隙が存在するように設ける。   In the present invention, it is necessary to first determine the axial orientation in the surface of the wafer material 1 cut out from the crystal material, and to maintain the coordinate position of the void 13 stamped based on the axial orientation after the formation of the crystal sphere. Usually, in order to form crystal spheres, the wafer material is cut and spherically processed to form crystal spheres, and then provided so that at least a plurality of cavities as inscriptions are present therein.

このとき、少なくとも2点の座標を特定できるように空隙13を形成しておけば結晶球の全ての軸方位をその空隙13の位置から再現する事も可能であり好ましい。結晶軸方位を示唆する刻印の方法について具体的には図4及び図5を用いて説明を行う。   At this time, if the gap 13 is formed so that the coordinates of at least two points can be specified, it is possible to reproduce all axial directions of the crystal sphere from the position of the gap 13. The method of marking that suggests the crystal axis orientation will be specifically described with reference to FIGS.

球状弾性表面波素子4を形成する結晶球3の形状には大きく言って図4に示すように2種類があげられる。図4(A)は完全に透明固体材料を球形に加工してからその表面にすだれ状電極42などを形成して製造を行うが、例えば水晶のZ軸シリンダーと呼ばれる円環状経路43に弾性表面波41を伝搬させるように作成する場合には、必ずZ軸方向を地軸とした時の赤道方向にすだれ状電極42を形成しなくてはならない。この為、異方性透明固体材料に対し球加工を施す前に、Z軸方向を示唆する少なくとも2つの点を結晶軸のZ方向にのみ異なる座標に刻印すれば、球加工後にもその2点を繋いだ方位からZ軸方向を知る事ができ、それを元にZ軸シリンダー経路を認識する事が出来る。   The shape of the crystal sphere 3 forming the spherical surface acoustic wave element 4 can be roughly classified into two types as shown in FIG. In FIG. 4A, a transparent solid material is processed into a spherical shape and then manufactured by forming interdigital electrodes 42 on its surface. For example, an elastic surface is formed on an annular path 43 called a quartz Z-axis cylinder. When creating the wave 41 to propagate, the interdigital electrode 42 must be formed in the equator direction when the Z-axis direction is the ground axis. For this reason, if at least two points suggesting the Z-axis direction are imprinted on different coordinates only in the Z direction of the crystal axis before the anisotropic transparent solid material is subjected to the sphere processing, the two points after the sphere processing are also obtained. The Z-axis direction can be known from the azimuths connecting the Z and the Z-axis cylinder path can be recognized based on the Z-axis direction.

ところが、Z軸シリンダー経路上(Z軸を地軸として赤道に相当)のどの位置にすだれ状電極42を形成しても一応は球状弾性表面波素子4として機能するが、弾性表面波41の周波数は赤道上でもその位置によって変化し、特にどの位置にすだれ状電極42を設け、弾性表面波41を発生させるかで大きく異なってしまう。従って素子の仕様を一定にするためにはXY方向も記録しておく必要がある。幾何学的に明らかなように、少なくとも2つの結晶軸をその向きも含めて記録するためには少なくとも3点の座標を示す空隙13が一直線上に並んでいない配置で刻印されている必要がある。あらかじめ3点の空間的な
配置(座標)とXYZ結晶軸との関係を把握する事でこれは可能である。もっとも簡単な場合を図5(B)に示す。z1及びz2の空隙でZ軸方向を示し、y1の空隙でY方向を示している。z1、z2、y1が少なくとも空間的にニ等辺三角形の位置に無ければ例えば水晶の3本の結晶方位すべてを記録する事が可能である。
However, although the interdigital electrode 42 is formed at any position on the Z-axis cylinder path (corresponding to the equator with the Z-axis as the ground axis), it functions as the spherical surface acoustic wave element 4 for the time being. Even on the equator, the position varies depending on the position, and the position varies greatly depending on where the interdigital electrode 42 is provided and the surface acoustic wave 41 is generated. Therefore, it is necessary to record the XY directions in order to keep the element specifications constant. As is apparent geometrically, in order to record at least two crystal axes including their orientations, it is necessary that the gaps 13 indicating the coordinates of at least three points be imprinted in a non-aligned arrangement. . This is possible by grasping the relationship between the spatial arrangement (coordinates) of the three points and the XYZ crystal axes in advance. The simplest case is shown in FIG. The z-axis direction is indicated by the gaps z1 and z2, and the Y direction is indicated by the gap y1. If z1, z2, and y1 are not at least spatially in the position of an isosceles triangle, for example, all three crystal orientations of quartz can be recorded.

図5(C)を用いて一つの点で結晶球3のZ軸を示す可能性を説明する。この例では1つの空隙z1が球のはずれに形成されている。空隙と、空隙に対して最も近い球表面を結び、例えばこれをZ軸として判定することができる。また、Z軸の方位も空隙がZ軸上のどちら側に位置するかで判定することができる。これを可能にするには図3で示した多角柱チップの切りだしと空隙の相対的な位置精度を高くして加工する必要があるのは言うまでもない。   The possibility of showing the Z axis of the crystal sphere 3 at one point will be described with reference to FIG. In this example, one gap z1 is formed on the outside of the sphere. The air gap and the surface of the sphere closest to the air gap are connected, and for example, this can be determined as the Z axis. Also, the direction of the Z axis can be determined based on which side the gap is located on the Z axis. Needless to say, in order to make this possible, it is necessary to increase the relative positional accuracy of the polygonal column chip shown in FIG.

図5(D)を用いて二つの点で結晶球のXYZ3軸すべてを示す可能性を説明する。この例では1つの空隙z1が球のはずれに施され、もう1つの空隙y1がz1とは重ならず、z1よりは球の中心に近いが球の中心ではない位置に刻印されている。最も球表面に近い空隙をz1、次に球表面に近い空隙をy1と決めておく。空隙z1と、空隙z1に対して最も近い球表面を結び、これをZ軸として判定することができる。また、例えば結晶球中心から空隙z1を通り球表面へ向かってZ軸の正の向きであると判断できる。そして結晶球の中心とz1、y1の3点により形成される面をYZ平面とすれば、結晶球の中心に対して空隙y1のある向きをY軸の正と判定することができるので、これら2軸の交わりから幾何学的にX軸の方位までもわかることとなる。   The possibility of showing all the XYZ3 axes of the crystal sphere at two points will be described with reference to FIG. In this example, one gap z1 is provided at the edge of the sphere, and the other gap y1 does not overlap z1, and is imprinted at a position closer to the center of the sphere than z1 but not the center of the sphere. The gap closest to the sphere surface is determined as z1, and the gap next to the sphere surface is determined as y1. It is possible to connect the gap z1 and the spherical surface closest to the gap z1 and determine this as the Z axis. Further, for example, it can be determined that the Z-axis is in the positive direction from the center of the crystal sphere through the gap z1 toward the sphere surface. If the plane formed by the center of the crystal sphere and the three points z1 and y1 is the YZ plane, the direction in which the gap y1 is located with respect to the center of the crystal sphere can be determined as the positive Y axis. From the intersection of the two axes to the geometrical orientation of the X axis will be understood.

次に図6は球が少なくとも一つの方向を示す形状を有している例である。この場合は更に少数の空隙の刻印で結晶方位の記録が可能である。例えばこれは平面を有している場合であり、ここでは仮にZ軸を法線とする面が形成されているとあらかじめ知られている場合は、図6(A)に示すように2つの空隙がZ軸に並行に並んでいるのでさえなければY方向もしくはZ方向を記録する事が可能である。あるいは図6(B)のように空隙が1つであっても球の中心には位置しないことを利用してその方向を例えば+Y軸と記録する事が出来る。   Next, FIG. 6 is an example in which the sphere has a shape showing at least one direction. In this case, the crystal orientation can be recorded with a small number of voids. For example, this is a case where a plane is present. Here, if it is known in advance that a surface having a normal line about the Z-axis is formed, two gaps as shown in FIG. Can be recorded in the Y direction or the Z direction as long as they are not parallel to the Z axis. Alternatively, as shown in FIG. 6B, even if there is only one gap, the direction can be recorded as, for example, the + Y axis by utilizing the fact that it is not located at the center of the sphere.

図6では結晶球3において2箇所存在する円環経路を外れた部位44が、Z軸を法線とする平面によって切り取られた形状を示しているが、どちらか一方のみを真球形状の結晶球形成後に研磨等によって切削、あるいは双方を非対象になるように加工し、この加工によってZ軸の方位を表すようにすれば、刻印については1座標のみでも3軸すべてを表すことができる。   In FIG. 6, the portion 44 out of the circular path existing in two places in the crystal sphere 3 shows a shape cut out by a plane having the Z axis as a normal line, but only one of them is a true spherical crystal. If the sphere is formed by cutting or the like by grinding or the like so that both are made unintentional, and the Z axis orientation is expressed by this processing, all three axes can be expressed even with only one coordinate.

このように異方性透明固体材料への空隙の刻印によってその結晶軸方向を記録する方法は様々あるが何れも幾何学的に容易に推測可能であり利用する事も可能である。特にレーザー光による刻印の場合は、空隙形状が通常は紡錘体になることからその形状により1つの空隙によって2座標を刻印し、1つの結晶軸を示すことも容易に推察出来る。   As described above, there are various methods for recording the crystal axis direction by imprinting voids in the anisotropic transparent solid material, and any of them can be easily estimated geometrically and used. In particular, in the case of marking with a laser beam, since the void shape is usually a spindle, it can be easily assumed that two coordinates are imprinted by one void depending on the shape and one crystal axis is indicated.

このように本発明とは、結晶球の外形、その中に刻印された空隙の幾何学的配置、或いはその空隙の形状が示す座標から結晶軸を知ることができる異方性透明固体材料である。   Thus, the present invention is an anisotropic transparent solid material in which the crystal axis can be known from the outer shape of the crystal sphere, the geometric arrangement of the voids engraved therein, or the coordinates indicated by the shape of the voids. .

なお、ここでは水晶結晶を例にとり、XYZの3軸を示す刻印を施した異方性透明固体材料について述べたが、先述の通り透明でレーザー光による空隙の形成が可能であり、軸方向を刻印したい任意の固体材料であれば本発明を適用することができ、また軸の角度や数も目的に応じて定めることができる任意事項である。   In this example, a quartz crystal is taken as an example, and an anisotropic transparent solid material with XYZ three-axis markings has been described. However, as described above, it is transparent and voids can be formed by laser light. The present invention can be applied to any solid material to be engraved, and the angle and number of shafts are optional items that can be determined according to the purpose.

前記の空隙を形成するためのエネルギー源としてレーザー光を用いることが有効である
。図7、図8に示すようにレーザー光45はそのビーム形状を変える事で様々なウエハー材1中の位置や領域にエネルギーを集束させる事が可能であり、その為の光学系の構成は本発明の目的のためにはいかなるものでもよいので、ここでは記述しない。
It is effective to use laser light as an energy source for forming the void. As shown in FIG. 7 and FIG. 8, the laser beam 45 can be focused at various positions and regions in the wafer material 1 by changing the beam shape. Anything may be used for the purposes of the invention and will not be described here.

但し、図8に示すように、複数の空隙13(刻印)が一度に形成出来るエネルギー分布を持ったレーザー光を用いれば1回のレーザー光45の照射によって特定方向の結晶方位を記録出きることから高スループットでの加工が可能であり望ましい。   However, as shown in FIG. 8, if a laser beam having an energy distribution capable of forming a plurality of voids 13 (engraved) at once is used, a crystal orientation in a specific direction can be recorded by one irradiation of the laser beam 45. Therefore, processing with high throughput is possible and desirable.

このことは、超短パルスレーザーにて、集光光学系を工夫することで可能であることが報告されている。   It has been reported that this is possible by devising a condensing optical system with an ultrashort pulse laser.

なお、異方性透明固体材料に軸方位を刻印する際、あるいは結晶球形成の際、図9に示すように、空隙13を発生させるために照射する(された)レーザー光45が透過した異方性透明固体材料部分が結晶球完成後における円環状経路43とならないようにすることが好ましい。円環状経路43において弾性表面波41が伝搬することになるため、レーザー光透過による影響を受けた部分が変質してその伝搬に影響を与えることのないようにである。   In addition, when the axial direction is imprinted on the anisotropic transparent solid material or when the crystal sphere is formed, as shown in FIG. 9, a different laser beam 45 irradiated to generate the void 13 is transmitted. It is preferable that the isotropic transparent solid material portion does not become the annular path 43 after the completion of the crystal sphere. Since the surface acoustic wave 41 propagates in the annular path 43, the portion affected by the laser light transmission is changed in quality so that the propagation is not affected.

また、先述したように、多角柱チップ2からの研磨により結晶球3を作成する際には、当初の立方体あるいは荒削りした角を取った個々の結晶材料の直径は、目標とする結晶球3の直径の概ね1.4倍の大きさが必要であり、図3(C)に示すような関係下で真球に近い形状まで作り込まれる。従って本発明で軸方位の認定のために刻印される空隙も、球形加工時に失われないよう目標とされる結晶球3の内部に収まる位置に行わなければならない。   In addition, as described above, when the crystal sphere 3 is created by polishing from the polygonal column tip 2, the diameter of each crystal material having an initial cube or rough corner is set to the target crystal sphere 3. A size approximately 1.4 times the diameter is necessary, and a shape close to a true sphere is created under the relationship shown in FIG. Therefore, the gap marked for axial orientation recognition in the present invention must also be formed at a position that falls within the crystal sphere 3 targeted so as not to be lost during spheroid machining.

以下のように、超短パルスレーザーを用いて空隙13を刻印することによる軸方位の記録を結晶球作成の基になるウエハー材1に対して行った。   As described below, the recording of the axial orientation by imprinting the gap 13 using an ultrashort pulse laser was performed on the wafer material 1 on which a crystal sphere was formed.

図1は、超短パルスレーザー発生制御手段12を用いてウエハー材1内部に空隙13を刻印する機構の概略図である。   FIG. 1 is a schematic view of a mechanism for marking a gap 13 inside the wafer material 1 using the ultrashort pulse laser generation control means 12.

用意したウエハー材1は厚さが1.4mmの2インチのZカット水晶基板である。このウエハー材1に対して、図8に示すようにXY平面上であり、YX座標は同じであるがX軸方向に座標の異なる材料上の点2箇所が、球形加工後に得られる結晶球の1個1個すべてに刻印されてX軸を示す位置に、XY方向位置制御手段47及びZ方向位置制御手段48を稼動してはレーザー光45を照射しながら行った。図1(B)に示すように超短パルス秒レーザー発生制御手段12により発生させたレーザー光45の集束により生じる高エネルギー密度領域である焦点49が刻印形成座標となるように位置合わせを行い、ついでレーザー光45を照射して直径がマイクロメートルオーダーの空隙13を形成する。ここで上記夫々の2箇所の空隙刻印座標は、一辺が1.4mmの立方体の中心を挟む位置になり、かつ球形加工時に削り取られない位置に形成した。   The prepared wafer material 1 is a 2-inch Z-cut quartz substrate having a thickness of 1.4 mm. With respect to this wafer material 1, as shown in FIG. 8, two points on the material which are on the XY plane and have the same YX coordinate but different coordinates in the X-axis direction are the crystal spheres obtained after the sphere processing. The XY direction position control means 47 and the Z direction position control means 48 were operated at the positions indicated on the X axis by marking all of them one by one while irradiating the laser beam 45. As shown in FIG. 1B, alignment is performed so that the focal point 49, which is a high energy density region generated by the focusing of the laser light 45 generated by the ultrashort pulse second laser generation control means 12, becomes the marking formation coordinates. Subsequently, the laser beam 45 is irradiated to form a gap 13 having a diameter of the order of micrometers. Here, the gap marking coordinates at each of the two positions were formed at positions that sandwiched the center of a cube having a side of 1.4 mm and were not scraped off during spherical processing.

本発明で使用した超短パルス秒レーザーはクラーク(Clark MXR)社製のCPA−2001であり、波長775nm、平均最大出力1W、繰り返し周波数1kHzの照射が可能である。   The ultrashort pulsed second laser used in the present invention is CPA-2001 manufactured by Clark MXR, and can be irradiated with a wavelength of 775 nm, an average maximum output of 1 W, and a repetition frequency of 1 kHz.

レーザー装置から出射されたレーザー光45は、光学系を通り、集光レンズを用いて、ウエハー材1内部の所定の位置にその焦点49を位置させる。上下左右の位置合わせはウエハー材1を搭載しているステージ群で行った。ソフトウェアコントローラーを用いてウエハー材1に対して所定の位置にレーザー光45の焦点49を合わせ、レーザー光45を照射する機構とした。   The laser beam 45 emitted from the laser device passes through the optical system, and the focal point 49 is positioned at a predetermined position inside the wafer material 1 using a condenser lens. The alignment in the vertical and horizontal directions was performed on a stage group on which the wafer material 1 was mounted. A mechanism for irradiating the laser beam 45 by focusing the focus 49 of the laser beam 45 on a predetermined position with respect to the wafer material 1 using a software controller.

ウエハー材の表面座標を測定、位置決めをした後、Z軸ステージを移動させることで、所望の深さに位置を合わせた。その後、ビームスポット(ビームウェストの直径、焦点)10μm、平均出力3mW、1パルス照射によって、直径1μmから5μmの空隙13がウエハー材1の内部に形成できたことが顕微鏡を用いて確認できた。   After measuring and positioning the surface coordinates of the wafer material, the position was adjusted to a desired depth by moving the Z-axis stage. Thereafter, it was confirmed using a microscope that a gap 13 having a diameter of 1 μm to 5 μm could be formed inside the wafer material 1 by irradiation with a beam spot (beam waist diameter, focal point) of 10 μm, average output of 3 mW and 1 pulse.

以上の操作によりウエハー材1におけるすべての分割部分に刻印を施し、ダイシング装置により多角柱チップ2を切り出した。ここでは多角柱チップの形状は立方体とした。   Through the above operation, all the divided portions in the wafer material 1 were marked, and the polygonal column chip 2 was cut out by a dicing apparatus. Here, the shape of the polygonal column chip is a cube.

研磨は荒削りをおこなった後に、イマハシ式丸玉加工機によって球形研磨を行った。この実施例では、立方体に切り出したためウエハー材表面が残らず、従って必要な球面精度を出す為に十分な研磨を行い、直径1mmの真球状の水晶結晶球を得た。   After roughing, the polishing was performed by spherical polishing with an Imahashi-type round ball processing machine. In this example, the surface of the wafer material was not left because it was cut into a cube, and therefore, sufficient polishing was performed to obtain the required spherical accuracy to obtain a true crystal crystal sphere having a diameter of 1 mm.

このようにして得られた1mmの直径の水晶結晶球3を球状弾性表面波素子4に加工した。フォトレジストの塗布を行った後に図10に示す結晶球回転ステージ15つきの装置にセットした。この装置は、4方向から結晶球3内部に作られた空隙13を共焦点型顕微鏡カメラ14によってその位置を測定し、結晶球3の結晶軸の方向を測定し、結晶球回転ステージ15を用いて結晶球3を所定の方向を向くように修正した後に、球状弾性表面波波素子4のすだれ状電極42パターンの露光を行った。   The quartz crystal sphere 3 having a diameter of 1 mm thus obtained was processed into a spherical surface acoustic wave element 4. After applying the photoresist, it was set in an apparatus with a crystal ball rotating stage 15 shown in FIG. This apparatus measures the position of a gap 13 formed in the crystal sphere 3 from four directions with a confocal microscope camera 14, measures the direction of the crystal axis of the crystal sphere 3, and uses a crystal sphere rotation stage 15. Then, after correcting the crystal sphere 3 to face a predetermined direction, the interdigital electrode 42 pattern of the spherical surface acoustic wave element 4 was exposed.

上記の空隙13の形成は、Zカット水晶ウエハーの場合について述べたが、LiNbO3等他の結晶材料に対しても同様の加工が可能であって、本発明の方法に依れば、ガラス質材料は勿論のこと先に述べた透明な固体材料なら加工が可能である。 The formation of the gap 13 has been described in the case of a Z-cut quartz wafer, but the same processing is possible for other crystal materials such as LiNbO 3 , and according to the method of the present invention, the glassy The material can be processed as well as the transparent solid material described above.

本発明は、遅延線、発信機の為の発振素子及び共振素子、周波数を選択する為のフィルター、化学センサー、バイオセンサー、またはリモートタグ等に使用することができる。   The present invention can be used for a delay line, an oscillation element and a resonance element for a transmitter, a filter for selecting a frequency, a chemical sensor, a biosensor, a remote tag, and the like.

本発明に係るレーザー光を使用した軸方向を示唆する刻印形成を示す概略図である。It is the schematic which shows the stamp formation which suggests the axial direction using the laser beam based on this invention. 従来から知られている結晶の偏光方向の旋回を利用した水晶のZ軸方向解析手段を示す概略図である。It is the schematic which shows the Z-axis direction analysis means of the quartz crystal using the rotation of the polarization direction of the crystal known conventionally. 本発明で用いる結晶球形成方法の一例を示す説明図である。It is explanatory drawing which shows an example of the crystal sphere formation method used by this invention. 本発明に係る球状弾性表面波素子の例を示す説明図である。It is explanatory drawing which shows the example of the spherical surface acoustic wave element which concerns on this invention. 本発明に係る異方性透明固体材料への刻印座標の例を示す説明図である。It is explanatory drawing which shows the example of the marking coordinate to the anisotropic transparent solid material which concerns on this invention. 本発明に係る異方性透明固体材料への刻印座標の例を示す説明図である。It is explanatory drawing which shows the example of the marking coordinate to the anisotropic transparent solid material which concerns on this invention. 本発明の実施例に係る超短パルスレーザーによる空隙形成方法の第1の例を示す図である。It is a figure which shows the 1st example of the space | gap formation method by the ultrashort pulse laser which concerns on the Example of this invention. 本発明の実施例に係る超短パルスレーザーによる空隙形成方法の第2の例を示す図である。It is a figure which shows the 2nd example of the space | gap formation method by the ultrashort pulse laser which concerns on the Example of this invention. 本発明の実施例に係る超短パルスレーザーによる空隙形成方法のレーザービームの入射角の例を示す図である。It is a figure which shows the example of the incident angle of the laser beam of the space | gap formation method by the ultrashort pulse laser which concerns on the Example of this invention. 本発明の実施例に係る球状弾性表面波素子に加工するための空隙位置測定、座標軸特定を行う装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus which performs the space | gap position measurement for processing into the spherical surface acoustic wave element based on the Example of this invention, and coordinate-axis specification.

符号の説明Explanation of symbols

1・・・・ウエハー材
2・・・・多角柱チップ
3・・・・結晶球
4・・・・球状弾性表面波素子
7・・・・オリフラ
12・・・超短パルスレーザー発生制御手段
13・・・空隙
14・・・共焦点型顕微鏡カメラ
15・・・結晶回転ステージ
16・・・画像解析及び結晶方向解析手段
41・・・弾性表面波
42・・・すだれ状電極
43・・・円環状経路
44・・・円環領域を外れた部位
45・・・レーザー光
46・・・ビーム制御用光学的手段
47・・・XY方向位置制御手段
48・・・Z方向位置制御手段
49・・・焦点
50・・・偏光板
51・・・切りしろ
DESCRIPTION OF SYMBOLS 1 ... wafer material 2 ... polygonal-chip 3 ... crystal ball 4 ... spherical surface acoustic wave element 7 ... orientation flat 12 ... ultrashort pulse laser generation control means 13 ... Gap 14 ... Confocal microscope camera 15 ... Crystal rotation stage 16 ... Image analysis and crystal direction analysis means 41 ... Surface acoustic wave 42 ... Interdigital electrode 43 ... Circle Annular path 44 ... A portion 45 outside the annular region 45 ... Laser beam 46 ... Beam control optical means 47 ... XY direction position control means 48 ... Z direction position control means 49 ...・ Focus 50 ... Polarizing plate 51 ... Cut off

Claims (5)

透明性と異方性を有する固体材料に、レーザー光を用い該固体材料の内部に方位軸を示す刻印を施したことを特徴とする異方性透明固体材料。   An anisotropic transparent solid material, wherein a solid material having transparency and anisotropy is engraved with an azimuth axis inside the solid material using a laser beam. 前記レーザー光は瞬時パワーがギガワット、パルス幅が1ピコ秒以下の超短パルスレーザーであることを特徴とする請求項1記載の異方性透明固体材料。   The anisotropic transparent solid material according to claim 1, wherein the laser beam is an ultrashort pulse laser having an instantaneous power of GW and a pulse width of 1 picosecond or less. 前記刻印は空隙であることを特長とする請求項1または2記載の異方性透明固体材料。   The anisotropic transparent solid material according to claim 1, wherein the stamp is a void. 請求項1〜3のいずれかに記載の異方性透明固体材料を用いて製造された内部に刻印を有する球状弾性表面波素子。   The spherical surface acoustic wave element which has an inside stamp manufactured using the anisotropic transparent solid material in any one of Claims 1-3. 透明性と異方性を有する球状の固体材料からなる球状弾性表面波素子の製造方法であって、少なくとも以下の工程1から工程3の工程を具備することを特徴とする内部に視認可能な方位軸を刻印された球状弾性表面波素子の製造方法。
工程1.1つの結晶方位について一定の角度を保つ平面を有した異方性透明固体材料に対し、レーザー光を照射して前記異方性透明固体材料内部に少なくとも1つの方位に関して視認可能な方位軸を刻印する工程
工程2.前記異方性透明固体材料をチップ状に切り出す工程
工程3.前記チップ状の異方性透明固体材料を、内部に工程1で刻印した方位軸を残しながら球状に加工する工程
A method for manufacturing a spherical surface acoustic wave device made of a spherical solid material having transparency and anisotropy, comprising at least the following steps 1 to 3, characterized in that an internally visible orientation A method for manufacturing a spherical surface acoustic wave element having an axis stamped thereon.
Step 1. An orientation that is visible with respect to at least one orientation inside the anisotropic transparent solid material by irradiating a laser beam to the anisotropic transparent solid material having a plane that maintains a certain angle with respect to one crystal orientation 1. Process of marking the shaft 2. Step of cutting the anisotropic transparent solid material into chips A step of processing the tip-shaped anisotropic transparent solid material into a spherical shape while leaving the azimuth axis engraved in step 1 inside
JP2003387569A 2003-11-18 2003-11-18 Spherical surface acoustic wave device and manufacturing method thereof Expired - Fee Related JP4569097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387569A JP4569097B2 (en) 2003-11-18 2003-11-18 Spherical surface acoustic wave device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387569A JP4569097B2 (en) 2003-11-18 2003-11-18 Spherical surface acoustic wave device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005150496A true JP2005150496A (en) 2005-06-09
JP4569097B2 JP4569097B2 (en) 2010-10-27

Family

ID=34694886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387569A Expired - Fee Related JP4569097B2 (en) 2003-11-18 2003-11-18 Spherical surface acoustic wave device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4569097B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144990A (en) * 2005-10-25 2007-06-14 Seiko Instruments Inc Heat element, thermal head, printer, and manufacturing method of heat element
JP2007315778A (en) * 2006-05-23 2007-12-06 Tohoku Univ Direction measuring method for anisotropic spherical material, direction measuring device for anisotropic spherical material, and manufacturing method of spherical acoustic surface wave element
JP2008128855A (en) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd Direction measuring method of anisotropy spherical material, and manufacturing method of spherical surface acoustic wave device
JP2008139051A (en) * 2006-11-30 2008-06-19 Yamatake Corp Measuring method of optical axis pole
JP2012075002A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Spherical surface acoustic wave element
JPWO2021025052A1 (en) * 2019-08-07 2021-02-11

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267861A (en) * 1998-01-16 1999-10-05 Sumitomo Heavy Ind Ltd Marking of optical transmitting material
JP2003012346A (en) * 2001-06-27 2003-01-15 Central Glass Co Ltd Method for coloring plate glass
JP2003078182A (en) * 2001-08-30 2003-03-14 Kyocera Corp Mono-crystal substrate for surface acoustic wave element
JP2003089553A (en) * 2001-09-13 2003-03-28 Shin Etsu Chem Co Ltd Internally marked quartz glass, quartz glass substrate for optical member and marking method
WO2003076120A1 (en) * 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Laser processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267861A (en) * 1998-01-16 1999-10-05 Sumitomo Heavy Ind Ltd Marking of optical transmitting material
JP2003012346A (en) * 2001-06-27 2003-01-15 Central Glass Co Ltd Method for coloring plate glass
JP2003078182A (en) * 2001-08-30 2003-03-14 Kyocera Corp Mono-crystal substrate for surface acoustic wave element
JP2003089553A (en) * 2001-09-13 2003-03-28 Shin Etsu Chem Co Ltd Internally marked quartz glass, quartz glass substrate for optical member and marking method
WO2003076120A1 (en) * 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Laser processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144990A (en) * 2005-10-25 2007-06-14 Seiko Instruments Inc Heat element, thermal head, printer, and manufacturing method of heat element
JP2007315778A (en) * 2006-05-23 2007-12-06 Tohoku Univ Direction measuring method for anisotropic spherical material, direction measuring device for anisotropic spherical material, and manufacturing method of spherical acoustic surface wave element
JP2008128855A (en) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd Direction measuring method of anisotropy spherical material, and manufacturing method of spherical surface acoustic wave device
JP2008139051A (en) * 2006-11-30 2008-06-19 Yamatake Corp Measuring method of optical axis pole
JP2012075002A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Spherical surface acoustic wave element
JPWO2021025052A1 (en) * 2019-08-07 2021-02-11
WO2021025052A1 (en) * 2019-08-07 2021-02-11 株式会社カネカ Large-size thin-film deposition substrate and method for manufacturing same, segmented thin-film deposition substrate and method for manufacturing same, and production management method and production management system for segmented thin-film deposition substrate
JP7119233B2 (en) 2019-08-07 2022-08-16 株式会社カネカ Large film-formed substrate and manufacturing method thereof, divided film-formed substrate and manufacturing method thereof, production control method and production control system for divided film-formed substrate

Also Published As

Publication number Publication date
JP4569097B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP2768857B2 (en) Liquid crystal display substrate cutting method
KR100697899B1 (en) Wafer for semiconductor
JP2006290630A (en) Processing method of glass using laser
US11309191B2 (en) Method for modifying substrates based on crystal lattice dislocation density
US20200398381A1 (en) Method for Producing Short Subcritical Cracks in Solid Bodies
JP4569097B2 (en) Spherical surface acoustic wave device and manufacturing method thereof
US20150158117A1 (en) System and method for obtaining laminae made of a material having known optical transparency characteristics
US20110021025A1 (en) Method for producing laser-marked semiconductor wafer
JP2006024631A (en) Method and apparatus for evaluating blind via depth, and substrate grinder
KR20190039007A (en) Hexagonal single crystal ingot and processing method of wafer
KR20030023508A (en) Internally Marked Quartz Glass, Quartz Glass Substrate for Optical Member, and Marking Method
JP2007030095A (en) Method for manufacturing diamond tool
CN106536163A (en) Master manufacturing method, transferred object, and replica master
JP4428058B2 (en) Crystal material for surface acoustic wave element, method for producing the same, and spherical surface acoustic wave element
EP0838701B1 (en) A laser processing method to an optical waveguide
JP2006179790A (en) Laser cutting method and member that can be cut by it
JPH083768A (en) Preparation of plane tem sample
JPH0117542B2 (en)
JPH0857678A (en) Laser beam processing machine
JPS5811805A (en) Size measuring method
JP2007107969A (en) Microscope sample plate and its manufacturing method
JPH05231998A (en) Method of manufacture specimen for electron microscopic observation
CA2434978A1 (en) Method of alignment
Dogan Mm Scale 3d Silica Waveguide Fabrication Technique for Solar Energy Concentration Systems
JPH1015813A (en) Processing amount monitor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees