JP2005150132A - Semiconductor cooling device - Google Patents

Semiconductor cooling device Download PDF

Info

Publication number
JP2005150132A
JP2005150132A JP2003380746A JP2003380746A JP2005150132A JP 2005150132 A JP2005150132 A JP 2005150132A JP 2003380746 A JP2003380746 A JP 2003380746A JP 2003380746 A JP2003380746 A JP 2003380746A JP 2005150132 A JP2005150132 A JP 2005150132A
Authority
JP
Japan
Prior art keywords
comb
cooler
semiconductor
fin
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003380746A
Other languages
Japanese (ja)
Inventor
Katsuya Umeda
克也 梅田
Akio Sekimoto
暁郎 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003380746A priority Critical patent/JP2005150132A/en
Publication of JP2005150132A publication Critical patent/JP2005150132A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor cooling device in which cooling performance is raised by reducing the pressure loss of a cooling wind passing though radiation fins of a comb type cooler. <P>SOLUTION: In the semiconductor cooling device, the sectional shape of the radiation fin 12 in a plane perpendicular to a cooling wind blowing direction is formed in a comb shape, and a semiconductor element 14 is mounted on a heat receiver 13. The semiconductor element is disposed in a sealing part, and the radiation fin is disposed in an open part. The comb type coolers 11b1, 11b2 which blow the cooling winds to the radiation fins and radiate heats of the semiconductor element to the open part, are arranged in series in a plurality of stages to the cooling wind blowing direction. There is at least one stage in which the two or more comb type coolers are arranged in parallel with the cooling wind blowing direction, and there is at least one position where sizes of the comb type coolers aligned in series are not the same. Thickness central positions of the radiation fins are aligned and disposed opposite to one another of a windward comb type cooler disposed in the windward to the cooling wind blowing direction and a leeward comb type cooler disposed in the leeward. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば電力変換装置に使用される半導体素子を冷却するための半導体冷却装置に関する。   The present invention relates to a semiconductor cooling device for cooling a semiconductor element used in, for example, a power conversion device.

例えば、車両用電力変換装置は車両の床下に設置され、架線からの電力を半導体素子により変換して車両駆動用電動機に供給したり、その他の各種負荷に供給する。この場合、半導体素子が発熱することから車両用電力変換装置には半導体素子を冷却するための半導体冷却装置が設けられている。   For example, a vehicular power conversion device is installed under the floor of a vehicle, converts power from an overhead wire by a semiconductor element and supplies it to a vehicular drive motor or other various loads. In this case, since the semiconductor element generates heat, the vehicle power converter is provided with a semiconductor cooling device for cooling the semiconductor element.

図9Aは従来の半導体冷却装置のくし型冷却器の側面図、図9Bは図9AのA−A断面図、図9Cは図9BのB矢視図である。くし形冷却器11は放熱フィン12と受熱部13とを有し、半導体素子14を受熱部13の受熱面に取り付ける。そして、半導体素子14が取り付けられた受熱部13を車両用電力変換装置の密閉部に配置すると共に、放熱フィン12を開放部に配置して開放部に冷却風15を送風させて冷却する。   9A is a side view of a conventional comb cooler of a semiconductor cooling device, FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A, and FIG. The comb cooler 11 has a heat radiating fin 12 and a heat receiving part 13, and attaches the semiconductor element 14 to the heat receiving surface of the heat receiving part 13. And while the heat receiving part 13 to which the semiconductor element 14 was attached is arrange | positioned in the sealing part of the power converter device for vehicles, the radiation fin 12 is arrange | positioned in an open part, and it cools by sending the cooling air 15 to an open part.

すなわち、くし型冷却器11は、冷却風15の送風方向に対して直交する平面(図9AのA−A断面図)での放熱フィン部の断面形状がくし型となるように形成され、発熱体である半導体素子14はくし型冷却器11の受熱部13の受熱面に取付けられる。半導体素子14からの発熱は、受熱部13を介し放熱部である放熱フィン12に伝熱され、開放部に設置された放熱フィン12に冷却風15を送風して排熱する。   That is, the comb cooler 11 is formed so that the cross-sectional shape of the radiating fin portion in a plane orthogonal to the blowing direction of the cooling air 15 (AA cross-sectional view in FIG. 9A) becomes a comb shape, The semiconductor element 14 is attached to the heat receiving surface of the heat receiving unit 13 of the comb cooler 11. Heat generated from the semiconductor element 14 is transferred to the heat radiating fins 12 that are heat radiating portions via the heat receiving portion 13, and exhausted by blowing cooling air 15 to the heat radiating fins 12 installed in the open portion.

図10は、図9A〜図9Cに示したくし型冷却器11を強制風冷式の車両用電力変換装置に装着した従来の半導体冷却装置の側面図である。くし型冷却器11の受熱部13は車両用電力変換装置16の冷却器取付面に取り付けられ、車両用電力変換装置16の内部に設けられた風洞17内に放熱フィン12を配置し、電動送風機18により風洞17内の放熱フィン12に冷却風15を送風する。また、風洞17内には、トランスやリアクトル及び抵抗器等の発熱体19も配置され、冷却風15によって同時に冷却されている。   FIG. 10 is a side view of a conventional semiconductor cooling device in which the comb cooler 11 shown in FIGS. 9A to 9C is mounted on a forced air cooling type vehicle power conversion device. The heat receiving portion 13 of the comb cooler 11 is attached to the cooler mounting surface of the vehicle power conversion device 16, and the radiation fins 12 are disposed in the wind tunnel 17 provided inside the vehicle power conversion device 16. The cooling air 15 is blown to the radiating fins 12 in the wind tunnel 17 by 18. A heating element 19 such as a transformer, a reactor, and a resistor is also disposed in the wind tunnel 17 and is simultaneously cooled by the cooling air 15.

図11Aはくし型冷却器を冷却風送風方向に対し二段直列に配列した場合の側面図、図11Bは図11AのC矢視図、図11Cは図11AのD−D断面図、図11Dは図11AのE−E断面図、図11Eは図11AのF矢視図、図11Fは図11AのG矢視図である。   11A is a side view when the comb coolers are arranged in series in two stages with respect to the cooling air blowing direction, FIG. 11B is a C arrow view of FIG. 11A, FIG. 11C is a DD cross-sectional view of FIG. 11A is a cross-sectional view taken along the line E-E in FIG. 11A, FIG. 11E is a view taken along the arrow F in FIG. 11A, and FIG. 11F is a view taken along the arrow G in FIG.

図11A、図11Bに示すように、冷却風15の送風方向に対し複数個のくし型冷却器11a、11bを配置して複数段直列とし、また、冷却風15の送風方向に対し直交する方向20に少なくとも1個のくし型冷却器11を配置している。   As shown in FIGS. 11A and 11B, a plurality of comb-type coolers 11 a and 11 b are arranged in series with respect to the air blowing direction of the cooling air 15, and are arranged in series, and are orthogonal to the air blowing direction of the cooling air 15. 20 includes at least one comb cooler 11.

図11Cには、冷却風15の送風方向に対し風上に配置された風上くし型冷却器11a1、11a2における放熱フィン12の配置位置および放熱フィン12の厚みd1とフィンピッチp1を示しており、図11Dには、冷却風15の送風方向に対し風下に配置された風下くし型冷却器11b1、11b2における放熱フィン12の配置位置および放熱フィン12の厚みd1とフィンピッチp1を示している。放熱フィン12のフィンピッチは放熱フィン12の厚みd1の中心位置間の距離である。   FIG. 11C shows the arrangement positions of the radiation fins 12 and the thicknesses d1 and fin pitches p1 of the radiation fins 12 in the windward comb coolers 11a1 and 11a2 arranged on the windward side with respect to the blowing direction of the cooling air 15. FIG. 11D shows the arrangement positions of the radiation fins 12 and the thicknesses d1 and fin pitches p1 of the radiation fins 12 in the leeward comb coolers 11b1 and 11b2 arranged leeward with respect to the blowing direction of the cooling air 15. The fin pitch of the radiation fins 12 is the distance between the center positions of the thickness d1 of the radiation fins 12.

風上くし形冷却器11aにおける放熱フィン12の中心位置と風下くし型冷却器11bにおける放熱フィン12の中心位置との間にはズレがあるので、図11Eに示すように、冷却風15の送風方向より見た場合、風上くし型冷却器11aの放熱フィン12間に風下くし型冷却器11bの放熱フィン12が重なる。   Since there is a gap between the center position of the radiating fins 12 in the windward comb cooler 11a and the center position of the radiating fins 12 in the leeward comb cooler 11b, as shown in FIG. When viewed from the direction, the radiating fins 12 of the leeward comb cooler 11b overlap between the radiating fins 12 of the windward comb cooler 11a.

従って、図11Fに示すように、風上くし型冷却器11aと風下くし型冷却器11bとの冷却器間yにおいて、風上くし型冷却器11aの放熱フィン間x1を通り抜けた冷却風15が風下くし型冷却器11bの放熱フィン12の厚みd1に邪魔される。このため、放熱フィン間x1を通り抜ける冷却風15の通風抵抗が大きくなる。   Therefore, as shown in FIG. 11F, in the space between the coolers y of the windward comb cooler 11a and the windward comb cooler 11b, the cooling air 15 passing through the heat radiation fins x1 of the windward comb cooler 11a is It is disturbed by the thickness d1 of the radiating fin 12 of the leeward comb cooler 11b. For this reason, the ventilation resistance of the cooling air 15 passing through between the heat radiation fins x1 is increased.

図12Aは、図11A〜図11Fに示したくし型冷却器11を強制風冷式の車両用電力変換装置16に装着した従来の半導体冷却装置の側面図、図12Bは、図12AのH矢視図である。風洞17の冷却風15は、風下くし型冷却器11bの放熱フィン12の厚みd1に邪魔されるので、冷却風15の多くは風洞17内の発熱体19と放熱フィン12との間を通ることになる。つまり、放熱フィン12以外の空間を通り抜けてしまい、くし型冷却器11の性能に必要な風量を確保することができない。そこで、図12Eに示すように、風洞17内に放熱フィン12以外の空間を塞ぐための邪魔板21を設置し、冷却風15が放熱フィン12に通るようにしているが、邪魔板21を設置すると、風洞17全体の圧力損失が大きくなるため大型の電動送風機18が必要となっていた。   FIG. 12A is a side view of a conventional semiconductor cooling device in which the comb-type cooler 11 shown in FIGS. 11A to 11F is mounted on a forced air cooling type vehicle power conversion device 16, and FIG. 12B is a view taken along the arrow H in FIG. FIG. Since the cooling air 15 in the wind tunnel 17 is obstructed by the thickness d1 of the radiating fin 12 of the downwind comb cooler 11b, most of the cooling air 15 passes between the heating element 19 and the radiating fin 12 in the wind tunnel 17. become. That is, it passes through a space other than the heat radiating fins 12, and the air volume necessary for the performance of the comb cooler 11 cannot be secured. Therefore, as shown in FIG. 12E, a baffle plate 21 is installed in the wind tunnel 17 to block the space other than the heat radiating fins 12 so that the cooling air 15 passes through the heat radiating fins 12. Then, since the pressure loss of the whole wind tunnel 17 becomes large, the large sized electric blower 18 was needed.

ところで、冷却風の送風方向に発熱素子を多段に配置し、送風方向線上の放熱フィンの総数をほぼ同数にして全体を均一に冷却するようにしたものがある(例えば特許文献1参照)。また、多数の平板状の放熱フィンを上下方向に所定間隔を保って設置した冷却器を車両の床下に設置した半導体冷却装置がある(例えば特許文献2参照)。さらに、冷却風の送風方向にフィンピッチの異なる複数段コルゲートフィンを設けて冷却性能分布を変化させるようにしたものもある(例えば特許文献3参照)。
特開2003−46279号公報 特開2000−92819号公報 特開2001−85578号公報
By the way, there is one in which heating elements are arranged in multiple stages in the blowing direction of the cooling air so that the total number of radiating fins on the blowing direction line is substantially the same to uniformly cool the whole (see, for example, Patent Document 1). In addition, there is a semiconductor cooling device in which a cooler in which a large number of flat radiating fins are installed at a predetermined interval in the vertical direction is installed under the floor of a vehicle (see, for example, Patent Document 2). Furthermore, there is also a configuration in which a cooling performance distribution is changed by providing a plurality of corrugated fins having different fin pitches in the cooling air blowing direction (see, for example, Patent Document 3).
JP 2003-46279 A JP 2000-92819 A JP 2001-85558 A

従来の半導体冷却装置では、風上くし型冷却器の放熱フィンの厚みの中心位置と風下に配置された風下くし型冷却器の放熱フィンの厚みの中心位置にズレが生じているので、放熱フィン間を通り抜ける冷却風の圧力損失が大きくなる。このため十分な冷却ができないことがあった。また、強制送風式の場合には所定の風量を確保するに大型の電動送風機を用意する必要があり、そうした場合には装置外形及び質量が大きくなってしまい、装置の小型軽量化が難しくなっていた。   In the conventional semiconductor cooling device, there is a deviation between the center position of the thickness of the radiating fin of the windward comb cooler and the center position of the thickness of the radiating fin of the leeward comb type cooler arranged on the leeward side. The pressure loss of the cooling air that passes between them increases. For this reason, sufficient cooling may not be possible. In addition, in the case of the forced air blow type, it is necessary to prepare a large electric blower to secure a predetermined air volume. In such a case, the outer shape and mass of the device become large, and it is difficult to reduce the size and weight of the device. It was.

本発明の目的は、くし型冷却器の放熱フィン間を抜ける冷却風の圧力損失を低減させ、冷却性能を高めた半導体冷却装置を提供することである。   An object of the present invention is to provide a semiconductor cooling device in which the pressure loss of cooling air passing through between the radiating fins of the comb cooler is reduced and the cooling performance is improved.

請求項1の発明に係わる半導体冷却装置は、冷却風送風方向に対し直交する平面での放熱フィン部の断面形状をくし型とし受熱部に半導体素子を取り付け、前記半導体素子を密閉部に配置すると共に前記放熱フィン部を開放部に配置し、前記放熱フィン部に冷却風を送風し半導体素子の発熱を開放部に放熱するくし型冷却器を冷却風送風方向に対し複数段直列に配列し、前記くし形冷却器が冷却風送風方向に対して並列に2個以上配列される段が少なくとも1ヶ所あり、かつ直列に並ぶ前記くし型冷却器の大きさが同一でない箇所が少なくとも1ヶ所あり、冷却風送風方向に対し風上に配置される風上くし型冷却器と風下に配置される風下くし型冷却器との互いに対向する各々の放熱フィンの厚み中心位置をそろえ配置したことを特徴とする。   According to a first aspect of the present invention, there is provided a semiconductor cooling device in which a cross-sectional shape of a radiating fin portion in a plane orthogonal to a cooling air blowing direction is a comb shape, a semiconductor element is attached to a heat receiving portion, and the semiconductor element is disposed in a sealed portion. And the heat dissipating fin part is arranged in the open part, and a comb type cooler that blows cooling air to the heat dissipating fin part and dissipates heat of the semiconductor element to the open part is arranged in a plurality of stages in series with respect to the cooling air blowing direction, There are at least one stage in which two or more comb coolers are arranged in parallel with the cooling air blowing direction, and at least one place where the size of the comb coolers arranged in series is not the same, It is characterized in that the center positions of the thicknesses of the radiating fins facing each other of the upwind comb type cooler arranged on the windward side and the downwind comb type cooler arranged on the downwind side are aligned with respect to the cooling air blowing direction. Do

請求項2の発明に係わる半導体冷却装置は、請求項1の発明において、前記くし型冷却器の放熱フィンの厚みが、前記風上くし型冷却器と前記風下くし型冷却器とで互いに異なることを特徴とする。   According to a second aspect of the present invention, there is provided the semiconductor cooling device according to the first aspect, wherein the comb fin cooler has different heat dissipating fin thicknesses between the upwind comb cooler and the downwind comb cooler. It is characterized by.

請求項3の発明に係わる半導体冷却装置は、請求項1または請求項2の発明において、前記くし型冷却器の放熱フィンの高さが、前記風上くし型冷却器と前記風下くし型冷却器とで互いに異なることを特徴とする。   According to a third aspect of the present invention, there is provided the semiconductor cooling device according to the first or second aspect of the present invention, wherein the radiating fins of the comb cooler have a height of the upwind comb cooler and the downwind comb cooler. And are different from each other.

請求項4の発明に係わる半導体冷却装置は、請求項1乃至請求項3のいずれか1項の発明において、前記くし型冷却器の放熱フィンのフィンピッチが、前記風上くし型冷却器と前記風下くし型冷却器とで互いに異なることを特徴とする。   A semiconductor cooling device according to a fourth aspect of the present invention is the semiconductor cooling device according to any one of the first to third aspects, wherein the fin pitch of the radiating fins of the comb cooler is the same as that of the upwind comb cooler. It is different from the lee comb type cooler.

請求項5の発明に係わる半導体冷却装置は、請求項1乃至請求項4のいずれか1項の発明において、前記風上くし型冷却器または前記風下くし型冷却器の少なくともどちらか一方のくし型冷却器の放熱フィンのフィンピッチは、受熱部に取り付けられる半導体素子の発熱量に応じて粗密にしたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a semiconductor cooling device according to any one of the first to fourth aspects of the present invention, wherein at least one of the upwind comb cooler and the downwind comb cooler is used. The fin pitch of the heat dissipating fins of the cooler is characterized by being coarse and dense according to the amount of heat generated by the semiconductor element attached to the heat receiving portion.

請求項6の発明に係わる半導体冷却装置は、請求項1乃至請求項5のいずれか1項の発明において、前記くし型冷却器の放熱フィンの冷却風送風方向面に面取を施したことを特徴とする。   A semiconductor cooling device according to a sixth aspect of the present invention is the semiconductor cooling device according to any one of the first to fifth aspects, wherein the cooling air blowing direction surface of the heat dissipating fin of the comb cooler is chamfered. Features.

請求項7の発明に係わる半導体冷却装置は、請求項1乃至請求項6のいずれか1項において、前記くし型冷却器の放熱フィンの冷却風送風方向の長さが、隣り合う放熱フィンと異なることを特徴とする。   A semiconductor cooling device according to a seventh aspect of the present invention is the semiconductor cooling device according to any one of the first to sixth aspects, wherein the heat radiation fins of the comb-type cooler are different in length in the cooling air blowing direction from the adjacent heat radiation fins. It is characterized by that.

本発明によれば、くし型冷却器の放熱フィン間を抜ける冷却風の圧力損失を低減することが可能となり、冷却風の通過が円滑に行えるので冷却性能が向上する。従って、強制風冷式の場合には電動送風機を小型化できることから装置全体の小型軽量化を実現することができる。   According to the present invention, it is possible to reduce the pressure loss of the cooling air passing through between the heat dissipating fins of the comb cooler, and the cooling air can be smoothly passed, so that the cooling performance is improved. Therefore, in the case of the forced air cooling type, since the electric blower can be reduced in size, the entire apparatus can be reduced in size and weight.

冷却風の送風方向に対し風上に配置される風上くし型冷却器と風下に設置される風下くし型冷却器の互いに対向する放熱フィンの厚み中心位置をそろえて配置したことにより、くし型冷却器の放熱フィン間を抜ける冷却風の圧力損失を低減する。   Comb shape by arranging the thickness center positions of the radiating fins facing each other of the windward comb cooler placed on the windward and the windward comb cooler placed on the leeward with respect to the cooling air blowing direction. Reduces the pressure loss of the cooling air that passes between the radiating fins of the cooler.

図1Aは本発明の実施例1に係わる半導体冷却装置のくし型冷却器の側面図、図1Bは図1AのI−I断面図、図1Cは図1AのJ−J断面図、図1Dは図1AのK矢視図、図1Eは図1AのL矢視図である。   1A is a side view of a comb-type cooler of a semiconductor cooling apparatus according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line II in FIG. 1A, FIG. 1C is a cross-sectional view taken along line JJ in FIG. FIG. 1A is a view taken in the direction of arrow K, and FIG. 1E is a view taken in the direction of arrow L in FIG. 1A.

図1A〜図1Eに示すように、くし型冷却器11a、11bは、冷却風15の送風方向に対し直交する平面での放熱フィン12の断面形状がくし型に形成され、送風方向に対して多段に直列に配置されている。くし型冷却器11a、11bの受熱部13には半導体素子14が取り付けられている。半導体素子14は、例えば車両用電力変換装置の密閉部に位置するように配置され、また、放熱フィン12は例えば車両用電力変換装置の開放部に配置される。放熱フィン部には冷却風が送風され、半導体素子14の発熱は開放部に放熱される。   As shown in FIGS. 1A to 1E, the comb coolers 11 a and 11 b are formed in a comb shape in the cross-sectional shape of the radiating fins 12 in a plane orthogonal to the blowing direction of the cooling air 15, and are multistage in the blowing direction. Are arranged in series. A semiconductor element 14 is attached to the heat receiving portion 13 of the comb coolers 11a and 11b. The semiconductor element 14 is arrange | positioned so that it may be located, for example in the sealing part of a vehicle power converter device, and the radiation fin 12 is arrange | positioned, for example in the open part of a vehicle power converter device. Cooling air is blown to the radiating fin portion, and the heat generated by the semiconductor element 14 is radiated to the open portion.

また、くし型冷却器11a、11bは、図1Eに示すように、冷却風15の送風方向に対して並列に2個以上配列される段が少なくとも1ヶ所あり、かつ直列に並ぶくし型冷却器11a、11bの大きさが同一でない箇所が少なくとも1ヶ所ある。例えば、直列に並ぶくし型冷却器11a1とくし型冷却器11b1との大きさは同一ではない。   As shown in FIG. 1E, the comb coolers 11a and 11b have at least one stage arranged in parallel with the air blowing direction of the cooling air 15 and are arranged in series. There is at least one place where the sizes of 11a and 11b are not the same. For example, the size of the comb cooler 11a1 and the comb cooler 11b1 arranged in series is not the same.

図1Bには、冷却風15の送風方向に対し風上に配置された風上くし型冷却器11a1、11a2における放熱フィン12の配置位置および放熱フィン12の厚みd1とフィンピッチp1を示しており、図1Cには、冷却風15の送風方向に対し風下に配置された風下くし型冷却器11b1、11b2における放熱フィン12の配置位置および放熱フィン12の厚みd1とフィンピッチp1を示している。   FIG. 1B shows the arrangement positions of the radiation fins 12 and the thicknesses d1 and fin pitches p1 of the radiation fins 12 in the windward comb coolers 11a1 and 11a2 arranged on the windward side with respect to the blowing direction of the cooling air 15. FIG. 1C shows the arrangement positions of the radiation fins 12 and the thicknesses d1 and fin pitches p1 of the radiation fins 12 in the leeward comb coolers 11b1 and 11b2 arranged leeward with respect to the blowing direction of the cooling air 15.

そして、図1B、図1Cに示すように、冷却風15の送風方向に対し風上に配置される風上くし型冷却器11aと、風下に配置される風下くし型冷却器11bとの互いに対向する各々の放熱フィンの厚みd1の中心位置はそろえて配置されている。   Then, as shown in FIGS. 1B and 1C, the upwind comb cooler 11 a disposed on the windward side with respect to the blowing direction of the cooling air 15 and the downwind comb cooler 11 b disposed on the leeward face each other. The center positions of the thicknesses d1 of the radiating fins are aligned.

風上くし型冷却器11aと風下くし型冷却器11bとの互いに対向する放熱フィン12の厚みd1の中心位置をそろえて配置するので、図1Dに示すように、風上くし型冷却器11aと風下くし型冷却器11bとを配置したときの両者の放熱フィン間x1の位置が一致する。従って、図1Eに示すように、放熱フィン間x1を通り抜ける冷却風15の冷却器間yでの通風抵抗が小さくなり圧力損失を低減させることができる。   Since the center positions of the thicknesses d1 of the radiating fins 12 of the windward comb cooler 11a and the windward comb cooler 11b facing each other are aligned, as shown in FIG. 1D, the windward comb cooler 11a When the leeward comb cooler 11b is arranged, the position of the x1 between the heat radiating fins coincides. Therefore, as shown in FIG. 1E, the ventilation resistance between the coolers 15 of the cooling air 15 passing through the heat radiation fins x1 is reduced, and the pressure loss can be reduced.

図2Aは、図1A〜図1Eに示したくし型冷却器11を強制風冷式の車両用電力変換装置に装着した半導体冷却装置の側面図、図2Bは、図2AのM矢視図である。車体22の床下に艤装されている電力変換装置16の冷却器取付面に、放熱フィン12が車両進行方向23と平行かつ開放部に出るようにくし型冷却器11を取り付け、冷却風15である車両走行風24によって放熱する。なお、くし型冷却器11の電力変換装置16への取付面については、電力変換装置16の底面や車体中心側であってもよい。   2A is a side view of a semiconductor cooling device in which the comb cooler 11 shown in FIGS. 1A to 1E is mounted on a forced air cooling type vehicle power conversion device, and FIG. 2B is a view in the direction of arrow M in FIG. 2A. . The comb cooler 11 is attached to the cooler mounting surface of the power conversion device 16 mounted under the floor of the vehicle body 22 so that the radiating fins 12 are parallel to the vehicle traveling direction 23 and come out to the open portion. Heat is dissipated by the vehicle running wind 24. In addition, about the attachment surface to the power converter device 16 of the comb cooler 11, the bottom face of the power converter device 16 or the vehicle body center side may be sufficient.

本発明の実施例1によれば、放熱フィン12間を通り抜ける冷却風15の圧力損失が低減することから、走行風冷式のみならず強制風冷式のいずれの場合であっても、冷却風15の通風抵抗が少なくなり冷却効率が向上する。強制風冷式の場合には電動送風機の小型軽量化が可能となり装置の小型軽量化が実現できる。   According to the first embodiment of the present invention, the pressure loss of the cooling air 15 passing between the radiating fins 12 is reduced, so that the cooling air can be used not only in the traveling air cooling type but also in the forced air cooling type. The ventilation resistance of 15 decreases and cooling efficiency improves. In the case of forced air cooling, the electric blower can be reduced in size and weight, and the apparatus can be reduced in size and weight.

図3Aは本発明の実施例2に係わる半導体冷却装置のくし型冷却器の側面図、図3Bは図3AのN−N断面図、図3Cは図3AのO−O断面図、図3Dは図3AのP矢視図、図3Eは図3AのQ矢視図である。この実施例2は図1A〜図1Eに示した実施例1に対し、くし型冷却器11の放熱フィン12の厚みが、風上くし型冷却器11aと風下くし型冷却器11bとで互いに異なるように構成したものである。図3A〜図3Eでは風上くし型冷却器11aの放熱フィン12aの厚みd2が風下くし型冷却器11bの放熱フィン12bの厚みd1より小さくしたものを示している。図1A〜図1Eと同一要素には同一符号を付し重複する説明は省略する。   3A is a side view of a comb cooler of a semiconductor cooling device according to a second embodiment of the present invention, FIG. 3B is a cross-sectional view taken along line NN in FIG. 3A, FIG. 3C is a cross-sectional view taken along line OO in FIG. 3A is a view taken in the direction of arrow P, and FIG. 3E is a view taken in the direction of arrow Q in FIG. 3A. The second embodiment is different from the first embodiment shown in FIGS. 1A to 1E in that the thickness of the radiating fin 12 of the comb cooler 11 is different between the windward comb cooler 11a and the leeward comb cooler 11b. It is comprised as follows. 3A to 3E show a case where the thickness d2 of the radiating fin 12a of the windward comb cooler 11a is smaller than the thickness d1 of the radiating fin 12b of the leeward comb cooler 11b. The same elements as those in FIGS. 1A to 1E are denoted by the same reference numerals, and redundant description is omitted.

実施例2では、実施例1における風上くし型冷却器11aの放熱フィン12aの厚みd2が風下くし型冷却器11bの放熱フィン12bの厚みd1より小さく形成されている。例えば、車両走行風によって放熱する走行風冷却方式では、放熱フィン12の厚みdを小さくしたくし型冷却器11に、車両速度が低速域では発熱量が小さく車両速度が高速域では発熱量が大きくなるコンバータの機能を有した半導体素子14が取り付けられる。   In the second embodiment, the thickness d2 of the radiating fin 12a of the windward comb cooler 11a in the first embodiment is smaller than the thickness d1 of the radiating fin 12b of the leeward comb cooler 11b. For example, in the traveling wind cooling method that dissipates heat by the vehicle traveling wind, the comb-type cooler 11 that reduces the thickness d of the radiating fin 12 has a small heating value when the vehicle speed is low and a large heating value when the vehicle speed is high. A semiconductor element 14 having a converter function is attached.

いま、風上には車両速度が低速域では発熱量が小さく、車両速度が高速域では発熱量が大きくなるコンバータの機能を有した半導体素子14が取り付けられた風上くし型冷却器11aが配置され、風下には車両速度が低速域では発熱量が大きく、車両速度が高速域では発熱量が小さくなるようなインバータの機能を有した半導体素子14が取り付けられた風下くし型冷却器11bが配置されたとした場合を考える。   Now, a windward comb type cooler 11a to which a semiconductor element 14 having a converter function is installed is installed on the windward, where the calorific value is small when the vehicle speed is low and the calorific value is large when the vehicle speed is high. A leeward comb cooler 11b to which a semiconductor element 14 having an inverter function is installed is attached to the leeward so that the heat generation amount is large when the vehicle speed is low and the heat generation amount is small when the vehicle speed is high. Let's consider the case.

くし型冷却器11の熱抵抗と車両速度との関係は、車両速度が低速で放熱フィン12に取り込める冷却風15が少ないときはくし型冷却器11での熱抵抗が大きく、車両速度が高速で放熱フィン12に取り込める冷却風15が多いときはくし型冷却器11での熱抵抗が小さい。   The relationship between the thermal resistance of the comb cooler 11 and the vehicle speed is such that when the vehicle speed is low and the cooling air 15 that can be taken into the radiating fins 12 is small, the thermal resistance at the comb cooler 11 is large, and the vehicle speed is high and heat is dissipated. When the cooling air 15 that can be taken into the fins 12 is large, the thermal resistance in the comb cooler 11 is small.

そこで、図3B、図3Cに示すように、低速領域で発熱量が小さい風上くし型冷却器11aの放熱フィン12aの厚みd2を風下くし型冷却器11bの放熱フィン12bの厚みd1より薄くし、図3Dに示すように、風上くし型冷却器11aの放熱フィン間x2を風下くし型冷却器11bの放熱フィン間x1より大きくする。これにより、風上くし型冷却器11aの放熱フィン間x2を通り抜ける冷却風15の圧力損失が低減し、風下くし型冷却器11bへの取込風速が大きくなり、熱抵抗が小さくなることから温度低減を行なうことができる。   Therefore, as shown in FIGS. 3B and 3C, the thickness d2 of the radiating fin 12a of the windward comb cooler 11a that generates a small amount of heat in the low speed region is made thinner than the thickness d1 of the radiating fin 12b of the leeward comb cooler 11b. As shown in FIG. 3D, the distance x2 between the radiating fins of the windward comb cooler 11a is made larger than the distance x1 between the radiating fins of the leeward comb cooler 11b. As a result, the pressure loss of the cooling air 15 passing through the radiating fins x2 of the windward comb cooler 11a is reduced, the intake air speed to the leeward comb cooler 11b is increased, and the thermal resistance is decreased. Reduction can be performed.

また、風上くし型冷却器11aは、放熱フィン12aの厚みd2が薄くなることにより放熱面積が減少し冷却性能が低下するが、低速域では発熱量が小さいので高い冷却性能を必要としないので冷却に支障を来すことはない。一方、発熱量が大きくなる高速領域では放熱フィン12aの厚みd2が薄くなったことから、放熱フィン間x2が拡大しているので、通風抵抗が減少する。このため、冷却風速が上がり風上くし型冷却器11aの熱抵抗が小さくなるので、上述した冷却性能の低下を補うことができる。また、放熱フィン12aの厚みd2を薄くすることにより風上くし型冷却器12aの軽量化にもつながる。   Further, the wind-up comb cooler 11a has a reduced heat dissipation area and a reduced cooling performance due to a decrease in the thickness d2 of the heat dissipating fins 12a. However, since the heat generation amount is small in the low speed region, a high cooling performance is not required. There is no hindrance to cooling. On the other hand, since the thickness d2 of the radiating fin 12a is reduced in the high speed region where the heat generation amount is large, the airflow resistance is reduced because the space between the radiating fins x2 is enlarged. For this reason, the cooling wind speed is increased and the thermal resistance of the upwind comb cooler 11a is reduced, so that the above-described decrease in cooling performance can be compensated. Further, reducing the thickness d2 of the heat dissipating fins 12a leads to a reduction in the weight of the windward comb cooler 12a.

次に、車両進行方向が逆になり、くし型冷却器11の風上と風下との配置が逆転した場合を考える。この場合、インバータを構成している風下くし型冷却器11bが風上に位置することになるが、風上であることから、より多くの冷却風量が得られる。一方、コンバータを構成していた風上くし型冷却器11aは風下に位置することになり、冷却風量が低下するが、放熱フィン12aの厚みd2が薄いので、通風抵抗が小さく取り込み風速が上がり冷却性能が向上する。   Next, consider a case where the vehicle traveling direction is reversed and the disposition of the windward and leeward comb comb coolers 11 is reversed. In this case, the lee comb type cooler 11b constituting the inverter is located on the windward side, but since it is on the windward side, a larger amount of cooling airflow can be obtained. On the other hand, the windward comb type cooler 11a constituting the converter is positioned on the leeward side, and the cooling air volume is reduced. However, since the thickness d2 of the radiating fin 12a is thin, the ventilation resistance is small and the intake air speed is increased to cool the air. Performance is improved.

実施例2によれば、風上くし型冷却器11aと風下くし型冷却器11bとの互いに対向する放熱フィン12の厚みの中心位置をそろえて配置し、くし型冷却器11の放熱フィン12の厚みdを薄くするので、さらに、放熱フィン12を通り抜ける冷却風の圧力損失を低減することができ、くし型冷却器11の軽量化にもつながる。   According to the second embodiment, the center positions of the thicknesses of the radiating fins 12 of the windward comb cooler 11a and the leeward comb cooler 11b that are opposed to each other are aligned, and the radiating fins 12 of the comb cooler 11 are arranged. Since the thickness d is reduced, the pressure loss of the cooling air passing through the radiating fins 12 can be further reduced, and the comb cooler 11 can be reduced in weight.

図4Aは本発明の実施例3に係わる半導体冷却装置のくし型冷却器の側面図、図4Bは図4AのR−R断面図、図4Cは図4AのS−S断面図である。この実施例3は図1A〜図1Eに示した実施例1または図3A〜図3Eに示した実施例2に対し、くし型冷却器11の放熱フィン12の高さが、風上くし型冷却器11aと風下くし型冷却器11bとで互いに異なるように構成したものである。図4A〜図4Cでは風上くし型冷却器11aの放熱フィン12aの高さh2が風下くし型冷却器11bの放熱フィン12bの高さh1より小さくしたものを示している。図1A〜図1Eまたは図3A〜図3Eと同一要素には同一符号を付し重複する説明は省略する。   4A is a side view of a comb cooler of a semiconductor cooling device according to a third embodiment of the present invention, FIG. 4B is an RR cross-sectional view of FIG. 4A, and FIG. 4C is an SS cross-sectional view of FIG. The third embodiment is different from the first embodiment shown in FIG. 1A to FIG. 1E or the second embodiment shown in FIG. 3A to FIG. The cooler 11a and the downwind comb cooler 11b are configured to be different from each other. FIGS. 4A to 4C show the case where the height h2 of the radiating fin 12a of the windward comb cooler 11a is smaller than the height h1 of the radiating fin 12b of the leeward comb cooler 11b. The same elements as those in FIGS. 1A to 1E or FIGS. 3A to 3E are denoted by the same reference numerals, and redundant description is omitted.

実施例3では、風上くし型冷却器11aの放熱フィン12aの高さh1と風下くし型冷却器11bの放熱フィン12bの高さh2とが互いに異なるように組み立てられている。例えば、車両走行風によって放熱する走行風冷却方式において、放熱フィン12の高さhを小さくしたくし型冷却器11に、車両速度が低速域では発熱量が小さく車両速度が高速域では発熱量が大きくなるコンバータの機能を有した半導体素子14が取り付けた場合には、低速領域で発熱量が小さい風上くし型冷却器11aの放熱フィン12aの高さh2を風下くし型冷却器11bの放熱フィン12bの高さh1より短くする。   In Example 3, the assembly is performed such that the height h1 of the radiating fin 12a of the windward comb cooler 11a and the height h2 of the radiating fin 12b of the leeward comb cooler 11b are different from each other. For example, in a traveling wind cooling system that dissipates heat by the traveling wind of a vehicle, the comb-type cooler 11 that reduces the height h of the heat dissipating fin 12 has a small amount of heat generated when the vehicle speed is low, and a small amount of heat when the vehicle speed is high. When the semiconductor element 14 having the function of a converter to be enlarged is attached, the height h2 of the radiating fin 12a of the windward comb cooler 11a that generates a small amount of heat in the low speed region is lowered, and the radiating fin of the cooler 11b. The height is shorter than the height h1 of 12b.

これにより、風上くし型冷却器11aの放熱フィン間xを通り抜ける冷却風15の圧力損失が低減できるので冷却性能が向上する。また、放熱フィン12aの高さh2を小さくすることにより、くし型冷却器11の軽量化にもつながる。
実施例3によれば、風上くし型冷却器11aと風下くし型冷却器11bとの互いに対向する放熱フィン12の厚みの中心位置をそろえて配置し、くし型冷却器11の放熱フィン12の高さhを風上くし型冷却器12aと風下くし型冷却器12bとで互いに異なるように構成したので、くし型冷却器11の放熱フィン間を抜ける冷却風の圧力損失をさらに低減でき、しかも装置の小型・軽量化に配慮した半導体冷却装置を提供できる。
As a result, the pressure loss of the cooling air 15 passing through the space between the heat dissipating fins x of the windward comb cooler 11a can be reduced, and the cooling performance is improved. Further, by reducing the height h2 of the radiating fins 12a, the comb cooler 11 can be reduced in weight.
According to the third embodiment, the central positions of the thicknesses of the radiating fins 12 of the windward comb cooler 11a and the leeward comb cooler 11b that are opposed to each other are aligned, and the radiating fins 12 of the comb cooler 11 are arranged. Since the height h is configured to be different between the windward comb cooler 12a and the windward comb cooler 12b, the pressure loss of the cooling air passing through between the radiating fins of the comb cooler 11 can be further reduced. It is possible to provide a semiconductor cooling device that takes into account the reduction in size and weight of the device.

図5Aは本発明の実施例4に係わる半導体冷却装置のくし型冷却器の側面図、図5Bは図5AのT−T断面図、図5Cは図5AのU−U断面図、図5Dは図5AのV矢視図、図5Eは図5AのW矢視図である。この実施例4は図1A〜図1Eに示した実施例1に対し、くし型冷却器11の放熱フィ12のフィンピッチpが、風上くし型冷却器11aと風下くし型冷却器11bとで互いに異なるように構成したものである。図5A〜図5Eでは風上くし型冷却器11aの放熱フィン12aのフィンピッチp2が風下くし型冷却器11bの放熱フィン12bのフィンピッチp1より大きくしたものを示している。図1A〜図1Eと同一要素には同一符号を付し重複する説明は省略する。   5A is a side view of a comb cooler of a semiconductor cooling device according to a fourth embodiment of the present invention, FIG. 5B is a TT cross-sectional view of FIG. 5A, FIG. 5C is a UU cross-sectional view of FIG. FIG. 5A is a view as viewed from an arrow V, and FIG. 5E is a view as viewed from an arrow W in FIG. 5A. The fourth embodiment is different from the first embodiment shown in FIGS. 1A to 1E in that the fin pitch p of the heat radiation fin 12 of the comb cooler 11 is different between the windward comb cooler 11a and the leeward comb cooler 11b. They are configured to be different from each other. 5A to 5E show the fin pitch p2 of the radiating fin 12a of the windward comb cooler 11a larger than the fin pitch p1 of the radiating fin 12b of the leeward comb cooler 11b. The same elements as those in FIGS. 1A to 1E are denoted by the same reference numerals, and redundant description is omitted.

実施例4では、くし型冷却器11のフィンピッチpが、風上くし型冷却器11aのフィンピッチp2と風下くし型冷却器11bのフィンピッチp1とで異なるように組み立てられている。例えば、車両走行風によって放熱する走行風冷却方式において、放熱フィン12の高さhを小さくしたくし型冷却器11に、車両速度が低速域では発熱量が小さく車両速度が高速域では発熱量が大きくなるコンバータの機能を有した半導体素子14を取り付けた場合には、低速領域で発熱量が小さい風上くし型冷却器11aのフィンピッチp2を風下くし型冷却器11bのフィンピッチp1の整数倍とする。これにより、風上くし型冷却器11aの放熱フィン間x2が大きくなり冷却風15の圧力損失が低減できる。また、フィンピッチを大きくすることによりフィン枚数が少なくなりくし型冷却器の軽量化にもつながる。以上の説明では、実施例1に対して適用した場合について説明したが、実施例2または実施例3にも適用できることは言うまでもない。   In Example 4, the fin pitch p of the comb cooler 11 is assembled so as to be different between the fin pitch p2 of the windward comb cooler 11a and the fin pitch p1 of the leeward comb cooler 11b. For example, in a traveling wind cooling system that dissipates heat by the traveling wind of a vehicle, the comb-type cooler 11 that reduces the height h of the heat dissipating fin 12 has a small amount of heat generated when the vehicle speed is low, and a small amount of heat when the vehicle speed is high. When the semiconductor element 14 having an increasing converter function is attached, the fin pitch p2 of the windward comb cooler 11a that generates a small amount of heat in the low speed region is an integral multiple of the fin pitch p1 of the leeward comb cooler 11b. And Thereby, the space | interval x2 between the radiation fins of the wind-up comb-type cooler 11a becomes large, and the pressure loss of the cooling wind 15 can be reduced. In addition, increasing the fin pitch reduces the number of fins and leads to weight reduction of the comb cooler. In the above description, the case where the present invention is applied to the first embodiment has been described. Needless to say, the present invention can also be applied to the second embodiment or the third embodiment.

実施例4によれば、風上くし型冷却器11aと風下くし型冷却器11bとの互いに対向する放熱フィン12の厚みの中心位置をそろえて配置し、くし型冷却器11のフィンピッチpが風上くし型冷却器11aと風下くし型冷却器11bとで互いに異なるように構成したので、くし型冷却器11の放熱フィン間を抜ける冷却風の圧力損失をさらに低減でき、装置の小型・軽量化に配慮した半導体冷却装置を構成することができる。   According to the fourth embodiment, the center positions of the radiating fins 12 of the windward comb cooler 11a and the windward comb cooler 11b facing each other are arranged so that the fin pitch p of the comb cooler 11 is Since the windward comb cooler 11a and the windward comb cooler 11b are configured to be different from each other, the pressure loss of the cooling air passing through between the radiating fins of the comb cooler 11 can be further reduced, and the apparatus is small and lightweight. It is possible to configure a semiconductor cooling device in consideration of the process.

図6Aは本発明の実施例5に係わる半導体冷却装置のくし型冷却器の側面図、図6Bは図6AのX−X断面図、図6Cは図6AのY−Y断面図、図6Dは図6AのZ矢視図、図6Eは図6AのAA矢視図である。この実施例5は図1A〜図1Eに示した実施例1に対し、風上くし型冷却器11aの放熱フィン12aのフィンピッチpを、受熱部13に取り付けられる半導体素子14の発熱量に応じて粗密(p2、P2’)にしたものである。図1A〜図1Eと同一要素には同一符号を付し重複する説明は省略する。   6A is a side view of a comb cooler of a semiconductor cooling device according to a fifth embodiment of the present invention, FIG. 6B is a cross-sectional view taken along line XX of FIG. 6A, FIG. 6C is a cross-sectional view taken along line YY of FIG. FIG. 6A is a view as viewed from an arrow Z, and FIG. 6E is a view as viewed from an arrow AA in FIG. 6A. The fifth embodiment is different from the first embodiment shown in FIGS. 1A to 1E in that the fin pitch p of the radiating fins 12a of the upwind comb cooler 11a is set according to the amount of heat generated by the semiconductor element 14 attached to the heat receiving portion 13. And dense (p2, P2 ′). The same elements as those in FIGS. 1A to 1E are denoted by the same reference numerals, and redundant description is omitted.

実施例5では、風上くし型冷却器11aのフィンピッチpは異なるフィンピッチp2、p2’で粗密に構成され、風下くし型冷却器11bのフィンピッチpは同じ間隔のフィンピッチp1で構成されている。例えば、風上くし型冷却器11aの中央部に配置される半導体素子14の方が、両端部に配置される半導体素子14より発熱量が大きい場合には、風上くし型冷却器11a内の両端部のフィンピッチp2’を中央部のフィンピッチp2の整数倍となるように両端部のフィンピッチp2’を構成する。これにより、風上くし型冷却器11aの放熱フィン間x2’を通り抜ける冷却風15の圧力損失が低減でき、放熱フィン12aの枚数も少なくなり、くし型冷却器11aの軽量化にもつながる。   In the fifth embodiment, the fin pitch p of the windward comb cooler 11a is composed of different fin pitches p2 and p2 ′, and the fin pitch p of the windward comb cooler 11b is composed of the same pitch fin pitch p1. ing. For example, when the semiconductor element 14 disposed in the central portion of the windward comb cooler 11a generates a larger amount of heat than the semiconductor elements 14 disposed at both ends, the windward comb cooler 11a The fin pitch p2 'at both ends is configured so that the fin pitch p2' at both ends is an integral multiple of the fin pitch p2 at the center. As a result, the pressure loss of the cooling air 15 passing through the radiating fin interval x2 'of the windward comb cooler 11a can be reduced, the number of the radiating fins 12a is reduced, and the weight of the comb cooler 11a is reduced.

以上の説明では、風上くし型冷却器11aの放熱フィン12aのフィンピッチpを、受熱部13に取り付けられる半導体素子14の発熱量に応じて粗密(p2、P2’)にしたが、逆に、風下くし型冷却器11bの放熱フィン12bのフィンピッチpを、受熱部13に取り付けられる半導体素子14の発熱量に応じて粗密にするようにしてもよい。また、以上の説明では、実施例1に対して適用した場合について説明したが、実施例2または実施例4にも適用できることは言うまでもない。   In the above description, the fin pitch p of the heat dissipating fins 12a of the upwind comb cooler 11a is made dense (p2, P2 ′) according to the amount of heat generated by the semiconductor element 14 attached to the heat receiving unit 13, but conversely The fin pitch p of the heat dissipating fins 12b of the downwind comb cooler 11b may be made dense according to the amount of heat generated by the semiconductor element 14 attached to the heat receiving unit 13. Moreover, although the case where it applied with respect to Example 1 was demonstrated in the above description, it cannot be overemphasized that it is applicable also to Example 2 or Example 4. FIG.

実施例5によれば、風上くし型冷却器11a又は風下くし型冷却器11bの少なくともどちらか一方のくし型冷却器11内のフィンピッチpを粗密するので、くし型冷却器11の放熱フィン間xを抜ける冷却風の圧力損失を低減することができ、装置の小型・軽量化に配慮した半導体冷却装置を構成することができる。   According to the fifth embodiment, since the fin pitch p in the comb cooler 11 of at least one of the windward comb cooler 11a and the windward comb cooler 11b is made dense, the radiating fins of the comb cooler 11 are used. The pressure loss of the cooling air passing through the space x can be reduced, and a semiconductor cooling device can be configured in consideration of the size and weight of the device.

図7Aは本発明の実施例6に係わる半導体冷却装置のくし型冷却器の側面図、図7Bは図7AのBB−BB断面図、図7Cは図7AのCC矢視図、図7Dは図7AのDD拡大図である。この実施例6は図1A〜図1Eに示した実施例1に対し、くし型冷却器11の放熱フィン12の冷却風15の送風方向面に面取を施したものである。図1A〜図1Eと同一要素には同一符号を付し重複する説明は省略する。   7A is a side view of a comb cooler of a semiconductor cooling device according to a sixth embodiment of the present invention, FIG. 7B is a cross-sectional view taken along the line BB-BB of FIG. 7A, FIG. 7C is a view taken along the CC arrow of FIG. It is DD enlarged drawing of 7A. In the sixth embodiment, chamfering is performed on the surface in the blowing direction of the cooling air 15 of the radiating fin 12 of the comb cooler 11 with respect to the first embodiment shown in FIGS. 1A to 1E. The same elements as those in FIGS. 1A to 1E are denoted by the same reference numerals, and redundant description is omitted.

図7Dに示すように、くし型冷却器11の放熱フィン12の冷却風15の送風方向面に面取が施されている。すなわち、くし型冷却器11の各放熱フィン12の厚み方向面25と、冷却風15の送風方向に平行かつ受熱部13に対し垂直となる送風方向平行面26とが交差する角部27を面取りし傾斜させて組み立てられている。   As shown in FIG. 7D, chamfering is performed on the air blowing direction surface of the cooling air 15 of the radiation fin 12 of the comb cooler 11. That is, the corner 27 where the thickness direction surface 25 of each radiating fin 12 of the comb cooler 11 intersects the air blowing direction parallel surface 26 parallel to the air blowing direction of the cooling air 15 and perpendicular to the heat receiving portion 13 is chamfered. It is assembled by tilting.

このように、放熱フィン12の先端形状を面取りし傾斜させた形状とすることにより、放熱フィン12の入風部の空気抵抗が減少し、くし型冷却器11の放熱フィン間x1を通り抜ける冷却風の圧力損失が低減するので、放熱が効率的に行える。従って、強制冷却式の場合には、電動送風機の小型軽量化が可能となり装置の小型軽量化が実現ができる。以上の説明では、実施例1に対して適用した場合について説明したが、実施例2または実施例4にも適用できることは言うまでもない。   Thus, by making the tip shape of the radiating fin 12 be chamfered and inclined, the air resistance of the inlet portion of the radiating fin 12 is reduced, and the cooling air passing through the radiating fin interval x1 of the comb cooler 11 is reduced. Since the pressure loss is reduced, heat can be efficiently dissipated. Therefore, in the case of the forced cooling type, the electric blower can be reduced in size and weight, and the apparatus can be reduced in size and weight. In the above description, the case where the present invention is applied to the first embodiment has been described. Needless to say, the present invention can also be applied to the second embodiment or the fourth embodiment.

実施例6によれば、くし型冷却器15の放熱フィン12の厚み方向面25と、冷却風15の送風方向に平行かつ受熱部13に対し垂直となる送付方向平行面26とが交差する角部27を面取し傾斜させるので、くし型冷却器11の放熱フィン間x1を抜ける冷却風15の圧力損失を低減できる。従って、装置の小型・軽量化に配慮した半導体冷却装置を構成することができる。   According to the sixth embodiment, the angle at which the thickness direction surface 25 of the radiating fin 12 of the comb cooler 15 and the sending direction parallel surface 26 parallel to the air blowing direction of the cooling air 15 and perpendicular to the heat receiving portion 13 intersect. Since the part 27 is chamfered and inclined, the pressure loss of the cooling air 15 passing through the heat radiation fins x1 of the comb cooler 11 can be reduced. Therefore, it is possible to configure a semiconductor cooling device that takes into account the reduction in size and weight of the device.

図8Aは本発明の実施例7に係わる半導体冷却装置のくし型冷却器の側面図、図8Bは図8AのEE矢視図である。この実施例7は図1A〜図1Eに示した実施例1に対し、くし型冷却器11の隣り合う放熱フィン12a、12a’の冷却風15の送風方向の長さを異なるように形成したものである。図8A、図8Bでは、放熱フィン12a’の長さが放熱フィン12aの長さより短く形成されているものを示している。図1A〜図1Eと同一要素には同一符号を付し重複する説明は省略する。   FIG. 8A is a side view of a comb-type cooler of a semiconductor cooling device according to a seventh embodiment of the present invention, and FIG. 8B is a view taken along the line EE in FIG. 8A. The seventh embodiment is different from the first embodiment shown in FIGS. 1A to 1E in that the length of the cooling air 15 in the air blowing direction of the adjacent heat dissipating fins 12a and 12a ′ of the comb cooler 11 is different. It is. In FIGS. 8A and 8B, the heat radiation fin 12a 'has a length shorter than that of the heat radiation fin 12a. The same elements as those in FIGS. 1A to 1E are denoted by the same reference numerals, and redundant description is omitted.

くし型冷却器11の冷却風15の送風方向に対し平行となる放熱フィン12aの長さf1が、隣り合う放熱フィン12a’の長さf2より長く形成されている。放熱フィン12の冷却風15の送風方向両端部28において、冷却風15の送風方向の寸法が長い放熱フィン12aの放熱フィン間x12の方が、冷却風15の送風方向の寸法が長い放熱フィン12aと冷却風15の送風方向の寸法が短い放熱フィン12a’との放熱フィン間x11より大きくなる。   The length f1 of the radiating fin 12a that is parallel to the blowing direction of the cooling air 15 of the comb cooler 11 is longer than the length f2 of the adjacent radiating fin 12a '. At both end portions 28 of the cooling fins 15 in the blowing direction of the cooling air 15, the heat radiation fins 12 a having a longer dimension in the blowing direction of the cooling air 15 are longer between the radiation fins 12 of the radiation fins 12 a having a longer dimension in the blowing direction of the cooling air 15. And the dimension of the ventilation direction of the cooling air 15 becomes larger than x11 between heat radiation fins with the short heat radiation fin 12a '.

従って、放熱フィン12の入風部分である放熱フィン12の冷却風15の送風方向端部28での圧力損失が低減され、冷却風15が放熱フィン12に通り易くなり、くし形冷却器11の放熱フィン間x11を通り抜ける冷却風の圧力損失が低減することから冷却効率が向上する。強制風冷式の場合には電動送風機の小型軽量化が可能となり装置の小型軽量化が実現できる。以上の説明では、実施例1に対して適用した場合について説明したが、実施例2または実施例4にも適用できることは言うまでもない。   Accordingly, the pressure loss at the air flow direction end portion 28 of the cooling air 15 of the heat radiation fin 12 that is the inlet portion of the heat radiation fin 12 is reduced, and the cooling air 15 can easily pass through the heat radiation fin 12. Since the pressure loss of the cooling air passing through the heat radiation fin x11 is reduced, the cooling efficiency is improved. In the case of forced air cooling, the electric blower can be reduced in size and weight, and the apparatus can be reduced in size and weight. In the above description, the case where the present invention is applied to the first embodiment has been described. Needless to say, the present invention can also be applied to the second embodiment or the fourth embodiment.

実施例7によれば、くし型冷却器11の冷却風15の送風方向に対し平行となる放熱フィン12の長さが、隣り合う放熱フィン12a、12a’と異なるように構成したので、くし型冷却器11の放熱フィン間x11を通り抜ける冷却風15の圧力損失を低減でき、装置の小型・軽量化に配慮した半導体冷却装置を構成することができる。   According to the seventh embodiment, since the length of the radiation fin 12 that is parallel to the blowing direction of the cooling air 15 of the comb cooler 11 is different from that of the adjacent radiation fins 12a and 12a ′, the comb shape It is possible to reduce the pressure loss of the cooling air 15 passing through the space between the heat dissipating fins x11 of the cooler 11, and it is possible to configure a semiconductor cooling device in consideration of the size and weight reduction of the device.

本発明の実施例1に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb type cooler of the semiconductor cooling device concerning Example 1 of the present invention. 図1AのI−I断面図。II sectional drawing of FIG. 1A. 図1AのJ−J断面図。JJ sectional drawing of FIG. 1A. 図1AのK矢視図。FIG. 図1AのL矢視図。L arrow line view of FIG. 1A. 図1A〜図1Eに示したくし型冷却器を強制風冷式の車両用電力変換装置に装着した半導体冷却装置の側面図。The side view of the semiconductor cooling device which mounted | wore the forced-air-cooling type vehicle power converter with the comb type cooler shown in Drawing 1A-Drawing 1E. 図2AのM矢視図。The M arrow line view of FIG. 2A. 本発明の実施例2に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb type cooler of the semiconductor cooling device concerning Example 2 of the present invention. 図3AのN−N断面図。NN sectional drawing of FIG. 3A. 図3AのO−O断面図。OO sectional drawing of FIG. 3A. 図3AのP矢視図。The P arrow line view of FIG. 3A. 図3AのQ矢視図。The Q arrow line view of FIG. 3A. 本発明の実施例3に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb type cooler of the semiconductor cooling device concerning Example 3 of the present invention. 図4AのR−R断面図。RR sectional drawing of FIG. 4A. 図4AのS−S断面図。SS sectional drawing of FIG. 4A. 本発明の実施例4に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb-type cooler of the semiconductor cooling device concerning Example 4 of this invention. 図5AのT−T断面図。TT sectional drawing of FIG. 5A. 図5AのU−U断面図。FIG. 5B is a cross-sectional view taken along the line U-U in FIG. 5A. 図5AのV矢視図。The V arrow line view of FIG. 5A. 図5AのW矢視図。The W arrow line view of FIG. 5A. 本発明の実施例5に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb type cooler of the semiconductor cooling device concerning Example 5 of the present invention. 図6AのX−X断面図。XX sectional drawing of FIG. 6A. 図6AのY−Y断面図。FIG. 6B is a YY sectional view of FIG. 6A. 図6AのZ矢視図。FIG. 6B is a view taken along the arrow Z in FIG. 6A. 図6AのAA矢視図。FIG. 6A is a view taken along arrow AA in FIG. 6A. 本発明の実施例6に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb-type cooler of the semiconductor cooling device concerning Example 6 of this invention. 図7AのBB−BB断面図。BB-BB sectional drawing of FIG. 7A. 図7AのCC矢視図。CC arrow line view of FIG. 7A. 図7AのDD拡大図。The DD enlarged view of FIG. 7A. 本発明の実施例7に係わる半導体冷却装置のくし型冷却器の側面図。The side view of the comb-type cooler of the semiconductor cooling device concerning Example 7 of this invention. 図8AのEE矢視図。EE arrow line view of FIG. 8A. 従来の半導体冷却装置のくし型冷却器の側面図。The side view of the comb type cooler of the conventional semiconductor cooling device. 図9AのA−A断面図。FIG. 9B is a cross-sectional view taken along line AA in FIG. 9A. 図9BのB矢視図。The B arrow directional view of FIG. 9B. 図9A〜図9Cに示したくし型冷却器11を強制風冷式の車両用電力変換装置に装着した従来の半導体冷却装置の側面図。9A to 9C are side views of a conventional semiconductor cooling device in which the comb cooler 11 shown in FIGS. 9A to 9C is mounted on a forced air cooling type vehicle power conversion device. くし型冷却器を冷却風送風方向に対し二段直列に配列した場合の側面図。The side view at the time of arranging a comb type cooler in two steps in series with respect to the cooling air blowing direction. 図11AのC矢視図。FIG. 11C is a C arrow view. 図11AのD−D断面図。FIG. 11D is a sectional view taken along line DD in FIG. 11A. 図11AのE−E断面図。EE sectional drawing of FIG. 11A. 図11AのF矢視図。The F arrow line view of FIG. 11A. 図11AのG矢視図。FIG. 11B is a G arrow view. 図11A〜図11Fに示したくし型冷却器を強制風冷式の車両用電力変換装置に装着した従来の半導体冷却装置の側面図。The side view of the conventional semiconductor cooling device which mounted | wore the forced-air-cooling type vehicle power converter with the comb-type cooler shown to FIG. 11A-FIG. 11F. 図12AのH矢視図。The H arrow line view of FIG. 12A.

符号の説明Explanation of symbols

11…くし型冷却器、12…放熱フィン、13…受熱部、14…半導体素子、15…冷却風、16…車両用電力変換装置、17…風洞、18…電動送風機、19…発熱体、20…送風直交方向、21…邪魔板、22…車体、23…車両進行方向、24…車両走行風、25…厚み方向面、26…送風方向平行面、27…角部 DESCRIPTION OF SYMBOLS 11 ... Comb type | mold cooler, 12 ... Radiation fin, 13 ... Heat receiving part, 14 ... Semiconductor element, 15 ... Cooling air, 16 ... Power converter for vehicles, 17 ... Wind tunnel, 18 ... Electric blower, 19 ... Heating element, 20 ... Orthogonal direction of air flow, 21... Baffle plate, 22... Car body, 23 .. vehicle traveling direction, 24.

Claims (7)

冷却風送風方向に対し直交する平面での放熱フィン部の断面形状をくし型とし受熱部に半導体素子を取り付け、前記半導体素子を密閉部に配置すると共に前記放熱フィン部を開放部に配置し、前記放熱フィン部に冷却風を送風し半導体素子の発熱を開放部に放熱するくし型冷却器を冷却風送風方向に対し複数段直列に配列し、前記くし形冷却器が冷却風送風方向に対して並列に2個以上配列される段が少なくとも1ヶ所あり、かつ直列に並ぶ前記くし型冷却器の大きさが同一でない箇所が少なくとも1ヶ所あり、冷却風送風方向に対し風上に配置される風上くし型冷却器と風下に配置される風下くし型冷却器との互いに対向する各々の放熱フィンの厚み中心位置をそろえ配置したことを特徴とする半導体冷却装置。   The cross-sectional shape of the radiating fin portion in a plane orthogonal to the cooling air blowing direction is a comb and a semiconductor element is attached to the heat receiving portion, the semiconductor element is disposed in a sealed portion and the radiating fin portion is disposed in an open portion, A comb-type cooler that blows cooling air to the heat radiating fins and dissipates heat generated by the semiconductor elements to the open part is arranged in a plurality of stages in series with respect to the cooling air blowing direction. There are at least one stage arranged in parallel, and at least one place where the size of the comb-type coolers arranged in series is not the same. A semiconductor cooling apparatus characterized in that the center positions of the thicknesses of the radiating fins facing each other of the windward comb cooler and the windward comb cooler arranged on the leeward side are aligned. 前記くし型冷却器の放熱フィンの厚みが、前記風上くし型冷却器と前記風下くし型冷却器とで互いに異なることを特徴とする請求項1記載の半導体冷却装置。   2. The semiconductor cooling device according to claim 1, wherein thicknesses of the radiation fins of the comb cooler are different from each other between the upwind comb cooler and the downwind comb cooler. 前記くし型冷却器の放熱フィンの高さが、前記風上くし型冷却器と前記風下くし型冷却器とで互いに異なることを特徴とする請求項1または請求項2記載の半導体冷却装置。   3. The semiconductor cooling device according to claim 1, wherein heights of the radiation fins of the comb cooler are different from each other between the upwind comb cooler and the downwind comb cooler. 前記くし型冷却器の放熱フィンのフィンピッチが、前記風上くし型冷却器と前記風下くし型冷却器とで互いに異なることを特徴とする請求項1乃至請求項3のいずれか1項記載の半導体冷却装置。   The fin pitch of the radiation fin of the comb cooler is different between the upwind comb cooler and the downwind comb cooler, according to any one of claims 1 to 3. Semiconductor cooling device. 前記風上くし型冷却器または前記風下くし型冷却器の少なくともどちらか一方のくし型冷却器の放熱フィンのフィンピッチは、受熱部に取り付けられる半導体素子の発熱量に応じて粗密にしたことを特徴とする請求項1乃至請求項4のいずれか1項記載の半導体冷却装置。   The fin pitch of the radiating fins of at least one of the upwind comb cooler and the downwind comb cooler is adjusted according to the heat generation amount of the semiconductor element attached to the heat receiving portion. The semiconductor cooling device according to any one of claims 1 to 4, wherein the semiconductor cooling device is characterized. 前記くし型冷却器の放熱フィンの冷却風送風方向面に面取を施したことを特徴とする請求項1乃至請求項5のいずれか1項記載の半導体冷却装置。   The semiconductor cooling device according to claim 1, wherein chamfering is performed on a cooling air blowing direction surface of the radiation fin of the comb cooler. 前記くし型冷却器の放熱フィンの冷却風送風方向の長さが、隣り合う放熱フィンと異なることを特徴とする請求項1乃至請求項6のいずれか1項記載の半導体冷却装置。   The semiconductor cooling device according to any one of claims 1 to 6, wherein a length of the radiating fin of the comb cooler in a cooling air blowing direction is different from that of adjacent radiating fins.
JP2003380746A 2003-11-11 2003-11-11 Semiconductor cooling device Pending JP2005150132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380746A JP2005150132A (en) 2003-11-11 2003-11-11 Semiconductor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380746A JP2005150132A (en) 2003-11-11 2003-11-11 Semiconductor cooling device

Publications (1)

Publication Number Publication Date
JP2005150132A true JP2005150132A (en) 2005-06-09

Family

ID=34690325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380746A Pending JP2005150132A (en) 2003-11-11 2003-11-11 Semiconductor cooling device

Country Status (1)

Country Link
JP (1) JP2005150132A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238948A (en) * 2008-03-26 2009-10-15 Furukawa Electric Co Ltd:The Heat sink with fan
JP2017201682A (en) * 2016-04-28 2017-11-09 富士電機株式会社 Power conversion device for railway vehicle
JP2018114941A (en) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 Imaging device
CN109994442A (en) * 2017-12-29 2019-07-09 鸿富锦精密工业(武汉)有限公司 The electronic device of radiator and the application radiator
JP2019125718A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Cooler
JP2019211746A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Imaging apparatus
US10764988B2 (en) 2018-05-31 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Imaging device
JP2021052454A (en) * 2019-09-24 2021-04-01 株式会社デンソー Motor housing, and stator member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238948A (en) * 2008-03-26 2009-10-15 Furukawa Electric Co Ltd:The Heat sink with fan
JP2017201682A (en) * 2016-04-28 2017-11-09 富士電機株式会社 Power conversion device for railway vehicle
JP2018114941A (en) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 Imaging device
WO2018135398A1 (en) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 Imaging device
US10677445B2 (en) 2017-01-20 2020-06-09 Panasonic Intellectual Property Management Co., Ltd. Imaging device
CN109994442A (en) * 2017-12-29 2019-07-09 鸿富锦精密工业(武汉)有限公司 The electronic device of radiator and the application radiator
JP2019125718A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Cooler
JP2019211746A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Imaging apparatus
US10764988B2 (en) 2018-05-31 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Imaging device
JP2021052454A (en) * 2019-09-24 2021-04-01 株式会社デンソー Motor housing, and stator member
JP7331580B2 (en) 2019-09-24 2023-08-23 株式会社デンソー stator material

Similar Documents

Publication Publication Date Title
KR101609934B1 (en) Traction converter and railway vehicle
US6957694B2 (en) Core structure of integral heat-exchanger
JP4944119B2 (en) Mobile cooling system
JP6177465B2 (en) Cooling system for railway vehicles
JP2007013223A (en) Power converter for railway vehicle
JP2005150132A (en) Semiconductor cooling device
JP2001025254A (en) Cooler for power conversion device
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JP3138852B2 (en) Transformer
CN214592516U (en) Inverter and heat dissipation structure thereof
JP5305836B2 (en) Railway vehicle power converter
JP5440061B2 (en) Air-cooled power semiconductor device
JP3625259B2 (en) Heat exchanger
JP4173959B2 (en) Integrated heat exchanger core structure
JPH0692226A (en) Control device for vehicle
JP2004006901A (en) Power conversion apparatus
JP3879080B2 (en) Cooling device for exothermic electrical equipment for vehicles
JP4585881B2 (en) Heat sink for element cooling
CN214505603U (en) Battery pack
JPS58130998A (en) Heat exchanger
JP2806811B2 (en) Heat dissipation structure
JP7326953B2 (en) Cooling system
JP3163972U (en) Radiator air guide structure and heat dissipation module
JP2003341507A (en) Power converter for electric motor car
CN217061632U (en) Resistor grid and resistor grid system