JP2005148121A - Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device - Google Patents

Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device Download PDF

Info

Publication number
JP2005148121A
JP2005148121A JP2003381054A JP2003381054A JP2005148121A JP 2005148121 A JP2005148121 A JP 2005148121A JP 2003381054 A JP2003381054 A JP 2003381054A JP 2003381054 A JP2003381054 A JP 2003381054A JP 2005148121 A JP2005148121 A JP 2005148121A
Authority
JP
Japan
Prior art keywords
substrate
bonding
substrates
liquid crystal
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003381054A
Other languages
Japanese (ja)
Inventor
Takuji Tsutsui
匠司 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003381054A priority Critical patent/JP2005148121A/en
Publication of JP2005148121A publication Critical patent/JP2005148121A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately and highly efficiently cutting a laminated substrate in dividing and cutting the laminated substrate for respective units in-plane. <P>SOLUTION: The method for manufacturing the laminated substrate is the method for manufacturing the laminated substrate 100b constructed by laminating a pair of substrates 110, 120 to each other, which includes a supporting step to support each of the pair of substrates 110, 120, respectively, while supporting stages 69, 71 and a bonding step to bond the respective substrates 110, 120 to each other by approximating the supporting stages 69, 71 to each other and which is characterized by using the supporting stages having substrate supporting faces equipped with curved surfaces with warpage nearly equal to warpage w of the bonded substrate after bonding as the supporting stages 69, 71 in the supporting step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、貼合せ基板の製造方法及び製造装置、並びに液晶装置の製造方法に関するものである。   The present invention relates to a method and apparatus for manufacturing a bonded substrate, and a method for manufacturing a liquid crystal device.

近年、表示装置等の分野で表示デバイスとして液晶装置が広く使用されている。液晶装置は、液晶パネル及び駆動用電気回路等からなるものであり、液晶パネルは、一般に、離間して対向配置された一対の基板の間隙に電気光学材料としての液晶材料を挟持させた構成を有している(例えば特許文献1参照)。   In recent years, liquid crystal devices are widely used as display devices in the field of display devices and the like. A liquid crystal device is composed of a liquid crystal panel, an electric circuit for driving, and the like, and the liquid crystal panel generally has a configuration in which a liquid crystal material as an electro-optical material is sandwiched between a pair of substrates that are spaced apart from each other. (For example, refer to Patent Document 1).

従来、この種の液晶パネルを製造する際には、基板の一方の内側面に接着剤等のシール材を額縁状に形成し、そのシール材の内側にディスペンサ等により液晶を滴下する。そして、真空中にてこれらの基板の貼り合わせを行い、大気解放後、加熱処理や光照射処理により接着剤を硬化させる。基板の貼り合わせにおいては、顕微鏡等を用いて基板同士を位置合わせ(アライメント)した後に、真空チャンバ内で各基板をチャック装置を用いてそれぞれ保持し、双方の基板を重ね合わせて加圧することで基板間のシール材を押しつぶして圧着している。
特開2000−66163号公報
Conventionally, when this type of liquid crystal panel is manufactured, a sealing material such as an adhesive is formed in a frame shape on one inner surface of the substrate, and liquid crystal is dropped inside the sealing material by a dispenser or the like. Then, these substrates are bonded together in a vacuum, and after being released to the atmosphere, the adhesive is cured by heat treatment or light irradiation treatment. In bonding the substrates, after aligning the substrates using a microscope or the like, each substrate is held in a vacuum chamber using a chuck device, and both substrates are stacked and pressed. The sealing material between the substrates is crushed and crimped.
JP 2000-66163 A

しかしながら、上述したような従来技術には以下のような問題が存在する。つまり、チャック装置により基板同士を重ね合わせて加圧する際、加圧により基板が一旦平坦化するが、各基板には元々反りが生じているため、加圧を解放すると、元々の反り量に応じて貼り合わされた基板(貼合せ基板)に反り(反り戻り)が生じることとなる。そして、このような加圧解放時の反り発生により上下基板の間にずれが生じ、その結果、製造される液晶装置の信頼性を低下させる惧れがある。   However, there are the following problems in the prior art as described above. In other words, the substrates are flattened by pressurization when the substrates are pressed by the chuck device, but each substrate is originally warped. Then, the substrate (bonded substrate) bonded together is warped (warped back). Further, the occurrence of warpage during pressure release causes a shift between the upper and lower substrates, and as a result, the reliability of the manufactured liquid crystal device may be reduced.

本発明は、上述した事情に鑑みてなされたもので、簡便な手法により貼り合わせ時の基板間のずれ発生を防止ないし抑制し、信頼性の高い貼合せ基板を製造することが可能な製造方法及び製造装置を提供することを目的としている。また、特にこのような貼合せ基板の製造方法を用い、表示不良等の不具合発生の少ない、信頼性の高い液晶装置を製造可能な液晶装置の製造方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and a manufacturing method capable of manufacturing a highly reliable bonded substrate by preventing or suppressing the occurrence of deviation between the substrates during bonding by a simple technique. And it aims at providing a manufacturing apparatus. It is another object of the present invention to provide a method for manufacturing a liquid crystal device that can manufacture a highly reliable liquid crystal device that is less likely to cause defects such as display defects, particularly using such a method for manufacturing a bonded substrate.

上記課題を解決するために、本発明の貼合せ基板の製造方法は、一対の基板を貼り合わせてなる貼合せ基板の製造方法であって、前記一対の基板のそれぞれを支持台にて支持する支持工程と、前記支持台を互いに近接させることで、各基板の貼り合わせを行う貼合せ工程とを含み、前記支持工程において、前記支持台として、その基板支持面が、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備える支持台を用いることを特徴とする。   In order to solve the above-described problems, a method for manufacturing a bonded substrate according to the present invention is a method for manufacturing a bonded substrate by bonding a pair of substrates, and each of the pair of substrates is supported by a support base. Including a supporting step and a laminating step for laminating the substrates by bringing the supporting bases close to each other. In the supporting step, the substrate supporting surface is bonded after the laminating as the supporting base. A support base having a curved surface substantially equal to the amount of warpage of the substrate is used.

このような貼合せ基板の製造方法によると、支持台の基板支持面が、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備えるため、該支持台にて支持した各基板を貼り合わせる際に各基板が平坦化することなく、該湾曲面に沿った反りを維持しながら貼り合わせが行われることとなる。したがって、支持台から解放した後(つまり貼合せ工程が終了した後)、生成される貼合せ基板において、従来のような反り戻りが生じ難く、湾曲面に沿った反りを維持したままの貼合せ基板が製造される。その結果、該反り戻り時の基板間の位置ずれが発生し難く、ひいては信頼性の高い貼合せ基板を製造することが可能となる。   According to such a manufacturing method of a bonded substrate, since the substrate support surface of the support base has a curved surface substantially equal to the warpage amount of the bonded substrate after bonding, each substrate supported by the support base is bonded. Bonding is performed while maintaining the warpage along the curved surface without flattening the substrates during alignment. Therefore, after releasing from the support base (that is, after the bonding process is finished), the bonded substrate that is produced is unlikely to be warped back as in the past, and the bonding is performed while maintaining the curvature along the curved surface. A substrate is manufactured. As a result, misalignment between the substrates at the time of warping hardly occurs, and as a result, a highly reliable bonded substrate can be manufactured.

なお、支持台は各基板毎に用意され、各基板を対向させる形にて支持するものとしている。そして、各基板を支持した各支持台は、各基板を貼合せ方向に加圧して貼り合わせを行うものとしている。また、本発明における支持工程は、支持台の基板支持面に対して基板を吸着させる吸着工程を含むものとすることができる。このように支持台の基板支持面に対して吸着により基板を支持する場合、基板支持面の形状に沿って貼り合わせが行われるため、該支持基板面を湾曲形状とすることで一層反り戻りの発生を防止ないし抑制することが可能となる。   A support base is prepared for each substrate, and supports each substrate in a facing manner. And each support stand which supported each board | substrate shall press each board | substrate to the bonding direction, and shall perform bonding. Moreover, the support process in this invention shall include the adsorption | suction process which adsorb | sucks a board | substrate with respect to the board | substrate support surface of a support stand. In this way, when the substrate is supported by suction with respect to the substrate support surface of the support base, the bonding is performed along the shape of the substrate support surface. Occurrence can be prevented or suppressed.

また、本発明の貼合せ基板の製造方法において、前記一対の基板として、それぞれ同一材料且つ同一の厚さの第1基板及び第2基板を用い、前記第1基板の前記支持工程前の反り量をx、前記第2基板の前記支持工程前の反り量をyとしたとき、前記支持台の基板支持面の反り量zが、概ねz=(x+y)/2を満たすものとすることができる。本発明者が鋭意検討したところ、貼り合わせ後の貼合せ基板の反り量は、貼り合わせ前の各基板の反り量の平均値と概ね等しいことが分かった。そこで、支持台の基板支持面の反り量zを、各基板の貼り合わせ前(支持前)の反り量の平均値((x+y)/2)と略等しく設計したところ、貼り合わせ後の反り戻りが殆ど生じず、貼合せの位置ずれが極めて生じ難い貼合せ基板を提供することができるようになった。   In the method for producing a bonded substrate of the present invention, the first substrate and the second substrate having the same material and the same thickness are used as the pair of substrates, respectively, and the amount of warpage of the first substrate before the supporting step is performed. Where x is the amount of warpage of the second substrate before the supporting step and y is the amount of warpage z of the substrate support surface of the support base, generally satisfying z = (x + y) / 2. . As a result of intensive studies by the inventors, it has been found that the warpage amount of the bonded substrate after bonding is approximately equal to the average value of the warpage amount of each substrate before bonding. Therefore, when the warpage amount z of the substrate support surface of the support base is designed to be approximately equal to the average value ((x + y) / 2) of the warpage amount before bonding (before support) of each substrate, the warpage returns after bonding. Thus, it is possible to provide a bonded substrate that hardly causes misalignment of bonding.

前記貼合せ工程を仮貼合せ工程とし、該仮貼合せ工程後、基板の位置ずれの有無を確認し、その後、さらに貼合せ強度を高める本貼合せ工程を行うものとすることができる。このように、支持台にて基板を支持した形にて各基板を貼り合わせた後に、基板の位置ずれの有無を確認し、さらに貼合せ強度を高める本貼合せ工程を行うことで、貼り合わせの位置精度と、貼合せ強度を一層高めることが可能となる。   The said bonding process is made into a temporary bonding process, and after this temporary bonding process, the presence or absence of the position shift of a board | substrate is confirmed, and this bonding process which raises bonding strength further can be performed after that. In this way, after bonding each substrate in a form in which the substrate is supported by a support stand, the presence or absence of positional displacement of the substrate is confirmed, and the bonding process is performed to further increase the bonding strength. It is possible to further increase the positional accuracy and the bonding strength.

次に、上記課題を解決するために、本発明の貼合せ基板の製造装置は、一対の基板を貼り合わせてなる貼合せ基板を製造するための製造装置であって、前記一対の基板のそれぞれを支持しつつ、各基板を対向させつつ互いに近接させることで、各基板の貼り合わせを行う支持台を含み、前記支持台は、その基板支持面が、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備えることを特徴とする。   Next, in order to solve the above-described problem, the bonded substrate manufacturing apparatus of the present invention is a manufacturing apparatus for manufacturing a bonded substrate formed by bonding a pair of substrates, each of the pair of substrates. The support base includes a support base for bonding the substrates by bringing the substrates close to each other while facing each other, and the support base has a warpage amount of the bonded substrate after bonding. And a curved surface substantially equal to the above.

このような製造装置によると、支持台の基板支持面が、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備えるため、該支持台にて支持した各基板を貼り合わせる際に各基板が平坦化することなく、該湾曲面に沿った反りを維持しながら貼り合わせを行うことが可能となる。したがって、このような製造装置を用いて貼合せ基板を製造する場合、基板を支持台から解放した後(つまり貼合せ工程が終了した後)、生成される貼合せ基板において、従来のような反り戻りが生じ難く、湾曲面に沿った反りを維持したままの貼合せ基板を製造できるようになる。その結果、該反り戻り時の基板間の位置ずれが発生し難く、ひいては信頼性の高い貼合せ基板を製造することが可能となる。   According to such a manufacturing apparatus, since the substrate support surface of the support base has a curved surface substantially equal to the warping amount of the bonded substrate after bonding, each substrate supported by the support table is bonded to each other. Bonding can be performed while maintaining the warpage along the curved surface without flattening the substrate. Accordingly, when a bonded substrate is manufactured using such a manufacturing apparatus, after the substrate is released from the support base (that is, after the bonding step is completed), the warp as in the past is generated in the generated bonded substrate. It becomes difficult to return, and it becomes possible to manufacture a bonded substrate while maintaining warpage along the curved surface. As a result, misalignment between the substrates at the time of warping hardly occurs, and as a result, a highly reliable bonded substrate can be manufactured.

なお、一対の基板として、それぞれ同一材料且つ同一の厚さの第1基板及び第2基板を用いた場合、第1基板の貼合せ前の反り量をx、第2基板の貼合せ前の反り量をyとしたとき、支持台の基板支持面の反り量zが、概ねz=(x+y)/2を満たすものとすることができる。このように支持台の基板支持面の反り量zを、各基板の貼り合わせ前(支持前)の反り量の平均値((x+y)/2)と略等しく設計し、当該製造装置を用いて貼り合わせを行ったところ、貼り合わせ後の反り戻りが殆ど生じず、貼合せの位置ずれが極めて生じ難い貼合せ基板を提供することができるようになった。   When the first substrate and the second substrate having the same material and the same thickness are used as the pair of substrates, the amount of warpage before bonding of the first substrate is x, and the warpage before bonding of the second substrate is When the amount is y, the amount of warpage z of the substrate support surface of the support base can generally satisfy z = (x + y) / 2. In this way, the warpage amount z of the substrate support surface of the support base is designed to be approximately equal to the average value ((x + y) / 2) of the warpage amount before bonding (before support) of each substrate, and the manufacturing apparatus is used. As a result of bonding, it is possible to provide a bonded substrate that hardly undergoes warping after bonding and hardly causes displacement of the bonding.

次に、本発明の液晶装置の製造方法は、一対の基板間に液晶層を挟持してなる液晶装置の製造方法であって、前記一対の基板を上述の方法により貼り合わせることを特徴とする。この場合、液晶層を挟持する各基板の貼り合わせの位置精度が非常に高いものとなるため、信頼性の高い液晶装置を提供することが可能となる。なお、前記一対の基板を支持台にて支持する前に、各基板上に電極及び配向膜を形成する工程と、少なくとも一方の基板上に枠状のシール材を塗布する工程と、該枠状のシール材の内側に液晶を配置する工程とを含むものとすることができる。   Next, a method for manufacturing a liquid crystal device according to the present invention is a method for manufacturing a liquid crystal device in which a liquid crystal layer is sandwiched between a pair of substrates, wherein the pair of substrates is bonded by the above-described method. . In this case, since the positional accuracy of bonding of the substrates sandwiching the liquid crystal layer becomes very high, a highly reliable liquid crystal device can be provided. Before supporting the pair of substrates on a support, a step of forming an electrode and an alignment film on each substrate, a step of applying a frame-shaped sealing material on at least one substrate, and the frame shape And a step of disposing a liquid crystal inside the sealing material.

以下、本発明の実施の形態について図面を参照して説明する。
まず、本発明の貼合せ基板の製造方法を用いて製造される液晶装置の一実施の形態について説明する。図1は本発明に係る液晶装置について、各構成要素とともに示す対向基板側から見た平面図であり、図2は図1のH−H'線に沿う断面図である。また、図3は、液晶装置の画像表示領域においてマトリクス状に形成された複数の画素における各種素子、配線等の等価回路図であり、図4は液晶装置の部分拡大断面図である。なお、以下の説明に用いた各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならせてある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an embodiment of a liquid crystal device manufactured using the method for manufacturing a bonded substrate of the present invention will be described. FIG. 1 is a plan view of a liquid crystal device according to the present invention as seen from the counter substrate side shown together with each component, and FIG. 2 is a cross-sectional view taken along the line HH ′ of FIG. FIG. 3 is an equivalent circuit diagram of various elements and wirings in a plurality of pixels formed in a matrix in the image display region of the liquid crystal device, and FIG. 4 is a partial enlarged cross-sectional view of the liquid crystal device. In each drawing used in the following description, the scale is different for each layer and each member so that each layer and each member can be recognized on the drawing.

図1及び図2において、本実施形態の液晶装置100は、対をなすTFTアレイ基板10と対向基板20とが光硬化性のシール材52によって貼り合わされ、このシール材52によって区画された領域内に液晶50が封入、保持されている。シール材52は、基板面内の領域において閉ざされた枠状に形成されてなり、液晶注入口を備えず、封止材にて封止された痕跡がない構成となっている。   1 and 2, the liquid crystal device 100 of the present embodiment includes a TFT array substrate 10 and a counter substrate 20 that form a pair, which are bonded together by a photocurable sealing material 52, and in a region partitioned by the sealing material 52. Liquid crystal 50 is sealed and held in The sealing material 52 is formed in a frame shape that is closed in a region within the substrate surface, does not include a liquid crystal injection port, and does not have a trace sealed with the sealing material.

シール材52の形成領域の内側の領域には、遮光性材料からなる周辺見切り53が形成されている。シール材52の外側の領域には、データ線駆動回路201及び実装端子202がTFTアレイ基板10の一辺に沿って形成されており、この一辺に隣接する2辺に沿って走査線駆動回路204が形成されている。TFTアレイ基板10の残る一辺には、画像表示領域の両側に設けられた走査線駆動回路204の間を接続するための複数の配線205が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的導通をとるための基板間導通材206が配設されている。   A peripheral parting 53 made of a light shielding material is formed in a region inside the region where the sealing material 52 is formed. A data line driving circuit 201 and a mounting terminal 202 are formed along one side of the TFT array substrate 10 in a region outside the sealing material 52, and the scanning line driving circuit 204 is formed along two sides adjacent to the one side. Is formed. On the remaining side of the TFT array substrate 10, a plurality of wirings 205 are provided for connecting between the scanning line driving circuits 204 provided on both sides of the image display area. Further, at least one corner of the counter substrate 20 is provided with an inter-substrate conductive material 206 for establishing electrical continuity between the TFT array substrate 10 and the counter substrate 20.

なお、液晶装置100においては、使用する液晶50の種類、すなわち、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード等の動作モードや、ノーマリホワイトモード/ノーマリブラックモードの別に応じて、位相差板、偏光板等が所定の向きに配置されるが、ここでは図示を省略する。また、液晶装置100をカラー表示用として構成する場合には、対向基板20において、TFTアレイ基板10の後述する各画素電極に対向する領域に、例えば、赤(R)、緑(G)、青(B)のカラーフィルタをその保護膜とともに形成する。   In the liquid crystal device 100, depending on the type of the liquid crystal 50 to be used, that is, depending on the operation mode such as TN (Twisted Nematic) mode, STN (Super Twisted Nematic) mode, and the normally white mode / normally black mode. A retardation plate, a polarizing plate and the like are arranged in a predetermined direction, but are not shown here. In the case where the liquid crystal device 100 is configured for color display, for example, red (R), green (G), blue, and the like are disposed in a region of the counter substrate 20 facing each pixel electrode (described later) of the TFT array substrate 10. The color filter (B) is formed together with the protective film.

このような構造を有する液晶装置100の画像表示領域においては、図3に示すように、複数の画素100aがマトリクス状に構成されているとともに、これらの画素100aの各々には、画素スイッチング用のTFT30が形成されており、画素信号S1、S2、・、Snを供給するデータ線6aがTFT30のソースに電気的に接続されている。データ線6aに書き込む画素信号S1、S2、・、Snは、この順に線順次で供給してもよく、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。また、TFT30のゲートには走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、・、Gmをこの順に線順次で印加するように構成されている。   In the image display area of the liquid crystal device 100 having such a structure, as shown in FIG. 3, a plurality of pixels 100a are arranged in a matrix, and each of these pixels 100a has a pixel switching area. A TFT 30 is formed, and a data line 6 a for supplying pixel signals S 1, S 2,... Sn is electrically connected to the source of the TFT 30. The pixel signals S1, S2,..., Sn to be written to the data line 6a may be supplied line-sequentially in this order, or may be supplied for each group to a plurality of adjacent data lines 6a. . Further, the scanning line 3a is electrically connected to the gate of the TFT 30, and the scanning signals G1, G2,... Gm are applied to the scanning line 3a in a pulse-sequential manner in this order at a predetermined timing. It is configured.

画素電極9は、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけオン状態とすることにより、データ線6aから供給される画素信号S1、S2、・、Snを各画素に所定のタイミングで書き込む。このようにして画素電極9を介して液晶に書き込まれた所定レベルの画素信号S1、S2、・、Snは、図2に示す対向基板20の対向電極21との間で一定期間保持される。なお、保持された画素信号S1、S2、・、Snがリークするのを防ぐために、画素電極9と対向電極21との間に形成される液晶容量と並列に蓄積容量60が付加されている。例えば、画素電極9の電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量60により保持される。これにより、電荷の保持特性は改善され、コントラスト比の高い液晶装置100を実現することができる。   The pixel electrode 9 is electrically connected to the drain of the TFT 30, and the pixel signal S1, S2,... Sn supplied from the data line 6a is obtained by turning on the TFT 30 as a switching element for a certain period. Write to each pixel at a predetermined timing. The pixel signals S1, S2,... Sn written in the liquid crystal via the pixel electrode 9 in this way are held for a certain period with the counter electrode 21 of the counter substrate 20 shown in FIG. In order to prevent leakage of the held pixel signals S1, S2,..., Sn, a storage capacitor 60 is added in parallel with the liquid crystal capacitor formed between the pixel electrode 9 and the counter electrode 21. For example, the voltage of the pixel electrode 9 is held by the storage capacitor 60 for a time that is three orders of magnitude longer than the time when the source voltage is applied. Thereby, the charge retention characteristic is improved, and the liquid crystal device 100 with a high contrast ratio can be realized.

図4は液晶装置100の部分拡大断面図であって、ガラス基板10'を主体として構成されるTFTアレイ基板10上には、ITO(インジウム錫酸化物)を主体とする透明電極にて構成された画素電極9がマトリクス状に形成されており(図3参照)、これら各画素電極9に対して画素スイッチング用のTFT30(図3参照)がそれぞれ電気的に接続されている。また、画素電極9が形成された領域の縦横の境界に沿って、データ線6a、走査線3aおよび容量線3bが形成され、TFT30がデータ線6aおよび走査線3aに対して接続されている。すなわち、データ線6aは、コンタクトホール8を介してTFT30の高濃度ソース領域1aに電気的に接続され、画素電極9は、コンタクトホール15及びドレイン電極6bを介してTFT30の高濃度ドレイン領域に電気的に接続されている。なお、画素電極9の表層にはポリイミド主体として構成される膜に対してラビング処理を行った配向膜12が形成されている。   FIG. 4 is a partial enlarged cross-sectional view of the liquid crystal device 100. The TFT array substrate 10 mainly composed of a glass substrate 10 ′ is composed of transparent electrodes mainly composed of ITO (indium tin oxide). The pixel electrodes 9 are formed in a matrix (see FIG. 3), and pixel switching TFTs 30 (see FIG. 3) are electrically connected to the pixel electrodes 9, respectively. A data line 6a, a scanning line 3a, and a capacitor line 3b are formed along the vertical and horizontal boundaries of the region where the pixel electrode 9 is formed, and the TFT 30 is connected to the data line 6a and the scanning line 3a. That is, the data line 6a is electrically connected to the high concentration source region 1a of the TFT 30 through the contact hole 8, and the pixel electrode 9 is electrically connected to the high concentration drain region of the TFT 30 through the contact hole 15 and the drain electrode 6b. Connected. Note that an alignment film 12 is formed on the surface layer of the pixel electrode 9 by performing a rubbing process on a film mainly composed of polyimide.

一方、対向基板20においては、対向基板側のガラス基板20'上であって、TFTアレイ基板10上の画素電極9の縦横の境界領域と対向する領域に、ブラックマトリクスまたはブラックストライプと称せられる遮光膜23が形成され、その上層側(液晶層側)にはITO膜からなる対向電極21が形成されている。また、対向電極21の上層側には、ポリイミド膜からなる配向膜22が形成されている。そして、TFTアレイ基板10と対向基板20との間には、液晶50がシール材52(図1参照)により基板内に封入されている。   On the other hand, in the counter substrate 20, a light shielding referred to as a black matrix or a black stripe is formed on the glass substrate 20 ′ on the counter substrate side and in a region facing the vertical and horizontal boundary regions of the pixel electrodes 9 on the TFT array substrate 10. A film 23 is formed, and a counter electrode 21 made of an ITO film is formed on the upper layer side (liquid crystal layer side). An alignment film 22 made of a polyimide film is formed on the upper layer side of the counter electrode 21. A liquid crystal 50 is sealed between the TFT array substrate 10 and the counter substrate 20 by a sealing material 52 (see FIG. 1).

以上のような構成の液晶装置100を製造するに際し、大型基板で一括して複数の液晶装置のTFT基板と対向基板を重ね合わせた後、個々の液晶装置の大きさに切断する、いわゆる多面取りを採用している。つまり、大型の基板同士を、液晶層を介して貼り合わせる貼合せ工程を含むものとしている。   When manufacturing the liquid crystal device 100 having the above-described configuration, a so-called multi-sided process is performed in which a TFT substrate and a counter substrate of a plurality of liquid crystal devices are collectively stacked on a large substrate and then cut into individual liquid crystal device sizes. Is adopted. That is, it includes a bonding step in which large substrates are bonded together via a liquid crystal layer.

以下、液晶装置の製造方法の一実施形態について、シール材の形成から、液晶滴下、基板貼り合わせ、シール材硬化に至る工程を説明する。図5は、貼合せ基板の製造装置61の概略構成図である。
製造装置61は、基板の給材及び除材を行う基板給除部62を挟んだ両側に配置された材料供給部63及び基板貼り合わせ部64を主体に構成されている。なお、以下の説明では、基板の表面に沿う方向をX方向(例えば図5中、左右方向)及びY方向(例えば図5中、紙面と垂直な方向)とし、XY平面と直交する方向をZ方向として説明する。
Hereinafter, a process from formation of a sealing material to liquid crystal dripping, substrate bonding, and sealing material curing will be described for one embodiment of a method for manufacturing a liquid crystal device. FIG. 5 is a schematic configuration diagram of the bonded substrate manufacturing apparatus 61.
The manufacturing apparatus 61 is mainly composed of a material supply unit 63 and a substrate bonding unit 64 arranged on both sides of a substrate supply / removal unit 62 for supplying and removing a substrate. In the following description, the direction along the surface of the substrate is defined as the X direction (for example, the left-right direction in FIG. 5) and the Y direction (for example, the direction perpendicular to the paper surface in FIG. 5), and the direction orthogonal to the XY plane is Z. This will be described as a direction.

材料供給部63は、基板を保持してX方向、Y方向及び閘方向(Z軸と平行な軸周りの回転方向)に移動自在なテーブル65と、テーブル65の上方に配設され液晶材料を滴下する液晶滴下部66と、液晶滴下部66の近傍に配設されシール材を塗布するシール材塗布部67とを主体に構成されている。そして、テーブル65の移動と同期して液晶滴下部66から液晶材料が滴下され、シール材塗布部67からシール材が塗布されることで、基板上の所定位置に液晶及びシール材を配置(供給)することができる。   The material supply unit 63 holds a substrate and is movable in the X direction, the Y direction, and the heel direction (rotation direction around an axis parallel to the Z axis), and a liquid crystal material disposed above the table 65. The liquid crystal dropping part 66 to be dripped and a seal material application part 67 that is disposed in the vicinity of the liquid crystal drop part 66 and applies a seal material are mainly configured. Then, the liquid crystal material is dropped from the liquid crystal dropping unit 66 in synchronization with the movement of the table 65, and the sealing material is applied from the sealing material applying unit 67, whereby the liquid crystal and the sealing material are arranged (supplied) at predetermined positions on the substrate. )can do.

基板貼り合わせ部64は、基板を保持してX方向、Y方向及び閘方向に移動自在な基台68、基台68上に設置された下テーブル(支持台)69、下テーブル69の上方に配置された真空チャンバ70、真空チャンバ70内に下テーブル69と対向配置された上テーブル(支持台)71、上テーブル71をZ方向に移動自在に支持し、且つ下テーブル69に向けて加圧する加圧機構72、真空チャンバ70に形成された覗き窓70aを介して基板上のアライメントマークを検出するアライメント用顕微鏡74、シール材52を硬化させる紫外線を照射する水銀ランプ等のUVランプ(図示せず)を主体に構成されている。   The substrate bonding unit 64 holds the substrate and is movable in the X direction, the Y direction, and the heel direction, a lower table (support table) 69 installed on the base 68, and above the lower table 69. The arranged vacuum chamber 70, the upper table (support stand) 71 disposed opposite to the lower table 69 in the vacuum chamber 70, and the upper table 71 are supported so as to be movable in the Z direction and are pressed toward the lower table 69. An UV lamp (not shown) such as a mercury lamp that irradiates ultraviolet light that cures the sealing material 52, an alignment microscope 74 that detects an alignment mark on the substrate through a pressure mechanism 72, and a viewing window 70 a formed in the vacuum chamber 70. Z)).

下テーブル69及び上テーブル71は、互いに対向する基板吸着面(基板支持面)69a、71aでそれぞれ基板を真空吸着するための吸着機構(図示せず)、及び各テーブル69、71を冷却・加熱するための温度調節機構(図示せず)をそれぞれ備えている。真空チャンバ70には、ドライエアやドライ窒素等の乾燥気体を真空チャンバ70内に供給する気体供給源77が気体供給部75を介して接続されている。また、真空チャンバ70には、収容空間70b内の気体を排気(真空引き)するための吸引装置(真空ポンプ)78が排気部76を介して接続されている。   The lower table 69 and the upper table 71 are a suction mechanism (not shown) for vacuum-sucking a substrate with substrate suction surfaces (substrate support surfaces) 69a and 71a facing each other, and cooling and heating the tables 69 and 71, respectively. Each is provided with a temperature adjustment mechanism (not shown). A gas supply source 77 that supplies a dry gas such as dry air or dry nitrogen into the vacuum chamber 70 is connected to the vacuum chamber 70 via a gas supply unit 75. Further, a suction device (vacuum pump) 78 for exhausting (evacuating) the gas in the accommodation space 70 b is connected to the vacuum chamber 70 via an exhaust unit 76.

ここで、各テーブル69,71の基板吸着面69a,71aは、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を有している。これは、基板貼り合わせ時において、各基板が平坦化することを防止するものであり、その結果、各基板は、該湾曲面に沿った反りを維持しながら貼り合わせが行われることとなる。したがって、支持台から解放した後(つまり貼合せ工程が終了した後)、生成される貼合せ基板において、反り(反り戻り)が生じ難いものとなる。   Here, the board | substrate adsorption | suction surfaces 69a and 71a of each table 69 and 71 have a curved surface substantially equal to the curvature amount of the bonding board | substrate after bonding. This prevents the substrates from being flattened when the substrates are bonded together, and as a result, the substrates are bonded together while maintaining warpage along the curved surface. Therefore, after releasing from a support stand (that is, after a bonding process is completed), warpage (warping back) hardly occurs in the produced bonded substrate.

続いて、上記の製造装置61を用いて液晶装置100を製造する手順について説明する。まず、図4に示すように、ガラス基板(ここでは大型のガラス基板)10'上にTFT30を形成し、さらに画素電極9及び配向膜12等を形成して大型のTFTアレイ基板を得る一方、ガラス基板(ここでは大型のガラス基板)20'上に遮光膜23、対向電極21、配向膜22等を形成して大型の対向基板を得る。なお、以下の説明においては、大型のTFTアレイ基板を下基板110或いは基板110と称し、大型の対向基板を上基板120或いは基板120と称する。また、各基板110,120は、液晶装置100に適用される一対の基板10,20よりも大型の基板であって、この大型の基板110,120を貼り合わせた後に個々の液晶装置に対応した大きさに切断するものとしている。   Next, a procedure for manufacturing the liquid crystal device 100 using the manufacturing apparatus 61 will be described. First, as shown in FIG. 4, a TFT 30 is formed on a glass substrate (here, a large glass substrate) 10 ′, and further a pixel electrode 9 and an alignment film 12 are formed to obtain a large TFT array substrate. A light shielding film 23, a counter electrode 21, an alignment film 22 and the like are formed on a glass substrate (here, a large glass substrate) 20 'to obtain a large counter substrate. In the following description, the large TFT array substrate is referred to as the lower substrate 110 or the substrate 110, and the large counter substrate is referred to as the upper substrate 120 or the substrate 120. Each of the substrates 110 and 120 is larger than the pair of substrates 10 and 20 applied to the liquid crystal device 100, and corresponds to each liquid crystal device after the large substrates 110 and 120 are bonded together. It is supposed to be cut to size.

まず、対向電極等が形成された上基板120を、図5に示した基板給除部62から基板貼合せ部64に供給する。そして、基板貼合せ部64において、図示しない吸着機構を作動させて上テーブル71の基板吸着面71aに対して該上基板120を吸着させる(図6(b)参照)。   First, the upper substrate 120 on which the counter electrodes and the like are formed is supplied from the substrate supply / removal unit 62 shown in FIG. And in the board | substrate bonding part 64, the suction mechanism which is not illustrated is operated and this upper board | substrate 120 is adsorbed with respect to the board | substrate adsorption | suction surface 71a of the upper table 71 (refer FIG.6 (b)).

続いて、TFT等が形成された下基板110を、図5に示した基板給除部62から材料供給部63のテーブル65上に給材し、図6(a)に示すように、テーブル65を移動させつつシール材塗布部67からシール材を塗布して閉ざされた枠状(図1参照、符号52)に形成する。また、テーブル65を移動させつつ液晶滴下部66から液晶を滴下して、図6(a)に示すように、シール材52で囲まれた所定位置に液晶50を配置する。なお、図6(a)では、便宜上、液晶50は1ヶ所に形成するように図示しているが、実際には下基板110に形成すべきパネル数に対応して滴下・形成する。また、シール材塗布と液晶滴下とは並行して行うことも可能である。   Subsequently, the lower substrate 110 on which TFTs and the like are formed is supplied onto the table 65 of the material supply unit 63 from the substrate supply / removal unit 62 shown in FIG. 5, and as shown in FIG. The sealing material is applied from the sealing material application portion 67 while moving the frame, and a closed frame shape (see FIG. 1, reference numeral 52) is formed. Further, liquid crystal is dropped from the liquid crystal dropping section 66 while moving the table 65, and the liquid crystal 50 is disposed at a predetermined position surrounded by the sealing material 52, as shown in FIG. In FIG. 6A, for convenience, the liquid crystal 50 is illustrated as being formed in one place, but in reality, the liquid crystal 50 is dropped and formed corresponding to the number of panels to be formed on the lower substrate 110. Further, the sealing material application and the liquid crystal dropping can be performed in parallel.

このように、液晶が滴下された下基板110を基板給除部62により、図6(b)に示すように、下テーブル69上に給材する。そして、上基板120と同様に、より確実に下基板110を下テーブル69に保持させるために、吸着機構により真空吸着して下基板110を保持する。   In this way, the lower substrate 110 onto which the liquid crystal has been dropped is supplied onto the lower table 69 by the substrate supply / removal unit 62 as shown in FIG. Then, similarly to the upper substrate 120, in order to hold the lower substrate 110 on the lower table 69 more reliably, the lower substrate 110 is held by vacuum suction by an adsorption mechanism.

次に、図6(c)に示すように、真空チャンバ70を下降させて下テーブル69に当接させ、収容空間70bを密封状態に閉塞する。この後、排気部76により負圧吸引して収容空間70b内を略真空状態とする。収容空間70b内が略真空状態となったら、図7(a)に示すように、アライメント用顕微鏡74を用いて、上基板120に形成されたアライメントマーク(図示せず)を覗き窓70aを介して取り込むとともに、基台68を移動させることで下基板110に形成されたアライメントマークを上基板120のアライメントマークに合わせる。これにより、上基板120と下基板110とが位置合わせされる。   Next, as shown in FIG. 6C, the vacuum chamber 70 is lowered and brought into contact with the lower table 69 to close the housing space 70b in a sealed state. After that, negative pressure is sucked by the exhaust part 76 to make the inside of the accommodation space 70b into a substantially vacuum state. When the inside of the accommodation space 70b is in a substantially vacuum state, as shown in FIG. 7A, using an alignment microscope 74, an alignment mark (not shown) formed on the upper substrate 120 is viewed through the viewing window 70a. And aligning the alignment mark formed on the lower substrate 110 with the alignment mark on the upper substrate 120 by moving the base 68. Thereby, the upper substrate 120 and the lower substrate 110 are aligned.

なお、収容空間70b内の真空引きと、各基板110,120の位置合わせとは、同時に並行して実施してもよい。この場合、製造時間を短縮することができる。また、上テーブル71には、アライメント用顕微鏡74及び覗き窓70aの直下の位置に貫通孔71bが形成されており、この貫通孔71bを介して各基板110,120のアライメントマークを検出することができる。   Note that the evacuation in the accommodation space 70b and the alignment of the substrates 110 and 120 may be simultaneously performed in parallel. In this case, the manufacturing time can be shortened. Further, the upper table 71 is formed with a through hole 71b at a position directly below the alignment microscope 74 and the viewing window 70a, and the alignment marks of the substrates 110 and 120 can be detected through the through hole 71b. it can.

各基板110,120が位置合わせされたら、図7(b)に示すように、加圧機構72により上テーブル71を下降(相対移動)させて対向する各基板110,120を貼り合わせ、さらに下テーブル69に向けて加圧することにより、シール材52を押しつぶして各基板110,120を圧着する。この加圧・圧着により、基板110,120の相対位置関係が僅かにずれることがある。そこで、この位置ずれを補正するために、図7(c)に示すように、これら基板110,120を加圧した状態で基台68を駆動して再アライメントを行う。   When the respective substrates 110 and 120 are aligned, as shown in FIG. 7B, the upper table 71 is lowered (relatively moved) by the pressurizing mechanism 72 so that the opposing substrates 110 and 120 are bonded to each other. By applying pressure toward the table 69, the sealing material 52 is crushed and the substrates 110 and 120 are pressure-bonded. By this pressurization and pressure bonding, the relative positional relationship between the substrates 110 and 120 may be slightly shifted. Therefore, in order to correct this misalignment, as shown in FIG. 7C, the base 68 is driven in a state where the substrates 110 and 120 are pressurized, and realignment is performed.

そして、基板110、120の位置合わせが完了すると、UVランプにより紫外線を照射してシール材52を硬化させる。なお、シール材52が熱硬化型であれば、硬化に適した温度に加熱してもよい。この後、図8(a)に示すように、上テーブル71の基板吸着を解除し、加圧機構72を駆動して上テーブル71を上昇させる。また、気体供給部75により収容空間70b内に大気を導入して大気圧に戻す。   When the alignment of the substrates 110 and 120 is completed, the sealing material 52 is cured by irradiating ultraviolet rays with a UV lamp. If the sealing material 52 is a thermosetting type, it may be heated to a temperature suitable for curing. Thereafter, as shown in FIG. 8A, the upper table 71 is lifted by releasing the substrate suction of the upper table 71 and driving the pressurizing mechanism 72. Further, the atmosphere is introduced into the accommodation space 70b by the gas supply unit 75 to return to the atmospheric pressure.

真空チャンバ70の収容空間70bが大気圧になったら、図8(b)に示すように、真空チャンバ70を上昇させる。そして、下テーブル69に載置されている基板(この場合は各基板110,120が貼り合わされた貼合せ基板)を基板給除部62により除材する。このようにして得られた大型の貼合せ基板を予め定められた各液晶装置毎に分離・切断することで、上述した液晶装置100の製造が完了する。   When the accommodation space 70b of the vacuum chamber 70 reaches atmospheric pressure, the vacuum chamber 70 is raised as shown in FIG. Then, the substrate placed on the lower table 69 (in this case, a bonded substrate on which the substrates 110 and 120 are bonded) is removed by the substrate supply / removal unit 62. The large-sized bonded substrate thus obtained is separated and cut for each predetermined liquid crystal device, thereby completing the production of the liquid crystal device 100 described above.

以上のような本実施の形態の製造方法によると、大型の基板110,120同士を貼り合わせ、得られた貼合せ基板を分離・切断することで個々の液晶装置100を得ている。ここで、上記貼り合わせ基板、ひいては液晶装置100を製造する製造装置61において、特に基板貼り合わせ部64では、基板110,120を吸着(支持)するテーブル69,71の基板吸着面69a,71aが湾曲面にて構成されている。具体的には、テーブル69,71の基板吸着面69a,71aが、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備えるため、各テーブル69,71にて支持した各基板110,120を貼り合わせる際に各基板110,120が平坦化することなく、該湾曲面に沿った反りを維持しながら貼り合わせが行われることとなる。したがって、貼り合わせが終了した後、生成される貼合せ基板において反り(基板が平坦化した後の反り戻り)が生じ難く、湾曲面に沿った反りを維持したままの貼合せ基板が製造される。その結果、基板間の位置ずれが発生し難く、ひいては信頼性の高い貼合せ基板、つまり液晶装置を製造することが可能とされている。   According to the manufacturing method of the present embodiment as described above, individual liquid crystal devices 100 are obtained by bonding large substrates 110 and 120 together and separating and cutting the obtained bonded substrates. Here, in the manufacturing apparatus 61 for manufacturing the bonded substrate, and thus the liquid crystal device 100, particularly in the substrate bonding portion 64, the substrate suction surfaces 69 a and 71 a of the tables 69 and 71 that suck (support) the substrates 110 and 120 are provided. It is composed of a curved surface. Specifically, since the substrate suction surfaces 69a and 71a of the tables 69 and 71 have curved surfaces substantially equal to the warpage amount of the bonded substrates after bonding, the substrates 110 and 71 supported by the tables 69 and 71, respectively. When the substrates 120 are bonded together, the substrates 110 and 120 are not flattened, and bonding is performed while maintaining warpage along the curved surface. Therefore, after bonding is completed, warpage (warping back after the substrate is flattened) hardly occurs in the produced bonded substrate, and a bonded substrate is produced while maintaining warpage along the curved surface. . As a result, misalignment between the substrates hardly occurs, and as a result, a highly reliable bonded substrate, that is, a liquid crystal device can be manufactured.

図9は、各基板110,120の貼り合わせに伴う基板の反り変化を示す説明図で、図11は、各基板110,120の貼り合わせ前後の反り量を示す説明図である。なお、図11に示すように、各基板110,120の反り量は基板面内のX方向及びY方向のそれぞれについて測定しており、図中丸印は下基板110の反り量を、図中三角印は上基板120の反り量を示している。また、各基板110,120について、黒塗りは貼り合わせ前の反り量を示しており、白抜きは貼り合わせ後の反り量を示している。   FIG. 9 is an explanatory view showing a change in warpage of the substrate accompanying the bonding of the substrates 110 and 120, and FIG. 11 is an explanatory view showing the amount of warpage before and after the bonding of the substrates 110 and 120. As shown in FIG. 11, the warpage amount of each of the substrates 110 and 120 is measured in each of the X direction and the Y direction in the substrate surface, and the circle mark in the figure indicates the warpage amount of the lower substrate 110 in the figure. The mark indicates the amount of warpage of the upper substrate 120. In addition, for each of the substrates 110 and 120, black painting indicates the amount of warping before bonding, and white outline indicates the amount of warping after bonding.

図9(a)に示すように、貼り合わせ前、つまりテーブル69,71への吸着前には、上基板120の反り量がx、下基板110の反り量がyであったとする。この場合、図9(c)に示す貼り合わせ後の貼合せ基板100bの反り量wは、図11に示すように変化の大きいX方向について概ね(x+y)/2となる。つまり、本実施の形態のように各基板110,120を同一材料のガラス基板にて構成し、しかもその厚さを概ね等しく構成した場合、貼り合わせ後の貼合せ基板100bにおいては、その反り量wは(x+y)/2となる。したがって、本実施の形態のように、テーブル69,71の基板吸着面69a,71aの反り量z(図9(b)参照)を、貼り合わせ基板100bの反り量wと等しくするということは、つまり貼り合わせ前の各基板110,120の反り量の平均値に設定するということである。なお、ここで「反り量」とは、基板の外端を結ぶ面と湾曲した基板内面との最大距離を意味している。また、本実施の形態においてY方向の反り量変化は誤差程度である。   As shown in FIG. 9A, it is assumed that the warpage amount of the upper substrate 120 is x and the warpage amount of the lower substrate 110 is y before bonding, that is, before suction to the tables 69 and 71. In this case, the warping amount w of the bonded substrate 100b after bonding illustrated in FIG. 9C is approximately (x + y) / 2 in the X direction where the change is large as illustrated in FIG. That is, when each substrate 110, 120 is formed of a glass substrate made of the same material as in the present embodiment, and the thickness thereof is substantially equal, the amount of warpage in the bonded substrate 100b after bonding is increased. w is (x + y) / 2. Therefore, as in the present embodiment, the warp amount z (see FIG. 9B) of the substrate suction surfaces 69a and 71a of the tables 69 and 71 is equal to the warp amount w of the bonded substrate 100b. That is, the average value of the warpage amount of each of the substrates 110 and 120 before bonding is set. Here, the “warp amount” means the maximum distance between the surface connecting the outer ends of the substrate and the curved inner surface of the substrate. In the present embodiment, the change in the amount of warpage in the Y direction is about an error.

このように、テーブル69,71の基板支持面69a,71aの反り量zを、各基板110,120の貼り合わせ前の反り量の平均値((x+y)/2)と略等しく設計することで、貼り合わせ後の反り戻りが殆ど生じず、したがって貼合せの位置ずれが極めて生じ難い貼合せ基板を提供でき、ひいては信頼性の高い液晶装置を提供できるようになる。以上のような製造装置61を用いた貼合せ基板の製造方法は、上記液晶装置を製造する場合以外にも、例えば有機EL装置等の一対の基板を貼り合わせた構成の電気光学装置の製造工程等に対しても適用することができる。   In this way, the warpage amount z of the substrate support surfaces 69a and 71a of the tables 69 and 71 is designed to be approximately equal to the average value ((x + y) / 2) of the warpage amount before bonding of the substrates 110 and 120. Therefore, it is possible to provide a bonded substrate that hardly undergoes warping after bonding, and therefore is extremely unlikely to cause a positional shift in bonding, and thus can provide a highly reliable liquid crystal device. The manufacturing method of a bonded substrate using the manufacturing apparatus 61 as described above is a manufacturing process of an electro-optical device having a configuration in which, for example, a pair of substrates such as an organic EL device is bonded, in addition to manufacturing the liquid crystal device. It can be applied to the above.

次に、本発明の製造方法により得られた液晶装置100を備える電子機器の例について図10を参照して説明する。図10は、携帯電話の一例を示した斜視図である。図10において、携帯電話(電子機器)600は、液晶装置100を用いた表示部601を備える。このような電子機器は、上述した液晶装置100を表示部601として備えているので、高精度に基板が貼り合わされた、高品質の電子機器を実現することができる。   Next, an example of an electronic apparatus including the liquid crystal device 100 obtained by the manufacturing method of the present invention will be described with reference to FIG. FIG. 10 is a perspective view showing an example of a mobile phone. In FIG. 10, a mobile phone (electronic device) 600 includes a display unit 601 using the liquid crystal device 100. Since such an electronic device includes the above-described liquid crystal device 100 as the display unit 601, a high-quality electronic device in which substrates are bonded with high accuracy can be realized.

以上、添付図面を参照しながら本発明に係る好適な実施形態の例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although the example of suitable embodiment which concerns on this invention was demonstrated referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

本実施の形態の液晶装置を対向基板の側から見た平面図。The top view which looked at the liquid crystal device of this Embodiment from the counter substrate side. 図1のH−H'線に沿う断面図。Sectional drawing which follows the HH 'line | wire of FIG. 図1の液晶装置の等価回路図。FIG. 2 is an equivalent circuit diagram of the liquid crystal device of FIG. 1. 図1の液晶装置の部分拡大断面図。FIG. 2 is a partially enlarged cross-sectional view of the liquid crystal device of FIG. 貼り合わせ基板の製造装置の一例を示す概略構成図。The schematic block diagram which shows an example of the manufacturing apparatus of a bonded substrate board. 貼り合わせ基板の製造プロセスの一例を示す説明図。Explanatory drawing which shows an example of the manufacturing process of a bonded substrate board. 図6に続く製造手順の一例を示す説明図。Explanatory drawing which shows an example of the manufacture procedure following FIG. 図7に続く製造手順の一例を示す説明図。Explanatory drawing which shows an example of the manufacture procedure following FIG. 貼り合わせに伴う基板の反り変化を示す説明図。Explanatory drawing which shows the curvature change of the board | substrate accompanying bonding. 電子機器の一例を示す斜視図。The perspective view which shows an example of an electronic device. 基板の貼り合わせ前後の反り量を示す説明図。Explanatory drawing which shows the curvature amount before and behind bonding of a board | substrate.

符号の説明Explanation of symbols

10…下基板(TFTアレイ基板)、20…上基板(対向基板)、50…液晶、52…シール材、61…製造装置、69,71…テーブル(支持台)、69a,71a…基板吸着面(基板支持面)、100…液晶装置、110…下基板(大型基板)、120…上基板(大型基板)
DESCRIPTION OF SYMBOLS 10 ... Lower substrate (TFT array substrate), 20 ... Upper substrate (counter substrate), 50 ... Liquid crystal, 52 ... Sealing material, 61 ... Manufacturing apparatus, 69, 71 ... Table (support stand), 69a, 71a ... Substrate adsorption surface (Substrate support surface), 100 ... liquid crystal device, 110 ... lower substrate (large substrate), 120 ... upper substrate (large substrate)

Claims (8)

一対の基板を貼り合わせてなる貼合せ基板の製造方法であって、
前記一対の基板のそれぞれを支持台にて支持する支持工程と、
前記支持台を互いに近接させることで、各基板の貼り合わせを行う貼合せ工程とを含み、
前記支持工程において、前記支持台として、その基板支持面が、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備える支持台を用いることを特徴とする貼合せ基板の製造方法。
A method of manufacturing a bonded substrate obtained by bonding a pair of substrates,
A supporting step of supporting each of the pair of substrates on a support base;
A bonding step of bonding each substrate by bringing the support bases close to each other,
In the supporting step, a method of manufacturing a bonded substrate, wherein a substrate having a curved surface substantially equal to a warping amount of the bonded substrate after bonding is used as the supporting table.
前記支持工程は、前記支持台の基板支持面に対して前記基板を吸着させる吸着工程を含むことを特徴とする請求項1に記載の貼合せ基板の製造方法。   The method for manufacturing a bonded substrate according to claim 1, wherein the supporting step includes an adsorption step of adsorbing the substrate to a substrate support surface of the support base. 前記一対の基板として、それぞれ同一材料で且つ同一厚さの第1基板及び第2基板を用い、前記第1基板の前記支持工程前の反り量をx、前記第2基板の前記支持工程前の反り量をyとしたとき、前記支持台の基板支持面の反り量zが、概ねz=(x+y)/2を満たすことを特徴とする請求項1又は2に記載の貼合せ基板の製造方法。   As the pair of substrates, a first substrate and a second substrate having the same material and the same thickness are used, respectively, the amount of warpage of the first substrate before the supporting step is x, and the second substrate is before the supporting step. 3. The method for manufacturing a bonded substrate according to claim 1, wherein a warpage amount z of the substrate support surface of the support base substantially satisfies z = (x + y) / 2, where y is a warpage amount. . 前記貼合せ工程を仮貼合せ工程とし、該仮貼合せ工程後、基板の位置ずれの有無を確認し、その後、さらに貼合せ強度を高める本貼合せ工程を行うことを特徴とする請求項1ないし3のいずれか1項に記載の貼合せ基板の製造方法。   The bonding process is defined as a temporary bonding process, and after the temporary bonding process, the presence or absence of positional deviation of the substrate is confirmed, and then the main bonding process for further increasing the bonding strength is performed. 4. The method for producing a bonded substrate according to any one of items 3 to 3. 一対の基板を貼り合わせてなる貼合せ基板を製造するための製造装置であって、
前記一対の基板のそれぞれを支持しつつ、各基板を対向させつつ互いに近接させることで、各基板の貼り合わせを行う支持台を含み、
前記支持台は、その基板支持面が、貼り合わせ後の貼合せ基板の反り量と略等しい湾曲面を備えることを特徴とする貼合せ基板の製造装置。
A manufacturing apparatus for manufacturing a bonded substrate obtained by bonding a pair of substrates,
While supporting each of the pair of substrates, including a support base for bonding each substrate by bringing the substrates close to each other while facing each other,
The said support stand is provided with the curved surface in which the board | substrate support surface is substantially equal to the curvature amount of the bonded board | substrate after bonding, The manufacturing apparatus of the bonded board | substrate characterized by the above-mentioned.
前記一対の基板として、それぞれ同一材料で且つ同一厚さの第1基板及び第2基板を用い、前記第1基板の貼合せ前の反り量をx、前記第2基板の貼合せ前の反り量をyとしたとき、前記支持台の基板支持面の反り量zが、概ねz=(x+y)/2を満たすことを特徴とする請求項5に記載の貼合せ基板の製造装置。   The first substrate and the second substrate having the same material and the same thickness are used as the pair of substrates, respectively, and the amount of warpage before bonding of the first substrate is x, and the amount of warpage before bonding of the second substrate. The board | substrate manufacturing apparatus of the bonded substrate of Claim 5 characterized by the curvature amount z of the board | substrate support surface of the said support stand substantially satisfying z = (x + y) / 2 when y is set to y. 一対の基板間に液晶層を挟持してなる液晶装置の製造方法であって、
前記一対の基板を請求項1ないし4のいずれか1項に記載の方法により貼り合わせることを特徴とする液晶装置の製造方法。
A method of manufacturing a liquid crystal device in which a liquid crystal layer is sandwiched between a pair of substrates,
A method for manufacturing a liquid crystal device, wherein the pair of substrates are bonded together by the method according to claim 1.
前記一対の基板を支持台にて支持する前に、
各基板上に電極及び配向膜を形成する工程と、
少なくとも一方の基板上に枠状のシール材を塗布する工程と、
該枠状のシール材の内側に液晶を配置する工程と、を含むことを特徴とする請求項7に記載の液晶装置の製造方法。
Before supporting the pair of substrates on a support base,
Forming an electrode and an alignment film on each substrate;
Applying a frame-shaped sealing material on at least one substrate;
The method of manufacturing a liquid crystal device according to claim 7, further comprising: disposing liquid crystal inside the frame-shaped sealing material.
JP2003381054A 2003-11-11 2003-11-11 Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device Withdrawn JP2005148121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381054A JP2005148121A (en) 2003-11-11 2003-11-11 Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381054A JP2005148121A (en) 2003-11-11 2003-11-11 Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device

Publications (1)

Publication Number Publication Date
JP2005148121A true JP2005148121A (en) 2005-06-09

Family

ID=34690550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381054A Withdrawn JP2005148121A (en) 2003-11-11 2003-11-11 Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device

Country Status (1)

Country Link
JP (1) JP2005148121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039862A (en) * 2013-08-23 2015-03-02 クライムプロダクツ株式会社 Lamination apparatus and lamination method for laminating work in bent state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039862A (en) * 2013-08-23 2015-03-02 クライムプロダクツ株式会社 Lamination apparatus and lamination method for laminating work in bent state

Similar Documents

Publication Publication Date Title
US7364633B2 (en) Device and method for fabricating liquid crystal display device
TW520458B (en) Substrate bonding method, bonding device, and method for manufacturing LCD monitor using same
KR20100009208A (en) Combination equipment for exfoliation and position, and fabricating method of liquid crystal display using the same
KR20030071034A (en) Method for manufacturing liquid crystal display device
US11480819B2 (en) Display device and method of manufacturing the same
JP6038077B2 (en) Substrate desorbing apparatus and flat panel display manufacturing method using the same
JP4126593B2 (en) Manufacturing method of liquid crystal display device
US20180356670A1 (en) Method of producing display panels
CN108027540A (en) The manufacture method of display panel
JP2005148121A (en) Method and device for manufacturing laminated substrate, method for manufacturing liquid crystal device
US10317713B2 (en) Method of producing display panels
US20180007798A1 (en) Mounting substrate manufacturing apparatus and method of manufacturing mounting substrate
JP2013254056A (en) Display substrate laminating apparatus and method, and method for manufacturing display substrate
JP2005338593A (en) Electrode terminal connecting device for electrooptical display panel
US10088712B2 (en) Method of producing display panels
JP2007095885A (en) Method of manufacturing electro-optical device
JP2006154166A (en) Lamination device and method for electrooptical device
KR20040038540A (en) Table for loading and unloading substrate
KR100720444B1 (en) Method for manufacturing liquid crystal display device
US20170332493A1 (en) Mounting substrate manufacturing apparatus and method of manufacturing mounting substrate
JP2008233596A (en) Manufacturing method of electrooptical device
JP2009288311A (en) Manufacturing method and manufacturing device of liquid crystal display panel
JP2005115235A (en) Substrate for electrooptical device, method for manufacturing device, electrooptical device, and electronic equipment
KR101568271B1 (en) Apparatus and method of fabricating flat display device
KR100710154B1 (en) Method for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206