JP2005146425A - Polylactic acid fiber and woven or knit fabric made thereof - Google Patents

Polylactic acid fiber and woven or knit fabric made thereof Download PDF

Info

Publication number
JP2005146425A
JP2005146425A JP2003380765A JP2003380765A JP2005146425A JP 2005146425 A JP2005146425 A JP 2005146425A JP 2003380765 A JP2003380765 A JP 2003380765A JP 2003380765 A JP2003380765 A JP 2003380765A JP 2005146425 A JP2005146425 A JP 2005146425A
Authority
JP
Japan
Prior art keywords
polylactic acid
molecular weight
fibrous material
antifouling
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380765A
Other languages
Japanese (ja)
Other versions
JP4040567B2 (en
Inventor
Hiroshi Kajiyama
宏史 梶山
Shiyougo Mutagami
省吾 牟田神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003380765A priority Critical patent/JP4040567B2/en
Publication of JP2005146425A publication Critical patent/JP2005146425A/en
Application granted granted Critical
Publication of JP4040567B2 publication Critical patent/JP4040567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber having excellent stainproofness and free from water pollution problem. <P>SOLUTION: The fibrous material contains 5-50 wt.% polylactic acid resin having a molecular weight of ≥10,000 and <50,000 and 50-95 wt.% polylactic acid resin having a molecular weight of ≥50,000 and ≤200,000. Preferably, the polylactic acid resin has a melting point of ≥150°C and the polylactic acid fiber has an initial tensile strength of ≥1.5 cN/dtex and a boiling water shrinkage of ≤12%. The polylactic acid fiber is e.g. multifilament, monofilament, flat yarn and staple fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、環境調和型の防汚繊維に関する。特に、網、海洋構造物などの各種構造物や漁網などの各種道具の海中または水中に没している部分に付着する微生物や動植物などの水棲付着生物による汚損防止に良好な効果を与える防汚繊維に関するものである。   The present invention relates to an environmentally friendly antifouling fiber. In particular, antifouling that has a good effect on preventing contamination by various organisms such as microorganisms and animals and plants adhering to the underwater or various parts of various tools such as nets and marine structures, and various tools such as fishing nets. It is about fiber.

船舶の船底部、海底通信ケーブル、輸送パイプライン、観測ブイ、浮標、オイルフェンス、シルトプロテクター、橋脚、火力または原子力発電における冷却水路、工業用冷却水路、波力発電ブイ、海洋開発や海洋土木工事に関連する各種機器、養殖用漁網、漁具などの、長期にわたって水中に浸漬される器物、設備および構造物には、フジツボ、ムラサキイガイ、ヒドロ虫、セルプラ、コケムシ、ホヤ、海綿などの水棲付着動物や、アオサ、アオノリ、シオミドロ、ヒビミドロ、シオグサ、ミルなどの藻類および藍藻類、珪藻類、細菌などのスライムを形成する水棲付着微生物(以下これらを総称して「汚損生物」ともいう)が付着し、このため、上記機器、器物、設備、構造物などは種々の損失を被る。   Ship bottom, submarine communication cable, transport pipeline, observation buoy, buoy, oil fence, silt protector, pier, cooling channel for thermal power or nuclear power generation, industrial cooling channel, wave power buoy, ocean development and civil engineering work Equipment, facilities and structures that have been immersed in water for a long time, such as various equipment related to fisheries, fishing nets, fishing gear, etc., include barnacles, mussels, hydro-insects, cell plastics, beetles, sea squirts, sponges, , Algae such as Aosa, Aonori, Shiomidomo, Hibimidoro, Shiogusa, Mill, etc., and aquatic microbes that form slime such as cyanobacteria, diatoms, and bacteria (hereinafter collectively referred to as “fouling organisms”) For this reason, the said apparatus, an instrument, an installation, a structure, etc. suffer various loss.

魚貝類の養殖漁網に汚損生物が付着した場合、網自体の耐久性が損なわれたり、汚損生物が網目を覆い尽くすことから海水の流出入が阻害されて水中の酸素不足を招き、その結果、養殖魚貝類が呼吸困難を起こして死滅する原因となったり、細菌などの増殖を助長して魚病の発生による魚貝類の被害の原因となったりする。   When fouling organisms adhere to fish and shellfish aquaculture nets, the durability of the net itself is impaired, or the fouling organisms cover the mesh, preventing the inflow and outflow of seawater, leading to a lack of oxygen in the water. This may cause the cultured fish shellfish to die due to difficulty in breathing, or promote the growth of bacteria and cause damage to the fish shellfish due to the occurrence of fish disease.

このように、水中に存在する繊維構造物などに対する汚損生物の付着は産業上きわめて大きな損害をもたらす。したがって、繊維構造物などに対する汚損生物の付着防止のために、従来、防汚剤と加水分解型樹脂とを配合した防汚塗料が使用されてきた。防汚剤としては、亜酸化銅やロダン銅などの重金属化合物、テトラメチルチウラムジスルフィドやジメチルジチオカルバミン酸亜鉛などのカルバミン酸化合物などが挙げられ、加水分解型樹脂としてはTBTOペンダントアクリル樹脂、シリルエステル系アクリル樹脂などが挙げられる。かかる防汚塗料による塗膜は、加水分解型樹脂の加水分解によって塗膜表面が徐々に分解して(削れて)、常に、活性な防汚剤が塗膜表面に現れ、その結果、長期間安定した防汚性を発揮し続ける。しかし、近年、これらの防汚剤および溶出した樹脂による海水の汚染が懸念されている。   In this way, the attachment of fouling organisms to fiber structures and the like existing in water causes extremely great damage in the industry. Therefore, conventionally, an antifouling paint containing an antifouling agent and a hydrolyzable resin has been used to prevent the attachment of fouling organisms to fiber structures and the like. Examples of antifouling agents include heavy metal compounds such as cuprous oxide and rhodan copper, and carbamic acid compounds such as tetramethylthiuram disulfide and zinc dimethyldithiocarbamate. Hydrolytic resins include TBTO pendant acrylic resins and silyl ester series. An acrylic resin etc. are mentioned. A coating film made of such an antifouling paint gradually decomposes (shaves) due to hydrolysis of the hydrolyzable resin, and an active antifouling agent always appears on the surface of the paint film. Continue to exhibit stable antifouling properties. However, in recent years, there is concern about contamination of seawater by these antifouling agents and eluted resins.

防汚剤の特許としては、特許文献1に生分解性ポリマーとアナターゼ型酸化チタンからなる防汚塗料が公開されている。この塗料では、樹脂以外にアナターゼ型酸化チタンを用いているが、これは、有害でないように吟味をされているとはいえ、高濃度で海中や河川などの水中に存在することは自然環境に良いとは言えないうえ、水に不溶であるため、水中に溶け出すと、沈殿し、その際の海底や川底の生物にどのような影響を与えるかは分からず、又塗料が剥げると当然のことながら効果はなくなる。   As a patent for an antifouling agent, Patent Document 1 discloses an antifouling paint comprising a biodegradable polymer and an anatase-type titanium oxide. In this paint, anatase type titanium oxide is used in addition to the resin. However, although it is examined not to be harmful, it is in the natural environment that it exists in the water in the sea or river at high concentration. It is not good, and it is insoluble in water, so if it starts to dissolve in water, it will settle and it will not be understood what kind of effect it will have on the seabed and riverbed organisms. In fact, the effect disappears.

繊維状物の特許としては、特許文献2に繊維の表面が生分解性樹脂または水溶性樹脂の少なくとも一方で覆われた繊維が公開されている。しかしながらこの特許はポリ乳酸樹脂の分子量を規定しておらず、効果の持続性については不明確である。   As a patent for the fibrous material, Patent Document 2 discloses a fiber in which the surface of the fiber is covered with at least one of a biodegradable resin or a water-soluble resin. However, this patent does not define the molecular weight of the polylactic acid resin, and the duration of the effect is unclear.

特開2001−114616号公報JP 2001-114616 A 特開2003−193372号公報JP 2003-193372 A

本発明の課題は、上記問題点を鑑み、さらに、防汚効果の持続性をコントロール可能で、かつ、自然環境により優しい繊維状物を提供することにある。   In view of the above problems, an object of the present invention is to provide a fibrous material that can control the durability of the antifouling effect and is gentler to the natural environment.

本発明の課題は、分子量が10000以上50000未満のポリ乳酸系樹脂を重量比で5〜50重量%と、分子量が50000以上200000以下のポリ乳酸系樹脂を重量比で50〜95重量%含有する繊維状物によって達成する。   An object of the present invention is to contain a polylactic acid resin having a molecular weight of 10,000 to less than 50,000 in a weight ratio of 5 to 50% by weight and a polylactic acid resin having a molecular weight of 50,000 to 200,000 in weight ratio of 50 to 95% by weight. Achievable with fibrous material.

本発明の効果は、自然環境に影響を与えることが少ない繊維状物を提供できることである。   An effect of the present invention is to provide a fibrous material that hardly affects the natural environment.

さらに、この繊維状物を用いることで、防汚効果をコントロールできる。   Furthermore, the antifouling effect can be controlled by using this fibrous material.

本発明の繊維状物は、分子量が10000以上50000未満のポリ乳酸系樹脂を重量比で5〜50重量%と、分子量が50000以上200000以下のポリ乳酸系樹脂を重量比で50〜95重量%含有する繊維状物である。   The fibrous material of the present invention comprises a polylactic acid resin having a molecular weight of 10,000 to less than 50000 in a weight ratio of 5 to 50% by weight, and a polylactic acid resin having a molecular weight of 50,000 to 200,000 in weight ratio of 50 to 95% by weight. It is a fibrous material to contain.

一般に、ポリ乳酸系樹脂は分子量が高くなる(すなわち、重合度が高くなる)と加水分解しにくくなる。繊維状物の引張強度を向上させるためにポリ乳酸系樹脂の重合度を単に上げると、防汚塗料として必要な加水分解(生分解を含む)速度を得ることができない。他方、加水分解(生分解を含む)速度を考慮してポリ乳酸系樹脂の重合度を単に低くすると、繊維状物の引張強度が低くなり、布帛に用いたときに加水分解が進みすぎて効果期間が短くなる。本発明のポリエステル樹脂は、実用上充分な繊維物性が得られ、かつ防汚性をコントロールするために、ポリ乳酸系樹脂の分子量について、詳細に検討し、分子量を10000以上50000未満、50000以上200000以下の2つに分割し、分子量が10000以上50000未満のポリ乳酸系樹脂を重量比で5〜50重量%と、分子量が50000以上200000以下のポリ乳酸系樹脂を重量比で50〜95重量%含有する事が必要である事を見出した。   In general, polylactic acid-based resins are difficult to hydrolyze when the molecular weight increases (that is, the degree of polymerization increases). If the degree of polymerization of the polylactic acid resin is simply increased in order to improve the tensile strength of the fibrous material, the hydrolysis (including biodegradation) rate required for the antifouling paint cannot be obtained. On the other hand, if the degree of polymerization of the polylactic acid resin is simply lowered in consideration of the hydrolysis (including biodegradation) rate, the tensile strength of the fibrous material is lowered, and the hydrolysis proceeds too much when used in a fabric. The period is shortened. For the polyester resin of the present invention, in order to obtain practically sufficient fiber physical properties and to control the antifouling property, the molecular weight of the polylactic acid resin is examined in detail, and the molecular weight is from 10,000 to less than 50,000, from 50,000 to 200,000. The polylactic acid resin having a molecular weight of 10,000 or more and less than 50000 is 5 to 50% by weight and the polylactic acid resin having a molecular weight of 50,000 or more and 200,000 or less is 50 to 95% by weight. We found that it is necessary to contain.

すなわち、適切な加水分解速度と、繊維としての、強度、収縮率というこの2つの性質を共に満足するために、上記ポリ乳酸系樹脂の分子量の分布が必要であった。そして、これにより、幾つかの異なる加水分解速度を有するポリ乳酸系樹脂分子の混合物となり、初期から、持続して長期に亘り防汚効果を奏した。   That is, in order to satisfy both of these two properties of an appropriate hydrolysis rate, strength as a fiber, and shrinkage rate, the molecular weight distribution of the polylactic acid-based resin is required. And it became the mixture of the polylactic acid-type resin molecule | numerator which has several different hydrolysis rates by this, and had the antifouling effect over the long term from the beginning.

初期段階では分子量10000以上50000未満のポリ乳酸が徐々に加水分解することで防汚性を得る事ができるが、分子量50000以上200000以下のポリ乳酸の加水分解は始まっておらず繊維状物として充分な強度を持っており。その後、分子量50000〜200000のポリ乳酸の加水分解が緩やかに始まる事で2〜5年は強度を保ちながら防汚性をもった繊維状物を得ることができる。   In the initial stage, polylactic acid having a molecular weight of 10,000 or more and less than 50,000 can be gradually hydrolyzed to obtain antifouling properties. However, hydrolysis of polylactic acid having a molecular weight of 50,000 or more and 200,000 or less has not begun and is sufficient as a fibrous material. It has a strong strength. Thereafter, the hydrolysis of the polylactic acid having a molecular weight of 50,000 to 200,000 starts gradually, so that a fibrous material having antifouling properties can be obtained while maintaining the strength for 2 to 5 years.

これは、水に可溶である乳酸や乳酸オリゴマー(ポリ乳酸の水に可溶の低分子量成分)が防汚剤としての効果を有していること、繊維表面のポリ乳酸系樹脂が少しづつ加水分解していくことにより、付着した汚れが落ちる効果の両方の効果による防汚作用であると考えられ、それぞれの分子量範囲のポリ乳酸系樹脂比率を調節することで、防汚効果の持続性をコントロールできる。   This is because the water-soluble lactic acid and lactic acid oligomer (polylactic acid water-soluble low molecular weight component) has an effect as an antifouling agent, and the polylactic acid resin on the fiber surface is little by little. It is thought that it is an antifouling effect due to both the effect of removing attached dirt by hydrolyzing, and the antifouling effect is maintained by adjusting the ratio of polylactic acid resin in each molecular weight range Can be controlled.

ポリ乳酸の分子量が10000未満のものをブレンドすると、紡糸時に加水分解が進み
糸質の低下が発生する。又、倉庫などに保管しておくとフィラメント中の低分子量物が加水分解して強度低下などの問題が発生する。
When blending polylactic acid having a molecular weight of less than 10,000, hydrolysis progresses during spinning, resulting in a decrease in yarn quality. In addition, when stored in a warehouse or the like, the low molecular weight substance in the filaments hydrolyzes, causing problems such as a decrease in strength.

分子量200000を超えるポリ乳酸を使用すると、紡糸時の溶液粘度が低く充分な曳糸製を持った糸を得る事ができない。   If a polylactic acid having a molecular weight exceeding 200,000 is used, it is impossible to obtain a yarn having a low warp viscosity at the time of spinning and having a sufficient string.

本発明の分子量とは、重量平均分子量(MW)である。   The molecular weight of the present invention is a weight average molecular weight (MW).

本発明に用いられるポリ乳酸系樹脂は融点が150℃以上である事が好ましい。ポリ乳酸樹脂は光学異性体であるD/L体の比率によって融点が異なる事が知られているが、融点が150℃以上であれば結晶性に優れ、充分な強度を持った繊維状物を得る事ができる。逆に150℃以下では非晶となってしまい強度が低くなるばかりか、成形温度が低く実用充分な布帛を得る事ができない。   The polylactic acid resin used in the present invention preferably has a melting point of 150 ° C. or higher. Polylactic acid resins are known to have different melting points depending on the ratio of the D / L isomer, which is an optical isomer. However, if the melting point is 150 ° C. or higher, the fibrous material has excellent crystallinity and sufficient strength. I can get it. On the other hand, if it is 150 ° C. or lower, it becomes amorphous and the strength is lowered, and it is impossible to obtain a fabric having a low molding temperature and sufficient for practical use.

上記ポリ乳酸系樹脂は、モノマー単位として乳酸成分を50重量%以上含有する樹脂を言う。即ち、乳酸100%重合体はもちろん、本発明の目的が達成される範囲で、多価アルコール、多価カルボン酸、酸無水物、乳酸以外のヒドロキシカルボン酸等他の成分を単独または複数共重合してもよい。   The said polylactic acid-type resin says resin containing 50 weight% or more of lactic acid components as a monomer unit. That is, not only 100% lactic acid polymer but also other components such as polyhydric alcohol, polyhydric carboxylic acid, acid anhydride and hydroxycarboxylic acid other than lactic acid are copolymerized singly or plurally as long as the object of the present invention is achieved. May be.

本発明の繊維状物の初期引張強度は1.5cN/dtex以上である事が好ましい。初期引張強度が1.5cN/dtex以上であれば布帛にする時の加工性が良好で実用上問題はない。初期引張強度は繊維形態によって好ましい範囲が異なるが、モノフィラ、マルチフィラメントでは3.0cN/dtex以上がさらに好ましく、フラットヤーンでは1.80cN/dtex以上が好ましい。   The initial tensile strength of the fibrous material of the present invention is preferably 1.5 cN / dtex or more. If the initial tensile strength is 1.5 cN / dtex or more, the workability when making a fabric is good and there is no practical problem. The preferred range of the initial tensile strength varies depending on the fiber form, but it is more preferably 3.0 cN / dtex or more for monofilar and multifilament, and 1.80 cN / dtex or more for flat yarn.

又、繊維状物の沸水収縮率は12%以下である事が好ましい。12%以下であれば成形時の収縮安定性に優れ好適である。さらに好ましくは10%以下である。   The boiling water shrinkage of the fibrous material is preferably 12% or less. If it is 12% or less, the shrinkage stability during molding is excellent and suitable. More preferably, it is 10% or less.

本発明の繊維状物は異なった分子量を持つポリ乳酸系樹脂をブレンドして作られるが、繊維の相対粘度は2.2〜4.0である事が好ましい。上記範囲内であれば充分な初期強度が得られ、かつ成形性が良好で防汚性に優れた繊維状物を得る事ができる。   The fibrous material of the present invention is made by blending polylactic acid resins having different molecular weights, and the relative viscosity of the fiber is preferably 2.2 to 4.0. Within the above range, a sufficient initial strength can be obtained, and a fibrous material having good moldability and excellent antifouling property can be obtained.

繊維中に必要に応じて、各種顔料、無機化合物、結晶核剤、可塑剤などの添加剤をブレンドする事も可能である。 If necessary, additives such as various pigments, inorganic compounds, crystal nucleating agents, and plasticizers can be blended in the fiber.

本発明の繊維状物とは、マルチフィラメント、及び加工糸、モノフィラメント、フラットヤーン、ステープルが好ましい。さらに、上記繊維状物をそのまま使用しても良いが、織編物にして使用することも可能である。   The fibrous material of the present invention is preferably multifilament, processed yarn, monofilament, flat yarn, or staple. Further, the fibrous material may be used as it is, but it can also be used as a woven or knitted fabric.

織編物として使用する場合は、他素材と併用して使用することも可能であり、上記繊維状物を30%以上使用して使用する事が好ましく、さらに好ましくは50%以上である。   When used as a woven or knitted fabric, it can be used in combination with other materials, and it is preferable to use the fibrous material in an amount of 30% or more, and more preferably 50% or more.

以下、本発明の防汚塗料用ポリエステル樹脂の合成例および防汚塗料の実施例を説明するが、本発明はこれら合成例や実施例によって何ら限定されるものではない。   Hereinafter, although the synthesis example of the polyester resin for antifouling paints of the present invention and the example of antifouling paints are explained, the present invention is not limited at all by these synthesis examples and examples.

(相対粘度ηrel)
フェノール/テトラクロロエタン=60/40(質量比)の混合溶媒に試料を1g/dLの濃度になるよう溶解し、20℃でウベローデ粘度管を用いて相対粘度を測定した。
(Relative viscosity ηrel)
The sample was dissolved in a mixed solvent of phenol / tetrachloroethane = 60/40 (mass ratio) to a concentration of 1 g / dL, and the relative viscosity was measured at 20 ° C. using an Ubbelohde viscometer.

(強伸度の測定)
島津製作所製引っ張り試験機(RTM−100)を用い、試料長20cm、速度20cm/minで引っ張り試験を行った。破断強度を引っ張り強度、破断伸度を伸度とした。
(Measurement of strong elongation)
Using a tensile tester (RTM-100) manufactured by Shimadzu Corporation, a tensile test was performed at a sample length of 20 cm and a speed of 20 cm / min. The breaking strength was taken as tensile strength, and the breaking elongation was taken as elongation.

(融点)
リガク製Thermoplus DSC8230を使用して、昇温速度10℃/minにて30℃〜200℃の温度範囲にて測定した。
(Melting point)
Using a Rigaku Thermoplus DSC8230, the temperature was measured at a temperature rising rate of 10 ° C./min in a temperature range of 30 ° C. to 200 ° C.

(分子量測定)
ゲルパーミエーションクロマトグラフィー測定装置(以下、GPCと省略する。東ソー株式会社製HLC8120、カラム温度40℃、テトラヒドロフラン溶媒)によりポリスチレン標準サンプルとの比較で測定した。
(Molecular weight measurement)
It measured by the comparison with a polystyrene standard sample with the gel permeation chromatography measuring apparatus (Hereafter, it abbreviates as GPC. HLC8120 by Tosoh Corporation, column temperature 40 degreeC, tetrahydrofuran solvent).

(防汚性テスト)
得られたポリ乳酸繊維にて48cm角目ネットを試作し、これを瀬戸内海の防府沖の水面下1.5mに浸漬させ、そして1カ月後、6か月後、24か月後の生物による汚損を評価した。生物による汚損を目視で判断し、非常に良好(非常に少ない)〜非常に不良(非常に多い)までの5段階(5−非常に良好、4−良好、3−やや不良、2−不良、1−非常に不良)で評価した。
(Anti-fouling test)
A 48cm square net was made with the polylactic acid fiber obtained, immersed in 1.5m below the water surface off Hofu in the Seto Inland Sea, and soiled by organisms after 1, 6 and 24 months. Evaluated. Visually judge the contamination by living organisms, 5 stages from very good (very little) to very bad (very much) (5-very good, 4-good, 3-somewhat bad, 2-bad, 1-Very poor).

(調製例1)
融点168℃、分子量が27000のポリ乳酸を10%、融点170℃、分子量140000のポリ乳酸90%を2軸混練機でブレンドしてポリマーP1を得た。
(Preparation Example 1)
A polymer P1 was obtained by blending 10% of polylactic acid having a melting point of 168 ° C. and a molecular weight of 27,000 with a biaxial kneader with 10% of polylactic acid having a melting point of 170 ° C. and a molecular weight of 14,000.

(調製例2)
融点168℃、分子量が27000のポリ乳酸を30%、融点170℃、分子量140000のポリ乳酸70%を2軸混練機でブレンドしてポリマーP2を得た。
(Preparation Example 2)
A polymer P2 was obtained by blending 30% of polylactic acid having a melting point of 168 ° C. and a molecular weight of 27000 with a biaxial kneader with 70% of polylactic acid having a melting point of 170 ° C. and a molecular weight of 14,000.

(調製例3)
融点168℃、分子量が27000のポリ乳酸を50%、融点170℃、分子量140000のポリ乳酸50%を2軸混練機でブレンドしてポリマーP3を得た。
(Preparation Example 3)
A polymer P3 was obtained by blending 50% of polylactic acid having a melting point of 168 ° C. and a molecular weight of 27000 with a biaxial kneader with 50% of polylactic acid having a melting point of 170 ° C. and a molecular weight of 14,000.

(調製例4)
融点168℃、分子量が27000のポリ乳酸を2%、融点170℃、分子量140000のポリ乳酸98%を2軸混練機でブレンドしてポリマーP4を得た。
(Preparation Example 4)
A polymer P4 was obtained by blending 2% of polylactic acid having a melting point of 168 ° C. and a molecular weight of 27000, and 98% of polylactic acid having a melting point of 170 ° C. and a molecular weight of 140000 in a biaxial kneader.

(調製例5)
融点168℃、分子量が27000のポリ乳酸を60%、融点170℃、分子量140000のポリ乳酸40%を2軸混練機でブレンドしてポリマーP5を得た。
(Preparation Example 5)
Polymer P5 was obtained by blending 60% of polylactic acid having a melting point of 168 ° C. and a molecular weight of 27000 with a biaxial kneader with 60% of polylactic acid having a melting point of 170 ° C. and a molecular weight of 14,000.

(調製例6)
融点168℃、分子量が8000のポリ乳酸を50%、融点170℃、分子量140000のポリ乳酸50%を2軸混練機でブレンドしてポリマーP6を得た。
(Preparation Example 6)
Polymer P6 was obtained by blending 50% of polylactic acid having a melting point of 168 ° C. and a molecular weight of 8000 with 50% of polylactic acid having a melting point of 170 ° C. and a molecular weight of 14,000 using a biaxial kneader.

(調製例7)
融点168℃、分子量が27000のポリ乳酸を10%、融点170℃、分子量250000のポリ乳酸90%を2軸混練機でブレンドしてポリマーP7を得た。
(Preparation Example 7)
Polymer P7 was obtained by blending 10% polylactic acid having a melting point of 168 ° C. and a molecular weight of 27000 with a biaxial kneader with 90% polylactic acid having a melting point of 170 ° C. and a molecular weight of 250,000.

(実施例1〜3)
調製例1〜3のポリマーを単軸の押出機を使用し220℃で溶融し、口金ノズル1.2m
m×18本から押出した。水冷却バスを通過した後、94℃の熱水で5.5倍に一段延伸、さらに98℃の熱水で1.2倍に二段延伸して130℃の熱風でヒートセットして500dtexのモノフィラメントを製造した。糸質及び防汚性を表1に示す。
(Examples 1-3)
The polymers of Preparation Examples 1 to 3 were melted at 220 ° C. using a single screw extruder, and the nozzle nozzle was 1.2 m.
Extruded from m × 18 pieces. After passing through the water cooling bath, it is stretched one step by 5.5 times with 94 ° C hot water, further stretched by 1.2 times with hot water at 98 ° C, and heat-set with hot air at 130 ° C for 500 dtex. A monofilament was produced. Table 1 shows the yarn quality and antifouling property.

Figure 2005146425
Figure 2005146425

実施例1〜3はいずれも良好な糸質及び防汚性を持ったフィラメントを得る事ができた。   In Examples 1 to 3, filaments having good yarn quality and antifouling properties could be obtained.

(比較例4〜7)
調製例4〜7のポリマーを単軸の押出機を使用し220℃で溶融し、口金ノズル1.2mm×18本から押出した。水冷却バスを通過した後、94℃の熱水で5.5倍に一段延伸、さらに98℃の熱水で1.2倍に二段延伸して130℃の熱風でヒートセットして500dtexのモノフィラメントを製造した。糸質及び防汚性を表2に示す。
(Comparative Examples 4-7)
The polymers of Preparation Examples 4 to 7 were melted at 220 ° C. using a single screw extruder and extruded from a nozzle nozzle of 1.2 mm × 18. After passing through the water cooling bath, it is stretched one step by 5.5 times with 94 ° C hot water, further stretched by 1.2 times with hot water at 98 ° C, and heat-set with hot air at 130 ° C for 500 dtex. A monofilament was produced. Table 2 shows the yarn quality and antifouling property.

Figure 2005146425
Figure 2005146425

比較例1は低分子ポリマーのブレンド率が低いために設置後1ヶ月では防汚性は不良で、その後徐々に改善は見られたが初期に付着した藻が剥離せず防汚性に劣る結果となった。
又、比較例2は低分子ポリ乳酸のブレンド比率が高いために初期の防汚性は良好であったが、6ヶ月程度からネットの破損が始まり、24ヶ月ではネットの破損がひどく実用上使用するには困難である。
Since Comparative Example 1 has a low blend ratio of the low-molecular polymer, the antifouling property is poor one month after installation, and after that, although improvement was gradually seen, the algae attached at the initial stage did not peel off and the antifouling property was poor. It became.
In Comparative Example 2, the initial antifouling property was good due to the high blend ratio of low molecular weight polylactic acid. It is difficult to do.

比較例3は低分子量のポリ乳酸の粘度が低すぎるために、紡糸時に解重合が発生し、紡糸での糸切れが多発するなど紡糸性に劣る。又防汚性テストでは分解が進みすぎて6ヶ月程度で分解しテストは継続できなかった。   In Comparative Example 3, since the viscosity of the low molecular weight polylactic acid is too low, depolymerization occurs at the time of spinning, resulting in poor spinning properties such as frequent yarn breakage during spinning. Moreover, in the antifouling test, the decomposition progressed too much, and the test could not be continued after approximately 6 months.

比較例4は高分子量のポリ乳酸の分子量が高いために、紡糸時の溶融粘度が低くなり曳糸性に劣るために、糸切れが多発し紡糸性に劣る。防汚性テストでは初期は良好であったが、高分子量のポリ乳酸の加水分解が進まないために防汚性は徐々になくなる結果となった。   In Comparative Example 4, since the molecular weight of the high molecular weight polylactic acid is high, the melt viscosity at the time of spinning is low and the spinnability is poor. Therefore, yarn breakage occurs frequently and the spinnability is poor. In the antifouling test, the initial condition was good, but the antifouling property gradually disappeared because hydrolysis of the high molecular weight polylactic acid did not proceed.

本発明の防汚性に優れた繊維状物は、優れた防汚性能が長期間持続され、しかも、海水、河川水などへの汚染の少ない繊維状物を得ることができる。   The fibrous material excellent in antifouling property of the present invention can provide a fibrous material that has excellent antifouling performance for a long period of time and is less contaminated with seawater, river water and the like.

Claims (5)

分子量が10000以上50000未満のポリ乳酸系樹脂を重量比で5〜50重量%と、分子量が50000以上200000以下のポリ乳酸系樹脂を重量比で50〜95重量%含有する繊維状物。 A fibrous material containing a polylactic acid resin having a molecular weight of 10,000 to less than 50000 in a weight ratio of 5 to 50% by weight and a polylactic acid resin having a molecular weight of 50,000 to 200,000 in weight ratio of 50 to 95% by weight. ポリ乳酸系樹脂の融点が150℃以上である事を特徴とする、請求項1に記載の繊維状物。   The fibrous material according to claim 1, wherein the melting point of the polylactic acid resin is 150 ° C or higher. ポリ乳酸繊維状物の初期引張強度が1.5cN/dtex以上であり、沸水収縮率が12%以下である事を特徴とする請求項1、2いずれかに記載の繊維状物。   The fibrous material according to any one of claims 1 and 2, wherein the initial tensile strength of the polylactic acid fibrous material is 1.5 cN / dtex or more and the boiling water shrinkage is 12% or less. ポリ乳酸繊維状物がマルチフィラメント、モノフィラメント、フラットヤーン、ステープルのいずれかからなる事を特徴とする請求項1〜3いずれかに記載の繊維状物。   The fibrous product according to any one of claims 1 to 3, wherein the polylactic acid fibrous product is composed of any one of a multifilament, a monofilament, a flat yarn, and a staple. 請求項1〜4いずれかのポリ乳酸繊維状物を使用した織編物。   A woven or knitted fabric using the polylactic acid fibrous material according to any one of claims 1 to 4.
JP2003380765A 2003-11-11 2003-11-11 Polylactic acid fiber and woven or knitted fabric comprising the same Expired - Lifetime JP4040567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380765A JP4040567B2 (en) 2003-11-11 2003-11-11 Polylactic acid fiber and woven or knitted fabric comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380765A JP4040567B2 (en) 2003-11-11 2003-11-11 Polylactic acid fiber and woven or knitted fabric comprising the same

Publications (2)

Publication Number Publication Date
JP2005146425A true JP2005146425A (en) 2005-06-09
JP4040567B2 JP4040567B2 (en) 2008-01-30

Family

ID=34690339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380765A Expired - Lifetime JP4040567B2 (en) 2003-11-11 2003-11-11 Polylactic acid fiber and woven or knitted fabric comprising the same

Country Status (1)

Country Link
JP (1) JP4040567B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173795A (en) * 2010-02-23 2011-09-08 Kyushu Institute Of Technology Material for preventing adhesion of aquatic organism
US8236904B2 (en) * 2005-12-28 2012-08-07 Ethicon, Inc. Bioabsorbable polymer compositions exhibiting enhanced crystallization and hydrolysis rates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236904B2 (en) * 2005-12-28 2012-08-07 Ethicon, Inc. Bioabsorbable polymer compositions exhibiting enhanced crystallization and hydrolysis rates
US8450431B2 (en) 2005-12-28 2013-05-28 Ethicon, Inc. Bioabsorbable polymer compositions exhibiting enhanced crystallization and hydrolysis rates
US9173980B2 (en) 2005-12-28 2015-11-03 Ethicon, Inc. Bioabsorbable polymer compositions exhibiting enhanced crystallization and hydrolysis rates
US9238094B2 (en) 2005-12-28 2016-01-19 Ethicon, Inc. Bioabsorbable polymer compositions exhibiting enhanced crystallization and hydrolysis rates
JP2011173795A (en) * 2010-02-23 2011-09-08 Kyushu Institute Of Technology Material for preventing adhesion of aquatic organism

Also Published As

Publication number Publication date
JP4040567B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
CN102300944B (en) Marine organism anti-fouling paint and preparing method and use thereof
KR100733797B1 (en) Polyester resin for antifouling paint and antifouling paint containing the resin
WO2011132537A1 (en) Underwater antifouling material, melt-moulded article and coating material
JP2907996B2 (en) fishing line
JP4040567B2 (en) Polylactic acid fiber and woven or knitted fabric comprising the same
JP4341441B2 (en) Fish net
JP3775515B2 (en) Hydrolyzable polyester resin for antifouling paint
KR100415812B1 (en) A resin composition for biodegradable fatty group polyester and a fishing tackle implement using the same, and a method for preparing thereof
JP2977207B2 (en) Antifouling molding
JP3773057B2 (en) Method for producing hydrolyzed polyester resin
JP2007291229A (en) Resin composition for stain-proof coating
JP2001114616A (en) Antifouling coating material
JPH04120183A (en) Coating composition
JP3156811B2 (en) Biodegradable fish fiber aggregate
JP3667812B2 (en) Aquaculture net
JP2001146570A (en) Polyester resin for antifouling coating material and antifouling coating material using the same
KR20200029170A (en) Polyester resin for antifouling paint and antifouling paint containing the resin
WO2023276981A1 (en) Marine material and production method therefor
JPH0480653B2 (en)
JP3038229B2 (en) Fishing gear
EBISUI et al. Biodegradation of poly (ε-caprolactone) monofilament fibers in deep seawater at near 0° C
JPH08104832A (en) Antifouling coating composition
JPH10306240A (en) Composition for antifouling coating material and antifouling coating material using the same
JP4063555B2 (en) Pollution prevention membrane
JPH08100137A (en) Composition for antifouling coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4040567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term