JP4063555B2 - Pollution prevention membrane - Google Patents

Pollution prevention membrane Download PDF

Info

Publication number
JP4063555B2
JP4063555B2 JP2002061241A JP2002061241A JP4063555B2 JP 4063555 B2 JP4063555 B2 JP 4063555B2 JP 2002061241 A JP2002061241 A JP 2002061241A JP 2002061241 A JP2002061241 A JP 2002061241A JP 4063555 B2 JP4063555 B2 JP 4063555B2
Authority
JP
Japan
Prior art keywords
woven
biodegradable
knitted fabric
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002061241A
Other languages
Japanese (ja)
Other versions
JP2003253658A (en
Inventor
令一 波左間
唯行 迫部
章雄 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kogyo Co Ltd
Original Assignee
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Co Ltd filed Critical Taiyo Kogyo Co Ltd
Priority to JP2002061241A priority Critical patent/JP4063555B2/en
Publication of JP2003253658A publication Critical patent/JP2003253658A/en
Application granted granted Critical
Publication of JP4063555B2 publication Critical patent/JP4063555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Filtering Materials (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海域や河川、湖沼等で土木工事を行う際に工事現場周囲の水質汚濁を防止するために使用する汚濁防止膜に関するものである。
【0002】
【従来の技術】
従来より、海域や河川、湖沼等で浚渫や埋立等の土木工事を行う際には、工事現場の周囲の水質が汚染されるのを防止するために、汚濁防止膜が使用されている。汚濁防止膜は、フロートと水中のおもりとの間に展張して工事現場の周囲に張り巡らせて使用するものであり、ある程度の機械的強力を必要とすることから、ナイロンやエステル等の合成繊維からなる織編物が使用されている。
【0003】
汚濁防止膜は、その使用中に資材の表面に海藻や貝類や軟体動物等の水棲生物が付着する。このような水棲生物が付着すると、質量が増加して汚濁防止膜が水没したり、膜が破れて汚濁防止膜としての効果が得られなくなる。また、使用後の汚濁防止膜は、ほとんどの場合、地上に引き上げてそのまま産業廃棄物として処分している。廃棄処理は、通常は埋立処理によって行われるが、その場合にも汚濁防止膜への藻類・貝類の付着量はできるだけ少ないことが好ましい。
【0004】
また、使用寿命を延ばし、ひいては廃棄物量を低減させるため、高圧洗浄水等により藻類、貝類を落として再度使用することもある。しかしながら、水棲生物の付着力は強力であって、高圧洗浄水による除去には手間がかかり、十分に行えない場合もある。このため、汚濁防止膜の使用中にできるだけ水棲生物の付着量を抑制するとともに、付着した水棲生物はなるべく容易に脱落させられることが望まれている。
【0005】
また、汚濁防止膜は上述のようにナイロン繊維やエステル繊維などの生分解性を有さない合成繊維(以下、「非生分解性繊維」と称す。)からなるため、自然環境中に廃棄してもその化学的安定性のために分解せず、長期間にわたり土中に残ることとなる。将来的には、埋立地の確保がますます困難になり、また、自然環境や野生動物に悪影響を及ぼすなどの問題が懸念されていることから、可能な限り廃棄物量を減らすことが望まれている。
【0006】
【発明が解決しようとする課題】
本発明は前記問題点を解決し、生分解性を有し、その使用中には付着した水棲生物を脱落しやすくする機能を有するとともに、廃棄処理後には自然環境に悪影響を与えることなく良好に廃棄処理を行え、廃棄物量を低減できる汚濁防止膜を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討を重ねた結果、本発明に至ったものである。
【0008】
すなわち本発明は、水辺で土木工事を行う際に工事現場周囲の水質汚濁を防ぐためにフロートと水中のおもりとの間に展張して使用する汚濁防止膜であって、織編物によって構成され、前記織編物は、生分解性を有する合成繊維(以下、「生分解性繊維」と称す。)と、この生分解性を有する合成繊維よりも高強力の非生分解性繊維とからなるとともに、目付が300〜3000g/m であり、前記織編物は、前記生分解性を有する合成繊維が徐々に生分解することによって、この織編物に付着した水棲生物の接着力を弱めて脱落しやすくするものであることを特徴とする汚濁防止膜を要旨とするものである。
【0009】
このようなものであると、その使用中に汚濁防止膜を構成する生分解性繊維が徐々に分解することで、付着した水棲生物の接着力を弱めて脱落しやすくでき、廃棄処理後には埋立処理することで土中の微生物によって分解することができ、廃棄物量を低減して環境への負荷の小さいものとすることができる。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明における汚濁防止膜は織編物によって構成される必要がある。このように汚濁防止膜を織編物にて構成することで、寸法安定性や施工性に優れた汚濁防止膜が得られる。
【0011】
また、織編物の一部は生分解性繊維にて構成される必要がある。本発明における生分解性繊維とは、自然界に存在する微生物の働きによって低分子化合物に分解され、最終的には水や二酸化炭素などの無機質に分解される材料からなる繊維を言う。生分解性繊維は水中に浸漬されてもすぐに分解されるものではなく、時間の経過とともに徐々に分解されるものである。通常は、水中で数ヶ月〜1年以上の長期に渡って徐々に分解していくので、水棲生物が付着しても生分解性繊維が分解することで水棲生物の足場がなくなって、その一部は自然に脱落していく。また、脱落しない水棲生物もその付着力が弱まっているため、水中に置いたままで、あるいは水中から引き上げての高圧水洗浄等によって水棲生物の除去を容易に行える。また、生分解性繊維は毒性がないので、海洋等を毒性のある物質で汚染することもない。さらに、使用後の汚濁防止膜を埋立処理すると、生分解性繊維の残存分については土中のバクテリアや水等により分解され、最終的には非生分解性繊維のみが残るため、廃棄物量を削減できる。また、生分解性繊維及び非生分解性繊維のいずれも毒性のある物質を含んでいないので、自然環境を損なうことなく廃棄処理を行える。
【0012】
生分解性繊維は織編物の一部を構成するものであれば良いが、生分解性繊維の割合が多いほど廃棄物量を削減できるため、廃棄物量の効果的な低減を考慮すると、生分解性繊維は織編物に対して10質量%以上含まれていることが好ましく、30質量%以上含まれていることがより好ましい。ただし、汚濁防止膜は比較的長期にわたって使用されるため、生分解性を有する合成繊維に高強力の非生分解性繊維を配合して、この高強力の非生分解性繊維で織編物の強力を補強する。生分解性繊維と非生分解性繊維を組み合わせる方法については特に限定されるものではないが、具体的な方法としては、経緯方向別に異なる糸を用いる方法、合撚する方法また製織時に引き揃える方法などが挙げられる。
【0013】
生分解性繊維を構成する材料としては、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリグリコール酸、ポリアルキレンアルカノエート、ポリβヒドロキシアルカノエートなどの脂肪族ポリエステル、脂肪族系ポリエステルと芳香族系ポリエステルとの共重合体、ポリビニルアルコール等が挙げられ、これらは単独で使用されても良く、混合あるいは複合物を用いても良い。中でも、生分解性能や実用性などの点からポリ乳酸系重合体からなる繊維が特に好適に使用できる。ポリ乳酸系重合体からなる繊維は、埋立処理を行うと、一定期間が経過した後に加水分解や微生物等により最終的には無害な水と二酸化炭素とにほぼ完全に分解されるため好適に使用できる。また、ポリ乳酸系重合体は抗菌性も有しており、特に酸を嫌う水棲生物に対しては、付着防止にも効果がある。
【0014】
ポリ乳酸系重合体としては、ポリ(D−乳酸)と、ポリ(L−乳酸)と、D−乳酸とL−乳酸との共重合体と、D−乳酸とヒドロキシカルボン酸との共重合体あるいはL−乳酸とヒドロキシカルボン酸との共重合体と、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体とから選ばれるいずれかの重合体あるいはこれらのブレンド体が好ましい。ここで、乳酸とヒドロキシカルボン酸との共重合体である場合におけるヒロドキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。
【0015】
生分解性繊維の繊維形態は特に限定されるものではなく、単一の重合体からなるものでもよく、2種類以上の材料からなる複合繊維でもよい。また、繊維横断面は、通常の丸断面の他にも、芯鞘型複合断面、多層型複合断面等であっても良い。また、繊度は特に限定されるものではないが、長期間屋外の水中に浸漬されること等を考慮すると、550デシテックス以上の比較的太い繊度の繊維を用いることが好ましい。
【0016】
本発明の汚濁防止膜は、上記の生分解性繊維と非生分解性繊維とを織編物とすることで得られる。織編物の織編密度は特に限定されるものではないが、強度や取り扱いの点から、その目付が300〜3000g/m であることが必要である。また、織編物の厚みとしては0.5〜10mm程度であることが好ましい。
【0017】
また、織編物を構成する繊維には、用途に応じて、難燃剤、着色防止剤、酸化防止剤、充填材、顔料などがその特性を損なわない範囲で添加されていてもよい。さらに加えて、織編物あるいは繊維には、必要に応じて、公知の着色処理などの各種の処理を施すことができる。
【0018】
得られた汚濁防止膜は、フロートと水中のおもりとの間に展張して水辺の土木工事現場の周囲に張り巡らせて使用する。設置された汚濁防止膜は、織編物にて構成されているため寸法安定性や施工性に優れており、しかも生分解性を有することから廃棄処理上の問題がなく、海域や河川及び湖沼等の土木工事を行う際に工事現場周囲の水質汚濁を防止するために使用される汚濁防止膜として好適に使用できる。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、以下の実施例、比較例における各種物性値の測定方法は、以下のとおりである。
(1)目付(g/m):標準状態の汚濁防止膜から長さ10cm、幅10cmの試験片5点を作成し、平衡水分にした後、各試験片の質量(g)を秤量し、得られた値の平均値を単位面積当たりに換算して、目付(g/m)とした。
(2)密度(g/cm):JIS−K7112に記載の方法に準じて測定した。
(3)水棲生物付着率(%):作製した汚濁防止膜を30cm角に切断して試験片を作製した。亜酸化銅系防汚剤を塗布した鉄製の枠を用意し、前記の試験片をこの枠に固定して、海水中に6ヶ月間浸漬した。その後、試験片を引き上げて、試験片の面積のうち藻類・貝類が付着した部分の面積が占める割合を%で表した。水棲生物付着率が低いほど水棲生物の脱落容易性に優れているといえる。
(4)付着残存率(%):上記の水棲生物付着率を測定した後の試験片に1.5MPaの高圧水で、5秒間、25リットル/分の高圧水洗浄を行い、藻類・貝類を脱落させて洗浄後の膜の面積のうち藻類・貝類が付着した部分の面積が占める割合を%で表した。付着残存率が低いほど水棲生物の脱落容易性に優れているといえる。
(5)分解性:上記の水棲生物付着率を求める場合と同様に海水中に6ヶ月浸漬した後の試験片について、高圧水洗浄を行わないままでコンポスターに投入し、80℃で14日間保持した。14日後の状態を目視にて観察し、その外観変化を観察して下記のように評価した。
【0020】
○:貝殻だけが残った。
△:貝殻と繊維の一部が残った。
×:藻類以外が残った。
実施例1
汚濁防止膜を形成するために、融点が170℃の共重合ポリ乳酸を用いて溶融紡糸により強度が4.0cN/デシテックス、伸度が30%のポリ乳酸系繊維(1120デシテックス/192フィラメント)を得た。この繊維3本と、伸度が16%、1120デシテックス、92フィラメント、強度9.5cN/デシテックスの高強力ポリエステル繊維1本との合計4本を80T/mで合撚し、得られた糸条を経緯糸として用い、経糸密度20本/2.54cm、緯糸密度20本/2.54cmとして2/2ななこ組織にて製織し、目付が640g/m 、幅2mの織物を作製し、この織物から汚濁防止膜を得た。
【0021】
得られた汚濁防止膜の物性などを表1に示す。
【0022】
【表1】

Figure 0004063555
実施例1は、汚濁防止膜を構成する織物の一部を生分解性繊維にて形成したため、水棲生物の付着率が低く水棲生物の脱落容易性に優れており、洗浄後の水棲生物の付着残存率も低く洗浄性の良いものが得られた。また、生分解性繊維の割合が80%以上であったため、コンポスト処理したところその殆どが分解されて廃棄物量の大幅な削減が図れた。
比較例1
織物を構成する繊維として、伸度が16%、1120デシテックス、92フィラメント、強度9.5cN/デシテックスの高強力ポリエステル繊維を4本合撚した繊維を用いた。そしてそれ以外は実施例1と同様にして目付が640g/m の織物を作製し、汚濁防止膜を得た。
【0023】
得られた汚濁防止膜の物性などを表1に示す。比較例1は、汚濁防止膜を構成する織物を非生分解性繊維のみにて作製したため水棲生物の付着を抑制することができず、洗浄後の水棲生物の付着量も多いものであった。また、コンポスト処理しても殆ど分解されておらず、廃棄物量の削減が図れなかった。
【0024】
【発明の効果】
本発明によれば、汚濁防止膜を織編物にて構成することで寸法安定性や施工性の良い汚濁防止膜が得られ、この織編物の一部を生分解性繊維にて構成することで、その使用中に生分解性繊維が徐々に分解することによって、藻類や貝類などの水棲生物の付着力が弱まり、水棲生物の脱落容易性や洗浄性の良いものが得られる。また、使用後に自然環境中に廃棄した場合でも、微生物などによって生分解性繊維を分解することができるため、廃棄物量を低減して環境負荷の非常に小さい汚濁防止膜とすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pollution control film used to prevent water pollution around a construction site when civil engineering work is performed in sea areas, rivers, lakes, and the like.
[0002]
[Prior art]
Conventionally, when performing civil engineering work such as dredging and landfill in sea areas, rivers, lakes, etc., a pollution control film has been used to prevent the water quality around the construction site from being contaminated. Antifouling membranes are used between a float and an underwater weight and stretched around the construction site, and require a certain level of mechanical strength. Therefore, synthetic fibers such as nylon and esters are required. A woven or knitted fabric is used.
[0003]
During the use of the pollution control film, aquatic organisms such as seaweeds, shellfish and mollusks adhere to the surface of the material. When such aquatic organisms adhere, the mass increases and the pollution prevention film is submerged, or the film is broken and the effect as a pollution prevention film cannot be obtained. Moreover, in most cases, the antifouling film after use is lifted to the ground and disposed as industrial waste as it is. The disposal treatment is usually performed by landfill treatment, but in this case as well, it is preferable that the amount of algae and shellfish attached to the pollution control film is as small as possible.
[0004]
In addition, in order to extend the service life and thus reduce the amount of waste, algae and shellfish may be dropped and reused with high-pressure washing water or the like. However, the adhesion of aquatic organisms is strong, and removal with high-pressure washing water takes time and may not be sufficient. For this reason, it is desired that the amount of aquatic organisms attached is suppressed as much as possible during use of the anti-pollution film, and the attached aquatic organisms are removed as easily as possible.
[0005]
In addition, as described above, the antifouling film is composed of synthetic fibers that are not biodegradable, such as nylon fibers and ester fibers (hereinafter referred to as “non-biodegradable fibers”). However, because of its chemical stability, it does not decompose and remains in the soil for a long time. In the future, securing landfills will become increasingly difficult, and concerns such as adverse effects on the natural environment and wildlife are concerned, so it is desirable to reduce the amount of waste as much as possible. Yes.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, has biodegradability, has a function of easily removing attached aquatic organisms during its use, and is good without adversely affecting the natural environment after disposal. An object of the present invention is to provide a pollution control film that can be disposed of and reduce the amount of waste.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.
[0008]
That is, the present invention is a contamination preventing film for use in stretched between the construction site float in water of the weight in order to prevent water pollution around when performing civil engineering waterside is constituted by woven or knitted fabric, wherein The woven or knitted fabric is composed of synthetic fibers having biodegradability (hereinafter referred to as “biodegradable fibers”) and non-biodegradable fibers having higher strength than the synthetic fibers having biodegradability. Is 300 to 3000 g / m 2 , and the woven or knitted fabric is easily biodegraded by weakening the adhesive strength of aquatic organisms attached to the woven or knitted fabric by gradually biodegrading the biodegradable synthetic fiber. The gist of the present invention is a pollution control film characterized by being a thing.
[0009]
In such a case, the biodegradable fibers that make up the pollution control film gradually decompose during use, weakening the adhesive strength of the attached aquatic organisms and making it easier to fall off. By processing, it can be decomposed by microorganisms in the soil, and the amount of waste can be reduced to reduce the burden on the environment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The pollution control film in the present invention needs to be composed of a woven or knitted fabric. Thus, a pollution prevention film excellent in dimensional stability and workability is obtained by constituting a pollution prevention film with a woven or knitted fabric.
[0011]
Further, a part of the woven or knitted fabric needs to be composed of biodegradable fibers. The biodegradable fiber in the present invention refers to a fiber made of a material that is decomposed into a low molecular weight compound by the action of microorganisms existing in nature and finally decomposed into an inorganic substance such as water or carbon dioxide. Biodegradable fibers are not immediately decomposed even when immersed in water, but gradually decompose over time. Normally, it gradually degrades in water over a long period of several months to a year or more, so even if aquatic organisms adhere to it, the biodegradable fibers break down, so there is no scaffold for aquatic organisms. The part falls off naturally. In addition, since aquatic organisms that do not fall off have weak adhesion, aquatic organisms can be easily removed by leaving them underwater or by washing with high pressure water that is pulled up from the water. In addition, since biodegradable fibers are not toxic, they do not contaminate the ocean or the like with toxic substances. Furthermore, when the antifouling film after use is landfilled, the remaining biodegradable fibers are decomposed by bacteria and water in the soil, and ultimately only non-biodegradable fibers remain. Can be reduced. Moreover, since neither biodegradable fiber nor non-biodegradable fiber contains a toxic substance, it can be disposed of without damaging the natural environment.
[0012]
The biodegradable fiber may be a part of the woven or knitted fabric. However, the greater the proportion of biodegradable fiber, the more waste can be reduced. the fibers preferably contained more than 10% by woven or knitted fabric, it is more preferably contained more than 30 wt%. However, since antifouling membranes are used for a relatively long period of time , high-strength non-biodegradable fibers are blended with biodegradable synthetic fibers and the strength of woven and knitted fabrics is increased with these high-strength non-biodegradable fibers Reinforce. The method of combining the biodegradable fiber and the non-biodegradable fiber is not particularly limited, but specific methods include a method using different yarns for each direction of warp, a method of twisting, and a method of aligning during weaving Etc.
[0013]
Examples of the material constituting the biodegradable fiber include polylactic acid, polycaprolactone, polybutylene succinate, polyethylene succinate, polyglycolic acid, polyalkylene alkanoate, polyβhydroxyalkanoate, and other aliphatic polyesters and aliphatic polyesters. And an aromatic polyester copolymer, polyvinyl alcohol, and the like. These may be used alone, or a mixture or a composite may be used. Especially, the fiber which consists of a polylactic acid-type polymer can use it especially suitably from points, such as biodegradation performance and practicality. Fibers made of polylactic acid-based polymers are suitable for landfill treatment because they are almost completely decomposed into harmless water and carbon dioxide by hydrolysis and microorganisms after a certain period of time. it can. The polylactic acid polymer also has antibacterial properties, and is particularly effective for preventing adhesion to aquatic organisms that dislike acids.
[0014]
Examples of the polylactic acid-based polymer include poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, and a copolymer of D-lactic acid and hydroxycarboxylic acid. Alternatively, any polymer selected from a copolymer of L-lactic acid and hydroxycarboxylic acid and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, or a blend thereof is preferable. Here, as the hydroxycarboxylic acid in the case of a copolymer of lactic acid and hydroxycarboxylic acid, glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, hydroxyoctanoic acid Etc.
[0015]
The fiber form of the biodegradable fiber is not particularly limited, and may be a single polymer or a composite fiber composed of two or more materials. Further, the fiber cross section may be a core-sheath composite cross section, a multilayer composite cross section, or the like, in addition to a normal round cross section. The fineness is not particularly limited, but it is preferable to use a fiber having a relatively thick fineness of 550 dtex or more in consideration of being immersed in outdoor water for a long period of time.
[0016]
The antifouling film of the present invention can be obtained by using the biodegradable fiber and the non-biodegradable fiber as a woven or knitted fabric. The density of the knitted or knitted fabric is not particularly limited, but it is necessary that the basis weight is 300 to 3000 g / m 2 from the viewpoint of strength and handling. The thickness of the woven or knitted fabric is preferably about 0.5 to 10 mm.
[0017]
In addition, flame retardants, anti-coloring agents, antioxidants, fillers, pigments, and the like may be added to the fibers constituting the woven or knitted fabric as long as the properties are not impaired. In addition, the woven or knitted fabric or fiber can be subjected to various treatments such as a known coloring treatment, if necessary.
[0018]
The obtained antifouling film is used between a float and an underwater weight and stretched around the waterside civil engineering work site. The installed anti-pollution membrane is made of woven or knitted fabric, so it has excellent dimensional stability and workability, and is biodegradable, so there is no problem in disposal, sea areas, rivers, lakes, etc. When carrying out civil engineering work, it can be suitably used as a pollution control film used for preventing water pollution around the construction site.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples. In addition, the measuring method of the various physical-property values in a following example and a comparative example is as follows.
(1) Weight per unit area (g / m 2 ): Five test pieces having a length of 10 cm and a width of 10 cm were prepared from the standard antifouling film, and after making the equilibrium moisture, the mass (g) of each test piece was weighed. The average value of the obtained values was converted per unit area to obtain a basis weight (g / m 2 ).
(2) Density (g / cm 3 ): Measured according to the method described in JIS-K7112.
(3) Aquatic organism adhesion rate (%): The prepared antifouling film was cut into 30 cm square to prepare test pieces. An iron frame coated with a cuprous oxide antifouling agent was prepared, and the test piece was fixed to the frame and immersed in seawater for 6 months. Then, the test piece was pulled up, and the ratio of the area of the part to which the algae / shellfish adhered to the area of the test piece was expressed in%. It can be said that the lower the aquatic organism adhesion rate, the better the aquatic organisms fall off.
(4) Residual rate (%): The test piece after measuring the aquatic organism adhesion rate was washed with high pressure water of 1.5 MPa for 5 seconds at 25 liters / minute to remove algae and shellfish. The percentage of the area of the membrane after dropping and washing was occupied by the area where algae and shellfish were attached. It can be said that the lower the adhesion remaining rate, the better the aquatic organisms can be removed.
(5) Degradability: As in the case of obtaining the aquatic organism adhesion rate, the test piece after 6 months immersion in seawater is put into a conposter without washing with high-pressure water, and at 80 ° C. for 14 days. Retained. The state after 14 days was visually observed, and the appearance change was observed and evaluated as follows.
[0020]
○: Only the shell remains.
Δ: Some shells and fibers remained.
X: Other than algae remained.
Example 1
In order to form a pollution prevention film, a polylactic acid fiber (1120 dtex / 192 filament) having a strength of 4.0 cN / dtex and an elongation of 30% is obtained by melt spinning using a copolymer polylactic acid having a melting point of 170 ° C. Obtained. A total of four of these three fibers and one high-strength polyester fiber having an elongation of 16%, 1120 dtex, 92 filaments, and a strength of 9.5 cN / dtex are twisted at 80 T / m, and the resulting yarn is obtained. Is used as a warp and weaving with a warp density of 20 / 2.54 cm and a weft density of 20 / 2.54 cm in a 2/2 neck structure to produce a woven fabric having a basis weight of 640 g / m 2 and a width of 2 m. A pollution control film was obtained from the fabric.
[0021]
Table 1 shows the physical properties of the obtained antifouling film.
[0022]
[Table 1]
Figure 0004063555
In Example 1, since a part of the woven fabric constituting the pollution prevention film is formed of biodegradable fibers, the adhesion rate of aquatic organisms is low and the aquatic organisms are easy to drop off. A product having a low residual rate and good detergency was obtained. Moreover, since the ratio of the biodegradable fiber was 80% or more, when composting was performed, most of it was decomposed, and the amount of waste was significantly reduced.
Comparative Example 1
As a fiber constituting the woven fabric, a fiber obtained by twisting four high-strength polyester fibers having an elongation of 16%, 1120 dtex, 92 filaments, and a strength of 9.5 cN / dtex was used. Otherwise, a woven fabric having a basis weight of 640 g / m 2 was produced in the same manner as in Example 1 to obtain a pollution control film.
[0023]
Table 1 shows the physical properties of the obtained antifouling film. In Comparative Example 1, since the woven fabric constituting the anti-fouling film was made of only non-biodegradable fibers, adhesion of aquatic organisms could not be suppressed, and the amount of aquatic organisms adhered after washing was large. Moreover, it was hardly decomposed even after composting, and the amount of waste could not be reduced.
[0024]
【The invention's effect】
According to the present invention, a pollution prevention film having good dimensional stability and workability can be obtained by constituting the pollution prevention film with a woven or knitted fabric, and a part of this woven or knitted fabric can be constituted with biodegradable fibers. The biodegradable fiber gradually decomposes during its use, so that the adhesion of aquatic organisms such as algae and shellfish is weakened, and a product that is easy to drop off and has good cleaning properties can be obtained. In addition, even when discarded in the natural environment after use, the biodegradable fiber can be decomposed by microorganisms and the like, so that the amount of waste can be reduced and a pollution control film having a very small environmental load can be obtained.

Claims (2)

水辺で土木工事を行う際に工事現場周囲の水質汚濁を防ぐためにフロートと水中のおもりとの間に展張して使用する汚濁防止膜であって、織編物によって構成され、前記織編物は、生分解性を有する合成繊維と、この生分解性を有する合成繊維よりも高強力の非生分解性繊維とからなるとともに、目付が300〜3000g/m であり、前記織編物は、前記生分解性を有する合成繊維が徐々に生分解することによって、この織編物に付着した水棲生物の接着力を弱めて脱落しやすくするものであることを特徴とする汚濁防止膜。Waterside in a pollution preventing film for use in stretched between the float and the underwater weight to prevent water pollution of the construction site around the time of performing civil engineering work is constituted by a woven or knitted fabric, the woven or knitted fabric is raw and synthetic fibers having a degradable, together comprising a high strength of the non-biodegradable fibers than the synthetic fibers with the biodegradability, basis weight is 300~3000g / m 2, the woven or knitted fabric, the biodegradable An antifouling film characterized in that a synthetic fiber having a property is gradually biodegraded to weaken the adhesive force of aquatic organisms attached to the woven or knitted fabric so that it can be easily removed. 生分解性を有する合成繊維がポリ乳酸系重合体からなることを特徴とする請求項1記載の汚濁防止膜。  2. The antifouling film according to claim 1, wherein the biodegradable synthetic fiber comprises a polylactic acid polymer.
JP2002061241A 2002-03-07 2002-03-07 Pollution prevention membrane Expired - Fee Related JP4063555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061241A JP4063555B2 (en) 2002-03-07 2002-03-07 Pollution prevention membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061241A JP4063555B2 (en) 2002-03-07 2002-03-07 Pollution prevention membrane

Publications (2)

Publication Number Publication Date
JP2003253658A JP2003253658A (en) 2003-09-10
JP4063555B2 true JP4063555B2 (en) 2008-03-19

Family

ID=28670246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061241A Expired - Fee Related JP4063555B2 (en) 2002-03-07 2002-03-07 Pollution prevention membrane

Country Status (1)

Country Link
JP (1) JP4063555B2 (en)

Also Published As

Publication number Publication date
JP2003253658A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
EP0968300A1 (en) Degradation of biologically degradable polymers using enzymes
US20220143951A1 (en) Geomaterial web with biological degradation properties
de Oliveira et al. Fibrous microplastics released from textiles: Occurrence, fate, and remediation strategies
US5244731A (en) Marine fishery thread articles
JP4413879B2 (en) Water purification material, artificial algae and method for producing them
JP4063555B2 (en) Pollution prevention membrane
Nofal Biodegradable Textiles, Recycling, and Sustainability Achievement
Su et al. A comparative study of mechanical properties of biodegradable PBSAT and PA gillnets in Norwegian coastal waters
JP2003112378A (en) Sheet-shaped composite excellent in degradability in natural environment and its print
JP3156811B2 (en) Biodegradable fish fiber aggregate
JP4383590B2 (en) Biodegradable string
JPH06264343A (en) Biodegradable fiber aggregate for agricultural use
JP4040567B2 (en) Polylactic acid fiber and woven or knitted fabric comprising the same
JP2003193372A (en) Functional fiber and textile product
EBISUI et al. Biodegradation of poly (ε-caprolactone) monofilament fibers in deep seawater at near 0° C
Heimowska et al. Influence of different environments on degradation of composites with natural fibre
JP4341441B2 (en) Fish net
WO2023276981A1 (en) Marine material and production method therefor
KR102393864B1 (en) Composition for manufacturing biodegradable plastic seaweed farming nets containing seaweed fertilizer ingredients
JP2004042484A (en) Sheets for civil engineering
JP4693310B2 (en) Evaporation prevention sheet
JP4493419B2 (en) Aquaculture net, installation method, disposal method
JP2005105447A (en) Fiber structure
JP2003336171A (en) Mesh sheet for civil engineering use
JP2001089577A (en) Structure having effect for preventing attachment of aquatic life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4063555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees