JP2005146395A - Steel material to be hydroformed, electric resistance welded pipe to be hydroformed, and method for manufacturing them - Google Patents

Steel material to be hydroformed, electric resistance welded pipe to be hydroformed, and method for manufacturing them Download PDF

Info

Publication number
JP2005146395A
JP2005146395A JP2003389442A JP2003389442A JP2005146395A JP 2005146395 A JP2005146395 A JP 2005146395A JP 2003389442 A JP2003389442 A JP 2003389442A JP 2003389442 A JP2003389442 A JP 2003389442A JP 2005146395 A JP2005146395 A JP 2005146395A
Authority
JP
Japan
Prior art keywords
steel
steel material
less
ferrite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003389442A
Other languages
Japanese (ja)
Other versions
JP4093177B2 (en
Inventor
Sukehisa Kikuchi
祐久 菊地
Mitsuru Yoshida
充 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003389442A priority Critical patent/JP4093177B2/en
Publication of JP2005146395A publication Critical patent/JP2005146395A/en
Application granted granted Critical
Publication of JP4093177B2 publication Critical patent/JP4093177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material to be hydroformed which has superior hydroformability, superior weldability and a tensile strength of 390 MPa or higher. <P>SOLUTION: The steel material to be hydroformed has a chemical composition comprising 0.02-0.35% C, 0.01-1.0% Si, 0.01-2.5% Mn, 0.005-0.10% P, S≤0.0100%, 0.001-0.1% Al, 0.005-0.020% Ti, 0.0004-0.0100% N, and the balance Fe with impurities; includes crystallization-type TiN-based particles with particle diameters of 0.3 μm or larger in an amount of 50 to 50,000 particles per 1 mm<SP>2</SP>of a cross section, while the whole crystallization-type TiN-based particles have an average particle diameter of 7 μm or less; and includes such ferrite as to occupy 50% or more by an area rate in a structure and have an average diameter of 3 to 30 μm. The steel material may include one or more groups among the following groups (a) to (d): (a) one or more elements of 0.1% or less Nb and 0.2% or less V; (b) one or more elements of 1.0% or less Mo, 1.0% or less Ni and 1.0% or less Cu; (c) one or more elements of 1.0% or less Cr and 0.0005-0.003% B; and (d) 0.0002-0.01% Ca, 0.0002-0.01% Mg and 0.0002-0.01% REM. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ハイドロフォーム用鋼材、ハイドロフォーム用電縫管及びそれらの製造方法に関する。特に、本発明は、自動車の構造部材や足廻り部材などの素材として、また、ハイドロフォーム用電縫管の素材として好適な、ハイドロフォームする際の加工性(以下、ハイドロフォーム性という。)に優れるとともに溶接部の割れが少なく溶接性にも優れた鋼材及びその製造方法、並びに、前記の鋼材を素材とするハイドロフォーム用電縫管及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a steel material for hydrofoam, an electric sewing tube for hydrofoam, and a method for producing them. In particular, the present invention is suitable for use as a material for automobile structural members, suspension members, and the like, and as a material for a hydroform electric sewing tube. The present invention relates to a steel material excellent in weldability with few cracks in a welded portion and a method for manufacturing the same, and an electric-welded pipe for hydroform made of the steel material and a method for manufacturing the same.

近年、特に地球環境の保護という観点から、自動車の各種部材を高強度・薄肉化して車体質量を軽減して燃費を向上させたり、炭酸ガスなどの排出を規制することが検討されている。   In recent years, particularly from the viewpoint of protecting the global environment, it has been studied to reduce the mass of a vehicle body by reducing the strength and thickness of various members of an automobile to improve fuel consumption and to regulate the emission of carbon dioxide gas and the like.

このため、最近では、自動車などの形状が複雑な部位については、高強度鋼管からハイドロフォーム法によって成形加工する試みもなされている。このハイドロフォーム法によれば、部品数の減少や溶接フランジ箇所などの減少が可能なため、自動車の軽量化ばかりか低コスト化の要望にも対応することができる。   For this reason, recently, an attempt has been made to form and process a complex part such as an automobile from a high-strength steel pipe by a hydroform method. According to this hydroform method, the number of parts and the number of welded flanges can be reduced, so that it is possible to meet demands for not only weight reduction but also cost reduction of automobiles.

なお、形状が複雑な部位に対する成形加工方法としてハイドロフォーム法を採用すれば、コストの削減や設計自由度の拡大などの大きな利点が得られることが期待されるが、こうしたハイドロフォーム法による成形の利点を十分に活かすには、この成形法に適した材料(加工素材)が必要となる。   In addition, if the hydroforming method is used as a molding method for parts with complex shapes, it is expected that there will be significant advantages such as cost reduction and increased design flexibility. In order to make full use of the advantages, a material (processed material) suitable for this molding method is required.

特許文献1〜3に、ハイドロフォーム法に適した鋼管が開示されている。これらの特許文献で提案された鋼管は、ハイドロフォーム性を向上させるためにその組織をフェライト主体又はフェライト単相の組織とする点に特徴がある。   Patent Documents 1 to 3 disclose steel pipes suitable for the hydroforming method. The steel pipes proposed in these patent documents are characterized in that the structure is a ferrite main body or a ferrite single phase structure in order to improve the hydroformability.

すなわち、特許文献1においては、フェライト以外に硬質な第2相であるパーライト、マルテンサイト及びセメンタイトといった相(組織)が存在すると、ハイドロフォーム時の塑性変形の比較的初期に、軟質なフェライトと硬質な第2相の界面から割れが生じるため、鋼管の組織をフェライト主体の組織にすることが提案されている。また、特許文献2及び3においては、延性を劣化させないために鋼管の組織をフェライト主体の組織にすることが提案されている。   That is, in Patent Document 1, if there is a phase (structure) such as pearlite, martensite, and cementite, which is a hard second phase, in addition to ferrite, soft ferrite and hard at a relatively early stage of plastic deformation during hydroforming. Therefore, it has been proposed that the structure of the steel pipe is a ferrite-based structure because cracks are generated from the interface of the second phase. In Patent Documents 2 and 3, it is proposed that the structure of the steel pipe is a structure mainly composed of ferrite so as not to deteriorate the ductility.

したがって、ハイドロフォーム性を向上させた材料を得るためには、フェライト主体の組織にすることが望ましいことが推測できる。   Therefore, in order to obtain a material with improved hydroformability, it can be presumed that a structure mainly composed of ferrite is desirable.

しかしながら、ハイドロフォーム性を向上させるために、組織に占めるフェライトの割合を増加させると、強度の確保が難しくなる。したがって、フェライト主体の組織で強度を確保するためには、固溶強化や析出強化によってフェライトを強化する必要があるが、固溶強化の場合は析出強化に比べて合金元素の含有量を多くする必要があり、コスト的に不利である。このため、析出強化によってフェライトを強化することが望ましく、特に、Ti、NbやVなどの析出強化作用によってフェライトを強化することが望ましい。なお、Ti、Nb及びVなどの析出強化作用を利用すると、ハイドロフォーム性に悪影響を及ぼす硬質な第2相が減少する。これは、強化に寄与するTiC、NbCやVCなどを形成するためにはCが必要であり、析出強化のためにCが析出した分固溶C量が減少することになって、硬質な第2相の形成が減少するからである。   However, if the proportion of ferrite in the structure is increased in order to improve the hydroformability, it becomes difficult to ensure the strength. Therefore, in order to ensure strength in a ferrite-based structure, it is necessary to strengthen ferrite by solid solution strengthening or precipitation strengthening, but in the case of solid solution strengthening, the alloy element content is increased compared to precipitation strengthening. It is necessary and disadvantageous in cost. For this reason, it is desirable to strengthen ferrite by precipitation strengthening, and it is particularly desirable to strengthen ferrite by precipitation strengthening action of Ti, Nb, V, or the like. When the precipitation strengthening action such as Ti, Nb, and V is used, the hard second phase that adversely affects the hydroformability is reduced. This is because C is necessary to form TiC, NbC, VC, and the like that contribute to strengthening, and the amount of solid solution C decreases because of precipitation of C due to precipitation strengthening. This is because the formation of two phases is reduced.

上記のTi、Nb及びVなどのなかで、Tiは最も安価な元素であり、且つ含有量に対する強度上昇量がNbやVなどに比べて大きいので、析出強化元素として通常はTiが使われている。   Of the above Ti, Nb, and V, Ti is the cheapest element, and the amount of increase in strength relative to the content is larger than that of Nb, V, etc., so Ti is usually used as a precipitation strengthening element. Yes.

しかしながら、Tiによる析出強化を利用すると、強化に寄与する微細なTiCだけではなく粗大な晶出型TiN系粒子も生成する。そして、析出強化に寄与するTiCが数十nmサイズの微細な析出物であるのに対し、晶出型TiN系粒子は、酸化物を核として高温で晶出するために粗大であり、このため強度上昇には全く寄与しない。更に、この粗大な晶出型TiN系粒子は、ハイドロフォーム性を低下させてしまう。   However, when precipitation strengthening by Ti is used, not only fine TiC contributing to strengthening but also coarse crystallized TiN-based particles are generated. And while TiC that contributes to precipitation strengthening is a fine precipitate with a size of several tens of nanometers, crystallized TiN-based particles are coarse because they crystallize at high temperatures with oxides as nuclei. It does not contribute to the strength increase at all. Further, the coarse crystallization type TiN-based particles deteriorate the hydroformability.

一方、ハイドロフォーム用鋼材の多くは、電縫管に加工され、その後、得られた電縫管をハイドロフォーム成形して各種形状の部品を得ることが多くなっている。電縫管に加工するには、鋼材を円筒管状に成形した後、端面と端面を突き合わせて溶接を行う。そのため、一般に、ハイドロフォーム用鋼材には、優れた突き合わせ抵抗溶接性(以下、単に「溶接性」という。)も要求される。   On the other hand, most of the steel materials for hydroforming are processed into electric sewing tubes, and thereafter, the obtained electric sewing tubes are hydroformed to obtain parts of various shapes. In order to process into an electric sewing tube, after forming a steel material into a cylindrical tube, the end surface and the end surface are butted and welded. Therefore, in general, excellent butt resistance weldability (hereinafter simply referred to as “weldability”) is required for the steel material for hydroform.

しかしながら、これまでのところ、Ti析出強化鋼において、良好なハイドロフォーム性と優れた溶接性とを兼備させる技術は見出されていなかった。   However, so far, no technology has been found that combines good hydroformability and excellent weldability in Ti precipitation strengthened steel.

特開平2001−32034号公報JP-A-2001-32034

特開平2000−119812号公報Japanese Patent Laid-Open No. 2000-111981 特開平2002−69584号公報Japanese Patent Laid-Open No. 2002-69584

本発明は、上記現状に鑑みてなされたもので、その目的は、自動車の構造部材や足廻り部材の素材として好適な、ハイドロフォーム性に優れるとともに溶接性にも優れた、ハイドロフォーム用鋼材及びその製造方法、並びに、ハイドロフォーム用電縫管及びその製造方法を提供することである。具体的には、通常粗大となる晶出型TiN系粒子を微細化し、しかも鋼材内に多く存在させることで、Tiの析出強化作用を利用し、高強度で良好なハイドロフォーム性を確保しつつ、溶接性も優れた引張強さが390MPa以上のハイドロフォーム用鋼材及びその製造方法、また、ハイドロフォーム用電縫管及びその製造方法を提供することである。   The present invention has been made in view of the above situation, and its purpose is suitable as a material for automobile structural members and suspension members, and has excellent hydroformability and excellent weldability. An object of the present invention is to provide a manufacturing method thereof, and an electro-sewn tube for hydroform and a manufacturing method thereof. Specifically, the crystallized TiN-based particles, which are usually coarse, are refined and present in the steel material in a large amount while utilizing the precipitation strengthening effect of Ti, while ensuring high strength and good hydroformability. Another object of the present invention is to provide a hydroform steel material having excellent weldability and a tensile strength of 390 MPa or more and a method for producing the same, and an electroformed tube for hydroform and a method for producing the same.

本発明の要旨は、下記(1)〜(8)に示すハイドロフォーム用鋼材、(9)に示すハイドロフォーム用電縫管、(10)〜(14)に示すハイドロフォーム用鋼材の製造方法及び(15)に示すハイドロフォーム用電縫管の製造方法にある。   The gist of the present invention is as follows. Steel materials for hydrofoam shown in the following (1) to (8), electric sewing tubes for hydrofoam shown in (9), methods for producing steel materials for hydrofoam shown in (10) to (14), and It exists in the manufacturing method of the electric sewing pipe for hydroforms shown in (15).

(1)質量%で、C:0.02〜0.35%、Si:0.01〜1.0%、Mn:0.01〜2.5%、P:0.005〜0.10%、S:0.0100%以下、Al:0.001〜0.1%、Ti:0.005〜0.20%及びN:0.0004〜0.0100%を含有し、残部はFe及び不純物からなる化学組成で、粒径が0.3μm以上の晶出型TiN系粒子を断面積1mm2あたり50〜50000個含み、且つ、前記晶出型TiN系粒子の平均粒径が7μm以下であり、フェライトが組織に占める面積率が50%以上でその平均粒径が3〜30μmであることを特徴とするハイドロフォーム用鋼材。 (1) By mass%, C: 0.02 to 0.35%, Si: 0.01 to 1.0%, Mn: 0.01 to 2.5%, P: 0.005 to 0.10% , S: 0.0100% or less, Al: 0.001-0.1%, Ti: 0.005-0.20% and N: 0.0004-0.0100%, the balance being Fe and impurities The crystallized TiN-based particles having a particle size of 0.3 μm or more and 50 to 50,000 crystallized TiN-based particles per 1 mm 2 in cross-sectional area, and the average particle size of the crystallized TiN-based particles is 7 μm or less. A steel material for hydroform, wherein the area ratio of ferrite to the structure is 50% or more and the average particle size is 3 to 30 μm.

(2)Feの一部に代えて、質量%で、Nb:0.1%以下及びV:0.2%以下の1種以上を含有する上記(1)に記載のハイドロフォーム用鋼材。   (2) The steel material for hydroform as described in the above item (1), which contains one or more of Nb: 0.1% or less and V: 0.2% or less in mass% instead of part of Fe.

(3)Feの一部に代えて、質量%で、Mo:1.0%以下、Ni:1.0%以下及びCu:1.0%以下から選択される1種以上を含有する上記(1)又は(2)に記載のハイドロフォーム用鋼材。   (3) In place of a part of Fe, in mass%, the composition contains one or more selected from Mo: 1.0% or less, Ni: 1.0% or less, and Cu: 1.0% or less ( Steel material for hydroforms as described in 1) or (2).

(4)Feの一部に代えて、質量%で、Cr:1.0%以下及びB:0.0005〜0.003%の1種以上を含有する上記(1)から(3)までのいずれかに記載のハイドロフォーム用鋼材。   (4) In place of a part of Fe, by mass%, containing at least one of Cr: 1.0% or less and B: 0.0005-0.003% from (1) to (3) above Steel material for hydrofoam as described in any one.

(5)Feの一部に代えて、質量%で、Ca:0.0002〜0.01%、Mg:0.0002〜0.01%及びREM(希士類元素):0.0002〜0.01%から選択される1種以上を含有する上記(1)から(4)までのいずれかに記載のハイドロフォーム用鋼材。   (5) Instead of a part of Fe, in mass%, Ca: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, and REM (rare element): 0.0002 to 0 Steel material for hydrofoams in any one of said (1) to (4) containing 1 or more types selected from 0.01%.

(6)粒径が0.3μm以上の晶出型TiN系粒子の平均粒径が0.3〜3.0μmであることを特徴とする上記(1)から(5)までのいずれかに記載のハイドロフォーム用鋼材。   (6) The average particle size of crystallized TiN-based particles having a particle size of 0.3 μm or more is 0.3 to 3.0 μm, according to any one of (1) to (5) above Steel material for hydroform.

(7)板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相との平均粒子間隔が10〜50μmであることを特徴とする上記(1)から(6)までのいずれかに記載のハイドロフォーム用鋼材。   (7) Crystallized TiN particles having a particle size of 2 μm or more and hard particles having a particle size of 2 μm or more in the plate thickness center region in the range of 15% of the plate thickness from the plate thickness center toward the plate surface. The steel material for hydrofoam according to any one of (1) to (6) above, wherein an average particle interval with the second phase is 10 to 50 μm.

(8)ビッカース硬さでのフェライトの粒内硬さ及びフェライトが組織に占める面積率が下記 (1)式を満たし、フェライト以外の残部組織がマルテンサイト、パーライト、ベイナイト及びオーステナイトから選択される1種以上であることを特徴とする上記(1)から(7)までのいずれかに記載のハイドロフォーム用鋼材。   (8) The intergranular hardness of ferrite in Vickers hardness and the area ratio of ferrite in the structure satisfy the following formula (1), and the remaining structure other than ferrite is selected from martensite, pearlite, bainite, and austenite 1 The steel material for hydrofoam according to any one of (1) to (7) above, which is a seed or more.

A≦(B+200)/1.5・・・・・(1)。
ここで、 (1)式中のAはビッカース硬さでのフェライトの粒内硬さ、Bはフェライトが組織に占める面積率(%)を表す。
A ≦ (B + 200) /1.5 (1).
Here, A in the formula (1) is the intragranular hardness of the ferrite in terms of Vickers hardness, and B is the area ratio (%) that the ferrite occupies in the structure.

(9)上記(1)から(8)までのいずれかに記載のハイドロフォーム用鋼材を素材とするハイドロフォーム用電縫管。   (9) A hydroform electric sewing tube made of the steel material for hydrofoam according to any one of (1) to (8) above.

(10)ハイドロフォーム用鋼材の製造方法であって、上記(1)から(5)までのいずれかに記載の化学組成を有する溶鋼を連続鋳造して鋼塊とする際、溶鋼の液相線温度から1300℃の温度範囲における前記鋼塊の鋳込み方向に垂直な断面の平均冷却速度を0.4〜7℃/秒とする工程を製造工程中に含むハイドロフォーム用鋼材の製造方法。   (10) A method for producing a steel material for hydroform, which is a liquidus line of molten steel when continuously casting a molten steel having the chemical composition according to any one of (1) to (5) above to form a steel ingot. The manufacturing method of the steel material for hydroforms which includes the process which makes the average cooling rate of the cross section perpendicular | vertical to the casting direction of the said steel ingot in the temperature range of 1300 degreeC from temperature to 0.4-7 degreeC / second in a manufacturing process.

(11)鋼塊の鋳込み方向に垂直な断面の平均冷却速度が2〜7℃/秒である上記(10)に記載のハイドロフォーム用鋼材の製造方法。   (11) The method for producing a steel material for hydroform as described in (10) above, wherein the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot is 2 to 7 ° C / second.

(12)上記(10)又は(11)に記載の鋼塊の鋳込み方向に垂直な断面の平均冷却速度で冷却した鋼塊を、仕上げ温度を「Ar3 点−100℃」以上で1050℃以下として熱間圧延し、次いで、10℃/秒以上の平均冷却速度で730℃以下の温度まで冷却し、その後巻き取ることを特徴とする上記(10)又は(11)に記載のハイドロフォーム用鋼材の製造方法。   (12) A steel ingot cooled at an average cooling rate of a cross section perpendicular to the casting direction of the steel ingot described in (10) or (11) above is set to a finishing temperature of “Ar3 point−100 ° C.” or more and 1050 ° C. or less. Hot rolling, then cooling to a temperature of 730 ° C. or less at an average cooling rate of 10 ° C./second or more, and then winding the steel material for hydroform as described in (10) or (11) above Production method.

(13)上記(10)又は(11)に記載の鋼塊の鋳込み方向に垂直な断面の平均冷却速度で冷却した鋼塊を、仕上げ温度を「Ar3 点−100℃」以上で1050℃以下として熱間圧延した後、10℃/秒以上の平均冷却速度で730〜600℃の温度域まで冷却し、次いで、2〜15秒間空冷し、その後更に15℃/秒以上の平均冷却速度で600℃未満の温度まで冷却してから巻き取ることを特徴とする上記(10)又は(11)に記載のハイドロフォーム用鋼材の製造方法。   (13) A steel ingot cooled at an average cooling rate of a cross section perpendicular to the casting direction of the steel ingot described in (10) or (11) above is set to a finishing temperature of “Ar3 point−100 ° C.” or more and 1050 ° C. or less. After hot rolling, it is cooled to a temperature range of 730 to 600 ° C. at an average cooling rate of 10 ° C./second or more, then air-cooled for 2 to 15 seconds, and then 600 ° C. at an average cooling rate of 15 ° C./second or more. The method for producing a steel material for hydrofoam according to the above (10) or (11), wherein the material is cooled to a temperature of less than 1, and then wound.

(14)溶鋼を鋳造して鋼塊とする際、鋼塊の未凝固層が鋼塊の厚みの30%以下になった部位に圧下又は電磁撹拌を施す上記(10)から(13)までのいずれかに記載のハイドロフォーム用鋼材の製造方法。   (14) When the molten steel is cast into a steel ingot, the unsolidified layer of the steel ingot is subjected to reduction or electromagnetic stirring on the portion where the thickness of the steel ingot is 30% or less. (10) to (13) The manufacturing method of the steel material for hydroforms in any one.

(15)ハイドロフォーム用電縫管の製造方法であって、上記(10)から(14)までのいずれかに記載の製造方法によって得られたハイドロフォーム用鋼材を管状に成形した後、突き合わせ部を溶接するハイドロフォーム用電縫管の製造方法。   (15) A method for producing a hydroform electric sewing tube, wherein the hydroform steel material obtained by the production method according to any one of (10) to (14) is formed into a tubular shape, and then a butt portion Manufacturing method of electroformed pipe for hydroforming.

本発明でいう「ハイドロフォーム用鋼材」とは、ハイドロフォーム法、つまり、液体の圧力によって成形又は加工するための鋼材をいう。そして、「ハイドロフォーム用電縫管」は、ハイドロフォーム法によって成形又は加工するための電縫管をいう。   The “steel material for hydroforming” as used in the present invention refers to a steel material for forming or processing by a hydroforming method, that is, a liquid pressure. The “hydroforming electric sewing tube” refers to an electric sewing tube for molding or processing by the hydroforming method.

「TiN系粒子」は、製鋼段階、溶鋼中、スラブの凝固過程、熱間圧延やその後の冷却過程、更には熱間巻き取り過程等で生成するTiとNとを含有する粒子で、晶出型のものと析出型のものがあり、鋼中にNbが含有される場合のいわゆる(Ti、Nb)Nとして表記されるものを含む。   “TiN-based particles” are particles containing Ti and N produced in the steelmaking stage, in molten steel, in the solidification process of slabs, in hot rolling and in the subsequent cooling process, and in the hot winding process. There are a type and a precipitation type, including those expressed as so-called (Ti, Nb) N when Nb is contained in steel.

上記TiN系粒子のうちで、「晶出型TiN系粒子」は、Al系酸化物や鋼中にCaが含有される場合のCa系酸化物などを核として生成するものである。これは、通常その「粒径」が高々30nm程度である「析出型のTiN系粒子」とは容易に区別できるものである。そして、上記「晶出型TiN系粒子」のうち、「粒径」が0.1〜20μm程度のものを本発明でいう「晶出型TiN系粒子」と定義する。   Among the TiN-based particles, the “crystallized TiN-based particles” are produced by using an Al-based oxide or a Ca-based oxide when Ca is contained in steel as a nucleus. This can be easily distinguished from “precipitation-type TiN-based particles” whose “particle size” is usually about 30 nm at most. Of the “crystallized TiN-based particles”, those having a “particle size” of about 0.1 to 20 μm are defined as “crystallized TiN-based particles” in the present invention.

本発明でいう「フェライト」には、いわゆる「ベイニティックフェライト」を含むものとする。なお、「ベイニティックフェライト」とは、下部組織として、ラス状の組織を有するが、通常のベイナイト組織とは異なり、セメンタイトが存在しない組織、又は、明瞭なサブグレイン組織を持たない転位密度の高いフェライトのことをいう。   The “ferrite” in the present invention includes so-called “bainitic ferrite”. Note that “bainitic ferrite” has a lath-like structure as a substructure, but unlike a normal bainite structure, a structure in which cementite does not exist or a dislocation density that does not have a clear subgrain structure. It means high ferrite.

また、本発明における「硬質な第2相」とは、上述した「フェライト」以外の相(組織)のうちで、パーライト、ベイナイト、マルテンサイト及びセメンタイトのことを指す。但し、ここでいうセメンタイトにはパーライトを形成するセメンタイトは含まないこととする。   The “hard second phase” in the present invention refers to pearlite, bainite, martensite, and cementite among phases (structures) other than the “ferrite” described above. However, the cementite here does not include cementite that forms pearlite.

「粒径」とは、個々の粒子である晶出型TiN系粒子やフェライトの「短径と長径の和の1/2」で定義される値を指し、また、「平均粒径」とは上記「粒径」の算術平均を指す。   “Particle size” refers to a value defined by “1/2 of the sum of minor axis and major axis” of crystallized TiN-based particles and ferrite that are individual particles. The arithmetic mean of the above “particle diameter”.

具体的には、前記晶出型TiN系粒子やフェライトは、光学顕微鏡、走査型電子顕微鏡及び、例えば、加速電圧が100〜200kVの透過電子顕微鏡を用いて観察することができるので、観察によって得られた像を画像解析して短径と長径を測定し、その和の1/2から個々の晶出型TiN系粒子やフェライトの粒径を求めることができる。一方、上記のようにして100視野観察して求めた個々の粒子の粒径を算術平均したものを「平均粒径」と規定する。   Specifically, the crystallized TiN-based particles and ferrite can be observed using an optical microscope, a scanning electron microscope, and a transmission electron microscope having an acceleration voltage of 100 to 200 kV. The obtained image is subjected to image analysis to measure the minor axis and the major axis, and the grain size of each crystallized TiN-based particle or ferrite can be obtained from 1/2 of the sum. On the other hand, an arithmetic average of the particle diameters of individual particles obtained by observing 100 visual fields as described above is defined as “average particle diameter”.

また、個々の晶出型TiN系粒子と個々の硬質な第2相の最も短い間隔を個々の粒子間隔とし、光学顕微鏡、走査型電子顕微鏡や透過電子顕微鏡などを用いて、100視野観察して求めた個々の粒子間隔を算術平均したものを「晶出型TiN系粒子と硬質な第2相との平均粒子間隔」とする。   In addition, the shortest interval between each crystallized TiN-based particle and each hard second phase is defined as the individual particle interval, and 100 fields of view are observed using an optical microscope, a scanning electron microscope, a transmission electron microscope, or the like. An arithmetic average of the obtained individual particle intervals is referred to as “average particle interval between crystallized TiN-based particles and the hard second phase”.

組織に占めるフェライトの面積率は、上記と同様の観察法によって得られた100視野観察分の面積に対するフェライトの面積割合を指す。   The area ratio of ferrite occupying the structure refers to the area ratio of ferrite to the area of 100 visual field observations obtained by the same observation method as described above.

また、晶出型TiN系粒子の断面積1mm2当たりの個数は、上記と同様の観察法によって得られた100視野観察分の面積に対する個数を断面積1mm2当たりに換算した個数を指す。 The number of crystallized TiN-based particles per 1 mm 2 cross-sectional area refers to the number obtained by converting the number with respect to the area for 100 field observations obtained by the same observation method as described above to 1 mm 2 cross-sectional area.

「フェライトの粒内硬さ」とは、マイクロビッカース硬度計を用いて、例えば試験力を0.009807〜0.09807Nとしてフェライト粒内の硬さを50個所測定した値を算術平均したものをいう。   The “intragranular hardness of ferrite” refers to an arithmetic average of values obtained by measuring the hardness of 50 ferrite grains at a test force of 0.009807 to 0.09807N, for example, using a micro Vickers hardness tester. .

「REM(希土類元素)」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。   “REM (rare earth element)” is a general term for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM indicates the total content of the above elements.

「鋼塊の鋳込み方向に垂直な断面の平均冷却速度」とは、鋳型内や連続鋳造機内で凝固シェルを形成して内部が溶融状態にある場合を含めて鋼塊と呼ぶ場合の、鋼塊の鋳込み方向に垂直な断面における表面部から中心部の全領域における冷却速度の平均値をいう。   “Average cooling rate of the cross section perpendicular to the casting direction of the steel ingot” means the steel ingot when it is called a steel ingot including the case where a solidified shell is formed in the mold or continuous casting machine and the inside is in a molten state. The average value of the cooling rate in the whole area | region from the surface part in the cross section perpendicular | vertical to the casting direction of this to the center part.

また、熱間圧延される鋼材の温度は、鋼材の表面における温度をいい、鋼材の平均冷却速度とは鋼材の表面における冷却前後の温度差を冷却時間で除したものをいう。   Moreover, the temperature of the steel material hot-rolled refers to the temperature at the surface of the steel material, and the average cooling rate of the steel material refers to the temperature difference between before and after cooling at the surface of the steel material divided by the cooling time.

「空冷」とは、大気中放冷及び強制空冷を指す。   “Air cooling” refers to air cooling and forced air cooling.

以下、上記(1)〜(8)のハイドロフォーム用鋼材に係る発明、(9)のハイドロフォーム用電縫管に係る発明、(10)〜(14)のハイドロフォーム用鋼材の製造方法に係る発明及び(15)のハイドロフォーム用電縫管の製造方法に係る発明をそれぞれ(1)〜(15)の発明という。   Hereinafter, it relates to the invention relating to the steel material for hydroform (1) to (8), the invention relating to the electroformed tube for hydroform (9), and the method for producing the steel material for hydroform (10) to (14). The inventions relating to the invention and the invention relating to the method for producing the hydroformed electric pipe of (15) are referred to as inventions (1) to (15), respectively.

本発明のハイドロフォーム用鋼材は、安価なTi析出強化型の390MPa以上の引張強さを有する鋼材で、良好なハイドロフォーム性と優れた溶接性とを兼ね備えているので、自動車の構造部材や足廻り部材の素材として利用することができる。また、このハイドロフォーム用鋼材をハイドロフォーム用電縫管の素材として利用することができる。   The steel material for hydroform of the present invention is an inexpensive Ti precipitation strengthening type steel material having a tensile strength of 390 MPa or more, and has both good hydroformability and excellent weldability. It can be used as a material for rotating parts. Moreover, this steel material for hydroforming can be utilized as a material for the electroformed tube for hydroforming.

本発明者らは、前記した課題を解決するために、先ず、鋼管のハイドロフォーム法での成形時の塑性変形挙動に関して基礎的な検討を行い、下記の事項を確認した。   In order to solve the above-described problems, the present inventors first performed a basic study on plastic deformation behavior during forming of a steel pipe by the hydroform method, and confirmed the following matters.

(a)ハイドロフォーム法での成形における膨出変形は、鋼管の長手方向の変形が拘束された平面歪み変形である。   (A) The bulging deformation | transformation in shaping | molding by a hydroforming method is plane distortion deformation | transformation in which the deformation | transformation of the longitudinal direction of the steel pipe was restrained.

(b)平面歪み変形においては、変形の初期から3軸応力が発生する。このため、TiNなどの硬質な粒子及びマルテンサイトやパーライトなどの硬質な相が多く存在すると、これらとフェライトとの界面から、比較的変形の初期段階に割れが生じる。   (B) In plane strain deformation, triaxial stress is generated from the initial stage of deformation. For this reason, if there are many hard particles such as TiN and hard phases such as martensite and pearlite, cracks occur relatively early in the deformation stage from the interface between them and ferrite.

次いで、鋼管のハイドロフォーム性を簡易的に評価するために、鋼管の各種方向から、また、鋼管を切り開いて平坦化した板の各種方向からも、種々の形状の引張り試験片を採取して検討した。その結果、下記の知見が得られた。   Next, in order to easily evaluate the hydroformability of steel pipes, tensile test specimens of various shapes were collected from various directions of the steel pipe and from various directions of the plate that was cut open and flattened. did. As a result, the following knowledge was obtained.

(c)鋼管を切り開いて平坦化した板において、元の鋼管の管周方向に対応する方向から採取した特定形状の引張り試験片、つまり、後述の図1に示す「R付き引張り試験片」における伸びが鋼管のハイドロフォーム性と良い正の相関関係にある。   (C) In a plate flattened by cutting a steel pipe, a tensile test piece having a specific shape taken from a direction corresponding to the pipe circumferential direction of the original steel pipe, that is, a “tensile test piece with R” shown in FIG. Elongation has a good positive correlation with the hydroforming properties of steel pipes.

(d)鋼板の圧延方向から直角方向に採取したR付き引張り試験片の伸び値は、鋼板を鋼管にした後、鋼管を切り開いて平坦化した板の元の鋼管の管周方向に対応する方向から採取したR付き引張り試験片の伸び値と良い正の相関関係を有する。   (D) The elongation value of the tensile test piece with R taken in the direction perpendicular to the rolling direction of the steel sheet is the direction corresponding to the pipe circumferential direction of the original steel pipe of the plate that was cut and flattened after the steel pipe was made into a steel pipe. There is a good positive correlation with the elongation value of the tensile specimen with R taken from

上記の知見(c)と(d)は、ハイドロフォーム性がR付き引張り試験片の伸び値で評価できることを示すものである。したがって、「ハイドロフォーム性の良好な鋼材」とは、「R付き引張り試験片での伸び値の高い鋼材」のことであり、また、「鋼板から採取したR付き引張り試験片での伸び値」が高い場合、その鋼板を素材として鋼管を作製すると、「ハイドロフォーム性の良好な鋼管」が得られることが明らかになった。   Said knowledge (c) and (d) shows that hydroform property can be evaluated by the elongation value of a tensile test piece with R. Therefore, “steel material with good hydroformability” means “steel material having a high elongation value with a tensile test piece with R”, and “elongation value with a tensile test piece with R taken from a steel plate”. When the steel pipe is made of the steel plate as a raw material, it has been clarified that a “steel pipe having good hydroformability” can be obtained.

そこで次に、高強度と良好なハイドロフォーム性を両立させるために、硬質な第2相を低減した場合であっても強度上昇が望めるTi析出強化鋼のハイドロフォーム性について種々検討した。   Then, in order to achieve both high strength and good hydroformability, various studies were made on the hydroformability of Ti precipitation strengthened steel that can be expected to increase in strength even when the hard second phase is reduced.

その結果、晶出型TiN系粒子の大きさと量がハイドロフォーム性に影響を及ぼすことが明らかになり、下記の新たな知見が得られた。   As a result, it became clear that the size and amount of crystallized TiN-based particles have an effect on the hydroformability, and the following new findings were obtained.

(e)平面歪み変形時において、粗大な晶出型TiN系粒子は硬質な相であるマルテンサイトやパーライトなどと同様にフェライトとの界面から、変形の比較的初期段階に割れを生じさせる。   (E) At the time of plane strain deformation, coarse crystallized TiN-based particles cause cracks at a relatively early stage of deformation from the interface with ferrite in the same manner as martensite and pearlite, which are hard phases.

(f)粗大な晶出型TiN系粒子などの硬質物及び、マルテンサイトやパーライトなど硬質な相が鋼材中に多く存在すると、フェライトとの界面から発生した割れが連結して、鋼材は早期に破断に至る。   (F) If there are many hard materials such as coarse crystallized TiN-based particles and hard phases such as martensite and pearlite in the steel, cracks generated from the interface with the ferrite are connected, and the steel Lead to breakage.

(g)晶出型TiN系粒子が微細になると、晶出型TiN系粒子とフェライトの界面から平面歪み変形時の初期段階に割れは発生しない。そのためハイドロフォーム性は向上する。   (G) When the crystallized TiN-based particles become fine, cracks do not occur in the initial stage of plane strain deformation from the interface between the crystallized TiN-based particles and the ferrite. Therefore, the hydroformability is improved.

(h)シャー切断やスリット加工などに代表される剪断加工が施される場合、鋼材中に微細な晶出型TiN系粒子が多く存在していると、鋼材の剪断加工端面の破面性状が改善される。そのため、電縫管を製造するような鋼材の端面同士を突き合わせて行う溶接(突き合わせ抵抗溶接)を行った場合、その溶接部において鋼材の密着性が向上する結果、溶接部の溶接金属割れが減少する。   (H) When shearing represented by shear cutting or slitting is performed, if there are many fine crystallized TiN-based particles in the steel, the fracture surface property of the shearing end face of the steel Improved. Therefore, when welding (butt resistance welding) is performed by butting the end faces of steel materials that produce an electric resistance welded tube, the adhesion of the steel materials is improved at the welded portion, resulting in a reduction in weld metal cracking at the welded portion. To do.

(i)微細な晶出型TiN系粒子が鋼材中に多く存在する場合に、鋼材の剪断加工端面の破面性状が改善される理由は、剪断加工時、微細TiNによって生じる小さなボイドを縫うように亀裂が進展するので、最終的な剪断加工端面がほぼ直線状に形成されるためである。   (I) When a large amount of fine crystallized TiN-based particles are present in the steel material, the reason for the improved fracture surface properties of the sheared end surface of the steel material is to sew small voids generated by the fine TiN during the shearing process. This is because the final shearing end face is formed substantially in a straight line because the crack propagates.

前記(1)〜(15)の本発明は、上記の知見に基づいて完成されたものである。   The present inventions (1) to (15) have been completed based on the above findings.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(A)鋼の化学組成
C:0.02〜0.35%
Cは、TiCによる析出強化、また、フェライト以外の第2相による強度確保のためにも必要な元素である。TiCによる析出強化作用を利用して、390MPa以上の引張強さを確保するには、Cは0.02%以上の含有量が必要である。しかし、Cの含有量が0.35%を超えると硬質な第2相が増加し、ハイドロフォーム性が低下する。そのため、Cの含有量を0.02〜0.35%とした。なお、Cの含有量は、0.02〜0.15%とすることが好ましく、0.02〜0.10%とすれば一層好ましい。
(A) Chemical composition of steel C: 0.02 to 0.35%
C is an element necessary for precipitation strengthening by TiC and securing strength by the second phase other than ferrite. In order to ensure the tensile strength of 390 MPa or more using the precipitation strengthening action by TiC, the C content needs to be 0.02% or more. However, if the content of C exceeds 0.35%, the hard second phase increases and the hydroformability deteriorates. Therefore, the content of C is set to 0.02 to 0.35%. Note that the C content is preferably 0.02 to 0.15%, and more preferably 0.02 to 0.10%.

Si:0.01〜1.0%
Siは、固溶強化によって鋼材の強度を改善する元素である。しかし、その含有量が0.01%未満の添加では、上記効果が得難い。一方、Siの含有量が1.0%を超えると、溶接時に溶接金属部においてSi系の酸化物が増加し、そのSi系の酸化物が核となって、溶接金属割れを起こしやすくなる。したがって、Siの含有量を0.01〜1.0%とした。なお、Siの含有量は、0.01〜0.5%とすることが好ましく、0.01〜0.2%とすれば一層好ましい。
Si: 0.01 to 1.0%
Si is an element that improves the strength of a steel material by solid solution strengthening. However, when the content is less than 0.01%, it is difficult to obtain the above effect. On the other hand, when the Si content exceeds 1.0%, Si-based oxides increase in the weld metal portion during welding, and the Si-based oxides serve as nuclei and easily cause weld metal cracking. Therefore, the Si content is set to 0.01 to 1.0%. Note that the Si content is preferably 0.01 to 0.5%, and more preferably 0.01 to 0.2%.

Mn:0.01〜2.5%
Mnは、鋼の強度を上昇させるのに有効な元素であるが、その含有量が0.01%未満では十分な強度が得られない。一方、2.5%を超えると、硬質な第2相の面積率が増加してハイドロフォーム性の低下をきたす。したがって、Mnの含有量を0.01〜2.5%とした。なお、Mnの含有量は、0.2〜2.0%とすることが好ましく、0.5〜1.5%とすれば一層好ましい。
Mn: 0.01 to 2.5%
Mn is an element effective for increasing the strength of steel, but if its content is less than 0.01%, sufficient strength cannot be obtained. On the other hand, if it exceeds 2.5%, the area ratio of the hard second phase increases and the hydroformability is lowered. Therefore, the Mn content is set to 0.01 to 2.5%. Note that the Mn content is preferably 0.2 to 2.0%, and more preferably 0.5 to 1.5%.

P:0.005〜0.10%
Pは、固溶強化作用を有する元素であり、高強度化のために有効である。しかし、その含有量が0.005%未満では、上記の効果が得難い。一方、Pは、偏析しやすい元素であるため、多量に添加した場合には、加工性の低下を招き、特に、その含有量が0.10%を超えると偏析が著しくなって加工性の低下が極めて大きくなる。したがって、Pの含有量を0.005〜0.10%とした。なお、Pの含有量は、0.005〜0.05%とすることが好ましく、0.005〜0.02%とすれば一層好ましい。
P: 0.005-0.10%
P is an element having a solid solution strengthening action and is effective for increasing the strength. However, if the content is less than 0.005%, it is difficult to obtain the above effect. On the other hand, since P is an element that easily segregates, if added in a large amount, it causes a decrease in workability. In particular, if its content exceeds 0.10%, the segregation becomes remarkable and the workability decreases. Becomes extremely large. Therefore, the content of P is set to 0.005 to 0.10%. The P content is preferably 0.005 to 0.05%, and more preferably 0.005 to 0.02%.

S:0.0100%以下
Sは、ハイドロフォーム性を低下させる硫化物を生成するため、可能な限り低減するのがよいが、本発明においては、他の成分元素添加によるハイドロフォーム性の向上の度合、更には、製鋼での工程コストを考慮して、その含有量の上限を0.0100%とした。なお、コスト面を考慮しなければ、S含有量の上限は、0.0050%とすることが好ましく、0.0020%とすれば一層好ましい。Sの含有量は0.0010%以下とすれば極めて好ましい。
S: 0.0100% or less Since S generates sulfides that lower the hydroformability, it should be reduced as much as possible. However, in the present invention, the hydroformability is improved by adding other component elements. In consideration of the degree and further the process cost in steelmaking, the upper limit of the content was set to 0.0100%. If the cost is not taken into consideration, the upper limit of the S content is preferably 0.0050%, and more preferably 0.0020%. The S content is extremely preferably 0.0010% or less.

Al:0.001〜0.1%
Alは、鋼の脱酸のために有用な元素である。その効果を得るには、少なくとも0.001%の含有量が必要である。しかし、含有量が0.1%を超えると、粗大なアルミナ系介在物が増加して、ハイドロフォーム性が低下する。更に、溶接時に溶接金属部においてAl系の酸化物が増加し、そのAl系の酸化物が核となって、溶接金属割れを起こしやすくなる。したがって、Alの含有量を0.001%〜0.1%とした。なお、Alの含有量は、0.001〜0.06%とすることが好ましく、0.01〜0.05%とすれば一層好ましい。
Al: 0.001 to 0.1%
Al is an element useful for deoxidation of steel. In order to obtain the effect, a content of at least 0.001% is necessary. However, if the content exceeds 0.1%, coarse alumina inclusions increase and the hydroformability deteriorates. Furthermore, Al-based oxides increase in the weld metal portion during welding, and the Al-based oxides serve as nuclei and are liable to cause weld metal cracking. Therefore, the Al content is set to 0.001% to 0.1%. Note that the Al content is preferably 0.001 to 0.06%, and more preferably 0.01 to 0.05%.

Ti:0.005〜0.20%
Tiは、本発明において最も重要な元素である。析出強化元素であるとともに、Nと結合して、晶出型TiN系粒子を形成する。Tiの含有量が0.005%未満の場合には、晶出型TiN系粒子との関係で、析出強化作用を有するTiCの量が少なく強度上昇の効果が得られない。また、Tiを含有量で0.2%以上添加しても前記の効果は飽和し、コストが嵩むばかりである。したがって、Tiの含有量を0.005〜0.2%とした。なお、Tiの含有量は、0.01〜0.15%とすることが好ましく、0.02〜0.10%とすれば一層好ましい。
Ti: 0.005 to 0.20%
Ti is the most important element in the present invention. It is a precipitation strengthening element and combines with N to form crystallized TiN-based particles. When the Ti content is less than 0.005%, the amount of TiC having a precipitation strengthening action is small due to the crystallization type TiN-based particles, and the effect of increasing the strength cannot be obtained. Moreover, even if Ti is added in an amount of 0.2% or more, the above effect is saturated and the cost is increased. Therefore, the content of Ti is set to 0.005 to 0.2%. Note that the Ti content is preferably 0.01 to 0.15%, and more preferably 0.02 to 0.10%.

N:0.0004〜0.0100%
Nは、製鋼、鋳造工程において晶出型TiN系粒子を形成する。粗大な晶出型TiN系粒子は、ハイドロフォーム性を低下させるが、微細な晶出型TiN系粒子は、剪断加工が施された場合、その鋼材の剪断加工端面の破面性状を良好にし、溶接性を向上させる効果がある。そして、微細な晶出型TiN系粒子を得るには、含有量で0.0004%以上のNが必要である。一方、Nの含有量が0.0100%を超えると、粗大な晶出型TiN系粒子が多く生成して、ハイドロフォーム性を低下させる。そのため、Nの含有量を0.0004〜0.0100%とした。なお、Nの含有量は、0.0010〜0.0050%とすることが好ましく、0.0010〜0.0030%とすれば一層好ましい。
N: 0.0004 to 0.0100%
N forms crystallized TiN-based particles in the steelmaking and casting processes. Coarse crystallized TiN-based particles reduce the hydroformability, but fine crystallized TiN-based particles, when subjected to shearing, improve the fracture surface properties of the shearing end surface of the steel material, There is an effect of improving weldability. In order to obtain fine crystallized TiN-based particles, N in a content of 0.0004% or more is necessary. On the other hand, if the N content exceeds 0.0100%, a large amount of coarse crystallized TiN-based particles are produced, and the hydroformability is lowered. Therefore, the content of N is set to 0.0004 to 0.0100%. Note that the N content is preferably 0.0010 to 0.0050%, and more preferably 0.0010 to 0.0030%.

前記(1)の発明に係るハイドロフォーム用鋼材の化学組成は、上記のCからNまでの元素と、残部がFe及び不純物からなるものである。   The chemical composition of the steel material for hydroform according to the invention of (1) is composed of the above elements C to N, the balance being Fe and impurities.

前記(2)の発明に係るハイドロフォーム用鋼材の化学組成は、析出強化によって強度を一層高めることを目的として、上記(1)の発明の鋼材のFeの一部に代えて、Nb:0.1%以下及びV:0.2%以下の1種以上を含むものである。   The chemical composition of the steel material for hydrofoam according to the invention of (2) is replaced with a part of Fe of the steel material of the invention of (1) above for the purpose of further increasing the strength by precipitation strengthening. One or more of 1% or less and V: 0.2% or less are included.

上記のNbとVはいずれも析出強化によって強度を一層高める作用を有するので、NbとVは、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、複合して含有させてもよい。   Since both Nb and V have the effect of further increasing the strength by precipitation strengthening, Nb and V may be contained alone or in combination within the range described below. .

Nb:0.1%以下、V:0.2%以下
Nb及びVは、Tiと同様に析出強化によって強度を高める元素である。この効果を確実に得るには、NbとVは、いずれも0.01%以上の含有量とすることが望ましい。しかし、NbとVを過度に添加し、特に、Nbは0.1%を超えて、また、Vは0.2%を超えて含有すると延性の低下をきたし、更に、合金コストもTiに比べて高いので原料コストの上昇も著しくなる。したがって、NbとVを添加する場合には、その含有量はそれぞれ0.1%以下、0.2%以下とするのがよい。なお、添加する場合のNbとVの含有量の上限は、それぞれ0.07%と0.15%とすることが好ましく、それぞれ0.05%と0.10%とすれば一層好ましい。
Nb: 0.1% or less, V: 0.2% or less Nb and V are elements that increase the strength by precipitation strengthening like Ti. In order to reliably obtain this effect, it is desirable that both Nb and V have a content of 0.01% or more. However, when Nb and V are added excessively, especially when Nb exceeds 0.1% and V exceeds 0.2%, ductility is lowered, and the alloy cost is also lower than that of Ti. The cost of raw materials will increase significantly. Therefore, when Nb and V are added, their contents are preferably 0.1% or less and 0.2% or less, respectively. In addition, when adding, it is preferable that the upper limit of the content of Nb and V is 0.07% and 0.15%, respectively, and more preferably 0.05% and 0.10%, respectively.

前記(3)の発明に係るハイドロフォーム用鋼材の化学組成は、固溶強化によって強度を一層高めることを目的として、上記(1)又は(2)の発明の鋼材のFeの一部に代えて、Mo:1.0%以下、Ni:1.0%以下及びCu:1.0%以下から選択される1種以上を含むものである。   The chemical composition of the steel material for hydroform according to the invention of (3) is replaced with a part of Fe of the steel material of the invention of (1) or (2) for the purpose of further increasing the strength by solid solution strengthening. , Mo: 1.0% or less, Ni: 1.0% or less and Cu: 1.0% or less selected from 1.0% or less.

上記のMoからCuまでのいずれの元素も固溶強化によって強度を一層高める作用を有するので、MoからCuまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。   Since any element from Mo to Cu has the effect of further increasing the strength by solid solution strengthening, each element from Mo to Cu may be contained alone within the range described below. More than one species may be contained in combination.

Mo:1.0%以下、Ni:1.0%以下
MoとNiは固溶強化による高強度化に有効な元素である。この効果を確実に得るには、MoとNiはいずれも0.05%以上の含有量とすることが望ましい。しかし、MoとNiのいずれも合金コストが高いので多量の添加は経済的に不利である。更に、MoとNiの多量の添加は延性を劣化させ、特に、いずれの元素とも1.0%を超えて含有すると延性の低下が著しくなる。したがって、MoとNiを添加する場合には、その含有量はいずれも1.0%以下とするのがよい。なお、添加する場合のMoとNiの含有量の上限は、いずれについても0.5%とすることが好ましく、いずれについても0.3%とすれば一層好ましい。
Mo: 1.0% or less, Ni: 1.0% or less Mo and Ni are effective elements for increasing the strength by solid solution strengthening. In order to reliably obtain this effect, it is desirable that both Mo and Ni have a content of 0.05% or more. However, since both Mo and Ni have high alloy costs, the addition of a large amount is economically disadvantageous. Furthermore, the addition of a large amount of Mo and Ni deteriorates the ductility. In particular, when both elements contain more than 1.0%, the ductility is significantly reduced. Therefore, when adding Mo and Ni, the content is preferably 1.0% or less. In addition, when adding, the upper limit of the content of Mo and Ni is preferably 0.5% for both, and more preferably 0.3% for both.

Cu:1.0%以下
Cuも固溶強化による高強度化に有効な元素である。Cuには、耐疲労特性を高める作用もある。更に、熱処理によってε−Cuとして析出し、強度を高める作用も有する。これらの効果を確実に得るには、Cuは0.05%以上の含有量とすることが好ましい。一方、その含有量が1.0%を超えても前記した効果は飽和し、コストが嵩むばかりである。したがって、Cuを添加する場合には、その含有量は1.0%以下とするのがよい。なお、添加する場合のCu含有量の上限は、0.5%とすることが好ましく、0.3%とすれば一層好ましい。
Cu: 1.0% or less Cu is also an element effective for increasing the strength by solid solution strengthening. Cu also has an effect of increasing fatigue resistance. Furthermore, it has the effect | action which precipitates as (epsilon) -Cu by heat processing and raises an intensity | strength. In order to reliably obtain these effects, it is preferable that Cu is contained in an amount of 0.05% or more. On the other hand, even if the content exceeds 1.0%, the effect described above is saturated and the cost is increased. Therefore, when adding Cu, the content is preferably 1.0% or less. Note that the upper limit of the Cu content in the case of addition is preferably 0.5%, and more preferably 0.3%.

前記(4)の発明に係るハイドロフォーム用鋼材の化学組成は、焼入れ性を向上させて強度を一層高めることを目的として、上記(1)から(3)までのいずれかの発明の鋼材のFeの一部に代えて、Cr:1.0%以下及びB:0.0005〜0.003%の1種以上を含むものである。   The chemical composition of the steel material for hydrofoam according to the invention of (4) is the Fe of the steel material of any one of the inventions (1) to (3) for the purpose of improving the hardenability and further increasing the strength. In place of a part of Cr, one or more of Cr: 1.0% or less and B: 0.0005-0.003% are included.

上記のCrとBはいずれも焼入れ性を向上させて強度を一層高める作用を有するので、CrとBは、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、複合して含有させてもよい。   Since both Cr and B have the effect of improving the hardenability and further increasing the strength, Cr and B may be contained alone or in combination within the range described below. May be.

Cr:1.0%以下
Crは、焼入れ性を向上させて、所望の組織を生成するのに有利に作用し、高強度化に有効な元素である。この効果を確実に得るには、Crは0.05%以上の含有量とすることが好ましい。しかし、その含有量が1.0%を超えると硬質な第2相の面積率が増加し、ハイドロフォーム性の低下をきたす。したがって、Crを添加する場合には、その含有量は1.0%以下とするのがよい。なお、添加する場合のCr含有量の上限は、0.5%とすることが好ましく、0.3%とすれば一層好ましい。
Cr: 1.0% or less Cr is an element effective for improving the hardenability and producing a desired structure, and effective for increasing the strength. In order to reliably obtain this effect, the Cr content is preferably 0.05% or more. However, if the content exceeds 1.0%, the area ratio of the hard second phase increases and the hydroform property is lowered. Therefore, when adding Cr, the content is preferably 1.0% or less. The upper limit of the Cr content when added is preferably 0.5%, and more preferably 0.3%.

B:0.0005〜0.003%
Bは、微量で焼入れ性を向上させ、高強度化に有効な元素である。この効果を確実に得るには、Bは0.0005%以上の含有量とすることが好ましい。しかし、その含有量が0.003%を超えると硬質な第2相の面積率が増加し、ハイドロフォーム性の低下を招く。したがって、Bを添加する場合には、その含有量は0.0005〜0.003%とするのがよい。なお、添加する場合のBの含有量は、0.0005〜0.002%とすることが好ましく、0.0005〜0.0015%とすれば一層好ましい。
B: 0.0005 to 0.003%
B is an element that improves hardenability in a small amount and is effective in increasing strength. In order to reliably obtain this effect, the B content is preferably 0.0005% or more. However, when the content exceeds 0.003%, the area ratio of the hard second phase increases, and the hydroforming property is deteriorated. Therefore, when adding B, the content is good to be 0.0005 to 0.003%. When B is added, the content of B is preferably 0.0005 to 0.002%, and more preferably 0.0005 to 0.0015%.

前記(5)の発明に係るハイドロフォーム用鋼材の化学組成は、溶鋼中で晶出型TiN系粒子の核となる酸化物を形成し、晶出型TiN系粒子を微細分散化して、ハイドロフォーム性を一層高めるとともに、剪断加工端面の破面性状を改善して溶接性を一層向上させることを目的として、上記(1)から(4)までのいずれかの発明の鋼材のFeの一部に代えて、Ca:0.0002〜0.01%、Mg:0.0002〜0.01%及びREM(希土類元素):0.0002〜0.01%から選択される1種以上を含有するものである。   The chemical composition of the steel material for hydrofoam according to the invention of (5) described above is to form an oxide as a nucleus of crystallized TiN-based particles in molten steel, finely disperse the crystallized TiN-based particles, and hydroform In order to further improve the weldability by further improving the fracture characteristics of the sheared end face and further improving the weldability, the steel material of any one of the inventions (1) to (4) above Instead, one containing at least one selected from Ca: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, and REM (rare earth element): 0.0002 to 0.01% It is.

上記のCaからREMまでのいずれの元素も、溶鋼中で晶出型TiN系粒子の核となる酸化物を形成し、晶出型TiN系粒子を微細分散化して、ハイドロフォーム性を一層高めるとともに、剪断加工端面の破面性状を改善して溶接性を一層向上させる作用を有するので、CaからREMまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。   Any of the above elements from Ca to REM forms an oxide that becomes the core of crystallized TiN-based particles in molten steel, finely disperses the crystallized TiN-based particles, and further enhances hydroformability. In addition, since it has the effect of improving the fracture surface properties of the sheared end face and further improving the weldability, the elements from Ca to REM may be contained alone or in the range described below. The above may be combined and contained.

ここで、REMは、前述のとおりSc、Y及びランタノイドの合計17元素を指し、REMの含有量が上記元素の合計含有量を指すことも既に述べたとおりである。   Here, as described above, REM indicates a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM indicates the total content of the above elements as already described.

Ca:0.0002〜0.01%、Mg:0.0002〜0.01%、REM(希土類元素):0.0002〜0.01%
Ca、Mg及びREMは、いずれも溶鋼中で晶出型TiN系粒子の核となる酸化物を形成し、晶出型TiN系粒子を微細分散化して、ハイドロフォーム性を一層高めるとともに、剪断加工端面の破面性状を改善して溶接性を一層向上させる作用を有する。この効果を確実に得るには、Ca、Mg及びREMのいずれも0.0002%以上の含有量とすることが好ましい。しかし、上記各元素の含有量がいずれも0.01%を超えると、溶接時に溶接金属部においてこれらの元素の酸化物が増加し、その酸化物が核となって、溶接金属割れを起こしやすくなる。したがって、Ca、Mg及びREMを添加する場合には、その含有量はいずれも0.0002〜0.01%とするのがよい。
Ca: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, REM (rare earth element): 0.0002 to 0.01%
Ca, Mg, and REM all form oxides that form the core of crystallized TiN-based particles in molten steel, finely disperse crystallized TiN-based particles, further enhance hydroformability, and shear processing It has the effect of further improving the weldability by improving the fracture surface properties of the end face. In order to reliably obtain this effect, it is preferable that the content of Ca, Mg, and REM is 0.0002% or more. However, if the content of each of the above elements exceeds 0.01%, the oxides of these elements increase in the weld metal part during welding, and the oxides serve as nuclei and are liable to cause weld metal cracking. Become. Therefore, when adding Ca, Mg, and REM, the contents are all preferably 0.0002 to 0.01%.

また、Ca、Mg及びREMは、上記の適正範囲で含有させた場合、いずれもMnSの性質を変化させる特性があり、熱延時に展伸しにくい介在物を形成して加工性の低下を防止する効果を有する。   In addition, Ca, Mg and REM, when included in the above-mentioned appropriate range, all have the property of changing the properties of MnS, and form inclusions that do not easily expand during hot rolling to prevent deterioration of workability. Has the effect of

なお、添加する場合のCa、Mg及びREMの含有量は、いずれについても0.0002〜0.0050%とすることが好ましく、いずれについても0.0002〜0.0030%とすれば一層好ましい。   In addition, when adding, content of Ca, Mg, and REM is preferably set to 0.0002 to 0.0050% for all, and more preferably 0.0002 to 0.0030% for all.

なお、上述のMnSによる加工性の低下を防止するためZrを添加することができる。その効果を確実に得るには、Zrは0.0002%以上の含有量とすることが好ましい。なお、Zrの上記効果も0.01%の含有量で飽和する。   In addition, Zr can be added in order to prevent the above-mentioned deterioration of workability by MnS. In order to reliably obtain the effect, it is preferable that Zr has a content of 0.0002% or more. The above effect of Zr is also saturated at a content of 0.01%.

(B)鋼の組織
本発明は、前記(A)項で述べた鋼の化学組成に加えて、晶出型TiN系粒子を積極的に微細化するとともにその量を適正化し、更に、フェライトの面積率とそのサイズも適正化して、Ti析出強化鋼におけるハイドロフォーム性を高めるとともに溶接性をも向上させるものである。
(B) Steel structure In addition to the chemical composition of steel described in the above section (A), the present invention actively refines crystallized TiN-based particles and optimizes the amount thereof. The area ratio and its size are also optimized to improve the hydroformability of the Ti precipitation strengthened steel and improve the weldability.

すなわち、前記(1)〜(5)の発明に係るハイドロフォーム用鋼材は、粒径が0.3μm以上である晶出型TiN系粒子を断面積1mm2あたり50〜50000個含み、且つ、前記晶出型TiN系粒子の平均粒径が7μm以下であり、更に、フェライトが組織に占める面積率が50%以上でその平均粒径が3〜30μmでなければならない。 That is, the steel material for hydrofoam according to the inventions of (1) to (5) includes 50 to 50,000 crystallization type TiN-based particles having a particle size of 0.3 μm or more per 1 mm 2 in cross-sectional area, and The average particle size of the crystallized TiN-based particles must be 7 μm or less, and the area ratio of ferrite to the structure should be 50% or more and the average particle size should be 3 to 30 μm.

ここで、既に述べたように、本発明でいう「晶出型TiN系粒子」は、Al系酸化物や鋼中にCaが含有される場合のCa系酸化物などを核として生成するもののうちで、「粒径」が0.1〜20μm程度のものを指す。また、「フェライト」には、いわゆる「ベイニティックフェライト」も含む。   Here, as already described, “crystallized TiN-based particles” as used in the present invention are those that are produced with an Al-based oxide or a Ca-based oxide in the case where Ca is contained in steel as a nucleus. The “particle size” is about 0.1 to 20 μm. “Ferrite” includes so-called “bainitic ferrite”.

「粒径」とは、個々の粒子である晶出型TiN系粒子やフェライトの「短径と長径の和の1/2」で定義される値を指し、「平均粒径」とは100視野観察して求めた個々の粒子の粒径を算術平均したものを指す。   “Particle size” refers to a value defined by “1/2 of the sum of the minor axis and major axis” of crystallized TiN-based particles and ferrite, which are individual particles. It refers to an arithmetic average of particle sizes of individual particles obtained by observation.

前記の晶出型TiN系粒子やフェライトは、光学顕微鏡、走査型電子顕微鏡及び、例えば、加速電圧が100〜200kVの透過電子顕微鏡を用いて観察することができるので、観察によって得られた像を画像解析して短径と長径を測定し、その和の1/2から個々の晶出型TiN系粒子やフェライトの粒径を求めることができる。   The crystallized TiN particles and ferrite can be observed using an optical microscope, a scanning electron microscope, and a transmission electron microscope having an acceleration voltage of 100 to 200 kV. Image analysis is performed to measure the minor axis and the major axis, and the particle size of each crystallized TiN-based particle or ferrite can be obtained from 1/2 of the sum.

なお、前記「平均粒径」と同様、組織に占めるフェライトの面積率が100視野観察分の面積に対するフェライトの面積割合を指すこと、また、晶出型TiN系粒子の断面積1mm2当たりの個数が、100視野観察分の面積に対する個数を断面積1mm2当たりに換算した個数を指すことも既に述べたとおりである。 As in the case of the “average particle size”, the area ratio of ferrite in the structure indicates the area ratio of ferrite with respect to the area for 100 field observations, and the number of crystallized TiN-based particles per 1 mm 2 in cross-sectional area. However, as already mentioned, it indicates the number obtained by converting the number for the area for 100 visual field observations per 1 mm 2 of the cross-sectional area.

先に定義した本発明に係る「晶出型TiN系粒子」のうちで、粒径が0.3μm未満のもの、つまり、粒径が0.1μmから0.3μm未満のものは、塑性変形時における応力集中の度合いが低く、フェライトとの界面から割れが発生せず微細なボイドを生じないので、鋼材の剪断加工端面の破面性状の改善がなされず、したがって、溶接性を高めることができない。このため、晶出型TiN系粒子の粒径は0.3μm以上とする必要がある。   Among the “crystallized TiN-based particles” according to the present invention defined above, those having a particle size of less than 0.3 μm, that is, particles having a particle size of less than 0.1 μm to less than 0.3 μm The degree of stress concentration in the steel is low, cracks do not occur from the interface with the ferrite, and no fine voids are formed. Therefore, the fracture surface property of the shearing end surface of the steel material is not improved, and therefore the weldability cannot be improved. . For this reason, the particle size of the crystallized TiN-based particles needs to be 0.3 μm or more.

晶出型TiN系粒子の粒径が0.3μm以上であっても、断面積1mm2当たりの個数が50個未満の場合には、剪断加工時にフェライトとの界面から発生する微細なボイドの個数が少なすぎるために、鋼材の剪断加工端面の破面性状の改善がなされず、溶接性が向上しない。一方、断面積1mm2当たりの個数が50000個を超えると、ハイドロフォーム法による成形時にフェライトとの界面から発生する微細なボイドの個数が多すぎ、それが連結して鋼材が早期破断するため、ハイドロフォーム性が向上しない。 If the number of crystallized TiN-based particles is 0.3 μm or more and the number of cross-sectional areas per mm 2 is less than 50, the number of fine voids generated from the interface with ferrite during shearing Therefore, the fracture surface property of the shearing end face of the steel material is not improved, and the weldability is not improved. On the other hand, if the number per 1 mm 2 cross-sectional area exceeds 50,000, the number of fine voids generated from the interface with the ferrite when molding by the hydroform method is too large, and the steel material breaks early because it is connected. Hydroformability is not improved.

粒径が0.3μm以上である晶出型TiN系粒子を断面積1mm2当たり50〜50000個含む場合であっても、その晶出型TiN系粒子の平均粒径が7μmを超えると、ハイドロフォーム法による成形時にフェライトとの界面から発生するボイドが粗大になるため、ハイドロフォーム成形による塑性変形の初期段階で早期破断し、ハイドロフォーム性が低下する。 Even when 50 to 50,000 crystallized TiN particles having a particle size of 0.3 μm or more are contained per 1 mm 2 in cross-sectional area, if the average particle size of the crystallized TiN particles exceeds 7 μm, Since the void generated from the interface with the ferrite becomes coarse at the time of molding by the foam method, it breaks early in the initial stage of plastic deformation by hydroforming, and the hydroformability is lowered.

前記の晶出型TiN系粒子に関する規定を満たす場合であっても、組織に占めるフェライトの面積率が50%未満であると、硬質な第2相の割合、つまり、マルテンサイト、パーライト、ベイナイト及びセメンタイトの割合が増加し、ハイドロフォーム法による成形の初期段階にフェライトとの界面から割れを生じて鋼材が早期破断するため、良好なハイドロフォーム性を確保することができない。   Even in the case where the stipulation regarding the crystallized TiN-based particles is satisfied, when the area ratio of ferrite in the structure is less than 50%, the ratio of the hard second phase, that is, martensite, pearlite, bainite, and Since the ratio of cementite increases and the steel material is prematurely fractured at the initial stage of molding by the hydroforming method, cracking occurs at the interface with the ferrite, so that good hydroforming properties cannot be ensured.

また、組織に占めるフェライトの面積率が50%以上であっても、フェライトの平均粒径が3μm未満であると、降伏比が高くなりすぎ、ハイドロフォーム性が劣化する。更に、フェライトの平均粒径が30μmを超えると、鋼材中の組織異方性が強くなりすぎ、ハイドロフォーム性が劣化する。   Further, even if the area ratio of ferrite in the structure is 50% or more, if the average particle diameter of ferrite is less than 3 μm, the yield ratio becomes too high and the hydroformability deteriorates. Furthermore, when the average particle diameter of ferrite exceeds 30 μm, the structure anisotropy in the steel material becomes too strong, and the hydroformability deteriorates.

したがって、前記(1)〜(5)の発明に係るハイドロフォーム用鋼材においては、「粒径が0.3μm以上である晶出型TiN系粒子を断面積1mm2あたり50〜50000個含み、且つ、前記晶出型TiN系粒子の平均粒径が7μm以下であり、更に、フェライトが組織に占める面積率が50%以上でその平均粒径が3〜30μmであること」と規定した。 Therefore, in the steel material for hydrofoam according to the inventions of the above (1) to (5), “including 50 to 50000 crystallization type TiN-based particles having a particle size of 0.3 μm or more per 1 mm 2 in cross-sectional area, and The average particle size of the crystallized TiN-based particles is 7 μm or less, and the area ratio of ferrite to the structure is 50% or more and the average particle size is 3 to 30 μm ”.

なお、前述の晶出型TiN系粒子の個々の粒径の下限値と同様に、晶出型TiN系粒子の平均粒径の下限が0.3μmであっても構わない。そして、フェライトはその平均粒径が3〜30μmでありさえすればよく、個々のフェライトの粒径については規定しなくてもよい。しかし、ハイドロフォーム時の局部的な不均一変形を防止するために、個々のフェライトの粒径は1〜50μm程度であることが好ましい。また、本発明においては、フェライトが組織に占める面積率の上限は99%程度である。   Note that the lower limit of the average particle diameter of the crystallized TiN-based particles may be 0.3 μm, similarly to the lower limit of the individual particle diameters of the crystallized TiN-based particles. The ferrite only needs to have an average particle size of 3 to 30 μm, and the particle size of each ferrite need not be specified. However, in order to prevent local non-uniform deformation at the time of hydroforming, the particle diameter of each ferrite is preferably about 1 to 50 μm. In the present invention, the upper limit of the area ratio of ferrite to the structure is about 99%.

上述の粒径が0.3μm以上である晶出型TiN系粒子の平均粒径が0.3〜3.0μmの場合、晶出型TiN系粒子の微細化によるハイドロフォーム性の一層の向上に加えて、鋼材の剪断加工端面の破面性状の改善促進がなされるために溶接性も一層向上する。   When the average particle size of the crystallized TiN particles having the particle size of 0.3 μm or more is 0.3 to 3.0 μm, the hydroformability is further improved by refining the crystallized TiN particles. In addition, the weldability is further improved because the improvement of the fracture surface properties of the sheared end face of the steel material is promoted.

したがって、前記(6)の発明に係るハイドロフォーム用鋼材においては、粒径が0.3μm以上である晶出型TiN系粒子の平均粒径を0.3〜3.0μmとした。   Therefore, in the steel material for hydrofoam according to the invention of (6), the average particle size of the crystallized TiN-based particles having a particle size of 0.3 μm or more is set to 0.3 to 3.0 μm.

なお、鋼塊の中心部は表面部に比べて冷却速度が遅く、加えて、溶鋼の成分濃化(いわゆる「中心偏析」)が生じやすい。このため、鋼材には板厚中心部に近いほど粗大な晶出型TiN系粒子と粗大な硬質な第2相が多く存在するようになる。そして、この板厚中心部の近傍、なかでも板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域における晶出型TiN系粒子の粒径分布制御と硬質な第2相の面積率制御を行うことによって、より良好なハイドロフォーム性と溶接性とを確保することが可能となる。   The central portion of the steel ingot has a slower cooling rate than the surface portion, and in addition, the concentration of the molten steel component (so-called “center segregation”) tends to occur. For this reason, as the steel material is closer to the center of the plate thickness, there are more coarse crystallized TiN-based particles and coarse hard second phase. In the vicinity of the center of the plate thickness, especially in the plate thickness center region in the range from the plate thickness center to the plate surface up to 15% of the plate thickness, the grain size distribution control of the crystallization type TiN particles and the hard By controlling the area ratio of the second phase, it is possible to ensure better hydroformability and weldability.

すなわち、上記の領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相との平均粒子間隔が10〜50μmの場合には、ハイドロフォーム性と溶接性とが一層良好になる。   That is, in the above region, when the average particle interval between the crystallized TiN-based particles having a particle size of 2 μm or more and the hard second phase having a particle size of 2 μm or more is 10 to 50 μm, the hydroformability and welding The properties become even better.

したがって、(7)の発明に係るハイドロフォーム用鋼材においては、板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相との平均粒子間隔を10〜50μmと規定した。   Therefore, in the steel material for hydrofoam according to the invention of (7), a crystallization having a grain size of 2 μm or more in the plate thickness center region in the range of 15% of the plate thickness from the plate thickness center toward the plate surface. The average particle spacing between the type TiN-based particles and the hard second phase having a particle size of 2 μm or more was defined as 10 to 50 μm.

なお、既に述べたように、「硬質な第2相」とは、パーライト、ベイナイト、マルテンサイト及びセメンタイトのことを指す。また、個々の晶出型TiN系粒子と個々の硬質な第2相との最も短い間隔を個々の粒子間隔とし、光学顕微鏡、走査型電子顕微鏡や透過電子顕微鏡などを用いて、100視野観察して求めた個々の粒子間隔を算術平均したものを「晶出型TiN系粒子と硬質な第2相との平均粒子間隔」ということも既に述べたとおりである。   As described above, the “hard second phase” refers to pearlite, bainite, martensite, and cementite. Also, the shortest interval between each crystallized TiN-based particle and each hard second phase is defined as the individual particle interval, and 100 fields of view are observed using an optical microscope, a scanning electron microscope, a transmission electron microscope, or the like. As described above, the arithmetic average of the individual particle intervals obtained in this way is called “average particle interval between crystallized TiN-based particles and the hard second phase”.

フェライト以外の残部組織をマルテンサイト、パーライト、ベイナイト及びオーステナイトから選択される1種以上とするとともに、フェライト面積率に対するフェライト粒内の硬度を適正化する、具体的には、ビッカース硬さでのフェライトの粒内硬さ及びフェライトが組織に占める面積率が前記 (1)式、つまり、「A≦(B+200)/1.5」を満たすようにすることで、フェライトと硬質な第2相との界面に割れが発生する前に、軟質なフェライトが局部的な伸びを受け持って界面での割れを抑制するようになるため、ハイドロフォーム性を極めて良好にすることができる。   The balance structure other than ferrite is at least one selected from martensite, pearlite, bainite, and austenite, and the hardness in the ferrite grains with respect to the ferrite area ratio is optimized, specifically, ferrite with Vickers hardness By making the intragranular hardness and the area ratio of the ferrite occupying the structure satisfy the above formula (1), that is, “A ≦ (B + 200) /1.5”, the ferrite and the hard second phase Before the crack occurs at the interface, the soft ferrite takes charge of local elongation and suppresses the crack at the interface, so that the hydroformability can be made extremely good.

したがって、(8)の発明に係るハイドロフォーム用鋼材においては、ビッカース硬さでのフェライトの粒内硬さ及びフェライトが組織に占める面積率が前記 (1)式を満たし、フェライト以外の残部組織がマルテンサイト、パーライト、ベイナイト及びオーステナイトから選択される1種以上であることとした。   Therefore, in the steel material for hydroform according to the invention of (8), the intergranular hardness of ferrite in Vickers hardness and the area ratio occupied by ferrite in the structure satisfy the above formula (1), and the remaining structure other than ferrite is It was decided to be at least one selected from martensite, pearlite, bainite and austenite.

なお、上記のAはビッカース硬さでのフェライトの粒内硬さを表し、マイクロビッカース硬度計を用いて、例えば試験力を0.009807〜0.09807Nとしてフェライト粒内の硬さを50個所測定した値を算術平均したものであり、また、Bはフェライトが組織に占める面積率(%)を表す。   In addition, said A represents the intragranular hardness of the ferrite in a Vickers hardness, and measured the hardness in a ferrite grain 50 places, for example by making test force 0.009807-0.09807N using a micro Vickers hardness meter. And B represents the area ratio (%) of the ferrite occupied in the structure.

既に述べたように、ハイドロフォーム性の良好な鋼材を素材として鋼管を作製すると、ハイドロフォーム性の良好な鋼管が得られる。したがって、(9)の発明に係るハイドロフォーム用電縫管は、ハイドロフォーム性の良好な前記(1)から(8)までのいずれかの発明に係るハイドロフォーム用鋼材を素材とするものと規定した。   As already described, when a steel pipe is manufactured using a steel material having a good hydroforming property, a steel pipe having a good hydroforming property can be obtained. Therefore, the electroformed pipe for hydrofoam according to the invention of (9) is defined as being made of the steel material for hydrofoam according to any of the inventions (1) to (8) having good hydroform properties. did.

(C)製造方法
熱間圧延や熱間圧延とその後の冷間圧延の条件を変化させるだけでは、前記(A)項に記載の化学組成を有する鋼材の組織を前記(B)項に記載のもの、なかでも、粒径が0.3μm以上である晶出型TiN系粒子を断面積1mm2あたり50〜50000個含ませるとともにその晶出型TiN系粒子の平均粒径を7μm以下とすることはできない。しかし、例えば、鋼材の素材である溶鋼の液相線温度から1300℃の温度範囲における冷却速度を管理することによって、上記の組織とすることが可能である。。
(C) Manufacturing method The structure of the steel material having the chemical composition described in the item (A) is described in the item (B) only by changing the conditions of hot rolling or hot rolling and the subsequent cold rolling. In particular, 50 to 50,000 crystallized TiN particles having a particle size of 0.3 μm or more should be included per 1 mm 2 in cross-sectional area, and the average particle size of the crystallized TiN particles should be 7 μm or less. I can't. However, for example, by controlling the cooling rate in the temperature range of 1300 ° C. from the liquidus temperature of the molten steel that is the material of the steel material, it is possible to obtain the above structure. .

すなわち、例えば、溶鋼を鋳造して鋼塊とする際、溶鋼の液相線温度から1300℃の温度範囲における前記鋼塊の鋳込み方向に垂直な断面の平均冷却速度を0.4〜7℃/秒以上とする工程を製造工程中に含むことで、前記(A)項に記載の化学組成を有する鋼材の組織を前記(B)項に記載のものとして、良好なハイドロフォーム性と溶接性とを確保させることができる。   That is, for example, when casting molten steel into a steel ingot, the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot in the temperature range from the liquidus temperature of the molten steel to 1300 ° C is 0.4 to 7 ° C / By including in the manufacturing process a process that is at least 2 seconds, the structure of the steel material having the chemical composition described in the item (A) is described in the item (B). Can be secured.

晶出型TiN系粒子のなかでも、そのほとんどのものがデンドライト1次アーム又は2次アームの樹間で観察される粗大な晶出型TiN系粒子は、溶鋼の液相線温度以上の領域又は、溶鋼の固液共存温度の近傍で生成し、ハイドロフォーム性及び溶接性に悪影響を及ぼす。   Among the crystallized TiN-based particles, most of the crystallized TiN-based particles observed between the dendrite primary arm or secondary arm trees are in the region above the liquidus temperature of the molten steel, or It is generated near the solid-liquid coexistence temperature of molten steel, and adversely affects hydroformability and weldability.

しかし、溶鋼を鋳造して鋼塊とする際、溶鋼の液相線温度から1300℃の温度範囲における鋼塊の鋳込み方向に垂直な断面の平均冷却速度を0.4〜7℃/秒以上とすることで、鋼中に適正なサイズと量の晶出型TiN系粒子が分散して、ハイドロフォーム性及び溶接性が良好になる。   However, when the molten steel is cast into a steel ingot, the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot in the temperature range from the liquidus temperature of the molten steel to 1300 ° C. is 0.4 to 7 ° C./second or more. By doing so, crystallization type TiN-based particles having an appropriate size and amount are dispersed in the steel, and the hydroformability and weldability are improved.

なお、上述の記温度範囲における鋼塊の鋳込み方向に垂直な断面の平均冷却速度が0.4℃/秒未満の場合には、晶出型TiN系粒子が粗大になって、断面積1mm2当たりの個数が50個を下回ったり、平均粒径が7μmを超えてしまうことがある。一方、上記の平均冷却速度が7℃/秒を超える場合には、晶出型TiN系粒子は小さくなるものの、微細分散化しすぎて、断面積1mm2当たりの個数が50000個を超えてしまうことがある。 In addition, when the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot in the above temperature range is less than 0.4 ° C./second, the crystallized TiN-based particles become coarse and the cross-sectional area is 1 mm 2. The number of hits may be less than 50 or the average particle size may exceed 7 μm. On the other hand, when the average cooling rate exceeds 7 ° C./second, the crystallization type TiN-based particles become small, but are too finely dispersed and the number per 1 mm 2 cross-sectional area exceeds 50000. There is.

したがって、前記(10)の発明においては、溶鋼を鋳造して鋼塊とする際、溶鋼の液相線温度から1300℃の温度範囲における鋼塊の鋳込み方向に垂直な断面の平均冷却速度を0.4〜7℃/秒以上とする工程を製造工程中に含むものとした。   Therefore, in the invention of (10), when casting molten steel to form a steel ingot, the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot in the temperature range from the liquidus temperature of the molten steel to 1300 ° C. is set to 0. The manufacturing process includes a step of 4 to 7 ° C./second or more.

既に述べたように、「鋼塊の鋳込み方向に垂直な断面の平均冷却速度」とは、鋳型内や連続鋳造機内で凝固シェルを形成して内部が溶融状態にある場合を含めて鋼塊と呼ぶ場合の、鋼塊の鋳込み方向に垂直な断面における表面部から中心部の全領域における冷却速度の平均値を指す。   As already mentioned, the “average cooling rate of the cross section perpendicular to the casting direction of the steel ingot” means that the steel ingot including the case where a solidified shell is formed in the mold or continuous casting machine and the inside is in a molten state. The average value of the cooling rate in the whole area | region of the center part from the surface part in the cross section perpendicular | vertical to the casting direction of a steel ingot in the case of calling.

上記した溶鋼の液相線温度から1300℃の温度範囲の平均冷却速度を2〜7℃/秒とすれば、前述の粒径が0.3μm以上である晶出型TiN系粒子の平均粒径を容易に0.3〜3.0μmとすることができ、一層良好なハイドロフォーム性と溶接性との確保が可能となる。   If the average cooling rate in the temperature range from the liquidus temperature of the molten steel to 1300 ° C. is 2 to 7 ° C./second, the average particle size of the crystallized TiN-based particles having the above-mentioned particle size of 0.3 μm or more. Can be easily adjusted to 0.3 to 3.0 μm, and it is possible to ensure better hydroformability and weldability.

したがって、前記(11)の発明においては、上述の鋼塊の鋳込み方向に垂直な断面の平均冷却速度を2〜7℃/秒と規定した。   Therefore, in the invention of (11), the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot is defined as 2 to 7 ° C./second.

なお、溶鋼の液相線温度から1300℃の温度範囲における鋼塊の鋳込み方向に垂直な断面の平均冷却速度を0.4℃/秒以上にするには、例えば、連続鋳造機内の2次スプレー冷却帯の高圧化、高水量化による強制冷却を行ったり、鋳型厚みの減厚化又は連続鋳造機内のスラブ未凝固層の圧下によるスラブ厚みの減少等の処理を行えばよい。また、連続鋳造機内の2次スプレーの水量調整によって、前記の平均冷却速度を容易に7℃/秒に抑えることができる。   In order to set the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot in the temperature range from the liquidus temperature of the molten steel to 1300 ° C. to 0.4 ° C./second or more, for example, a secondary spray in a continuous casting machine For example, the cooling zone may be subjected to forced cooling by increasing the pressure or the amount of water, or by reducing the mold thickness or reducing the slab thickness by reducing the unsolidified layer of the slab in the continuous casting machine. Moreover, the said average cooling rate can be easily suppressed to 7 degrees C / sec by adjusting the water quantity of the secondary spray in a continuous casting machine.

溶鋼を鋳造して鋼塊とする際に、溶鋼の液相線温度から1300℃の温度範囲における鋼塊の鋳込み方向に垂直な断面の平均冷却速度を上述のように調整して得た鋼塊は、仕上げ温度を「Ar3 点−100℃」以上で1050℃以下として熱間圧延し、次いで、10℃/秒以上の平均冷却速度で730℃以下の温度域まで冷却し、その後巻き取るのが好ましい。   A steel ingot obtained by adjusting the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot in the temperature range from the liquidus temperature of the molten steel to 1300 ° C. when casting the molten steel as described above. Is hot-rolled at a finishing temperature of “Ar3 point−100 ° C.” or more and 1050 ° C. or less, then cooled to a temperature range of 730 ° C. or less at an average cooling rate of 10 ° C./second or more, and then wound up. preferable.

1050℃を超える仕上げ温度は、設備面で板の通板速度を上げる必要があり、設備投資に莫大な費用を要して現実的ではない。一方、「Ar3 点−100℃」以上の仕上げ温度を確保することで、不均一な加工フェライトの生成が少なくなる。   A finishing temperature exceeding 1050 ° C. is not realistic because it is necessary to increase the plate passing speed in terms of equipment, and enormous costs are required for equipment investment. On the other hand, by ensuring a finishing temperature of “Ar 3 point−100 ° C.” or more, the generation of non-uniformly processed ferrite is reduced.

また、仕上げ圧延後の平均冷却速度が10℃/秒を下回ったり、巻き取り温度が730℃を超えると、粗大なフェライトが生成して、ハイドロフォーム性の低下をきたす場合がある。   On the other hand, if the average cooling rate after finish rolling is less than 10 ° C./second, or if the coiling temperature exceeds 730 ° C., coarse ferrite may be generated and the hydroform property may be lowered.

したがって、前記(12)の発明では、前述の鋼塊の鋳込み方向に垂直な断面の平均冷却速度を調整して得た鋼塊を、仕上げ温度を「Ar3 点−100℃」以上で1050℃以下として熱間圧延し、次いで、10℃/秒以上の平均冷却速度で730℃以下の温度域まで冷却し、その後巻き取ることとした。   Therefore, in the invention of (12), the steel ingot obtained by adjusting the average cooling rate of the cross section perpendicular to the casting direction of the steel ingot described above is finished at a finishing temperature of “Ar3 point−100 ° C.” or more and 1050 ° C. or less. Then, the steel sheet was hot-rolled, cooled to a temperature range of 730 ° C. or lower at an average cooling rate of 10 ° C./second or higher, and then wound up.

なお、前記の温度域で熱間圧延を仕上げた後、10℃/秒以上の平均冷却速度で730〜600℃の温度域まで冷却し、次いで、2〜15秒間空冷し、その後更に15℃/秒以上の平均冷却速度で600℃未満まで冷却してから巻き取ってもよい。この処理によって、フェライトとベイナイトやマルテンサイト、オーステナイト等の割合を調整できるからである。   In addition, after finishing hot rolling in the said temperature range, it cools to the temperature range of 730-600 degreeC with an average cooling rate of 10 degree-C / sec or more, and then air-cools for 2-15 seconds, and also 15 degreeC / Winding may be performed after cooling to below 600 ° C. at an average cooling rate of at least 2 seconds. This is because the ratio of ferrite and bainite, martensite, austenite, etc. can be adjusted by this treatment.

したがって、前記(13)の発明では、平均冷却速度を調整して得た鋼塊を、仕上げ温度を「Ar3点−100℃」以上で1050℃以下として熱間圧延した後、10℃/秒以上の平均冷却速度で730〜600℃の温度域まで冷却し、次いで、2〜15秒間空冷し、その後更に15℃/秒以上の平均冷却速度で600℃未満まで冷却してから巻き取ることとした。   Therefore, in the invention of (13), a steel ingot obtained by adjusting the average cooling rate is hot-rolled at a finishing temperature of “Ar 3 points-100 ° C.” or higher and 1050 ° C. or lower, and then 10 ° C./second or higher. Then, it was cooled to a temperature range of 730 to 600 ° C. with an average cooling rate of 2 to 15 seconds, then air-cooled for 2 to 15 seconds, and further cooled to less than 600 ° C. with an average cooling rate of 15 ° C./second or more and then wound. .

既に述べたように、熱間圧延される鋼材の温度は、鋼材の表面における温度をいい、鋼材の平均冷却速度とは鋼材の表面における冷却前後の温度差を冷却時間で除したものをいう。また、空冷は大気中放冷及び強制空冷を指す。   As already described, the temperature of the steel material that is hot-rolled refers to the temperature at the surface of the steel material, and the average cooling rate of the steel material refers to the temperature difference between the surface of the steel material before and after cooling divided by the cooling time. Air cooling refers to air cooling and forced air cooling.

なお、溶鋼を鋳造して鋼塊とする際に、いわゆる「未凝固層圧下」を行うと、鋼塊の厚みの減少により鋼塊中心近傍の冷却速度を速くすることができ、更に、濃化した溶鋼を排出することもできる。また、「電磁撹拌」処理を施すと、濃化した溶鋼を排出することができる。   When casting the molten steel into a steel ingot, so-called "unsolidified layer reduction" can increase the cooling rate in the vicinity of the steel ingot center by reducing the thickness of the steel ingot. It is also possible to discharge the molten steel. Further, when the “electromagnetic stirring” treatment is performed, the concentrated molten steel can be discharged.

このため、溶鋼を鋳造して鋼塊とする際に、「未凝固層圧下」や電磁撹拌を施すことが好ましく、特に、鋼塊の未凝固層が鋼塊の厚みの30%以下になった部位に圧下又は電磁撹拌を施すことが好ましい。この処理によって、板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、晶出型TiN系粒子の粗大化防止と硬質な第2相の増加防止が可能となり、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相との平均粒子間隔を比較的容易に10〜50μmとすることができるからである。   For this reason, when casting molten steel into a steel ingot, it is preferable to apply “unsolidified layer pressure” or electromagnetic stirring, and in particular, the unsolidified layer of the steel ingot has become 30% or less of the thickness of the steel ingot. It is preferable to apply pressure reduction or electromagnetic stirring to the site. This treatment prevents the coarsening of crystallized TiN-based particles and the increase of the hard second phase in the plate thickness center region in the range of 15% of the plate thickness from the plate thickness center toward the plate surface. This is because the average particle interval between the crystallized TiN-based particles having a particle size of 2 μm or more and the hard second phase having a particle size of 2 μm or more can be relatively easily set to 10 to 50 μm.

したがって、前記(14)の発明では、溶鋼を鋳造して鋼塊とする際、鋼塊の未凝固層が鋼塊の厚みの30%以下になった部位に圧下又は電磁撹拌を施すこととした。   Therefore, in the invention of (14), when molten steel is cast into a steel ingot, the unsolidified layer of the steel ingot is subjected to reduction or electromagnetic stirring on the portion where the thickness of the steel ingot is 30% or less. .

なお、上記の圧下に際しては、未凝固層に鋼塊厚さの5%以上の圧下量を加えることが好ましく、未凝固層の厚みに相当する圧下量を加えれば更に好ましい。なお、圧下又は電磁撹拌を施す場合の鋼塊の未凝固層の鋼塊の厚さに対する割合は1%以上であることが望ましい。   In the above reduction, it is preferable to add a reduction amount of 5% or more of the steel ingot thickness to the unsolidified layer, and it is more preferable to add a reduction amount corresponding to the thickness of the unsolidified layer. In addition, as for the ratio with respect to the thickness of the steel ingot of the unsolidified layer of the steel ingot in the case of performing reduction or electromagnetic stirring, it is desirable that it is 1% or more.

既に述べたように、ハイドロフォーム性の良好な鋼材を素材として鋼管を作製すると、ハイドロフォーム性の良好な鋼管が得られる。そして、前記(10)から(14)までのいずれかの発明に係る方法で製造されたハイドロフォーム用鋼材は、良好なハイドロフォーム性と溶接性とを具備するものである。したがって、前記(10)から(14)までのいずれかの発明に係る方法で製造されたハイドロフォーム用鋼材を管状に成形した後、突き合わせ部を溶接して電縫管を製造すれば、ハイドロフォーム性に優れた電縫管を得ることができる。   As already described, when a steel pipe is manufactured using a steel material having a good hydroforming property, a steel pipe having a good hydroforming property can be obtained. And the steel material for hydroforms manufactured by the method according to any one of the inventions (10) to (14) has good hydroformability and weldability. Therefore, after forming the steel material for hydrofoam produced by the method according to any one of the inventions (10) to (14) into a tubular shape and then welding the butt portion to produce an electric sewing tube, hydroform It is possible to obtain an electric sewing tube excellent in properties.

このため、前記(15)の発明に係るハイドロフォーム用電縫管の製造方法は、前記(10)から(14)までのいずれかの発明に係る製造方法によって得られたハイドロフォーム用鋼材を管状に成形した後、突き合わせ部を溶接するものと規定した。   For this reason, the manufacturing method of the hydroformed electric sewn tube according to the invention of (15) is obtained by tubularly forming the steel material for hydroform obtained by the manufacturing method according to any of the inventions from (10) to (14). After molding, the butt portion was defined as being welded.

なお、突き合わせ部を溶接する際の条件は特に規定する必要はなく、電縫管の製造で通常行われている条件とすればよい。   In addition, it is not necessary to prescribe | regulate the conditions at the time of welding a butt | matching part, What is necessary is just to be the conditions normally performed by manufacture of an electric resistance welded tube.

なお、(1)〜(5)の発明に係るハイドロフォーム用鋼材は、例えば、(10)〜(14)の発明に係る製造方法によって容易に得られる。   In addition, the steel material for hydrofoam which concerns on invention of (1)-(5) is easily obtained by the manufacturing method which concerns on invention of (10)-(14), for example.

(6)の発明に係るハイドロフォーム用鋼材は、例えば、(11)〜(14)の発明に係る製造方法によって容易に得られる。   The steel material for hydrofoam according to the invention of (6) is easily obtained by, for example, the production method according to the inventions of (11) to (14).

(7)の発明に係るハイドロフォーム用鋼材は、例えば、(14)の発明に係る製造方法によって容易に得られる。   The steel material for hydrofoam according to the invention of (7) is easily obtained by the production method according to the invention of (14), for example.

(8)の発明に係るハイドロフォーム用鋼材は、例えば、(12)及び(13)の発明に係る製造方法によって容易に得られる。   The steel material for hydrofoam according to the invention of (8) is easily obtained by the production method according to the inventions of (12) and (13), for example.

(9)の発明に係るハイドロフォーム用電縫管は、例えば、(15)の発明に係る製造方法によって容易に得られる。   The electroformed tube for hydrofoam according to the invention of (9) can be easily obtained by the manufacturing method according to the invention of (15), for example.

冷間圧延してハイドロフォーム用鋼材を得る場合には、上記のようにして得た熱間圧延鋼材を通常の方法で冷間圧延すればよい。なお、冷間圧延時の圧下率は40%以上とし、冷間圧延後は焼鈍処理することが望ましい。この焼鈍処理は、通常の方法で行えばよい。すなわち、Ac1 点以上の温度で10秒以上の保持を実施し、その後、通常の方法で冷却すればよい。   When the steel material for hydroforming is obtained by cold rolling, the hot rolled steel material obtained as described above may be cold-rolled by a usual method. In addition, it is desirable that the rolling reduction during cold rolling is 40% or more, and annealing treatment is performed after cold rolling. This annealing process may be performed by a normal method. That is, the holding may be performed for 10 seconds or more at a temperature equal to or higher than the Ac1 point, and then cooled by a normal method.

なお、上記「%単位」での圧下率とは{「冷間圧延前の被圧延材の厚さ−冷間圧延後の被圧延材の厚さ」/「冷間圧延前の被圧延材の厚さ」}×100で表される値をいう。   Note that the reduction ratio in the above “% unit” means {“thickness of the material to be rolled before cold rolling−thickness of the material to be rolled after cold rolling” / “of the material to be rolled before cold rolling”. Thickness "} means a value represented by x100.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示す化学組成を有する各種の鋼を、表2及び表3に示す条件で連続鋳造して幅1200mmで、厚さが70〜250mmのスラブにし、更に、各スラブを1100〜1300℃に加熱してから表2及び表3に示す条件で熱間圧延して厚さ2.0mmの熱延鋼板に仕上げた。   Various steels having the chemical composition shown in Table 1 are continuously cast under the conditions shown in Table 2 and Table 3 into slabs having a width of 1200 mm and a thickness of 70 to 250 mm, and each slab is adjusted to 1100 to 1300 ° C. After heating, it was hot-rolled under the conditions shown in Tables 2 and 3 to finish a hot-rolled steel sheet having a thickness of 2.0 mm.

なお、スラブは鋳型幅が1200mmで鋳型厚みが100〜250mmの試験用連続鋳造機にて鋳造し、各鋼種において、それぞれ液相線温度から1300℃におけるスラブの鋳込み方向に垂直な断面の平均冷却速度を変えて晶出型TiN系粒子の形態制御を実施した。   The slab was cast by a test continuous casting machine having a mold width of 1200 mm and a mold thickness of 100 to 250 mm, and for each steel type, average cooling of the cross section perpendicular to the slab casting direction from the liquidus temperature to 1300 ° C. The morphology control of the crystallized TiN-based particles was performed at different speeds.

上記スラブの鋳込み方向に垂直な断面の平均冷却速度の変更は、主に、試験連続鋳造機内において、2次冷却水量の変更とスラブ未凝固部圧下によるスラブ厚み変更とを行うことで実施した。なお、液相線温度から1300℃におけるスラブの鋳込み方向に垂直な断面の平均冷却速度の算出は、スラブ表面から中心部にかけて5mmピッチでデンドライト2次アーム間隔を測定して算出した。   The change of the average cooling rate of the cross section perpendicular to the casting direction of the slab was mainly performed by changing the amount of secondary cooling water and changing the slab thickness by reducing the unsolidified portion of the slab in the test continuous casting machine. The average cooling rate of the cross section perpendicular to the casting direction of the slab at 1300 ° C. from the liquidus temperature was calculated by measuring the dendrite secondary arm interval at a pitch of 5 mm from the slab surface to the center.

熱間圧延は、仕上げ温度を1010〜780℃とし、仕上げ圧延後は50〜90℃/秒の平均冷却速度で冷却し、120〜750℃で巻き取った。一部のものについては、冷却途中での中間空冷も実施した。   In the hot rolling, the finishing temperature was set to 1010 to 780 ° C., and after finishing rolling, the steel was cooled at an average cooling rate of 50 to 90 ° C./second and wound at 120 to 750 ° C. For some, intermediate air cooling during cooling was also performed.

なお、一部の鋼種については、表2及び表3に示す条件で熱間圧延して厚さが2.0mmの熱延鋼板を作製し、この熱延鋼板を圧下率10〜50%で冷間圧延し、その後に焼鈍処理を施して冷延鋼板とすることも行った。冷間圧延条件の詳細は、後述の表8に示すとおりである。   For some steel types, hot-rolled steel sheets having a thickness of 2.0 mm were produced by hot rolling under the conditions shown in Tables 2 and 3, and the hot-rolled steel sheets were cooled at a reduction rate of 10 to 50%. Cold rolling was also performed by hot rolling and then annealing. The details of the cold rolling conditions are as shown in Table 8 below.

また、上記のようにして得た厚さが2.0mmの各熱延鋼板及び厚さが1.0〜1.8mmの各冷延鋼板をスリット状に剪断加工し、粗さ計を用いて、切断端面の破面粗さ(平均粗さRa)を測定した。   In addition, each hot-rolled steel sheet having a thickness of 2.0 mm and each cold-rolled steel sheet having a thickness of 1.0 to 1.8 mm obtained as described above were sheared into a slit shape, and a roughness meter was used. The fracture surface roughness (average roughness Ra) of the cut end face was measured.

次いで、上記のスリット状に剪断加工した各鋼板を、通常の方法で管状に成形した後、突き合わせ部を抵抗溶接して、内径が60.5mmの電縫管(以下、60.5φ電縫管ともいう。)を製造した。   Next, after each steel plate sheared into the slit shape was formed into a tubular shape by a normal method, the butt portion was resistance-welded, and an electric sewing tube having an inner diameter of 60.5 mm (hereinafter referred to as a 60.5φ electric sewing tube). Also manufactured).

Figure 2005146395
Figure 2005146395

Figure 2005146395
Figure 2005146395

Figure 2005146395
Figure 2005146395

厚さが2.0mmの各熱延鋼板について、光学顕微鏡と走査型電子顕微鏡を用いて、鋼板板厚の断面組織を観察した。更に、観察された晶出型TiN系粒子の個々の粒径を測定し、粒径が0.3μm以上であった晶出型TiN系粒子について、断面積1mm2当たりの個数と平均粒径を求めた。 For each hot rolled steel sheet having a thickness of 2.0 mm, the cross-sectional structure of the steel sheet thickness was observed using an optical microscope and a scanning electron microscope. Further, the individual particle diameters of the observed crystallized TiN-based particles were measured, and for the crystallized TiN-based particles having a particle diameter of 0.3 μm or more, the number per 1 mm 2 cross-sectional area and the average particle diameter were determined. Asked.

また、鋼板組織における相(組織)を特定するとともに、組織に占めるフェライトの面積率を求め、更に、フェライトの個々の粒径を測定して平均粒径を求めた。   Moreover, while specifying the phase (structure | tissue) in a steel plate structure | tissue, the area ratio of the ferrite which occupies for a structure | tissue was calculated | required, and also the particle size of each ferrite was measured and the average particle size was calculated | required.

板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相(すなわち、パーライト、ベイナイト、マルテンサイト及びセメンタイト)との最も短い距離から個々の粒子間隔を求め、100視野観察して求めた上記個々の粒子間隔を算術平均して、「晶出型TiN系粒子と硬質な第2相との平均粒子間隔」を算出した。   In the plate thickness center region in the range of up to 15% of the plate thickness from the plate thickness center to the plate surface, crystallized TiN particles having a particle size of 2 μm or more and a hard second phase having a particle size of 2 μm or more. (In other words, the individual particle interval was determined from the shortest distance from pearlite, bainite, martensite, and cementite), and the above-mentioned individual particle interval obtained by observing 100 fields of view was arithmetically averaged to obtain “crystallized TiN-based particles. Average particle spacing between the second phase and the hard second phase ”.

更に、試験力を0.01961Nとしてフェライト粒内の硬さを50個所測定した値を算術平均し、フェライトの粒内硬さを求めた。   Furthermore, the test force was set to 0.01961N, and the value obtained by measuring the hardness in 50 ferrite grains was arithmetically averaged to obtain the ferrite intragranular hardness.

同様に、厚さが1.0〜1.8mmの各冷延鋼板について、光学顕微鏡と走査型電子顕微鏡を用いて、鋼板板厚の断面組織を観察し、鋼板組織における相(組織)を特定した。   Similarly, for each cold-rolled steel sheet having a thickness of 1.0 to 1.8 mm, an optical microscope and a scanning electron microscope are used to observe the cross-sectional structure of the steel sheet thickness, and the phase (structure) in the steel sheet structure is specified. did.

前記の厚さが2.0mmの各熱延鋼板及び厚さが1.0〜1.8mmの各冷延鋼板の機械的性質を以下の方法で調査した。   The mechanical properties of each hot-rolled steel sheet having a thickness of 2.0 mm and each cold-rolled steel sheet having a thickness of 1.0 to 1.8 mm were investigated by the following method.

すなわち、鋼板の圧延方向と直角な方向からJIS Z 2201に記載の5号引張り試験片を切り出し、室温で引張試験を行って引張強さ(TS)と伸び(El)とを測定した。また、鋼板の圧延方向と直角な方向から、図1に示す長さが180mm、幅が40mmで長さ方向の中央部両側に半径R=10mmの加工を施したR付き引張り試験片を採取し、標点距離(GL)を2mmとして、つまり、中央部に2mm間隔のけがき線を引いて、室温で引張試験し、下記の (2)式から伸び(局部伸び)を求めた。   That is, a No. 5 tensile test piece described in JIS Z 2201 was cut out from a direction perpendicular to the rolling direction of the steel sheet, and a tensile test was performed at room temperature to measure tensile strength (TS) and elongation (El). Further, from a direction perpendicular to the rolling direction of the steel sheet, a tensile test piece with R having a length of 180 mm, a width of 40 mm, and a radius R = 10 mm on both sides of the central portion in the length direction was collected. The gauge distance (GL) was set to 2 mm, that is, a marking line with an interval of 2 mm was drawn at the center, a tensile test was performed at room temperature, and elongation (local elongation) was obtained from the following equation (2).

R付き引張り試験片の伸び(%)={「試験後のけがき線間隔(mm)−試験前のけがき線間隔(mm)」/「試験前のけがき線間隔(mm)」}×100・・・(2)。   Elongation of tensile test piece with R (%) = {“Scribing line interval after test (mm) −Scribing line interval before test (mm)” / “Scribing line interval before test (mm)”} × 100 ... (2).

前記の各60.5φ電縫管については、その機械的性質、ハイドロフォーム性及び溶接性を以下の方法で調査した。   About each said 60.5 (phi) ERW pipe, the mechanical property, hydroform property, and weldability were investigated with the following method.

すなわち、各60.5φ電縫管の管軸方向からJIS Z 2201に規定された12B号引張り試験片を採取して室温で引張試験し、引張強さ(TS)と伸び(El)とを測定した。   That is, the No. 12B tensile test piece specified in JIS Z 2201 was sampled from the pipe axis direction of each 60.5φ ERW pipe, and the tensile test was performed at room temperature to measure the tensile strength (TS) and elongation (El). did.

更に、各電縫管を切り開いて平坦化し、元の電縫管の管周方向に対応する方向から、図1に示す上記の長さ方向の中央部両側に半径R=10mmの加工を施したR付き引張り試験片を採取し、標点距離(GL)を2mmとして室温で引張試験し、上記 (2)式から伸び(局部伸び)を求めた。   Furthermore, each ERW pipe was cut open and flattened, and processing with a radius R = 10 mm was performed on both sides of the central portion in the length direction shown in FIG. 1 from the direction corresponding to the pipe circumferential direction of the original ERW pipe. Tensile specimens with R were collected and subjected to a tensile test at room temperature with a gauge distance (GL) of 2 mm, and elongation (local elongation) was determined from the above equation (2).

また、図2に示すような上下の金型を用いて、前記の各60.5φ電縫管6に対してハイドロフォーム成形試験を行い、ハイドロフォーム成形の際の拡管率を求めた。   Moreover, using the upper and lower molds as shown in FIG. 2, a hydroform molding test was performed on each of the above 60.5φ ERW pipes 6 to obtain a tube expansion rate at the time of hydroforming molding.

すなわち、金型空間4を形成する上部金型1、下部金型2及びシール部3で60.5φ電縫管6を保持し、注入部5を通じて電縫管内に液圧(油圧)をかけ、電縫管を金型空間4内に膨出させた。次いで、膨出変形割れ部における電縫管の周長を測定し、下記 (3)式からハイドロフォーム成形の際の拡管率を求めた。   That is, the upper mold 1, the lower mold 2, and the seal portion 3 that form the mold space 4 hold the 60.5φ electric sewing tube 6, and hydraulic pressure (hydraulic pressure) is applied to the electric sewing tube through the injection portion 5. The electric sewing tube was expanded into the mold space 4. Next, the circumference of the ERW pipe at the bulging deformation cracked portion was measured, and the pipe expansion rate at the time of hydroforming was calculated from the following formula (3).

拡管率(%)={「変形後の周長−素管周長」/「素管周長」}×100・・・(3)。   Tube expansion ratio (%) = {"peripheral length after deformation-element tube periphery" / "element tube periphery"} × 100 (3).

溶接性は、前記の各60.5φ電縫管を曲げ半径、つまり内側半径を121mmとして90゜になるまで曲げ試験を行い、そのときの溶接部における割れ発生率で評価した。   Weldability was evaluated by performing a bending test on each of the 60.5φ electric resistance welded pipes until the bending radius, that is, the inner radius was 121 mm, until 90 °, and the crack occurrence rate at the welded portion at that time.

表4〜6に、厚さが2.0mmの熱延鋼板の組織と機械的性質を、表7に、厚さが2.0mmの熱延鋼板の切断端面の破面粗さ(Ra)並びに、厚さが2.0mmの熱延鋼板を素材とする電縫管の機械的性質、拡管率及び溶接部における割れ発生率を、表8に、厚さ2.0mmの熱延鋼板の冷間圧延の条件、冷延鋼板の機械的性質、組織、切断端面の破面粗さ(Ra)並びに、冷延鋼板を素材とする電縫管の機械的性質、拡管率及び溶接部における割れ発生率を示す。   Tables 4 to 6 show the structure and mechanical properties of a hot-rolled steel sheet having a thickness of 2.0 mm. Table 7 shows the fracture surface roughness (Ra) of the cut end face of the hot-rolled steel sheet having a thickness of 2.0 mm. Table 8 shows the mechanical properties, pipe expansion rate, and crack occurrence rate in the welded portion of the ERW pipe made of a hot-rolled steel sheet having a thickness of 2.0 mm. Table 8 shows the coldness of the hot-rolled steel sheet having a thickness of 2.0 mm. Rolling conditions, mechanical properties of cold-rolled steel sheet, structure, fracture surface roughness (Ra) of cut end surface, mechanical properties of ERW pipe made of cold-rolled steel sheet, pipe expansion rate, and crack occurrence rate in welds Indicates.

Figure 2005146395
Figure 2005146395

Figure 2005146395
Figure 2005146395

Figure 2005146395
Figure 2005146395

Figure 2005146395
Figure 2005146395

Figure 2005146395
Figure 2005146395

熱延鋼板及び熱延鋼板を素材とする電縫管に係る試験番号1〜23の場合、粒径が0.3μm以上の晶出型TiN系粒子の断面積1mm2当たりの個数は50〜47000個で50〜50000個という本発明の規定を満たし、且つ、前記粒径が0.3μm以上の晶出型TiN系粒子の平均粒径は0.5〜6.8μmで本発明で規定する7μm以下である。更に、上記の各試験番号の場合には、組織に占めるフェライトの面積率は62〜98%で50%以上という本発明の規定を満たし、また、フェライトの平均粒径も3〜28μmで本発明で規定する3〜30μmの範囲である。 In the case of test numbers 1 to 23 relating to hot rolled steel sheets and ERW pipes made of hot rolled steel sheets, the number of crystallized TiN-based particles having a particle size of 0.3 μm or more per 1 mm 2 cross-sectional area is 50 to 47000. The average particle diameter of the crystallized TiN-based particles satisfying the provision of the present invention of 50 to 50,000 particles and having a particle diameter of 0.3 μm or more is 0.5 to 6.8 μm and 7 μm as defined in the present invention. It is as follows. Furthermore, in the case of each of the above test numbers, the area ratio of the ferrite occupying the structure satisfies 62% to 98% of the present invention, and the average particle diameter of the ferrite is 3 to 28 μm. In the range of 3 to 30 μm.

このため、熱延鋼板のR付引張り試験片の伸び及び熱延鋼板を素材とする電縫管のR付引張り試験片の伸びはいずれも90%以上と良好であり、したがって、電縫管の拡管率も17%以上でハイドロフォーム性に優れていた。更に、熱延鋼板をスリット状に剪断加工した際の切断端面の破面粗さ(Ra)も4.5μm以下と優れており、熱延鋼板を素材とする電縫管を曲げ試験しても溶接部に割れは発生せず溶接性にも優れていた。   For this reason, the elongation of the tensile test piece with R of the hot-rolled steel sheet and the elongation of the tensile test specimen with R of the electric resistance welded tube made of the hot-rolled steel sheet are both as good as 90% or more. The expansion rate was 17% or more, and the hydroforming property was excellent. Furthermore, the fracture surface roughness (Ra) of the cut end surface when the hot-rolled steel sheet is sheared into a slit shape is also excellent at 4.5 μm or less. Cracks did not occur in the weld zone and the weldability was excellent.

前記各試験番号のうちでも、ビッカース硬さでのフェライトの粒内硬さ及びフェライトが組織に占める面積率が前記 (1)式、つまり、「A≦(B+200)/1.5」を満たす試験番号1〜8、試験番号10、試験番号12〜16、試験番号18〜20、試験番号22及び試験番号23の場合は、電縫管の拡管率は20%以上でハイドロフォーム性は一層良好であった。また、上記の試験番号の中でも、粒径が0.3μm以上の晶出型TiN系粒子の平均粒径が0.5〜3.0μmである試験番号2、試験番号3、試験番号5、試験番号7、試験番号8、試験番号10、試験番号16、試験番号18及び試験番号20の場合や、板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相であるパーライトとの平均粒子間隔が30μmである試験番号4の場合、更には、粒径が0.3μm以上の晶出型TiN系粒子の平均粒径が0.6μmと2.3μmで、しかも、板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相であるベイナイト又はパーライトとの平均粒子間隔が48μmと24μmである試験番号13と試験番号14の場合には、電縫管の拡管率は30%以上でハイドロフォーム性は極めて良好であった。   Among the above test numbers, a test in which the intragranular hardness of ferrite in Vickers hardness and the area ratio of ferrite in the structure satisfy the above formula (1), that is, “A ≦ (B + 200) /1.5” In the case of Nos. 1 to 8, Test No. 10, Test Nos. 12 to 16, Test Nos. 18 to 20, Test No. 22 and Test No. 23, the expansion ratio of the electric resistance welded tube is 20% or more and the hydroform property is even better. there were. Among the above test numbers, test number 2, test number 3, test number 5, test in which the average particle size of crystallized TiN-based particles having a particle size of 0.3 μm or more is 0.5 to 3.0 μm. In the case of No. 7, Test No. 8, Test No. 10, Test No. 16, Test No. 18 and Test No. 20, or the plate thickness center region in the range from the plate thickness center to the plate surface up to 15% of the plate thickness. In the case of test number 4 in which the average particle interval between crystallized TiN-based particles having a particle size of 2 μm or more and pearlite which is a hard second phase having a particle size of 2 μm or more is 30 μm, The average particle diameters of crystallized TiN-based particles of 0.3 μm or more are 0.6 μm and 2.3 μm, and the center of the plate thickness is in the range of 15% of the plate thickness from the plate thickness center to the plate surface. In the region, crystallized TiN-based particles having a particle diameter of 2 μm or more and grains In the case of Test No. 13 and Test No. 14 in which the average particle distance between the bainite or pearlite, which is a hard second phase of 2 μm or more, is 48 μm and 24 μm, the expansion ratio of the ERW tube is 30% or more and the hydroform The properties were extremely good.

一方、試験番号24〜28の場合、粒径が0.3μm以上の晶出型TiN系粒子の平均粒径が7.1〜7.6μmで7μmを超えるため、熱延鋼板のR付引張り試験片の伸びは46〜74%、また、熱延鋼板を素材とする電縫管のR付引張り試験片の伸びは44〜70%でいずれも低く、そのため、電縫管の拡管率は9〜14%でハイドロフォーム性に劣るものであった。上記の試験番号のうちで試験番号25及び試験番号26の場合は、粒径が0.3μm以上の晶出型TiN系粒子の断面積1mm2当たりの個数が35個と48個で少ないため、熱延鋼板をスリット状に剪断加工した際の切断端面の破面粗さ(Ra)はそれぞれ5.5μmと5.3μmで粗く、熱延鋼板を素材とする電縫管を曲げ試験した場合の溶接部の割れ発生率は40%と30%と大きくなって溶接性にも劣っていた。 On the other hand, in the case of test numbers 24 to 28, the average particle size of crystallization type TiN-based particles having a particle size of 0.3 μm or more is 7.1 to 7.6 μm, which exceeds 7 μm. The elongation of the piece is 46 to 74%, and the elongation of the R-stretched tensile test piece made of hot-rolled steel sheet is 44 to 70%, which is low. Therefore, the expansion ratio of the ERW tube is 9 to 9%. It was inferior to hydroform property at 14%. In the case of test number 25 and test number 26 among the above test numbers, the number of crystallized TiN-based particles having a particle size of 0.3 μm or more per 1 mm 2 cross-sectional area is small at 35 and 48, When the hot-rolled steel sheet is sheared into slits, the fracture surface roughness (Ra) of the cut end surface is 5.5 μm and 5.3 μm, respectively. The crack occurrence rate of the welded part increased to 40% and 30%, and the weldability was inferior.

試験番号29及び試験番号30の場合、粒径が0.3μm以上の晶出型TiN系粒子の断面積1mm2当たりの個数がそれぞれ53000個と51000個で50000個を超えるため、熱延鋼板のR付引張り試験片の伸びは62%と65%、また、熱延鋼板を素材とする電縫管のR付引張り試験片の伸びは60%と63%でいずれも低く、そのため、電縫管の拡管率は12%と13%でハイドロフォーム性が劣るものであった。 In the case of test number 29 and test number 30, the number of crystallized TiN-based particles having a particle diameter of 0.3 μm or more per 1 mm 2 in cross-sectional area is 53,000 and 51,000, respectively. Elongation of tensile test pieces with R is 62% and 65%, and the elongation of tensile test pieces with R of hot-rolled steel sheets is 60% and 63%, both of which are low. The tube expansion ratio of 12 and 13% was inferior in hydroformability.

試験番31及び試験番号34の場合、フェライトの平均粒径が31μmと32μmで本発明の規定上限である30μmを超えるため、熱延鋼板のR付引張り試験片の伸びは73%と60%、また、熱延鋼板を素材とする電縫管のR付引張り試験片の伸びは68%と60%で、いずれも低いものであった。そのため、両者の電縫管の拡管率は14%と13%でハイドロフォーム性が劣っていた。   In the case of Test No. 31 and Test No. 34, the average grain size of ferrite exceeds 31 μm and 32 μm, which is 30 μm, which is the upper limit prescribed in the present invention. Moreover, the elongation of the tensile test piece with R of the electric resistance welded tube made from a hot-rolled steel sheet was 68% and 60%, both of which were low. Therefore, the expansion ratios of both electric resistance welded pipes were 14% and 13%, and the hydroform property was inferior.

試験番号32の場合、フェライトの平均粒径が2μmで本発明の規定下限である3μmを下回るため、熱延鋼板のR付引張り試験片の伸びは60%、また、熱延鋼板を素材とする電縫管のR付引張り試験片の伸びも58%と低いものであった。そのため、電縫管の拡管率は12%でハイドロフォーム性に劣っていた。   In the case of test number 32, the average grain size of ferrite is 2 μm, which is less than 3 μm, which is the lower limit of the present invention. Therefore, the elongation of the tensile test piece with R of the hot-rolled steel sheet is 60%, and the hot-rolled steel sheet is used as the material. The elongation of the tensile test piece with R of the electric resistance welded tube was as low as 58%. Therefore, the expansion ratio of the ERW pipe was 12%, which was inferior to the hydroform property.

試験番号33の場合、組織に占めるフェライトの面積率は48%で本発明の規定下限である50%を下回るため、熱延鋼板のR付引張り試験片伸びは45%、また、熱延鋼板を素材とする電縫管のR付引張り試験片の伸びも43%と低いものであった。そのため、電縫管の拡管率は9%と小さく、ハイドロフォーム性の点で劣っていた。   In the case of test number 33, the area ratio of ferrite occupying the structure is 48%, which is less than 50% which is the lower limit of the present invention. Therefore, the elongation of the tensile test piece with R of the hot-rolled steel sheet is 45%. The elongation of the tensile test piece with R of the electric resistance welded tube as a raw material was as low as 43%. Therefore, the expansion ratio of the ERW pipe was as small as 9%, which was inferior in terms of hydroformability.

試験番号35〜38の場合、粒径が0.3μm以上の晶出型TiN系粒子の断面積1mm2当たりの個数が40〜45個で少ないため、熱延鋼板をスリット状に剪断加工した際の切断端面の破面粗さ(Ra)は5.0〜5.3μmと粗いものであった。このため、熱延鋼板を素材とする電縫管を曲げ試験した場合の溶接部の割れ発生率は10〜20%で、溶接性が劣るものであった。 In the case of test numbers 35 to 38, when the number of crystallized TiN-based particles having a particle size of 0.3 μm or more per 1 mm 2 in cross-sectional area is as small as 40 to 45, the hot-rolled steel sheet was sheared into a slit shape The fracture surface roughness (Ra) of the cut end face was as rough as 5.0 to 5.3 μm. For this reason, when the electric resistance welded tube made of hot-rolled steel sheet is subjected to a bending test, the crack occurrence rate of the welded portion is 10 to 20%, and the weldability is inferior.

冷延鋼板及び冷延鋼板を素材とする電縫管に係る試験番号C1〜C11の場合、熱延鋼板製造記号H1等の本発明で規定する条件を満たす熱延鋼板を素材とするものであるため、冷延鋼板のR付引張り試験片の伸びは100%以上及び冷延鋼板を素材とする電縫管のR付引張り試験片の伸びは100%以上と良好であり、したがって、電縫管の拡管率も20%以上でハイドロフォーム性に優れていた。更に、冷延鋼板をスリット状に剪断加工した際の切断端面の破面粗さ(Ra)も4.5μm以下と優れており、冷延鋼板を素材とする電縫管を曲げ試験しても溶接部に割れは発生せず溶接性にも優れていた。   In the case of test numbers C1 to C11 related to cold-rolled steel sheets and ERW pipes made of cold-rolled steel sheets, hot-rolled steel sheets that satisfy the conditions defined in the present invention, such as hot-rolled steel sheet manufacturing symbols H1, are used. Therefore, the elongation of the tensile test piece with R of the cold-rolled steel sheet is 100% or more and the elongation of the tensile test piece with R of the electric-welded pipe made of the cold-rolled steel sheet is 100% or more. The tube expansion rate was 20% or more, and the hydroformability was excellent. Furthermore, the fracture surface roughness (Ra) of the cut end surface when the cold-rolled steel sheet is sheared into a slit shape is also excellent at 4.5 μm or less, and even when an electric resistance welded tube made of a cold-rolled steel sheet is subjected to a bending test Cracks did not occur in the weld zone and the weldability was excellent.

これに対して、試験番号C12〜C16の場合、熱延鋼板製造記号H24等の本発明で規定する条件から外れた熱延鋼板を素材とするものであるため、冷延鋼板のR付引張り試験片の伸びは52〜75%、また、冷延鋼板を素材とする電縫管のR付引張り試験片の伸びは52〜75%でいずれも低く、そのため、電縫管の拡管率は9〜13%でハイドロフォーム性が劣るものであった。   On the other hand, in the case of test numbers C12 to C16, since the hot-rolled steel sheet deviated from the conditions specified in the present invention, such as the hot-rolled steel sheet manufacturing symbol H24, is used as the material, the tensile test with R of the cold-rolled steel sheet The elongation of the piece is 52 to 75%, and the elongation of the R-stretched test piece made of cold-rolled steel sheet is 52 to 75%, which is low. Therefore, the expansion ratio of the ERW tube is 9 to 9%. Hydroformability was inferior at 13%.

加えて、試験番号C13及び試験番号C14は、粒径が0.3μm以上の晶出型TiN系粒子の断面積1mm2当たりの個数が50個未満である熱延鋼板を冷延鋼板の素材としたために、冷延鋼板をスリット状に剪断加工した際の切断端面の破面粗さ(Ra)は5.2〜5.4μmと粗く、冷延鋼板を素材とする電縫管を曲げ試験した場合の溶接部の割れ発生率は20〜30%で溶接性にも劣っていた。 In addition, Test No. C13 and Test No. C14 indicate that a hot-rolled steel sheet in which the number of crystallized TiN-based particles having a particle size of 0.3 μm or more per cross-sectional area of 1 mm 2 is less than 50 is a cold-rolled steel sheet material. Therefore, the fracture surface roughness (Ra) of the cut end face when the cold-rolled steel sheet was sheared into a slit shape was as rough as 5.2 to 5.4 μm, and an electric resistance welded tube made of the cold-rolled steel sheet was subjected to a bending test. In this case, the crack occurrence rate of the welded portion was 20 to 30%, which was inferior in weldability.

本発明のハイドロフォーム用鋼材は、390MPa以上の引張強さを有し、ハイドロフォーム性及び溶接性に優れているので、自動車の構造部材や足廻り部材の素材として利用することができる。また、このハイドロフォーム用鋼材をハイドロフォーム用電縫管の素材として利用することができる。本発明のハイドロフォーム用鋼材及びハイドロフォーム用電縫管は、本発明の方法によって比較的容易に製造することができる。   Since the steel material for hydroform of the present invention has a tensile strength of 390 MPa or more and is excellent in hydroformability and weldability, it can be used as a material for structural members and suspension members of automobiles. Moreover, this steel material for hydroforming can be utilized as a material for the electroformed tube for hydroforming. The steel material for hydrofoam and the electric sewing tube for hydrofoam of the present invention can be manufactured relatively easily by the method of the present invention.

「R付き引張り試験片」を説明する図である。It is a figure explaining "a tensile test piece with R". 電縫管のハイドロフォーム成形試験を説明する図である。It is a figure explaining the hydroform shaping | molding test of an electric sewing pipe.

符号の説明Explanation of symbols

1:上部金型、
2:下部金型2、
3:シール部、
4:金型空間
5:注入部、
6:60.5φ電縫管。
1: Upper mold,
2: Lower mold 2,
3: Seal part
4: Mold space 5: Injection part,
6: 60.5φ ERW pipe.

Claims (15)

質量%で、C:0.02〜0.35%、Si:0.01〜1.0%、Mn:0.01〜2.5%、P:0.005〜0.10%、S:0.0100%以下、Al:0.001〜0.1%、Ti:0.005〜0.20%及びN:0.0004〜0.0100%を含有し、残部はFe及び不純物からなる化学組成で、粒径が0.3μm以上の晶出型TiN系粒子を断面積1mm2あたり50〜50000個含み、且つ、前記晶出型TiN系粒子の平均粒径が7μm以下であり、フェライトが組織に占める面積率が50%以上でその平均粒径が3〜30μmであることを特徴とするハイドロフォーム用鋼材。 In mass%, C: 0.02-0.35%, Si: 0.01-1.0%, Mn: 0.01-2.5%, P: 0.005-0.10%, S: A chemistry containing 0.0100% or less, Al: 0.001-0.1%, Ti: 0.005-0.20% and N: 0.0004-0.0100%, with the balance being Fe and impurities The composition includes 50 to 50000 crystallized TiN-based particles having a particle size of 0.3 μm or more per 1 mm 2 in cross-sectional area, and the average particle size of the crystallized TiN-based particles is 7 μm or less. A steel material for hydrofoam characterized by having an area ratio of 50% or more in the structure and an average particle size of 3 to 30 μm. Feの一部に代えて、質量%で、Nb:0.1%以下及びV:0.2%以下の1種以上を含有する請求項1に記載のハイドロフォーム用鋼材。   The steel material for hydroforms according to claim 1, which contains at least one of Nb: 0.1% or less and V: 0.2% or less in mass% instead of a part of Fe. Feの一部に代えて、質量%で、Mo:1.0%以下、Ni:1.0%以下及びCu:1.0%以下から選択される1種以上を含有する請求項1又は2に記載のハイドロフォーム用鋼材。   It replaces with a part of Fe and contains 1 or more types selected from Mo: 1.0% or less, Ni: 1.0% or less, and Cu: 1.0% or less by mass%. Steel material for hydroforming as described in 1. Feの一部に代えて、質量%で、Cr:1.0%以下及びB:0.0005〜0.003%の1種以上を含有する請求項1から3までのいずれかに記載のハイドロフォーム用鋼材。   The hydro described in any one of claims 1 to 3, which contains one or more of Cr: 1.0% or less and B: 0.0005-0.003% in mass% instead of a part of Fe. Steel for foam. Feの一部に代えて、質量%で、Ca:0.0002〜0.01%、Mg:0.0002〜0.01%及びREM(希士類元素):0.0002〜0.01%から選択される1種以上を含有する請求項1から4までのいずれかに記載のハイドロフォーム用鋼材。   Instead of a part of Fe, by mass%, Ca: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, and REM (rare element): 0.0002 to 0.01% The steel material for hydrofoam according to any one of claims 1 to 4, comprising one or more selected from the group consisting of: 粒径が0.3μm以上の晶出型TiN系粒子の平均粒径が0.3〜3.0μmであることを特徴とする請求項1から5までのいずれかに記載のハイドロフォーム用鋼材。   The steel material for hydrofoam according to any one of claims 1 to 5, wherein the average particle size of crystallized TiN-based particles having a particle size of 0.3 µm or more is 0.3 to 3.0 µm. 板厚中心から板表面に向かってそれぞれ板厚の15%までの範囲にある板厚中心領域において、粒径が2μm以上の晶出型TiN系粒子と粒径が2μm以上の硬質な第2相との平均粒子間隔が10〜50μmであることを特徴とする請求項1から6までのいずれかに記載のハイドロフォーム用鋼材。   In the plate thickness center region in the range of up to 15% of the plate thickness from the plate thickness center to the plate surface, crystallized TiN particles having a particle size of 2 μm or more and a hard second phase having a particle size of 2 μm or more. The steel material for hydrofoam according to any one of claims 1 to 6, wherein an average particle interval is 10 to 50 µm. ビッカース硬さでのフェライトの粒内硬さ及びフェライトが組織に占める面積率が下記 (1)式を満たし、フェライト以外の残部組織がマルテンサイト、パーライト、ベイナイト及びオーステナイトから選択される1種以上であることを特徴とする請求項1から7までのいずれかに記載のハイドロフォーム用鋼材。
A≦(B+200)/1.5・・・・・(1)
ここで、 (1)式中のAはビッカース硬さでのフェライトの粒内硬さ、Bはフェライトが組織に占める面積率(%)を表す。
The intergranular hardness of ferrite in Vickers hardness and the area ratio occupied by ferrite satisfy the following formula (1), and the remaining structure other than ferrite is one or more selected from martensite, pearlite, bainite and austenite. The steel material for hydrofoam according to any one of claims 1 to 7, wherein the steel material is a hydroforming steel material.
A ≦ (B + 200) /1.5 (1)
Here, A in the formula (1) is the intragranular hardness of the ferrite in terms of Vickers hardness, and B is the area ratio (%) that the ferrite occupies in the structure.
請求項1から8までのいずれかに記載のハイドロフォーム用鋼材を素材とするハイドロフォーム用電縫管。   A hydroforming electric sewing pipe made of the steel material for hydrofoam according to any one of claims 1 to 8. ハイドロフォーム用鋼材の製造方法であって、請求項1から5までのいずれかに記載の化学組成を有する溶鋼を連続鋳造して鋼塊とする際、溶鋼の液相線温度から1300℃の温度範囲における前記鋼塊の鋳込み方向に垂直な断面の平均冷却速度を0.4〜7℃/秒とする工程を製造工程中に含むハイドロフォーム用鋼材の製造方法。   It is a manufacturing method of the steel material for hydroforming, Comprising: When the molten steel which has the chemical composition in any one of Claim 1-5 is continuously cast to make a steel ingot, the temperature of 1300 degreeC from the liquidus temperature of a molten steel The manufacturing method of the steel material for hydrofoams which includes the process which makes the average cooling rate of the cross section perpendicular | vertical to the casting direction of the said steel ingot in a range to 0.4-7 degreeC / second in a manufacturing process. 鋼塊の鋳込み方向に垂直な断面の平均冷却速度が2〜7℃/秒である請求項10に記載のハイドロフォーム用鋼材の製造方法。   The manufacturing method of the steel material for hydrofoams of Claim 10 whose average cooling rate of the cross section perpendicular | vertical to the casting direction of a steel ingot is 2-7 degrees C / sec. 請求項10又は11に記載の鋼塊の鋳込み方向に垂直な断面の平均冷却速度で冷却した鋼塊を、仕上げ温度を「Ar3 点−100℃」以上で1050℃以下として熱間圧延し、次いで、10℃/秒以上の平均冷却速度で730℃以下の温度まで冷却し、その後巻き取ることを特徴とする請求項10又は11に記載のハイドロフォーム用鋼材の製造方法。   A steel ingot cooled at an average cooling rate of a cross section perpendicular to the casting direction of the steel ingot according to claim 10 or 11, is hot-rolled at a finishing temperature of "Ar3 point-100 ° C" or higher and 1050 ° C or lower, and then It cools to the temperature of 730 degrees C or less with an average cooling rate of 10 degrees C / sec or more, and winds up after that, The manufacturing method of the steel materials for hydroforms of Claim 10 or 11 characterized by the above-mentioned. 請求項10又は11に記載の鋼塊の鋳込み方向に垂直な断面の平均冷却速度で冷却した鋼塊を、仕上げ温度を「Ar3 点−100℃」以上で1050℃以下として熱間圧延した後、10℃/秒以上の平均冷却速度で730〜600℃の温度域まで冷却し、次いで、2〜15秒間空冷し、その後更に15℃/秒以上の平均冷却速度で600℃未満の温度まで冷却してから巻き取ることを特徴とする請求項10又は11に記載のハイドロフォーム用鋼材の製造方法。   After hot rolling the steel ingot cooled at an average cooling rate of a cross section perpendicular to the casting direction of the steel ingot according to claim 10 or 11, at a finishing temperature of "Ar3 point-100 ° C" or higher and 1050 ° C or lower, Cool to a temperature range of 730 to 600 ° C. at an average cooling rate of 10 ° C./second or more, then air cool for 2 to 15 seconds, and then further cool to a temperature of less than 600 ° C. at an average cooling rate of 15 ° C./second or more. The method for producing a steel material for hydrofoam according to claim 10 or 11, wherein the steel material is wound after being wound. 溶鋼を鋳造して鋼塊とする際、鋼塊の未凝固層が鋼塊の厚みの30%以下になった部位に圧下又は電磁撹拌を施す請求項10から13までのいずれかに記載のハイドロフォーム用鋼材の製造方法。   The hydrostatic material according to any one of claims 10 to 13, wherein when the molten steel is cast into a steel ingot, the unsolidified layer of the steel ingot is subjected to reduction or electromagnetic stirring on a portion where the thickness of the steel ingot is 30% or less. Manufacturing method of steel for foam. ハイドロフォーム用電縫管の製造方法であって、請求項10から14までのいずれかに記載の製造方法によって得られたハイドロフォーム用鋼材を管状に成形した後、突き合わせ部を溶接するハイドロフォーム用電縫管の製造方法。
It is a manufacturing method of the electric sewing pipe for hydrofoams, Comprising: After forming the steel material for hydrofoams obtained by the manufacturing method in any one of Claim 10-14 in the shape of a tube, for hydroforms where a butt part is welded A method for manufacturing an electric resistance tube.
JP2003389442A 2003-11-19 2003-11-19 Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof Expired - Fee Related JP4093177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389442A JP4093177B2 (en) 2003-11-19 2003-11-19 Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389442A JP4093177B2 (en) 2003-11-19 2003-11-19 Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005146395A true JP2005146395A (en) 2005-06-09
JP4093177B2 JP4093177B2 (en) 2008-06-04

Family

ID=34696190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389442A Expired - Fee Related JP4093177B2 (en) 2003-11-19 2003-11-19 Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4093177B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262467A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Hot rolled steel sheet for hydroforming, its production method and electric resistance welded tube for hydroforming
JP2009242858A (en) * 2008-03-31 2009-10-22 Nisshin Steel Co Ltd High-strength steel pipe and manufacturing method therefor
JP2010235964A (en) * 2009-03-30 2010-10-21 Nisshin Steel Co Ltd High strength steel pipe excellent in corrosion resistance and shock bending toughness and method for manufacturing the same
JP2013007091A (en) * 2011-06-23 2013-01-10 Kobe Steel Ltd Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
KR101320281B1 (en) * 2011-09-28 2013-10-23 현대제철 주식회사 Hot-rolled steel for hydro-forming and method of manufacturing the hot-rolled steel
KR101546138B1 (en) * 2013-08-30 2015-08-21 현대제철 주식회사 Hot-rolled steel sheet and manufacturing method of the same
CN104928600A (en) * 2015-05-26 2015-09-23 东北特钢集团北满特殊钢有限责任公司 Non-quenched and tempered steel for engineering machinery and truck drive systems and manufacturing method of non-quenched and tempered steel
JP2016087623A (en) * 2014-10-31 2016-05-23 新日鐵住金株式会社 Continuous casting method for steel, and continuously cast slab
JP2018197365A (en) * 2017-05-23 2018-12-13 Jfeスチール株式会社 Steel slab, method for producing steel slab, and high-tension steel plate
WO2020094684A1 (en) * 2018-11-06 2020-05-14 Salzgitter Flachstahl Gmbh Interior high pressure-formed component made of steel, use of a steel for precursors for producing an interior high pressure-formed component, and precursor therefor
WO2021125407A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing same
WO2021125408A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties, and method for producing same
JP7388371B2 (en) 2021-01-07 2023-11-29 Jfeスチール株式会社 ERW steel pipe and method for manufacturing ERW steel pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262467A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Hot rolled steel sheet for hydroforming, its production method and electric resistance welded tube for hydroforming
JP2009242858A (en) * 2008-03-31 2009-10-22 Nisshin Steel Co Ltd High-strength steel pipe and manufacturing method therefor
JP2010235964A (en) * 2009-03-30 2010-10-21 Nisshin Steel Co Ltd High strength steel pipe excellent in corrosion resistance and shock bending toughness and method for manufacturing the same
JP2013007091A (en) * 2011-06-23 2013-01-10 Kobe Steel Ltd Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
KR101320281B1 (en) * 2011-09-28 2013-10-23 현대제철 주식회사 Hot-rolled steel for hydro-forming and method of manufacturing the hot-rolled steel
KR101546138B1 (en) * 2013-08-30 2015-08-21 현대제철 주식회사 Hot-rolled steel sheet and manufacturing method of the same
JP2016087623A (en) * 2014-10-31 2016-05-23 新日鐵住金株式会社 Continuous casting method for steel, and continuously cast slab
CN104928600A (en) * 2015-05-26 2015-09-23 东北特钢集团北满特殊钢有限责任公司 Non-quenched and tempered steel for engineering machinery and truck drive systems and manufacturing method of non-quenched and tempered steel
JP2018197365A (en) * 2017-05-23 2018-12-13 Jfeスチール株式会社 Steel slab, method for producing steel slab, and high-tension steel plate
WO2020094684A1 (en) * 2018-11-06 2020-05-14 Salzgitter Flachstahl Gmbh Interior high pressure-formed component made of steel, use of a steel for precursors for producing an interior high pressure-formed component, and precursor therefor
CN113423854A (en) * 2018-11-06 2021-09-21 萨尔茨吉特液压成型有限責任兩合公司 Steel inner high-pressure profiled part and use of steel in a semi-finished product for producing an inner high-pressure profiled part, and semi-finished product therefor
WO2021125407A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing same
WO2021125408A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties, and method for producing same
CN114829663A (en) * 2019-12-20 2022-07-29 株式会社Posco Steel wire rod having excellent spheroidizing heat treatment characteristics and method for producing the same
CN114829663B (en) * 2019-12-20 2023-09-12 株式会社Posco Steel wire rod having excellent spheroidizing heat treatment characteristics and method for producing the same
JP7388371B2 (en) 2021-01-07 2023-11-29 Jfeスチール株式会社 ERW steel pipe and method for manufacturing ERW steel pipe

Also Published As

Publication number Publication date
JP4093177B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US9493865B2 (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
JP5370016B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
JP4970625B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP4700765B2 (en) High-strength hot-rolled steel sheet for line pipes with excellent low-temperature toughness and ductile fracture stopping performance and method for producing the same
JP6179667B2 (en) Spring steel and manufacturing method thereof
CN110291215B (en) Hot-rolled flat steel product consisting of a complex phase steel with a predominantly bainitic structure and method for producing such a flat steel product
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
JP5124866B2 (en) Electroformed pipe for hydroforming, its steel plate, and manufacturing method thereof
JP3888333B2 (en) High-strength steel and manufacturing method thereof
JP5741483B2 (en) High-strength hot-rolled steel sheet for line pipes with excellent on-site weldability and manufacturing method thereof
JP5158272B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
CN105838992A (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP5834534B2 (en) High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe
JP2010196163A (en) Thick, high-tension, hot-rolled steel sheet excellent in low temperature toughness, and manufacturing method therefor
JP4093177B2 (en) Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof
JP5994819B2 (en) Steel plate with excellent impact resistance and method for producing the same
JP7155703B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP5158271B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
JP2008274336A (en) High strength steel sheet having excellent stretch-flange formability and fatigue property, and method for refining molten steel thereof
JP4168721B2 (en) High-strength steel and manufacturing method thereof
WO2023157897A1 (en) Steel material suitable for use in sour environments
JP7448804B2 (en) ERW steel pipes for line pipes and hot rolled steel plates for line pipes
JP7206792B2 (en) Steel for line pipes
JP5157235B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees