JP2005146297A - High-strength metal-matrix composite member - Google Patents

High-strength metal-matrix composite member Download PDF

Info

Publication number
JP2005146297A
JP2005146297A JP2003381128A JP2003381128A JP2005146297A JP 2005146297 A JP2005146297 A JP 2005146297A JP 2003381128 A JP2003381128 A JP 2003381128A JP 2003381128 A JP2003381128 A JP 2003381128A JP 2005146297 A JP2005146297 A JP 2005146297A
Authority
JP
Japan
Prior art keywords
median
matrix composite
composite member
molded body
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003381128A
Other languages
Japanese (ja)
Other versions
JP4119348B2 (en
JP2005146297A5 (en
Inventor
Kazuo Shibata
一雄 柴田
Satoshi Yamamura
聡 山村
Tadashi Otani
忠司 大谷
Masashi Ishii
正志 石井
Sven Leonhardt
スベン・レオンハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003381128A priority Critical patent/JP4119348B2/en
Publication of JP2005146297A publication Critical patent/JP2005146297A/en
Publication of JP2005146297A5 publication Critical patent/JP2005146297A5/ja
Application granted granted Critical
Publication of JP4119348B2 publication Critical patent/JP4119348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength metal-matrix composite member in which nonuniformity of mechanical properties, physical properties, etc., in the overall member is minimized. <P>SOLUTION: The metal-matrix composite member 1 consists of a ceramic formed body 2 with a three-dimensional network structure and a metal matrix 3 filled into the ceramic formed body 2. The ceramic formed body 2 has: a plurality of spherical cells 4 having uniformity in size and being in a dispersed state; and a plurality of communicating pores 6 present in a partition wall 5 between the spherical cells 4 neighboring each other. The median Md of the inside diameter of the communicating pore 6 satisfies Md≥1μm. The ratio of the median M<SB>D</SB>of the inside diameter of the spherical cell 4 to the median Md of the inside diameter of the communicating pore 6, Md/M<SB>D</SB>, is set to a value satisfying 0.1<Md/M<SB>D</SB><0.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高強度金属基複合部材に関する。   The present invention relates to a high-strength metal matrix composite member.

従来,この種の部材としては,粒子分散強化金属基複合部材および繊維分散強化金属基複合部材が知られている。前者の場合は,その強度・剛性に関する方向性が小さい,といった利点がある反面,複数の粒子が分散状態にあって,それら粒子による応力分担が小であることから粒子分散による強度・剛性向上度合が低い,という問題があった。一方,後者の場合は,繊維同士の絡み合いや線接触が生じているため,それらによる応力分担が得られることから強度・剛性向上度合は前者よりも大となるが,繊維に配向性が存在すると,その強度・剛性に方向性が現出する,という問題があった。   Conventionally, particle dispersion strengthened metal matrix composite members and fiber dispersion strengthened metal matrix composite members are known as this type of member. In the former case, there is an advantage that the directionality of strength and rigidity is small, but on the other hand, since multiple particles are in a dispersed state and the stress sharing by these particles is small, the degree of improvement in strength and rigidity by particle dispersion is small. There was a problem that was low. On the other hand, in the latter case, entanglement and line contact between fibers occur, and stress sharing by them can be obtained. Therefore, the degree of improvement in strength and rigidity is greater than that of the former. There was a problem that directionality appeared in its strength and rigidity.

そこで,強化材による大なる応力分担と,強度・剛性に関する方向性の緩和を図るべく,強化材としての三次元網目構造を有するセラミック成形体と,そのセラミック成形体に充填された金属マトリックスとよりなる金属基複合部材が開発されている(例えば,特許文献1参照)。
特開平6−170514号公報
Therefore, in order to alleviate the stress sharing by the reinforcing material and to relieve the direction of strength and rigidity, the ceramic molded body having a three-dimensional network structure as the reinforcing material and the metal matrix filled in the ceramic molded body are used. A metal matrix composite member has been developed (see, for example, Patent Document 1).
JP-A-6-170514

しかしながら従来のセラミック成形体は,ランダムに配列された大きさの異なる複数のセルと,相隣る両セル間の隔壁に存する複数の連通孔とを有するものであって,そのセルの大きさ,セルの分布状態等が不均一であるため,金属基複合部材の強度,剛性,摺動特性等の機械的性質,冷却性能,熱膨脹率等の物理特性等が,その部材において部分的に大きく異なるおそれがある,という問題があった。   However, the conventional ceramic molded body has a plurality of randomly arranged cells having different sizes and a plurality of communication holes existing in the partition walls between the adjacent cells. Due to non-uniform cell distribution, etc., mechanical properties such as strength, rigidity, sliding properties, etc., physical properties such as cooling performance, thermal expansion coefficient, etc. of the metal matrix composites are partially different in the parts. There was a problem of fear.

本発明は,セラミック成形体の構造を改善することによって,部材全体における機械的性質,物理特性等の不均一化を極力抑制された前記高強度金属基複合部材を提供することを目的とする。   An object of the present invention is to provide the high-strength metal matrix composite member in which nonuniformity of mechanical properties, physical characteristics, etc. in the entire member is suppressed as much as possible by improving the structure of the ceramic molded body.

前記目的を達成するため本発明によれば,三次元網目構造を有するセラミック成形体と,そのセラミック成形体に充填された金属マトリックスとよりなる高強度金属基複合部材において,前記セラミック成形体は,大きさに均一性を持ち,且つ分散状態にある複数の球状セルと,相隣る両球状セル間の隔壁に存する複数の連通孔とを有し,その連通孔の内径のメジアンMdはMd≧1μmであり,前記球状セルの内径のメジアンMD と前記連通孔の内径のメジアンMdとの比Md/MD を0.1<Md/MD <0.5に設定した金属基複合部材が提供される。 In order to achieve the above object, according to the present invention, in a high-strength metal matrix composite member comprising a ceramic molded body having a three-dimensional network structure and a metal matrix filled in the ceramic molded body, the ceramic molded body comprises: It has a plurality of spherical cells that are uniform in size and in a dispersed state, and a plurality of communication holes that exist in the partition walls between adjacent spherical cells, and the median Md of the inner diameter of the communication holes is Md ≧ A metal matrix composite member having a ratio Md / M D of 0.1 <Md / M D <0.5, which is 1 μm, and the ratio Md / M D of the median M D of the inner diameter of the spherical cell to the median Md of the inner diameter of the communication hole is Provided.

前記のように構成すると,セラミック成形体における球状セルの大きさおよびその分布状態の均一性を高めて,部材全体における機械的性質,物理特性等の不均一化を極力抑制することができ,これにより低体積分率Vfにて高い強度を有する金属基複合部材を提供することができる。またこの金属基複合部材は低体積分率Vfにて優れた耐焼付き性を有する。   With the configuration as described above, the uniformity of the size and distribution of the spherical cells in the ceramic molded body can be improved, and the non-uniformity of the mechanical properties, physical properties, etc. of the entire member can be suppressed as much as possible. Thus, it is possible to provide a metal matrix composite member having high strength at a low volume fraction Vf. Further, this metal matrix composite member has excellent seizure resistance at a low volume fraction Vf.

図1,2において,直方体状をなす高強度金属基複合部材1は,三次元網目構造を有するセラミック成形体2と,そのセラミック成形体2に充填された金属マトリックス3とよりなる。図3,4において,セラミック成形体2は直方体状をなし,大きさに均一性を持ち,且つ分散状態にある,実施例では最密充填形式で配列する複数の球状セル4と,相隣る両球状セル4間の隔壁5に存する複数の連通孔6とを有する。   1 and 2, a high-strength metal matrix composite member 1 having a rectangular parallelepiped shape includes a ceramic molded body 2 having a three-dimensional network structure and a metal matrix 3 filled in the ceramic molded body 2. 3 and 4, the ceramic molded body 2 has a rectangular parallelepiped shape, is uniform in size, and is in a dispersed state. In the embodiment, the ceramic molded body 2 is adjacent to a plurality of spherical cells 4 arranged in a close-packed form. It has a plurality of communication holes 6 existing in the partition wall 5 between the spherical cells 4.

連通孔6の内径のメジアンMdは,金属マトリックス3を構成する溶湯の加圧充填を許容し得るようにMd≧1μmに設定される。またセラミック成形体2の強度を確保すべく,球状セル4の内径のメジアンMD と連通孔6の内径のメジアンMdとの比Md/MD は0.1<Md/MD <0.5に設定される。ただし,比Md/MD がMd/MD <0.1では連通孔6の孔縁部に応力が集中するため部材1の強度が低下し,一方,Md/MD ≧0.5では隔壁5の量が少なくなるため部材1の強度および剛性が低下する。球状セル4の内径のメジアンMD は3D CT解析により,また連通孔6の内径のメジアンMdは水銀圧入法によりそれぞれ求められる。 The median Md of the inner diameter of the communication hole 6 is set to Md ≧ 1 μm so as to allow pressure filling of the molten metal constituting the metal matrix 3. Further, in order to ensure the strength of the ceramic molded body 2, the ratio Md / M D of the median M D of the inner diameter of the spherical cell 4 and the median Md of the inner diameter of the communication hole 6 is 0.1 <Md / M D <0.5. Set to However, when the ratio Md / M D is Md / M D <0.1, the stress concentrates on the edge of the communication hole 6 and the strength of the member 1 is reduced. On the other hand, when Md / M D ≧ 0.5, Since the amount of 5 is reduced, the strength and rigidity of the member 1 are reduced. The median M D of the inner diameter of the spherical cells 4 3D CT analysis, also the median Md of the inner diameter of the communication hole 6 is determined respectively by mercury porosimetry.

セラミック成形体2の構成材料としては,SiC,Al2 3 ,Si3 4 ,AlN等のエンジニアリングセラミックスが好適であるが,これらに限定されるものではない。また金属マトリックス2の構成材料としては,Al,Al合金,Cu,Cu合金,Mg,Mg合金,Si,Si合金等が用いられる。 As a constituent material of the ceramic molded body 2, engineering ceramics such as SiC, Al 2 O 3 , Si 3 N 4 , and AlN are suitable, but are not limited thereto. Further, as the constituent material of the metal matrix 2, Al, Al alloy, Cu, Cu alloy, Mg, Mg alloy, Si, Si alloy, or the like is used.

セラミック成形体2の製造に当っては,図5に示すごとく,次のような諸工程が用いられる。   In manufacturing the ceramic molded body 2, as shown in FIG. 5, the following processes are used.

(a)工程:球状セル4を形成すべく,所定のメジアン直径を有する球状合成樹脂粒子7の集合体と,それら合成樹脂粒子7よりも小径で,且つ所定のメジアン直径を有するセラミック粒子8の集合体とを用意する。   (A) Step: In order to form the spherical cell 4, an aggregate of spherical synthetic resin particles 7 having a predetermined median diameter and ceramic particles 8 having a predetermined median diameter smaller than the synthetic resin particles 7 Prepare an aggregate.

(b)工程:両集合体を被覆処理機に投入して合成樹脂粒子7の表面にセラミック粒子8を密に付着させた被覆粒子9の集合体を得る。   Step (b): Both aggregates are put into a coating processor to obtain an aggregate of coated particles 9 in which ceramic particles 8 are closely adhered to the surface of the synthetic resin particles 7.

(c)工程:被覆粒子9の集合体を型に入れて最密充填処理を行う。   (C) Process: Putting the aggregate | assembly of the covering particle | grains 9 into a type | mold, and performing a close packing process.

(d)工程:型内に,例えば,セラミック粒子8と同一材質のセラミックスを含むセラミックスラリを注入して集合体の隙間に充填する。   (D) Process: For example, a ceramic slurry containing ceramics of the same material as the ceramic particles 8 is injected into the mold and filled in the gaps of the aggregate.

(e)工程:セラミックスラリを乾燥した後,そのセラミックス10と被覆粒子9の集合体とよりなる付形物11を離型する。   (E) Step: After the ceramic slurry is dried, the shaped article 11 composed of the ceramic 10 and the aggregate of the coated particles 9 is released.

(f)工程:付形物11を所定の雰囲気の焼結炉内に設置して,所定の炉内圧下,所定の昇温速度にて炉内を,合成樹脂粒子7を熱分解し得る加熱温度まで上昇させ,その加熱温度を所定時間維持する。これにより合成樹脂粒子7が熱分解して,球状セル4が形成されると共に相隣る両球状セル4間に在って複数のセラミック粒子8およびセラミックス10よりなる隔壁形成部5aに,熱分解ガスが抜ける際の圧力で複数の連通孔6が形成される。   (F) Process: Heating capable of thermally decomposing the synthetic resin particles 7 in a furnace under a predetermined furnace pressure and a predetermined temperature increase rate by placing the shaped article 11 in a sintering furnace of a predetermined atmosphere The temperature is raised and the heating temperature is maintained for a predetermined time. As a result, the synthetic resin particles 7 are thermally decomposed to form the spherical cells 4 and to the partition wall forming portion 5a made of the plurality of ceramic particles 8 and ceramics 10 between the adjacent spherical cells 4. A plurality of communication holes 6 are formed by the pressure at which the gas escapes.

(g)工程:炉内をセラミック粒子8を焼結し得る温度まで上昇させて,その焼結温度を所定時間維持する。これにより三次元網目構造を有するセラミック成形体2を得る。   (G) Process: The temperature in the furnace is raised to a temperature at which the ceramic particles 8 can be sintered, and the sintering temperature is maintained for a predetermined time. Thereby, the ceramic molded body 2 having a three-dimensional network structure is obtained.

前記製造方法において,球状セル4の内径およびその均一化は合成樹脂粒子7のメジアン直径に依存し,また球状セル4の分布状態の均一化は前記(c)工程の最密充填処理を行うことによって達成される。さらに連通孔6の内径は前記(f)工程における炉内雰囲気,昇温速度,炉内圧,セラミックスラリの粘度(セラミックス10の濃度)等によって制御される。例えば,合成樹脂粒子7のメジアン直径を所定値に設定し,また前記昇温速度を制御することによって,両メジアンMd,MD の比Md/MD を0.1<Md/MD <0.5に収めることができる。 In the manufacturing method, the inner diameter of the spherical cells 4 and the uniformization thereof depend on the median diameter of the synthetic resin particles 7, and the uniform distribution of the spherical cells 4 is performed by the closest packing process in the step (c). Achieved by: Further, the inner diameter of the communication hole 6 is controlled by the furnace atmosphere, the heating rate, the furnace pressure, the ceramic slurry viscosity (ceramic 10 concentration) and the like in the step (f). For example, combining the median diameter of the resin particles 7 is set to a predetermined value, also by controlling the rate of temperature increase, both the median Md, the ratio Md / M D of M D 0.1 <Md / M D <0 .5.

以下,具体例について説明する。   Specific examples will be described below.

〔I〕セラミック成形体の製造
前記(a)〜(g)工程を以下に述べる条件にて行い,縦20mm,横30mm,長さ40mmの直方体状セラミック成形体を得た。
[I] Production of Ceramic Molded Body The steps (a) to (g) were performed under the conditions described below to obtain a rectangular parallelepiped ceramic molded body having a length of 20 mm, a width of 30 mm, and a length of 40 mm.

(a)工程…球状合成樹脂粒子の集合体:メジアン直径が90μmのPMMA粒子の集合体(綜研化学社製,商品名MR−90G);セラミック粒子の集合体:メジアン直径が0.5μmのSiC粒子の集合体(屋久島電工社製,商品名OY−20).
(b)工程…合成樹脂粒子の集合体(W1 )とセラミック粒子の集合体(W2 )との配合重量比:W1 /W2 =1/1;被覆処理機:ホソカワミクロン社製,商品名AM−15F,回転速度1000rpm ,処理時間0.5h,インナーピース距離1mm.
(c)工程:型の寸法および構造:縦20mm,横30mm,深さ20mmの凹部を有する2つのPTFE製ブロックを対向して配置し,縦20mm,横30mm,長さ40mmのキャビティを有するものを型とした;減圧濾過による最密充填処理:複数の吸引孔を有する一方のブロックの底面に,0.7μmの連通孔を持つガラス繊維製濾材を敷き,次いで他方のブロックの開口からキャビティ内に被覆粒子を投入し,その後,一方のブロックの吸引孔を介してキャビティ内を減圧した。
(A) Process: Aggregation of spherical synthetic resin particles: Aggregation of PMMA particles having a median diameter of 90 μm (trade name MR-90G, manufactured by Soken Chemical Co., Ltd.); Aggregation of ceramic particles: SiC having a median diameter of 0.5 μm Aggregation of particles (manufactured by Yakushima Electric Works, trade name OY-20).
(B) Process: Blending weight ratio of the aggregate of synthetic resin particles (W 1 ) and the aggregate of ceramic particles (W 2 ): W 1 / W 2 = 1/1; Coating processor: manufactured by Hosokawa Micron Name AM-15F, rotational speed 1000 rpm, processing time 0.5 h, inner piece distance 1 mm.
(C) Process: Mold dimensions and structure: Two PTFE blocks with recesses 20mm long, 30mm wide, 20mm deep are placed facing each other and have a cavity 20mm long, 30mm wide, 40mm long Close-packing treatment by vacuum filtration: A glass fiber filter medium having a 0.7 μm communicating hole is laid on the bottom of one block having a plurality of suction holes, and then inside the cavity from the opening of the other block The coated particles were introduced into the cavities, and then the inside of the cavity was depressurized through the suction holes of one block.

(d)工程…セラミックスラリ:SiCスラリ
(e)工程…1次乾燥処理:20℃,20h;2次乾燥処理:90℃,1h.
(f)工程…炉内雰囲気:大気;炉内圧:0.1MPa;昇温速度:10℃/h;加熱温度:500℃,1h.
(g)工程…焼結温度:2000℃;焼結時間:3h.
このようにして得られたセラミック成形体2は三次元網目構造を有するもので,複数の球状セル4は最密充填形式で配列していて,その内径のメジアンMD はMD =80μmであり,また連通孔6の内径のメジアンMdはMd=16μmであり,よって,両メジアンMd,MD の比Md/MD はMd/MD =0.2であった。
(D) Step: Ceramic slurry: SiC slurry (e) Step: Primary drying treatment: 20 ° C., 20 h; Secondary drying treatment: 90 ° C., 1 h.
(F) Process: furnace atmosphere: air; furnace pressure: 0.1 MPa; temperature increase rate: 10 ° C./h; heating temperature: 500 ° C., 1 h.
(G) Step: Sintering temperature: 2000 ° C .; Sintering time: 3 h.
The ceramic molded body 2 thus obtained has a three-dimensional network structure, a plurality of spherical cells 4 are arranged in a close-packed form, and the median M D of the inner diameter is M D = 80 μm. and the median Md of the inner diameter of the communication hole 6 is Md = 16 [mu] m, thus the ratio Md / M D of both median Md, M D was Md / M D = 0.2.

〔II〕金属基複合部材の製造
セラミック成形体2を金型のキャビティに設置し,次いで680℃のAl合金(JIS ADC12)の溶湯を用い,射出速度0.2m/s,鋳造圧力75MPaの条件で低速層流ダイカスト法を行って,縦20mm,横30mm,長さ40mmで,且つセラミック成形体2の体積分率VfがVf=30%の金属基複合部材1を得た。この部材1を実施例とし,これについて,0.2%耐力(圧縮)およびヤング率を測定した。
[II] Manufacture of metal matrix composite member The ceramic molded body 2 was placed in the cavity of the mold, and then a molten metal of 680 ° C Al alloy (JIS ADC12) was used, injection speed 0.2m / s, casting pressure 75MPa The metal matrix composite member 1 having a length of 20 mm, a width of 30 mm, a length of 40 mm, and a volume fraction Vf of the ceramic compact 2 of Vf = 30% was obtained by performing a low-speed laminar flow die casting method. Using this member 1 as an example, 0.2% proof stress (compression) and Young's modulus were measured.

比較のため前記セラミック成形体と同一材質で同一寸法のMMI社製発泡セラミック成形体を用いて前記と同様の方法で金属基複合部材を製造し,これを比較例1とした。また粒径のメジアンが15μmであるSiC粒子を均一に分散させた金属基複合部材を製造し,これを比較例2とした。さらに球状セルの内径のメジアンMD がMD =80μmであり,また連通孔の内径のメジアンMdがMd=8μmであって,両メジアンMd,MD の比Md/MD がMd/MD =0.1であること以外は実施例と同様の金属基複合部材を製造し,これを比較例3とした。さらに球状セルの内径のメジアンMD がMD =100μmであり,また連通孔の内径のメジアンMdがMd=50μmであって,両メジアンMd,MD の比Md/MD がMd/MD =0.5であること以外は実施例と同様の金属基複合部材を製造し,これを比較例4とした。これらについて0.2%耐力(圧縮)およびヤング率を測定した。 For comparison, a metal matrix composite member was manufactured in the same manner as described above using a foamed ceramic molded body manufactured by MMI having the same material and the same dimensions as the ceramic molded body. Further, a metal matrix composite member in which SiC particles having a median particle size of 15 μm were uniformly dispersed was produced. A further median M D is M D = 80 [mu] m inner diameter of spherical cells, also the median Md of the inner diameter of the communication hole a Md = 8 [mu] m, both median Md, the ratio Md / M D is Md / M D of M D A metal matrix composite member similar to that of the example was manufactured except that = 0.1, and this was designated as Comparative Example 3. A further median M D is M D = 100 [mu] m inner diameter of spherical cells, also the median Md of the inner diameter of the communication hole a Md = 50 [mu] m, both median Md, the ratio Md / M D is Md / M D of M D A metal matrix composite member similar to that of the example was manufactured except that = 0.5, and this was designated as Comparative Example 4. These were measured for 0.2% yield strength (compression) and Young's modulus.

表1は実施例および比較例1〜4に関する諸データを示す。   Table 1 shows various data relating to Examples and Comparative Examples 1 to 4.

Figure 2005146297
Figure 2005146297

表1より,実施例は,強化材が網目状に連結されているため(連続性有り)荷重に対する方向性について等方性を持ち,また球状セルの分布が均一であり,その上,メジアンMd≧1μmであると共にMd/MD が0.1<Md/MD <0.5であることから高強度であることが判る。比較例1は前記連続性はあるが,球状セルのサイズが不均一なため,等方性は中程度であり,また球状セルの分布も不均一であるため,実施例に比べて強度が低くなっている。さらに比較例2は荷重に対して等方性,強化材の均一性はあるものの前記連続性が無い為,実施例に対して強度が低くなっている。 From Table 1, the examples have the isotropic property to the load because the reinforcing materials are connected in a mesh form (with continuity), the distribution of spherical cells is uniform, and in addition, the median Md Since it is ≧ 1 μm and Md / M D is 0.1 <Md / M D <0.5, it can be seen that the strength is high. Although Comparative Example 1 has the continuity described above, the size of the spherical cells is non-uniform, so the isotropic property is moderate, and the distribution of the spherical cells is also non-uniform, so the strength is lower than that of the example. It has become. Furthermore, although the comparative example 2 is isotropic with respect to the load and the uniformity of the reinforcing material is not the continuity, the strength is lower than that of the example.

図6は,実施例および比較例1に関する,テンプレート法による球状セルの内径と,その存在確率との関係を示す。実施例では,球状セルの内径のバラツキ範囲が30〜110μmであるのに対し,比較例1のそれは40〜340μmと広範囲である。よって,球状セルの内径の均一性は実施例の方が比較例1に比べて高いことが解る。   FIG. 6 shows the relationship between the inner diameter of the spherical cell by the template method and the existence probability regarding the example and the comparative example 1. In the example, the variation range of the inner diameter of the spherical cell is 30 to 110 μm, while that of the comparative example 1 is as wide as 40 to 340 μm. Therefore, it is understood that the uniformity of the inner diameter of the spherical cell is higher in the example than in the comparative example 1.

次に,実施例および比較例1〜4に関し焼付きテストを行った。テストに当っては,実施例等から得られたテストピースを,PVDによるCrN表面層を備えた相手部材に対し無潤滑下で摺動距離40mmを1分間に200回往復摺動させ,その際,30秒間経過毎にテストピースへの押圧荷重を9.8N宛増加させて,焼付きを発生したときの荷重,つまり焼付き発生荷重を求めた。表2は焼付きテスト結果を示す。   Next, a seizure test was performed on the examples and comparative examples 1 to 4. In the test, the test piece obtained from the example was reciprocally slid 200 times per minute with a sliding distance of 40 mm against a mating member with a CrN surface layer made of PVD. Each time 30 seconds passed, the pressing load on the test piece was increased to 9.8 N, and the load when seizure occurred, that is, the seizure occurrence load was obtained. Table 2 shows the seizure test results.

Figure 2005146297
Figure 2005146297

表2より,実施例は比較例1〜4に比べて優れた耐焼付き性を有することが判る。   From Table 2, it can be seen that the examples have better seizure resistance than Comparative Examples 1 to 4.

金属基複合部材においては,一般に強化材の体積分率Vfを高めて耐焼付き性を向上させる,といった手段が採用されているが,実施例のごとく,強化材として独特の構造を持つセラミック成形体を用いると,低体積分率Vfにて高い強度および剛性を有すると共に優れた耐焼付き性を持つことができる。   In the metal matrix composite member, generally, means such as increasing the volume fraction Vf of the reinforcing material and improving the seizure resistance is adopted. However, as in the embodiment, the ceramic molded body having a unique structure as the reinforcing material. Can be used to have high strength and rigidity at a low volume fraction Vf and excellent seizure resistance.

金属基複合部材としては,エンジンのシリンダブロックにおいて,シリンダボア回り,シリンダヘッドガスケット面,ボルト締結座面,ジャーナル軸受周り等から選択される1箇所以上を強化したもの,シリンダヘッドにおいて,シリンダヘッドガスケット面,ボルト締結座面,カムジャーナル軸受周り,バルブシート圧入部,バルブガイド圧入部等から選択される1箇所以上を強化したもの,ケースやカバー類において,ボルト締結座面,合せ面等から選択される1箇所以上を強化したもの等を挙げることができる。   The metal matrix composite member is a cylinder block of an engine that is reinforced at one or more locations selected from around the cylinder bore, cylinder head gasket surface, bolt fastening seat surface, journal bearing, etc. In the cylinder head, the cylinder head gasket surface , Bolt tightening seat surface, cam journal bearing circumference, valve seat press-fitting part, valve guide press-fitting part, etc., strengthened at one or more places, cases and covers, etc., selected from bolt fastening seat surface, mating surface, etc. And the like strengthened at one or more locations.

金属基複合部材の斜視図である。It is a perspective view of a metal matrix composite member. 金属基複合部材の要部拡大断面図である。It is a principal part expanded sectional view of a metal matrix composite member. セラミック成形体の斜視図である。It is a perspective view of a ceramic molded body. セラミック成形体の要部拡大断面図である。It is a principal part expanded sectional view of a ceramic molded object. セラミック成形体の製造工程説明図である。It is manufacturing process explanatory drawing of a ceramic molded body. 球状セルの内径とその存在確率との関係を示すグラフである。It is a graph which shows the relationship between the internal diameter of a spherical cell, and its existence probability.

符号の説明Explanation of symbols

1……金属基複合部材
2……セラミック成形体
3……金属マトリックス
4……球状セル
5……隔壁
6……連通孔
DESCRIPTION OF SYMBOLS 1 ... Metal matrix composite member 2 ... Ceramic compact 3 ... Metal matrix 4 ... Spherical cell 5 ... Partition 6 ... Communication hole

Claims (1)

三次元網目構造を有するセラミック成形体(2)と,そのセラミック成形体(2)に充填された金属マトリックス(3)とよりなる高強度金属基複合部材において,前記セラミック成形体(2)は,大きさに均一性を持ち,且つ分散状態にある複数の球状セル(4)と,相隣る両球状セル(4)間の隔壁(5)に存する複数の連通孔(6)とを有し,その連通孔(6)の内径のメジアンMdはMd≧1μmであり,前記球状セル(4)の内径のメジアンMD と前記連通孔(6)の内径のメジアンMdとの比Md/MD を0.1<Md/MD <0.5に設定したことを特徴とする高強度金属基複合部材。 In a high-strength metal matrix composite member comprising a ceramic molded body (2) having a three-dimensional network structure and a metal matrix (3) filled in the ceramic molded body (2), the ceramic molded body (2) is: It has a plurality of spherical cells (4) that are uniform in size and in a dispersed state, and a plurality of communication holes (6) that exist in the partition wall (5) between the adjacent spherical cells (4). The median Md of the inner diameter of the communication hole (6) is Md ≧ 1 μm, and the ratio Md / M D of the median M D of the inner diameter of the spherical cell (4) and the median Md of the inner diameter of the communication hole (6). Is set to 0.1 <Md / M D <0.5.
JP2003381128A 2003-11-11 2003-11-11 Manufacturing method of high strength metal matrix composite Expired - Fee Related JP4119348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381128A JP4119348B2 (en) 2003-11-11 2003-11-11 Manufacturing method of high strength metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381128A JP4119348B2 (en) 2003-11-11 2003-11-11 Manufacturing method of high strength metal matrix composite

Publications (3)

Publication Number Publication Date
JP2005146297A true JP2005146297A (en) 2005-06-09
JP2005146297A5 JP2005146297A5 (en) 2005-11-04
JP4119348B2 JP4119348B2 (en) 2008-07-16

Family

ID=34690602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381128A Expired - Fee Related JP4119348B2 (en) 2003-11-11 2003-11-11 Manufacturing method of high strength metal matrix composite

Country Status (1)

Country Link
JP (1) JP4119348B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357976B2 (en) 2004-06-15 2008-04-15 Honda Motor Co., Ltd. Ceramic molded body and metal matrix composite
CN110128144A (en) * 2019-06-11 2019-08-16 北京中煤煤炭洗选技术有限公司 A kind of metal and ceramic composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357976B2 (en) 2004-06-15 2008-04-15 Honda Motor Co., Ltd. Ceramic molded body and metal matrix composite
CN110128144A (en) * 2019-06-11 2019-08-16 北京中煤煤炭洗选技术有限公司 A kind of metal and ceramic composite

Also Published As

Publication number Publication date
JP4119348B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US8568650B2 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US8293048B2 (en) Methods for synthesizing bulk, composite and hybrid structures from polymeric ceramic precursors as well as other polymeric substances and compounds
US11753947B2 (en) Method for manufacturing a part made from CMC
JP7160888B2 (en) Composite and its manufacturing method
US10094325B2 (en) Cylinder liner
US7302989B1 (en) Modular mold system with ceramic inserts
JP4095584B2 (en) Ceramic molded body and metal matrix composite member
JP3987022B2 (en) Method for producing ceramic molded body having three-dimensional network structure
JP2017008939A (en) Manufacturing method of valve seat ring
JP4119348B2 (en) Manufacturing method of high strength metal matrix composite
US11154930B2 (en) Method for producing a porous shaped body
JP4185534B2 (en) engine
JP4119357B2 (en) Method for producing high thermal conductivity metal matrix composite
WO2017122564A1 (en) Piston for internal combustion engines and method for producing piston for internal combustion engines
JP4088270B2 (en) Cylinder block
CN108517484B (en) Ceramic coating with closed pore structure and preparation process thereof
JP4026836B2 (en) Method for producing ceramic molded body having three-dimensional network structure
JP4376127B2 (en) Manufacturing method of mold for vacuum casting
JP4026834B2 (en) Method for producing ceramic molded body having three-dimensional network structure
RU2793311C2 (en) Method for manufacturing a part from composite material with ceramic matrix
JP2006001765A (en) Forming process of ceramic formed body with three-dimensional network structure and ceramic formed body
JP3547077B2 (en) Method of manufacturing preform for metal matrix composite
JP2011228346A (en) Compound material and method for manufacturing the same
JP2006214387A (en) Intake valve and manufacturing method thereof
JP2013152018A (en) Railway vehicle brake shoe and method of manufacturing the same, and ceramic block for railway vehicle brake shoe and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees