JP4119357B2 - Method for producing high thermal conductivity metal matrix composite - Google Patents

Method for producing high thermal conductivity metal matrix composite Download PDF

Info

Publication number
JP4119357B2
JP4119357B2 JP2003417773A JP2003417773A JP4119357B2 JP 4119357 B2 JP4119357 B2 JP 4119357B2 JP 2003417773 A JP2003417773 A JP 2003417773A JP 2003417773 A JP2003417773 A JP 2003417773A JP 4119357 B2 JP4119357 B2 JP 4119357B2
Authority
JP
Japan
Prior art keywords
ceramic
molded body
particles
metal matrix
ceramic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003417773A
Other languages
Japanese (ja)
Other versions
JP2005179697A (en
Inventor
一雄 柴田
忠司 大谷
聡 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003417773A priority Critical patent/JP4119357B2/en
Publication of JP2005179697A publication Critical patent/JP2005179697A/en
Application granted granted Critical
Publication of JP4119357B2 publication Critical patent/JP4119357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は高熱伝導性金属基複合部材の製造方法に関する。 The present invention relates to a method for producing a highly thermally conductive metal matrix composite member.

従来、この種の部材としては粒子分散金属基複合部材および繊維分散金属基複合部材が知られている。前者の場合は、その熱伝導性に関する方向性が小さい、といった利点がある反面、熱伝導率の高い複数の粒子が、それらの粒子よりも熱伝導率の低いマトリックスに分散している状態にあって、熱は、熱伝導率の低いマトリックスを流れると共に粒子とマトリックスの界面を伝達する必要があるため、部材全体における熱伝導性向上度合いが低い、という問題があった。一方、後者の場合は、繊維の配向方向に関する熱伝導性は高いものの、配向方向以外の熱伝導性は低いという異方性が存在する。このような異方性については、繊維配向をランダムにすることで低減可能であるが、熱の流れ方向に配向する繊維の量が減少するため、部材全体における熱伝導性向上度合いが低い、という問題があった。   Conventionally, a particle-dispersed metal matrix composite member and a fiber-dispersed metal matrix composite member are known as this type of member. In the former case, there is an advantage that the directionality of the thermal conductivity is small, but on the other hand, a plurality of particles having high thermal conductivity are dispersed in a matrix having lower thermal conductivity than those particles. In addition, since heat needs to flow through the matrix having a low thermal conductivity and be transmitted through the interface between the particles and the matrix, there is a problem that the degree of improvement in the thermal conductivity of the entire member is low. On the other hand, in the latter case, although the thermal conductivity in the fiber orientation direction is high, there is an anisotropy that the thermal conductivity other than the orientation direction is low. Such anisotropy can be reduced by making the fiber orientation random, but the amount of fibers oriented in the direction of heat flow decreases, so the degree of improvement in thermal conductivity of the entire member is low. There was a problem.

ところで、耐摩耗性の向上を狙って、三次元網目構造を有するセラミック成形体と、そのセラミック成形体に充填された金属マトリックスとよりなる金属基複合部材が開発されている(例えば、特許文献1参照)。そこで、セラミック成形体を高い熱伝導率を有する材料を用いて成形し、部材全体に熱伝導率の高い伝熱路を張巡らせれば、部材全体における熱の流れを向上させ、熱伝導性に関する方向性の緩和を期待することができる。
特開平6−170514号公報
By the way, with the aim of improving wear resistance, a metal matrix composite member has been developed that includes a ceramic molded body having a three-dimensional network structure and a metal matrix filled in the ceramic molded body (for example, Patent Document 1). reference). Therefore, if a ceramic molded body is molded using a material having high thermal conductivity and a heat transfer path with high thermal conductivity is stretched around the entire member, the heat flow in the entire member is improved, and the thermal conductivity is related. We can expect relaxation of directionality.
JP-A-6-170514

しかしながら、従来のセラミック成形体は、そのセルの大きさおよびセルの分布状態が不均一であるため、金属基複合部材内部において部分的な熱の流れが大きく異なり、部材全体の熱伝導性向上度合いが低い、という問題を生じるおそれがあった。   However, in the conventional ceramic molded body, the size of the cells and the distribution state of the cells are not uniform, so that the partial heat flow differs greatly inside the metal matrix composite member, and the degree of improvement in thermal conductivity of the entire member There was a risk of causing a problem of low.

本発明は、セラミック成形体の構造を改善することにより、部分的な熱の流れを均一にすることで、部材全体に亘り高い熱伝導性を有する金属基複合部材の製造方法を提供することを目的とする。 The present invention provides a method for manufacturing a metal matrix composite member having a high thermal conductivity over the entire member by improving the structure of the ceramic molded body to make the partial heat flow uniform. Objective.

前記目的を達成するため本発明によれば、SiC又はAlNで構成されて三次元網目構造を有するセラミック成形体と、そのセラミック成形体に充填されたAl合金又はMg合金の金属マトリックスとよりな、前記セラミック成形体、最密充填形式で配列する複数の球状セルと、相隣る両球状セル間の隔壁に存する複数の連通孔とを有してなる高熱伝導性金属基複合部材の製造方法であって、
所定形状の前記セラミック成形体を製造するセラミック成形体製造工程と、その製造された前記セラミック成形体を金型のキャビティに設置して、そのキャビティに前記金属マトリックスの溶湯を加圧充填する工程とを備え、前記セラミック成形体製造工程は、所定直径の球状合成樹脂粒子の表面に、その球状合成樹脂粒子よりも小径の複数のセラミック粒子を密に付着させることで前記表面を該セラミック粒子で覆ってなる被覆粒子の集合体を得る第1の工程と、前記被覆粒子の集合体を型に入れて最密充填処理を行う第2の工程と、前記型内にセラミックスを含むセラミックスラリを注入して前記被覆粒子の集合体の隙間に充填し、乾燥させることで、前記セラミックスと被覆粒子の集合体とよりなる付形物を得る第3の工程と、その付形物を離型した後、焼結炉内に設置して加熱することにより、該付形物中の各合成樹脂粒子を熱分解する第4の工程と、前記熱分解後において、前記焼結炉内で、前記付形物中の前記セラミック粒子及び前記セラミックスを焼結させる第5の工程とを含むことを特徴とする、高熱伝導性金属基複合部材の製造方法が提供される。
According to the present invention for achieving the above object, a ceramic molded body having a three-dimensional network structure is composed of SiC or AlN, Ri Na more metal matrix filled Al alloy or Mg alloy into the ceramic body the ceramic molded body is manufactured of a plurality of the spherical cells, phase Tonariru high thermal conductivity metal matrix composite formed by a plurality of communication holes existing in the partition wall between the two spherical cells be arranged in close-packed format A method,
A ceramic molded body manufacturing process for manufacturing the ceramic molded body of a predetermined shape, and a process of placing the manufactured ceramic molded body in a cavity of a mold and pressurizing and filling the molten metal matrix into the cavity; The ceramic molded body manufacturing step comprises covering the surface with the ceramic particles by closely attaching a plurality of ceramic particles having a smaller diameter than the spherical synthetic resin particles to the surface of the spherical synthetic resin particles having a predetermined diameter. A first step of obtaining an aggregate of coated particles, a second step of placing the aggregate of coated particles in a mold and performing a close-packing treatment, and injecting a ceramic slurry containing ceramics into the mold. A third step of obtaining a shaped product comprising the ceramic and the aggregate of the coated particles by filling the gap between the aggregates of the coated particles and drying; After releasing the product, a fourth step of thermally decomposing each synthetic resin particle in the shaped article by installing and heating in the sintering furnace, and after the pyrolysis, the sintering furnace And a fifth step of sintering the ceramic particles and the ceramic in the shaped article . A method for producing a highly heat-conductive metal matrix composite member is provided.

前記のように構成すると、セラミック成形体における球状セルの大きさおよびその分布状態の均一性を高めて、部材全体に亘り熱伝導率の高い伝熱路をバランスよく張巡らせることができ、これにより、低体積分率Vfにて、高い熱伝導性を有する金属基複合部材を提供することができる。   When configured as described above, the size of the spherical cells in the ceramic molded body and the uniformity of the distribution state thereof can be improved, and the heat transfer path with high thermal conductivity can be stretched in a well-balanced manner throughout the member, thereby A metal matrix composite having high thermal conductivity at a low volume fraction Vf can be provided.

図1、2において、短柱状をなす高熱伝導性金属基複合部材1は、三次元網目構造を有するセラミック成形体2と、そのセラミック成形体2に充填された金属マトリックス3とよりなる。図3、4において、セラミック成形体2は直方体状をなし、最密充填形式で配列する複数の球状セル4と、相隣る両球状セル4間の隔壁5に存する複数の連通孔6とを有する。   1 and 2, a highly thermally conductive metal matrix composite member 1 having a short columnar shape includes a ceramic molded body 2 having a three-dimensional network structure and a metal matrix 3 filled in the ceramic molded body 2. 3 and 4, the ceramic molded body 2 has a rectangular parallelepiped shape, and includes a plurality of spherical cells 4 arranged in a close-packed form, and a plurality of communication holes 6 existing in the partition walls 5 between the adjacent spherical cells 4. Have.

連通孔6の内径のメジアンMdは、金属マトリックス3を構成する溶湯の加圧充填を許容し得るようにMd≧1μmに設定される。またセラミック成形体2内部の熱の流れから球状セル4の内径のメジアンMD と連通孔6の内径のメジアンMdとの比Md/MD はMd/MD <0.5に設定される。ただし、比Md/MD ≧0.5では隔壁5の量が少なくなるため、部材1全体の熱伝導性が低下する。球状セル4の内径のメジアンMD は3D CT解析により、また連通孔6の内径のメジアンMdは水銀圧入法によりそれぞれ求められる。 The median Md of the inner diameter of the communication hole 6 is set to Md ≧ 1 μm so as to allow pressure filling of the molten metal constituting the metal matrix 3. Further, the ratio Md / M D of the median M D of the inner diameter of the spherical cell 4 and the median Md of the inner diameter of the communication hole 6 is set to Md / M D <0.5 from the heat flow inside the ceramic molded body 2. However, when the ratio Md / M D ≧ 0.5, the amount of the partition walls 5 is reduced, so that the thermal conductivity of the entire member 1 is lowered. The median M D of the inner diameter of the spherical cells 4 3D CT analysis, also the median Md of the inner diameter of the communication hole 6 is determined respectively by mercury porosimetry.

金属マトリックス2の構成材料としては、l合金又はMg合が用いられる。セラミック成形体2の構成材料としては、高い熱伝導率を有するSiC又はAlが用いられる。この場合、セラミック成形体2の熱伝導率Kcと金属マトリックス3の熱伝導率Kmとの間にはKc>Kmの関係成立る。 As a constituent material of the metal matrix 2, A l alloy or Mg alloy is used. Examples of the material of the ceramic molded body 2, SiC or Al N having a high thermal conductivity is used. In this case, the relationship between Kc> Km between the thermal conductivity of Km of thermal conductivity Kc and the metal matrix 3 of the ceramic molded body 2 you satisfied.

金属マトリックス3およびセラミック成形体2の構成材料例に関する熱伝導率Km、Kcは表1の通りである。   Table 1 shows the thermal conductivities Km and Kc regarding the constituent materials of the metal matrix 3 and the ceramic molded body 2.

Figure 0004119357
Figure 0004119357

セラミック成形体2の製造に当っては、図5に示すごとく、次のような諸工程が用いられる。   In manufacturing the ceramic molded body 2, as shown in FIG. 5, the following processes are used.

(a)工程:球状セル4を形成すべく、所定のメジアン直径を有する球状合成樹脂粒子7の集合体と、それら合成樹脂粒子7よりも小径で、且つ所定のメジアン直径を有するセラミック粒子8の集合体とを用意する。   (A) Step: An aggregate of spherical synthetic resin particles 7 having a predetermined median diameter and ceramic particles 8 having a smaller diameter than the synthetic resin particles 7 and having a predetermined median diameter to form the spherical cell 4 Prepare an aggregate.

(b)工程:両集合体を被覆処理機に投入して合成樹脂粒子7の表面にセラミック粒子8を密に付着させた被覆粒子9の集合体を得る。   Step (b): Both aggregates are put into a coating processor to obtain an aggregate of coated particles 9 in which ceramic particles 8 are closely adhered to the surface of the synthetic resin particles 7.

(c)工程:被覆粒子9の集合体を型に入れて最密充填処理を行う。   (C) Process: Putting the aggregate | assembly of the covering particle | grains 9 into a type | mold, and performing a close packing process.

(d)工程:型内に、例えば、セラミック粒子8と同一材質のセラミックスを含むセラミックスラリを注入して集合体の隙間に充填する。   (D) Step: For example, a ceramic slurry containing ceramics of the same material as the ceramic particles 8 is injected into the mold and filled in the gaps of the aggregate.

(e)工程:セラミックスラリを乾燥した後、そのセラミックス10と被覆粒子9の集合体とよりなる付形物11を離型する。   (E) Step: After drying the ceramic slurry, the shaped article 11 composed of the ceramic 10 and the aggregate of the coated particles 9 is released.

(f)工程:付形物11を所定の雰囲気の焼結炉内に設置して、所定の炉内圧下、所定の昇温速度にて炉内を、合成樹脂粒子7を熱分解し得る加熱温度まで上昇させ、その加熱温度を所定時間維持する。これにより合成樹脂粒子7が熱分解して、球状セル4が形成されると共に相隣る両球状セル4間に在って複数のセラミック粒子8およびセラミックス10よりなる隔壁形成部5aに、熱分解ガスが抜ける際の圧力で複数の連通孔6が形成される。   (F) Step: The shaped article 11 is placed in a sintering furnace of a predetermined atmosphere, and heating that can thermally decompose the synthetic resin particles 7 in the furnace at a predetermined heating rate under a predetermined furnace pressure. The temperature is raised and the heating temperature is maintained for a predetermined time. As a result, the synthetic resin particles 7 are thermally decomposed to form the spherical cells 4 and are thermally decomposed into the partition wall forming portion 5a formed of the plurality of ceramic particles 8 and the ceramics 10 between the adjacent spherical cells 4. A plurality of communication holes 6 are formed by the pressure at which the gas escapes.

(g)工程:炉内をセラミック粒子8を焼結し得る温度まで上昇させて、その焼結温度を所定時間維持する。これにより三次元網目構造を有するセラミック成形体2を得る。   (G) Process: The inside of the furnace is raised to a temperature at which the ceramic particles 8 can be sintered, and the sintering temperature is maintained for a predetermined time. Thereby, the ceramic molded body 2 having a three-dimensional network structure is obtained.

前記製造方法において、球状セル4の内径およびその均一化は合成樹脂粒子7のメジアン直径に依存し、また球状セル4の分布状態の均一化は前記(c)工程の最密充填処理を行うことによって達成される。さらに連通孔6の内径は前記(f)工程における炉内雰囲気、昇温速度、炉内圧、セラミックスラリの粘度(セラミックス10の濃度)等によって制御される。例えば、合成樹脂粒子7のメジアン直径を所定値に設定し、また前記昇温速度を制御することによって、両メジアンMd、MD の比Md/MD をMd/MD <0.5に収めることができる。 In the manufacturing method, the inner diameter of the spherical cells 4 and the uniformization thereof depend on the median diameter of the synthetic resin particles 7, and the uniform distribution of the spherical cells 4 is performed by the closest packing process in the step (c). Achieved by: Further, the inner diameter of the communication hole 6 is controlled by the atmosphere in the furnace, the heating rate, the furnace pressure, the viscosity of the ceramic slurry (concentration of the ceramic 10) and the like in the step (f). For example, by setting the median diameter of the synthetic resin particles 7 to a predetermined value and controlling the temperature increase rate, the ratio Md / M D of both medians Md and M D falls within Md / M D <0.5. be able to.

以下、具体例について説明する。   Hereinafter, specific examples will be described.

〔I〕セラミック成形体の製造
前記(a)〜(g)工程を以下に述べる条件にて行い、縦20mm、横20mm、長さ200mmの直方体状セラミック成形体を得た。
[I] Production of Ceramic Molded Body The steps (a) to (g) were performed under the conditions described below to obtain a rectangular parallelepiped ceramic molded body having a length of 20 mm, a width of 20 mm, and a length of 200 mm.

(a)工程…球状合成樹脂粒子の集合体:メジアン直径が90μmのPMMA粒子の集合体(綜研化学社製、商品名MR−90G);セラミック粒子の集合体:メジアン直径が0.5μmのSiC粒子の集合体(屋久島電工社製、商品名OY−20).
(b)工程…合成樹脂粒子の集合体(W1 )とセラミック粒子の集合体(W2 )との配合重量比:W1 /W2 =1/1;被覆処理機:ホソカワミクロン社製、商品名AM−15F(特開2003−160330号公報参照)、回転速度1000rpm 、処理時間0.5h、インナーピース距離1mm.
(c)工程:型の寸法および構造:縦20mm、横20mm、深さ100mmの凹部を有する2つのPTFE製ブロックを対向して配置し、縦20mm、横20mm、長さ200mmのキャビティを有するものを型とした;減圧濾過による最密充填処理:複数の吸引孔を有する一方のブロックの底面に、0.7μmの連通孔を持つガラス繊維製濾材を敷き、次いで他方のブロックの開口からキャビティ内に被覆粒子を投入し、その後、一方のブロックの吸引孔を介してキャビティ内を減圧した。
(A) Process: Aggregation of spherical synthetic resin particles: Aggregation of PMMA particles having a median diameter of 90 μm (trade name MR-90G, manufactured by Soken Chemical Co., Ltd.); Aggregation of ceramic particles: SiC having a median diameter of 0.5 μm Particle aggregate (manufactured by Yakushima Electric Works, trade name OY-20).
(B) Process: Blending weight ratio of the aggregate of synthetic resin particles (W 1 ) and the aggregate of ceramic particles (W 2 ): W 1 / W 2 = 1/1; Coating processor: manufactured by Hosokawa Micron Name AM-15F (see JP 2003-160330 A), rotational speed 1000 rpm, processing time 0.5 h, inner piece distance 1 mm.
(C) Process: Mold size and structure: Two PTFE blocks having recesses of 20 mm in length, 20 mm in width, and 100 mm in depth are arranged to face each other and have a cavity of 20 mm in length, 20 mm in width, and 200 mm in length Close-packing treatment by vacuum filtration: A glass fiber filter medium having a 0.7 μm communication hole is laid on the bottom surface of one block having a plurality of suction holes, and then inside the cavity from the opening of the other block Then, the coated particles were put in, and then the inside of the cavity was depressurized through the suction hole of one block.

(d)工程…セラミックスラリ:SiCスラリ
(e)工程…1次乾燥処理:20℃、20h;2次乾燥処理:90℃、1h.
(f)工程…炉内雰囲気:大気;炉内圧:0.1MPa;昇温速度:10℃/h;加熱温度:500℃、1h.
(g)工程…焼結温度:2000℃;焼結時間:3h.
このようにして得られたセラミック成形体2は三次元網目構造を有するもので、複数の球状セル4は最密充填形式で配列していて、その内径のメジアンMD はMD =80μmであり、また連通孔6の内径のメジアンMdはMd=16μmであり、よって、両メジアンMd、MD の比Md/MD はMd/MD =0.2であった。
(D) Step: Ceramic slurry: SiC slurry (e) Step: Primary drying treatment: 20 ° C., 20 h; Secondary drying treatment: 90 ° C., 1 h.
(F) Process: furnace atmosphere: air; furnace pressure: 0.1 MPa; heating rate: 10 ° C./h; heating temperature: 500 ° C., 1 h.
(G) Step: Sintering temperature: 2000 ° C .; Sintering time: 3 h.
The ceramic molded body 2 thus obtained has a three-dimensional network structure, and a plurality of spherical cells 4 are arranged in a close-packed form, and the median M D of the inner diameter is M D = 80 μm. and the median Md of the inner diameter of the communication hole 6 is Md = 16 [mu] m, thus the ratio Md / M D of both median Md, M D was Md / M D = 0.2.

〔II〕金属基複合部材の製造
セラミック成形体2を金型のキャビティに設置し、次いで680℃のAl合金(JIS ADC12)の溶湯を用い、射出速度0.2m/s、鋳造圧力75MPaの条件で低速層流ダイカスト法を行って、縦20mm、横30mm、長さ40mmで、且つセラミック成形体2の体積分率VfがVf=30%の金属基複合部材1を得た。この部材1を実施例とした。
[II] Manufacture of metal matrix composite member The ceramic molded body 2 was placed in the cavity of the mold, and then a molten metal of 680 ° C. Al alloy (JIS ADC12) was used, injection speed 0.2 m / s, casting pressure 75 MPa The metal matrix composite member 1 having a length of 20 mm, a width of 30 mm, a length of 40 mm, and a volume fraction Vf of the ceramic molded body 2 of Vf = 30% was obtained by performing a low-speed laminar flow die casting method. This member 1 was taken as an example.

比較のため前記セラミック成形体と同一材質で同一寸法のMMI社製発泡セラミック成形体を用いて前記と同様の方法で金属基複合部材を製造し、これを比較例1とした。また粒径のメジアンが15μmであるSiC粒子を均一に分散させた金属基複合部材を製造し、これを比較例2とした。さらに球状セルの内径のメジアンMD がMD =100μmであり、また連通孔の内径のメジアンMdがMd=50μmであって、両メジアンMd、MD の比Md/MD がMd/MD =0.5であること以外は実施例と同様の金属基複合部材を製造し、これを比較例3とした。 For comparison, a metal matrix composite member was produced in the same manner as described above using a foamed ceramic molded body manufactured by MMI having the same material and the same dimensions as the ceramic molded body. Further, a metal matrix composite member in which SiC particles having a median particle size of 15 μm were uniformly dispersed was produced, and this was designated as Comparative Example 2. A further median M D is M D = 100 [mu] m inner diameter of spherical cells, also the median Md of the inner diameter of the communication hole a Md = 50 [mu] m, both median Md, the ratio Md / M D is Md / M D of M D A metal matrix composite member similar to the example except that = 0.5 was produced, and this was designated as Comparative Example 3.

実施例および比較例1〜3より直径10mm、厚さ2mmの試験片を作製し、それらについて、レーザフラッシュ法熱伝導率測定装置(アルバック理工社製、型式TC−7000)を使用して熱伝導率を測定した。   Test specimens having a diameter of 10 mm and a thickness of 2 mm were prepared from Examples and Comparative Examples 1 to 3, and these were subjected to heat conduction using a laser flash method thermal conductivity measuring device (manufactured by ULVAC-RIKO, model TC-7000). The rate was measured.

表2は実施例および比較例1〜3に関する諸データを示す。   Table 2 shows various data relating to Examples and Comparative Examples 1 to 3.

Figure 0004119357
Figure 0004119357

表2より、実施例は、高伝熱材が網目状に連結されているため(連続性有り)熱伝導について等方性を持ち、また球状セルの分布が均一であり、その上、メジアンMd≧1μmであると共にMd/MD がMd/MD <0.5であることから高い熱伝導性を有することが判る。比較例1は前記連続性はあるが、球状セルのサイズが不均一なため、等方性は中程度であり、また球状セルの分布も不均一であるため、実施例に比べて熱伝導性が低くなっている。さらに比較例2は熱伝導についての等方性および高伝熱材の均一性はあるものの前記連続性が無いため、実施例に比べて熱伝導率が低くなっている。 From Table 2, the examples show that the high heat transfer material is connected in a mesh shape (with continuity), has isotropic heat conduction, and the distribution of spherical cells is uniform, and in addition, the median Md Since it is ≧ 1 μm and Md / M D is Md / M D <0.5, it can be seen that it has high thermal conductivity. Although Comparative Example 1 has the continuity, since the size of the spherical cells is non-uniform, the isotropy is moderate and the distribution of the spherical cells is also non-uniform. Is low. Furthermore, although the comparative example 2 has the isotropy about heat conduction and the uniformity of the high heat transfer material, it does not have the continuity, so the heat conductivity is lower than that of the example.

図6は、実施例および比較例1に関する、テンプレート法による球状セルの内径と、その存在確率との関係を示す。実施例では、球状セルの内径のバラツキ範囲が30〜110μmであるのに対し、比較例1のそれは40〜340μmと広範囲である。よって、球状セルの内径の均一性は実施例の方が比較例1に比べて高いことが解る。   FIG. 6 shows the relationship between the inner diameter of the spherical cell by the template method and the existence probability regarding the example and the comparative example 1. In the examples, the variation range of the inner diameter of the spherical cell is 30 to 110 μm, while that of Comparative Example 1 is as wide as 40 to 340 μm. Therefore, it can be seen that the uniformity of the inner diameter of the spherical cell is higher in the example than in the comparative example 1.

高熱伝導性金属基複合部材としては、エンジンのシリンダブロックにおいて、シリンダボア回り、シリンダヘッドガスケット面等から選択される1箇所以上を強化したもの、シリンダヘッドにおいて、燃焼室周り、バルブシート圧入部、バルブガイド圧入部等から選択される1箇所以上を強化したもの、ピストンにおいて、その頂部、リング溝周り等から選択される1箇所以上を強化したもの、各種機器において、強度と冷却性を要求される部位を持ち、そこを強化したもの等を挙げることができる。   As the high thermal conductivity metal matrix composite, one or more parts selected from the cylinder bore, cylinder head gasket surface, etc. in the engine cylinder block are reinforced. In the cylinder head, around the combustion chamber, valve seat press-fitting part, valve Strengthened at one or more locations selected from guide press-fitting parts, etc., piston strengthened at one or more locations selected from the top, ring groove, etc., various devices require strength and cooling There are parts that have a part and strengthen it.

金属基複合部材の斜視図である。It is a perspective view of a metal matrix composite member. 金属基複合部材の要部拡大断面図である。It is a principal part expanded sectional view of a metal matrix composite member. セラミック成形体の斜視図である。It is a perspective view of a ceramic molded body. セラミック成形体の要部拡大断面図である。It is a principal part expanded sectional view of a ceramic molded object. セラミック成形体の製造工程説明図である。It is manufacturing process explanatory drawing of a ceramic molded body. 球状セルの内径とその存在確率との関係を示すグラフである。It is a graph which shows the relationship between the internal diameter of a spherical cell, and its existence probability.

符号の説明Explanation of symbols

1……金属基複合部材
2……セラミック成形体
3……金属マトリックス
4……球状セル
5……隔壁
6……連通孔
7……球状合成樹脂粒子
8……セラミック粒子
9……被覆粒子
10…セラミックス
11…付形物
DESCRIPTION OF SYMBOLS 1 ... Metal matrix composite member 2 ... Ceramic compact 3 ... Metal matrix 4 ... Spherical cell 5 ... Partition 6 ... Communication hole
7 ... Spherical synthetic resin particles
8. Ceramic particles
9 …… Coated particles
10 Ceramics
11 ... Shaped items

Claims (1)

SiC又はAlNで構成されて三次元網目構造を有するセラミック成形体(2)と、そのセラミック成形体(2)に充填されたAl合金又はMg合金の金属マトリックス(3)とよりな、前記セラミック成形体(2)、最密充填形式で配列する複数の球状セル(4)と、相隣る両球状セル(4)間の隔壁(5)に存する複数の連通孔(6)とを有してなる高熱伝導性金属基複合部材の製造方法であって、
所定形状の前記セラミック成形体(2)を製造するセラミック成形体製造工程と、その製造された前記セラミック成形体(2)を金型のキャビティに設置して、そのキャビティに前記金属マトリックス(3)の溶湯を加圧充填する工程とを備え、
前記セラミック成形体製造工程は、所定直径の球状合成樹脂粒子(7)の表面に、その球状合成樹脂粒子(7)よりも小径の複数のセラミック粒子(8)を密に付着させることで前記表面を該セラミック粒子(8)で覆ってなる被覆粒子(9)の集合体を得る第1の工程と、前記被覆粒子(9)の集合体を型に入れて最密充填処理を行う第2の工程と、前記型内にセラミックス(10)を含むセラミックスラリを注入して前記被覆粒子(9)の集合体の隙間に充填し、乾燥させることで、前記セラミックス(10)と被覆粒子(9)の集合体とよりなる付形物(11)を得る第3の工程と、その付形物(11)を離型した後、焼結炉内に設置して加熱することにより、該付形物(11)中の各合成樹脂粒子(7)を熱分解する第4の工程と、前記熱分解後において、前記焼結炉内で、前記付形物(11)中の前記セラミック粒子(8)及び前記セラミックス(10)を焼結させる第5の工程とを含むことを特徴とする、高熱伝導性金属基複合部材の製造方法
Ceramic molded body having a three-dimensional network structure is composed of SiC or AlN and (2), the ceramic molded body (2) a metal matrix (3) of the filled Al alloy or Mg alloy into the Ri more greens, the ceramic The molded body (2) has a plurality of spherical cells (4) arranged in a close-packed form and a plurality of communication holes (6) in the partition wall (5) between the adjacent spherical cells (4). A method for producing a high thermal conductivity metal matrix composite member,
A ceramic molded body manufacturing process for manufacturing the ceramic molded body (2) having a predetermined shape, and the manufactured ceramic molded body (2) is placed in a cavity of a mold, and the metal matrix (3) is placed in the cavity. And a step of pressurizing and filling the molten metal,
The ceramic molded body producing step includes the step of closely attaching a plurality of ceramic particles (8) having a smaller diameter than the spherical synthetic resin particles (7) to the surface of the spherical synthetic resin particles (7) having a predetermined diameter. A first step of obtaining an aggregate of coated particles (9) formed by covering the ceramic particles with the ceramic particles (8), and a second step in which the aggregate of the coated particles (9) is put in a mold and subjected to a close-packing treatment. A ceramic slurry containing ceramics (10) is injected into the mold and filled in the gaps of the aggregates of the coated particles (9), and dried, whereby the ceramics (10) and the coated particles (9) A third step of obtaining a shaped article (11) comprising the aggregate of the above, and after releasing the shaped article (11), the shaped article (11) is placed in a sintering furnace and heated to obtain the shaped article. A fourth step of thermally decomposing each synthetic resin particle (7) in (11); After serial pyrolysis, in the sintering furnace, characterized in that it comprises a fifth step of the sintered ceramic particles (8) and the ceramic (10) in the attached form product (11) The manufacturing method of a highly heat conductive metal matrix composite member.
JP2003417773A 2003-12-16 2003-12-16 Method for producing high thermal conductivity metal matrix composite Expired - Fee Related JP4119357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417773A JP4119357B2 (en) 2003-12-16 2003-12-16 Method for producing high thermal conductivity metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417773A JP4119357B2 (en) 2003-12-16 2003-12-16 Method for producing high thermal conductivity metal matrix composite

Publications (2)

Publication Number Publication Date
JP2005179697A JP2005179697A (en) 2005-07-07
JP4119357B2 true JP4119357B2 (en) 2008-07-16

Family

ID=34780172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417773A Expired - Fee Related JP4119357B2 (en) 2003-12-16 2003-12-16 Method for producing high thermal conductivity metal matrix composite

Country Status (1)

Country Link
JP (1) JP4119357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315880B2 (en) * 2008-09-17 2013-10-16 株式会社豊田中央研究所 Method for forming thin film and method for manufacturing internal combustion engine

Also Published As

Publication number Publication date
JP2005179697A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US7357976B2 (en) Ceramic molded body and metal matrix composite
CN107522475B (en) Shell-like ceramic matrix composite and preparation method thereof
US20100163782A1 (en) Carbon-Containing Metal-Based Composite Material and Manufacturing Method Thereof
AU2009333674A1 (en) Sintered diamond heat exchanger apparatus
CN105779804A (en) Foam skeleton structure reinforced metal-matrix composite material and preparation method
CN106278335B (en) A kind of manufacturing method of fiber alignment toughening ceramic based composites turbo blade
US6609043B1 (en) Method and system for constructing a structural foam part
Maiorano et al. Challenging thermal management by incorporation of graphite into aluminium foams
US20100116412A1 (en) Methods for synthesizing bulk, composite and hybrid structures from polymeric ceramic precursors as well as other polymeric substances and compounds
CN109928756A (en) A kind of SiC reinforcement C-base composte material and preparation method
CN108516814A (en) A kind of method of low temperature preparation high strength mullite ceramics
JP2021535059A (en) Manufacturing method of structural parts in which diamond particles are embedded in a silicon carbide matrix
JP4119357B2 (en) Method for producing high thermal conductivity metal matrix composite
JP3987022B2 (en) Method for producing ceramic molded body having three-dimensional network structure
WO2019194137A1 (en) SiC-Si COMPOSITE MEMBER PRODUCTION METHOD AND SiC-Si COMPOSITE MEMBER
JP4119348B2 (en) Manufacturing method of high strength metal matrix composite
CN114085084A (en) High-strength silicon nitride ceramic and preparation method thereof
CN109942297A (en) A kind of silicon carbide nanometer line enhances highly oriented graphite composite material and preparation method
CN109704777B (en) Preparation method of graphene composite carbide ceramic material
CN108421978B (en) Porous titanium material and preparation method thereof
JP6680605B2 (en) Manufacturing method of baking container
JP6004317B2 (en) Method for producing metal-carbon fiber composite material
CN105384440B (en) Prepare the material and method of molybdenum disilicide protection pipe
JP6796249B2 (en) Heat storage body and heat storage tank
RU2786676C1 (en) Method for producing anisotropic heat-conducting composite sheet material and anisotropic heat-conducting composite sheet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees