JP2005146274A - Molded article comprising polylactic acid polymer, and plasticizer for polylactic acid - Google Patents

Molded article comprising polylactic acid polymer, and plasticizer for polylactic acid Download PDF

Info

Publication number
JP2005146274A
JP2005146274A JP2004308052A JP2004308052A JP2005146274A JP 2005146274 A JP2005146274 A JP 2005146274A JP 2004308052 A JP2004308052 A JP 2004308052A JP 2004308052 A JP2004308052 A JP 2004308052A JP 2005146274 A JP2005146274 A JP 2005146274A
Authority
JP
Japan
Prior art keywords
plasticizer
polylactic acid
film
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308052A
Other languages
Japanese (ja)
Other versions
JP5067825B2 (en
Inventor
Hiroshige Matsumoto
太成 松本
Takeshi Kanzawa
岳史 神澤
Hiroshi Niinumadate
浩 新沼舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004308052A priority Critical patent/JP5067825B2/en
Publication of JP2005146274A publication Critical patent/JP2005146274A/en
Application granted granted Critical
Publication of JP5067825B2 publication Critical patent/JP5067825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded article such as a film mainly comprising a polylactic acid polymer with a suppressed unpleasant odor emission therefrom, and to provide a wrapping film for packaging high in serviceability, made flexible with a plasticizer or the like and presenting no problems, other than unpleasant odor emission now suppressed, involving plasticizer evaporation, exudation, or bleedout. <P>SOLUTION: The molded article contains acetaldehyde, 2,3-pentanedione, and methoxyethylacetate components in a total amount of 2 μg/g out of the volatile components produced in a process of heating at 100°C for 30 minutes in an inert gas atmosphere. The molded article may be a film comprising a composition comprising a polylactic acid polymer (A) and a plasticizer (B), wherein, preferably, the polylactic acid polymer (A) is crystalline, a molecule of the plasticizer (B) bears one or more polylactic acid segments each having a molecular weight of ≥1,500, and polyether and/or polyester segments are also contained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、臭気の発生が抑制された、ポリ乳酸系重合体を主体とする成形品さらにはフィルムに関し、さらに詳細には可塑剤などにより柔軟性が付与されたフィルムとして使用の際には、臭気が抑制されていることに加えて可塑剤の揮発や滲出、抽出(ブリードアウト)の問題がなく実用性に優れ、ラップフィルムなど物品や食品の包装用として好適なフィルム、およびこのフィルムに好適に使用される可塑剤に関するものである。   The present invention relates to a molded article or a film mainly composed of a polylactic acid-based polymer in which generation of odor is suppressed, and more specifically, when used as a film imparted with flexibility by a plasticizer or the like, In addition to the suppression of odor, there is no problem of volatilization, exudation or extraction (bleed out) of plasticizers, and it is practical and suitable for packaging of articles and foods such as wrap films, and suitable for this film It relates to a plasticizer used in the above.

従来、プラスチック廃棄物は主に焼却や埋め立てにより処理されてきたが、焼却による有害副産物の生成・排出や埋立地の減少、さらには不法投棄による環境汚染などの問題が顕在化してきている。このようなプラスチック廃棄物の処理問題について社会的に関心が高まるにつれて、酵素や微生物で分解される生分解性を有するプラスチックの研究開発が盛んに行われており、その中でも、脂肪族ポリエステルが注目されている。最近、特に積極的な研究開発が行われている生分解性の脂肪族ポリエステルとして、ポリ乳酸が挙げられる。   Conventionally, plastic waste has been mainly treated by incineration or landfill. However, problems such as generation and discharge of harmful by-products due to incineration, reduction of landfill sites, and environmental pollution due to illegal dumping have become apparent. As social concerns about such plastic waste disposal problems increase, research and development of biodegradable plastics that are decomposed by enzymes and microorganisms has been actively carried out. Has been. Recently, polylactic acid is an example of a biodegradable aliphatic polyester that has been particularly actively researched and developed.

ポリ乳酸は、トウモロコシや芋類などから得られるでんぷんなどを原料として乳酸を製造しさらに化学合成により得られる重合体であり、脂肪族ポリエステルの中でも機械的物性や耐熱性、透明性に優れているため、フィルム、シート、テープ、繊維、ロープ、不織布、容器などの各種成形品への展開を目的とした研究開発が盛んに行われている。しかしながら、通常のポリ乳酸系重合体からなる成形品では特有の臭気を有するため、特に食品用容器や包装材料など、内容物への臭気の移行や味および性質の変化などを嫌う用途においては使用範囲が限られてしまう問題があった。   Polylactic acid is a polymer obtained by producing lactic acid using starch obtained from corn, potatoes, etc. as a raw material, and by chemical synthesis, and is excellent in mechanical properties, heat resistance, and transparency among aliphatic polyesters. Therefore, research and development for the purpose of developing various molded products such as films, sheets, tapes, fibers, ropes, non-woven fabrics, and containers have been actively conducted. However, since molded products made of ordinary polylactic acid-based polymers have a specific odor, they are used in applications that dislike odor transfer to contents and changes in taste and properties, such as food containers and packaging materials. There was a problem that the range was limited.

ポリ乳酸の臭気の問題に関して、重合時あるいは重合反応終了後に減圧下・加熱して残留ラクチドや臭気成分を脱揮する方法や、重合反応終了後に重合触媒の失活剤を添加し減圧下に残留ラクチドや臭気成分を脱揮する方法が開示されている(例えば、特許文献1および2)。しかしながら上記の方法は、ポリ乳酸の重合やペレット化工程における方法であって、引き続いて行う溶融成形やその後の処理については何らの技術的な示唆はなく、また臭気成分に関する具体的、定量的記載もないものであり、ポリ乳酸系重合体からなる成形品の臭気抑制に関しては不十分な技術であった。   Concerning the odor problem of polylactic acid, a method of devolatilizing residual lactide and odor components by heating under reduced pressure after polymerization or after completion of the polymerization reaction, or adding a polymerization catalyst deactivator after completion of the polymerization reaction and remaining under reduced pressure Methods for devolatilizing lactide and odor components are disclosed (for example, Patent Documents 1 and 2). However, the above method is a method in the polymerization or pelletizing process of polylactic acid, and there is no technical suggestion about the subsequent melt molding and subsequent treatment, and a specific and quantitative description regarding odor components. However, it was an inadequate technique for suppressing the odor of a molded product made of a polylactic acid polymer.

さらに、生分解性樹脂を含む成形品を臭気物質吸着剤とともに密閉・被包する技術(例えば特許文献3)、生分解性樹脂を含む成形品の表面に香料成分または消臭成分を含む塗膜を形成する技術(例えば特許文献4)、生分解性樹脂を含む成形品に臭気物質吸着剤を含有させる技術(例えば特許文献5)などが開示されている。しかしながら、生分解性樹脂を含む成形品を臭気物質吸着剤とともに密閉・被包しても成形品中に一定量残存してしまう臭気物質を除去できない、また、生分解性樹脂を含む成形品の表面に香料成分または消臭成分を含む塗膜を形成しても一定量の臭気成分は塗膜を通過してしまい臭気成分の周囲への揮散を十分に抑制できない、あるいは生分解性樹脂を含む成形品に臭気物質吸着剤を含有させても成形品との相溶性が不十分であったり、成形時に臭気物質吸着剤の吸着能が大きく損なわれてしまうために臭気の発生を十分に抑制できないなどの問題があった。   Further, a technique for sealing and encapsulating a molded product containing a biodegradable resin together with an odorant adsorbent (for example, Patent Document 3), a coating film containing a fragrance component or a deodorizing component on the surface of the molded product containing the biodegradable resin (For example, patent document 4), the technique (for example, patent document 5) etc. which make a molded article containing biodegradable resin contain an odor substance adsorbent are disclosed. However, even if a molded product containing a biodegradable resin is sealed and encapsulated together with an odorous substance adsorbent, the odorous substance remaining in the molded product cannot be removed. Even if a coating film containing a fragrance component or a deodorant component is formed on the surface, a certain amount of the odor component passes through the coating film and the volatilization of the odor component to the surroundings cannot be sufficiently suppressed, or a biodegradable resin is included. Even if an odorous substance adsorbent is contained in the molded product, the compatibility with the molded product is insufficient, or the adsorption capacity of the odorous material adsorbent is greatly impaired during molding, so odor generation cannot be sufficiently suppressed. There were problems such as.

また、ポリ乳酸を各種成形品として展開するため行われている研究開発の中でも、例えば包装用ラップフィルムなどの用途においては、ポリ乳酸はそのままでは柔軟性が不十分なために主に可塑剤の添加による柔軟化技術が各種検討されている。   Also, among the research and development conducted to develop polylactic acid as various molded products, for example, in applications such as wrapping film for packaging, polylactic acid is mainly used as a plasticizer because of its insufficient flexibility. Various techniques for softening by addition have been studied.

例えば、通常塩化ビニル用として広く用いられているフタル酸エステルなどの可塑剤を用いる技術が開示されている(例えば、特許文献6)。しかしながら、フタル酸エステルなど通常の可塑剤を添加して柔軟化した場合、添加直後は柔軟性を発現するものの、成形品を大気雰囲気下、特に高温の雰囲気下に放置して時間が経つと、可塑剤が揮発・滲出して柔軟性が著しく低下したり、あるいは透明性が低下するという問題があった。さらには水中、特に熱水中雰囲気では可塑剤が抽出されてやはり柔軟性が著しく低下したり、あるいは透明性が低下するという問題があった。   For example, a technique using a plasticizer such as a phthalate ester that is generally widely used for vinyl chloride is disclosed (for example, Patent Document 6). However, when it is softened by adding a normal plasticizer such as a phthalate ester, although it exhibits flexibility immediately after the addition, if the molded product is left in an atmosphere, particularly a high temperature atmosphere, There has been a problem that the plasticizer volatilizes and exudes and the flexibility is remarkably lowered or the transparency is lowered. Furthermore, in the atmosphere of water, particularly hot water, there is a problem that the plasticizer is extracted and the flexibility is remarkably lowered or the transparency is lowered.

また、乳酸や線状の乳酸オリゴマーまたは環状の乳酸オリゴマーを可塑剤として使用する技術が開示されている(例えば、特許文献7〜9)。しかしながら、このような乳酸や線状の乳酸オリゴマーまたは環状の乳酸オリゴマーを相当量含んだポリ乳酸は成形時の熱安定性が低く、また通常の使用条件下において容易に加水分解されてしまうために、このような組成物からフィルムなどの成形品を製造しても比較的短期間に強度が落ちて実用性に劣るという大きな欠点があった。さらに、成形品として高温や多湿条件で使用したり、水や溶媒と接触して使用する場合には、可塑剤として成形品中に含有されるラクチドや乳酸オリゴマーが系外に揮発や滲出、抽出(ブリードアウト)したり、臭気を発するといった問題があった。   Moreover, the technique which uses lactic acid, a linear lactic acid oligomer, or a cyclic | annular lactic acid oligomer as a plasticizer is disclosed (for example, patent documents 7-9). However, polylactic acid containing a substantial amount of such lactic acid, linear lactic acid oligomer or cyclic lactic acid oligomer has low thermal stability during molding and is easily hydrolyzed under normal use conditions. Even when a molded article such as a film is produced from such a composition, there is a great drawback that the strength drops in a relatively short period of time and the practicality is inferior. Furthermore, when used as a molded product under high temperature and high humidity conditions, or in contact with water or a solvent, lactide or lactic acid oligomer contained in the molded product as a plasticizer is volatilized, exuded or extracted outside the system. (Bleed out) and odors occurred.

さらに、ポリ乳酸とポリアルキレンエーテルの共重合体中に、ポリアルキレンエーテルを主成分とする可塑剤を混合した組成物に関する技術が開示されている(例えば、特許文献10)。しかしながら本技術においても、組成物の柔軟性は実用レベルながら、臭気の抑制、さらには可塑剤の揮発や滲出、抽出(ブリードアウト)の抑制といった観点からは未だ不十分な技術であった。   Furthermore, a technique relating to a composition in which a plasticizer mainly composed of polyalkylene ether is mixed in a copolymer of polylactic acid and polyalkylene ether is disclosed (for example, Patent Document 10). However, in this technology, the flexibility of the composition is still inadequate from the viewpoint of suppression of odor, and further suppression of volatilization, exudation and extraction (bleed out) of the plasticizer.

さらに、乳酸を主成分とする重合体と、ポリアルキレンエーテルとポリ乳酸のブロック共重合体とを含む組成物に関する技術が開示されている(例えば、特許文献11)。しかしながら本技術は帯電防止性の付与を目的とした技術であり、制電剤として添加されるブロック共重合体に含まれるポリ乳酸成分の作用については、母材(マトリックス)との化学的な親和性の向上による微分散化以外の示唆はなく、組成物の柔軟性や、成形品とした時の添加剤(可塑剤)の揮発や滲出、抽出(ブリードアウト)、さらには臭気の抑制といった観点から実際に類似技術の追試を試みたが、不十分な技術であった。   Furthermore, a technique relating to a composition containing a polymer containing lactic acid as a main component and a block copolymer of polyalkylene ether and polylactic acid is disclosed (for example, Patent Document 11). However, this technology is intended to impart antistatic properties. The action of the polylactic acid component contained in the block copolymer added as an antistatic agent is chemically compatible with the base material (matrix). There is no suggestion other than fine dispersion by improving the properties, and the viewpoints of the flexibility of the composition, volatilization and exudation of the additive (plasticizer) when it is made into a molded product, extraction (bleed out), and further suppression of odor Actually tried to reexamine similar technology, but it was insufficient.

また、ポリ乳酸−ポリエチレングリコール−ポリ乳酸三元ブロック共重合体の精製方法の技術が開示されている(例えば、特許文献12)。本技術は、精製により使用目的に応じた狭い分子量分布と狭い共重合組成分布を有するポリ乳酸−ポリエチレングリコール−ポリ乳酸三元ブロック共重合体を得るための技術である。しかしながら、本技術は、医薬品や化粧品用のマイクロカプセル、ナノパーティクル、ナノカプセル等の製造に用いられることを意図しており、この三元ブロック共重合体をポリ乳酸との組成物として使用することや溶融混練などにより実際に組成物とするための方法、さらにはこのような組成物をフィルムなどの成形品として使用することなどについては一切の示唆はない。また、組成物の柔軟性や、成形品とした時の添加剤(可塑剤)の揮発や滲出、抽出(ブリードアウト)、さらには臭気の抑制といった観点から実施例記載の三元ブロック共重合体を実際にポリ乳酸と溶融混練し、組成物と成して評価してみたものの、不十分な技術であった。   Moreover, the technique of the purification method of polylactic acid-polyethyleneglycol-polylactic acid ternary block copolymer is disclosed (for example, patent document 12). This technique is a technique for obtaining a polylactic acid-polyethylene glycol-polylactic acid ternary block copolymer having a narrow molecular weight distribution and a narrow copolymer composition distribution according to the purpose of use by purification. However, this technology is intended to be used for the production of pharmaceutical and cosmetic microcapsules, nanoparticles, nanocapsules, etc., and this ternary block copolymer is used as a composition with polylactic acid. There is no suggestion about a method for actually forming a composition by melting or kneading, or using such a composition as a molded article such as a film. Further, the ternary block copolymers described in the examples from the viewpoints of flexibility of the composition, volatilization and leaching of additives (plasticizer) when formed into articles, extraction (bleed out), and suppression of odor. Although this was actually melt-kneaded with polylactic acid and evaluated as a composition, it was an insufficient technique.

以上のように、従来からポリ乳酸に可塑剤を添加するなどして柔軟性を付与する試みはなされていたものの、十分な柔軟性を付与しなおかつ成形品として使用する際には可塑剤の揮発や滲出、抽出(ブリードアウト)、さらには臭気の発生を抑制したポリ乳酸系重合体を主体とする成形品については未だ達成されていないのが実状であった。   As described above, while attempts have been made to add flexibility by adding a plasticizer to polylactic acid, the plasticizer volatilizes when used as a molded product while still providing sufficient flexibility. In fact, a molded product mainly composed of a polylactic acid-based polymer that suppresses oozing, leaching, extraction (bleed out), and odor generation has not been achieved yet.

また、ポリ乳酸からなるフィルムが本来備える透明性や耐熱性に加えて、主に柔軟性などの特性を付与してゴミ袋や農業用マルチフィルムなどの用途へ適用する技術の検討や、さらには柔軟性や密着性などを付与することにより包装用ラップフィルムなどの用途へ適用するための技術も検討されている。   Also, in addition to the transparency and heat resistance inherent in films made of polylactic acid, the study of technologies that are mainly applied to applications such as garbage bags and agricultural multi-films by adding characteristics such as flexibility, and A technique for applying to a use such as a wrap film for packaging by imparting flexibility and adhesion is also being studied.

特に包装用ラップフィルム用途に関しては、例えば、乳酸系脂肪族ポリエステルを主体とする樹脂と液状添加剤を含有する組成物からなる延伸フィルムに関する技術が開示されている(例えば、特許文献13)。しかしながら、該特許文献記載の実施例に従って実際に延伸フィルムの製膜を試みたところ、製膜直後に限れば食品包装用ラップフィルムとして一定レベルの柔軟性、を有するものの、室温にて数週間程度の使用あるいは保管した後には液状添加剤が容易に揮発したり滲出してしまい、被包装物に液状添加剤が付着したり、フィルムの柔軟性が全く損なわれてしまうなど、実用性に欠ける全く不十分な技術であった。以上のように、柔軟性に優れ、さらには臭気の十分抑制されたポリ乳酸系重合体組成物よりなる包装用ラップフィルムは未だ達成されていなかった。
特開平7−173266号公報([0097]〜[0103]段落) 特開平8−301993号公報([0052]〜[0079]段落) 特開2003−127166号公報([0014]〜[0017]段落) 特開2003−128076号公報([0014]〜[0023]段落) 特開2003−128076号公報([0012]〜[0013]段落) 特開平4−335060号公報([0016]〜[0026]段落) 米国特許第5180765号(第10欄第9行〜第11欄第26行) 米国特許第5076983号(第4欄第37行〜第5欄第13行) 特開平6−306264号公報([0012]〜[0022]段落) 特開平8−199052号公報([0004]〜[0022]段落) 特開平8−253665号公報([0005]〜[0017]段落) 特開平9−157368号公報([0016]〜[0022]段落) 特開2000−26623号公報([0005]〜[0044]段落)
In particular, for packaging wrap film applications, for example, a technique relating to a stretched film made of a composition containing a resin mainly composed of lactic acid-based aliphatic polyester and a liquid additive is disclosed (for example, Patent Document 13). However, when an attempt was made to actually form a stretched film in accordance with the examples described in the patent document, it had a certain level of flexibility as a food packaging wrap film as long as it was immediately after film formation, but at room temperature for several weeks. After the use or storage of the liquid additive, the liquid additive easily volatilizes or exudes, the liquid additive adheres to the package, or the flexibility of the film is completely lost, and the practicality is completely lacking. It was insufficient technology. As described above, a packaging wrap film made of a polylactic acid polymer composition excellent in flexibility and further sufficiently suppressed in odor has not been achieved yet.
JP-A-7-173266 (paragraphs [0097] to [0103]) JP-A-8-301993 (paragraphs [0052] to [0079]) Japanese Patent Laying-Open No. 2003-127166 (paragraphs [0014] to [0017]) JP 2003-128076 A (paragraphs [0014] to [0023]) JP 2003-128076 A (paragraphs [0012] to [0013]) JP-A-4-335060 (paragraphs [0016] to [0026]) US Pat. No. 5,180,765 (column 10, line 9 to column 11, line 26) US Pat. No. 5,076,983 (column 4, line 37 to column 5, line 13) JP-A-6-306264 (paragraphs [0012] to [0022]) Japanese Patent Laid-Open No. 8-199052 (paragraphs [0004] to [0022]) JP-A-8-253665 (paragraphs [0005] to [0017]) JP-A-9-157368 (paragraphs [0016] to [0022]) JP 2000-26623 A (paragraphs [0005] to [0044])

本発明の課題は、従来技術ではなしえなかった、臭気の発生が抑制された、ポリ乳酸系重合体を主体とするフィルムなどの成形品、さらには可塑剤などにより柔軟性が付与されたフィルムとして使用の際には、臭気が抑制されていることに加えて可塑剤の揮発や滲出、抽出(ブリードアウト)の問題がなく実用性に優れた包装用ラップフィルム、およびこのフィルムに好適に使用される可塑剤を提供することにある。   An object of the present invention is to provide a molded article such as a film mainly composed of a polylactic acid-based polymer in which the generation of odor is suppressed, which has not been achieved by the prior art, and a film provided with flexibility by a plasticizer or the like. When used as a packaging wrap film with excellent practicality without the problems of odor suppression, plasticizer volatilization, leaching and extraction (bleed out), and suitable for this film It is to provide a plasticizer.

上記課題を解決するため本発明のポリ乳酸系重合体を主体とする成形品は、主として次の構成を有する。すなわち、
ポリ乳酸系重合体(A)を主体とする成形品であって、該成形品を不活性ガス下で100℃、30分間加熱して発生する揮発成分のうち、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が2μg/g以下であることを特徴とする成形品である。
In order to solve the above-mentioned problems, a molded product mainly composed of the polylactic acid polymer of the present invention mainly has the following configuration. That is,
Among the volatile components generated by heating the molded product at 100 ° C. for 30 minutes under an inert gas, acetaldehyde and 2,3-pentanedione. The molded product is characterized in that the total amount of methoxyethyl acetate components is 2 μg / g or less.

また、柔軟性を付与したフィルムとする際に好適に使用される可塑剤としては、主として次の構成を有する。すなわち、
一分子中に、ポリエーテル系および/またはポリエステル系セグメントを有するか、あるいはエーテル結合部分とエステル結合部分をともに有する構造の化合物であって、水分率が0.5wt%以下であることを特徴とするポリ乳酸用可塑剤である。
Moreover, as a plasticizer suitably used when setting it as the film which provided the softness | flexibility, it has the following structure mainly. That is,
A compound having a polyether-based and / or polyester-based segment in one molecule, or a structure having both an ether bond portion and an ester bond portion, and having a moisture content of 0.5 wt% or less. It is a plasticizer for polylactic acid.

本発明のポリ乳酸系重合体を主体とする成形品は、従来技術では成し得なかった、臭気の発生が十分に抑制された成形品であり、可塑剤などにより柔軟性が付与されたフィルムとして使用の際には、臭気が抑制されていることに加えて、可塑剤の揮発や滲出、抽出(ブリードアウト)の問題がなく実用性に優れ、特に包装用ラップフィルムを初めとするフィルムなど成形品の分野において従来以上に幅広い利用が可能である。   The molded product mainly composed of the polylactic acid-based polymer of the present invention is a molded product in which the generation of odor is sufficiently suppressed, which cannot be achieved by the prior art, and is provided with flexibility by a plasticizer or the like. In addition to being suppressed in odor, it has no problems of plasticizer volatilization, leaching, and extraction (bleed out), and has excellent practicality, especially films such as wrapping film for packaging It can be used in a wider range than in the past in the field of molded products.

さらに、本発明の成形品は、従来のプラスチックに対して自然環境中での生分解性が高く、使用後は自然環境中で比較的容易に分解されるという利点を有する。本発明の成形品は、産業界およびプラスチック廃棄物に係る環境問題の解決に寄与するところが非常に大きい。   Furthermore, the molded article of the present invention has the advantage that it is highly biodegradable in the natural environment compared to conventional plastics and is relatively easily decomposed in the natural environment after use. The molded article of the present invention greatly contributes to solving environmental problems related to industry and plastic waste.

本発明の成形品はポリ乳酸系重合体(A)を主体とするが、ポリ乳酸系重合体(A)とは、L−乳酸および/またはD―乳酸を主成分とし、重合体中の乳酸由来の成分が70重量%以上のものを示し、実質的にL−乳酸および/またはD―乳酸からなるホモポリ乳酸が好ましく用いられる。また、本発明に用いられるポリ乳酸系重合体は結晶性を有することが好ましく、この場合、後述する一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有し、ポリエーテル系および/またはポリエステル系セグメントを有する可塑剤(B)とを含有する組成物とすることで、柔軟性を付与したうえで可塑剤の揮発や滲出、抽出(ブリードアウト)を十分に抑制できる。ポリ乳酸系重合体が結晶性を有するとは、該ポリ乳酸系重合体を加熱下で十分に結晶化させた後に、適当な温度範囲でDSC(示差走査熱量分析装置)測定を行った場合、ポリ乳酸成分に由来する結晶融解熱が観測されることを言う。ポリ乳酸系重合体(A)として、例えば均一なホモポリ乳酸を用いる場合にはその光学純度が70%以上のホモポリ乳酸を使用すればよい。あるいは、繊維、フィルムなどの成形品として使用する際の用途によっては、必要な機能の付与あるいは向上を目的として、光学純度の異なる2種以上のホモポリ乳酸を併用してもよく、例えば、結晶性を有するホモポリ乳酸と非晶性のホモポリ乳酸を併用することも可能である。この場合、非晶性のホモポリ乳酸の割合は本発明の効果を損ねない範囲で決定すれば良い。また、通常、ホモポリ乳酸は光学純度が高いほど融点が高く、例えば光学純度が98%以上のポリL−乳酸では融点が約170℃程度であるが、成形品とした際に高い耐熱性を付与したい際には、使用するポリ乳酸重合体のうち少なくとも1種に光学純度が95%以上のポリ乳酸を含むことが好ましい。   The molded article of the present invention is mainly composed of the polylactic acid polymer (A). The polylactic acid polymer (A) is mainly composed of L-lactic acid and / or D-lactic acid, and lactic acid in the polymer. A component derived from 70% by weight or more is preferably used, and homopolylactic acid substantially consisting of L-lactic acid and / or D-lactic acid is preferably used. The polylactic acid-based polymer used in the present invention preferably has crystallinity. In this case, the polylactic acid-based polymer has one or more polylactic acid segments having a molecular weight of 1,500 or more in one molecule described later, and is a polyether-based polymer. And by setting it as the composition containing the plasticizer (B) which has a polyester-type segment, after providing a softness | flexibility, volatilization, oozing, and extraction (bleed out) of a plasticizer can fully be suppressed. The polylactic acid-based polymer has crystallinity when the polylactic acid-based polymer is sufficiently crystallized under heating and then subjected to DSC (Differential Scanning Calorimetry) measurement in an appropriate temperature range. It means that the heat of crystal melting derived from the polylactic acid component is observed. For example, when uniform homopolylactic acid is used as the polylactic acid polymer (A), homopolylactic acid having an optical purity of 70% or more may be used. Or depending on the use at the time of using as molded articles, such as a fiber and a film, two or more types of homopolylactic acids having different optical purities may be used in combination for the purpose of imparting or improving necessary functions. It is also possible to use a homopolylactic acid having a non-crystalline homopolylactic acid in combination. In this case, the proportion of amorphous homopolylactic acid may be determined within a range that does not impair the effects of the present invention. In general, homopolylactic acid has a higher melting point as the optical purity is higher. For example, poly L-lactic acid having an optical purity of 98% or higher has a melting point of about 170 ° C., but imparts high heat resistance when formed into a molded product. When it is desired, at least one of the polylactic acid polymers to be used preferably contains polylactic acid having an optical purity of 95% or more.

ポリ乳酸の製造方法には、L−乳酸、D−乳酸、DL−乳酸(ラセミ体)を原料として一旦環状2量体であるラクチドを生成せしめ、その後開環重合を行う2段階のラクチド法と、当該原料を溶媒中で直接脱水縮合を行う一段階の直接重合法が知られている。本発明においてホモポリ乳酸を用いる場合はいずれの製法によって得られたものであってもよいが、ラクチド法によって得られるポリマーの場合にはポリマー中に含有されるラクチドが成形時に気化して、例えば溶融製膜時にはキャストドラム汚れやフィルム表面の平滑性低下の原因となったり、臭気成分発生の原因となることがあるため、成形時あるいは溶融製膜以前の段階でポリマー中に含有されるラクチドの含有量を0.3重量%以下とすることが望ましい。また、直接重合法の場合にはラクチドに起因する問題が実質的にないため、成形性あるいは製膜性の観点からはより好適である。本発明におけるポリ乳酸系重合体(A)の重量平均分子量は、通常少なくとも5万、好ましくは8万〜30万、さらに好ましくは10万〜20万である。平均分子量をかかる範囲とする場合には、フィルムなどの成形品とした場合の強度物性を優れたものとすることができる。   The polylactic acid production method includes a two-stage lactide method in which L-lactic acid, D-lactic acid, and DL-lactic acid (racemic) are used as raw materials to once generate lactide, which is a cyclic dimer, and then ring-opening polymerization is performed. A one-step direct polymerization method in which the raw material is directly subjected to dehydration condensation in a solvent is known. In the present invention, when homopolylactic acid is used, it may be obtained by any production method. However, in the case of a polymer obtained by the lactide method, the lactide contained in the polymer is vaporized at the time of molding, for example, melted. Containing lactide contained in the polymer at the time of molding or at the stage prior to melt film formation, which may cause cast drum stains, film surface smoothness deterioration, and odor component generation during film formation The amount is desirably 0.3% by weight or less. Further, in the case of the direct polymerization method, there is substantially no problem caused by lactide, so that it is more preferable from the viewpoint of moldability or film forming property. The weight average molecular weight of the polylactic acid polymer (A) in the present invention is usually at least 50,000, preferably 80,000 to 300,000, and more preferably 100,000 to 200,000. When the average molecular weight is in such a range, the strength properties when formed into a molded article such as a film can be made excellent.

また、本発明におけるポリ乳酸系重合体(A)は、L−乳酸、D−乳酸のほかにエステル形成能を有するその他の単量体成分を共重合した共重合ポリ乳酸であってもよい。共重合可能な単量体成分としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタエリスリトール等の分子内に複数の水酸基を含有する化合物類またはそれらの誘導体、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムスルホイソフタル酸等の分子内に複数のカルボン酸基を含有する化合物類またはそれらの誘導体が挙げられる。なお、ポリ乳酸系重合体(A)の共重合成分としては、生分解性を有する成分を選択することが好ましい。   The polylactic acid polymer (A) in the present invention may be a copolymerized polylactic acid obtained by copolymerizing other monomer components having ester forming ability in addition to L-lactic acid and D-lactic acid. Examples of copolymerizable monomer components include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, and other hydroxycarboxylic acids, as well as ethylene glycol, propylene glycol, and butane. Compounds containing a plurality of hydroxyl groups in the molecule such as diol, neopentyl glycol, polyethylene glycol, glycerin, pentaerythritol or derivatives thereof, succinic acid, adipic acid, sebacic acid, fumaric acid, terephthalic acid, isophthalic acid, 2 , 6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid and the like, or compounds containing a plurality of carboxylic acid groups in the molecule. In addition, as a copolymerization component of a polylactic acid-type polymer (A), it is preferable to select the component which has biodegradability.

本発明の成形品は、不活性ガス下で100℃、30分間加熱して発生する揮発成分のうち、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が2μg/g以下であることを特徴とする。ここで、揮発成分の分析・定量方法は実施例記載の方法に準じる。   The molded product of the present invention has a total amount of acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate component of 2 μg / g or less among volatile components generated by heating at 100 ° C. for 30 minutes under an inert gas. It is characterized by. Here, the analysis / quantification method of the volatile component is in accordance with the method described in the examples.

通常、ポリ乳酸系重合体を主体とする成形品は、特有の不快感を伴う臭気を有し、この臭気は成形品を加熱すると顕著にその発生が認められる。本発明の発明者らはこの特有の臭気抑制のため鋭意検討を行った結果、該特有の臭気成分のうち主要な成分としてアセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートが含まれていることをつきとめた。なお、アセトアルデヒドは沸点が約21℃、水やエタノールへの溶解性を有する化合物であり、2,3−ペンタンジオンはその他の名称としてエチルメチルジケトン、エチルメチルグリオキサール、2,3−ジケトペンタンなどとも称され、常温で液体、沸点が約108℃、水への溶解性を有する化合物であり、また、メトキシエチルアセテートはその他の名称としてメチルセロソルブ酢酸エステルとも称され、常温で液体、沸点が約145℃、水やその他多くの有機溶媒への溶解性を有する化合物であり、いずれも不快感を伴う強度の臭気特性を有している。これらの化合物は、いずれも生成に至る反応経路の詳細は不明であるが、多くの場合ポリ乳酸系重合体を成形するにあたり加熱溶融時に分解物として生成するものと推定され、ごく少量でも成形品に含有されることで、特有の不快感を伴う臭気の主要な原因となるものである。なお、一般的に、強度の臭気特性を有する化合物が存在する場合、ppmオーダーのごく微量であっても不快感を伴って知覚される場合が多い。   Usually, a molded article mainly composed of a polylactic acid-based polymer has an odor accompanied with a particular unpleasant sensation, and this odor is noticeably generated when the molded article is heated. The inventors of the present invention have conducted extensive studies to suppress this specific odor, and as a result, acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate are included as main components among the specific odor components. I found out. Acetaldehyde has a boiling point of about 21 ° C. and is soluble in water and ethanol, and 2,3-pentanedione is also referred to as other names such as ethyl methyl diketone, ethyl methyl glyoxal, and 2,3-diketo pentane. It is a liquid at normal temperature and has a boiling point of about 108 ° C. and is soluble in water. Methoxyethyl acetate is also referred to as methyl cellosolve acetate as another name, and is liquid at normal temperature and has a boiling point of about 145 ° C. These compounds are soluble in water and many other organic solvents, and all have strong odor characteristics accompanied by discomfort. The details of the reaction route leading to the formation of any of these compounds are unknown, but in many cases it is presumed that they are produced as decomposition products during heating and melting when molding polylactic acid polymers. It is a main cause of odor accompanied by peculiar discomfort. In general, when a compound having a strong odor characteristic is present, it is often perceived with an unpleasant sensation even in a very small amount on the order of ppm.

そのため、本発明の成形品は、不活性ガス下で100℃、30分間加熱して発生する揮発成分のうち、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が2μg/g以下に抑えることが必須となる。上記した三つの揮発成分の総量が2μg/gを超えると、成形品の臭気が非常に強く、各種容器類やフィルム、繊維などの成形品とした際の商品価値を損ねたり、特に袋やラップフィルムなどの包装材料として使用すると臭気が移行したり内容物を変質させるなどの問題を生じる場合がある。また、これらの化合物は、ポリ乳酸系重合体を140℃以上の高温に加熱する場合において、熱分解(ラジカル分解)や酸化分解、加水分解、エステル交換、あるいはその結果生じた不純物との副反応など複雑な分解反応により生成するが、通常ポリ乳酸系重合体の重合時や溶融成形時には140℃以上の温度に加熱するため、一般的に前述した三つの揮発成分の総量を0とすることは困難である。さらに、上記した三つの揮発成分の総量の範囲は、好ましくは1.5μg/g以下であり、さらに好ましくは0.5μg/g以下であり、より好ましくは0.05μg/g以下である。   Therefore, the molded product of the present invention has a total amount of acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate components of 2 μg / g or less among volatile components generated by heating at 100 ° C. for 30 minutes under an inert gas. It is essential to suppress it. When the total amount of the above three volatile components exceeds 2 μg / g, the odor of the molded product is very strong, and the commercial value of the molded product such as various containers, films, and fibers may be impaired, especially in bags and wraps. When used as a packaging material such as a film, it may cause problems such as odor migration and alteration of contents. In addition, these compounds are thermally decomposed (radical decomposition), oxidative decomposition, hydrolysis, transesterification, or side reaction with impurities generated as a result of heating a polylactic acid polymer to a high temperature of 140 ° C. or higher. Although it is produced by a complicated decomposition reaction, etc., it is usually heated to a temperature of 140 ° C. or higher at the time of polymerization or melt molding of a polylactic acid polymer, so that the total amount of the three volatile components described above is generally 0 Have difficulty. Furthermore, the range of the total amount of the three volatile components described above is preferably 1.5 μg / g or less, more preferably 0.5 μg / g or less, more preferably 0.05 μg / g or less.

また、前述した、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートのなかでも、特に2,3−ペンタンジオン、メトキシエチルアセテートの二つの成分はより強度の臭気特性を有している。そのため、本発明の成形品は、不活性ガス下で100℃、30分間加熱して発生する揮発成分のうち、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が1μg/g以下であることが好ましい。さらに好ましい範囲としては、0.5μg/g以下であり、より好ましい範囲としては、0.05μg/g以下である。   Of the acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate described above, the two components, particularly 2,3-pentanedione and methoxyethyl acetate, have stronger odor characteristics. Therefore, the molded product of the present invention has a total amount of 2,3-pentanedione and methoxyethyl acetate components of 1 μg / g or less among volatile components generated by heating at 100 ° C. for 30 minutes under an inert gas. Is preferred. A more preferable range is 0.5 μg / g or less, and a more preferable range is 0.05 μg / g or less.

成形品中に含まれる、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートの総量を低減し、ひいては揮発成分のうちこれら三つの揮発成分を低減させる手段としては、例えば、ポリ乳酸系重合体などの原料中に含まれる上記の揮発成分をあらかじめ低減、除去する方法、ポリ乳酸系重合体などの原料を合成したり成形したりするため加熱溶融する際の分解による揮発物質生成を抑制する方法、成形したり加工する際あるいはその後に揮発物質を低減、除去する方法等が挙げられる。   Examples of means for reducing the total amount of acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate contained in the molded product, and thus reducing these three volatile components among the volatile components include, for example, polylactic acid polymers. A method of reducing and removing the above volatile components contained in the raw material in advance, a method of suppressing the generation of volatile substances due to decomposition when heated and melted in order to synthesize or mold a raw material such as a polylactic acid polymer, Examples include a method of reducing or removing volatile substances during or after molding or processing.

例えばフィルムの場合について具体的に例を挙げると、ポリ乳酸系重合体などの原料類の合成時に触媒種や量、反応時間、温度等を調整し合成時の揮発成分生成を抑制する方法、原料の合成時あるいは合成終了後に、減圧下・加熱して揮発成分や、さらには溶融時に揮発成分生成の要因となる残留ラクチドなどのオリゴマー、不純物としての低分子量物などを脱揮処理する方法、原料をペレット化するなどした後に、例えば乾燥工程をかねて、減圧下・加熱して揮発成分や、さらには溶融時に揮発成分生成の要因となる残留ラクチドなどのオリゴマー、不純物としての低分子量物などを脱揮処理する方法、溶融押出性を損ねない範囲で、溶融製膜時の押出温度をより低く、滞留時間をより短く調整し揮発成分の生成を抑制する方法、製膜性を損ねない範囲で延伸後の熱処理温度をより高く、処理時間をより長く調整し揮発成分を除去する方法、あるいは製膜後のフィルムに減圧下や不活性ガス下での熱処理を施し揮発成分を除去する方法、水あるいは有機溶媒を用いて揮発成分を抽出・除去する方法などが挙げられる。好ましくは、原料を水あるいは有機溶媒を用いて、揮発成分や、さらには溶融時に揮発成分生成の要因となる残留ラクチドなどのオリゴマー、不純物としての低分子量物などを抽出、洗浄し除去する方法や原料乾燥時の乾燥温度を90〜120℃、乾燥時間をより長く、真空度をより高く調整する方法、溶融製膜時の押出温度をより低く、滞留時間より短く調整する方法、製膜工程で100〜135℃のより高い温度で10秒以上のより長時間熱処理する方法、製膜後のフィルムを0.1〜30Torrの高真空下、100〜135℃のより高い温度で、処理時間30分以上のより長時間脱揮処理する方法、さらには水あるいは有機溶媒を用いて揮発成分を抽出・除去する方法などが挙げられる。   For example, in the case of a film, a specific example is a method of controlling the generation of volatile components during synthesis by adjusting the catalyst species, amount, reaction time, temperature, etc. during synthesis of raw materials such as polylactic acid-based polymers, raw materials A method and raw material for devolatilization of volatile components, oligomers such as residual lactide that cause volatile components to be generated during melting, and low molecular weight substances as impurities during synthesis or after completion of synthesis by heating under reduced pressure After pelletizing, etc., for example, during the drying process, it is heated under reduced pressure to remove volatile components, oligomers such as residual lactide that cause volatile component generation during melting, and low molecular weight substances as impurities. The method of volatilization treatment, the method of suppressing the production of volatile components by adjusting the residence time shorter and lowering the extrusion temperature at the time of melt film formation, as long as the melt extrudability is not impaired. A method of removing the volatile components by adjusting the heat treatment temperature after stretching to a longer range and adjusting the treatment time longer, or removing the volatile components by subjecting the film after film formation to heat treatment under reduced pressure or inert gas. And a method of extracting / removing volatile components using water or an organic solvent. Preferably, water or an organic solvent is used as a raw material to extract, wash, and remove volatile components, oligomers such as residual lactide that cause generation of volatile components at the time of melting, and low molecular weight substances as impurities. In the method of adjusting the drying temperature at the time of raw material drying to 90 to 120 ° C., the drying time being longer and the degree of vacuum being adjusted higher, the method of adjusting the extrusion temperature at the time of melt film forming to be lower and shorter than the residence time, and the film forming step A method of heat-treating at a higher temperature of 100 to 135 ° C. for a longer period of 10 seconds or longer, a film after film formation at a higher temperature of 100 to 135 ° C. under a high vacuum of 0.1 to 30 Torr, and a processing time of 30 minutes Examples thereof include a method of devolatilizing for a longer time, and a method of extracting and removing volatile components using water or an organic solvent.

本発明の成形品を得るために、必要に応じて上記したいずれの方法を用いても良く、また、複数の方法を組み合わせても良いが、不活性ガス下で100℃、30分間加熱して発生する揮発成分のうち、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が2μg/g以下となるように、適宜方法を選択・組み合わせれば良い。これらの化合物は、ポリ乳酸系重合体を140℃以上の高温に加熱する場合において、熱分解(ラジカル分解)や酸化分解、加水分解、エステル交換、あるいはその結果生じた不純物との副反応など複雑な分解反応により生成するが、通常ポリ乳酸系重合体の重合時や溶融成形時には140℃以上の温度に加熱する。そのため、例えばフィルムを例にすると、一旦溶融・固化してシートやフィルム状にした後に、生成し、含有される上記成分を製膜工程中の熱処理工程や、或いは製膜後に水や有機溶媒を用いて抽出除去したり、さらには高真空の加熱下で脱揮処理する方法が、上記した揮発成分含有量の低減に効率的である。   In order to obtain the molded article of the present invention, any of the above-described methods may be used as necessary, or a plurality of methods may be combined, but heating is performed at 100 ° C. for 30 minutes under an inert gas. Of the generated volatile components, methods may be appropriately selected and combined so that the total amount of the acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate components is 2 μg / g or less. These compounds are complex, such as thermal decomposition (radical decomposition), oxidative decomposition, hydrolysis, transesterification, or side reactions with the resulting impurities when a polylactic acid polymer is heated to a high temperature of 140 ° C or higher. However, it is usually heated to a temperature of 140 ° C. or higher during polymerization or melt molding of the polylactic acid polymer. Therefore, for example, when a film is taken as an example, it is once melted and solidified into a sheet or film, and then produced and contained in the heat treatment step during the film forming step, or water or an organic solvent after the film formation. The method of extracting and removing the volatile components and using the devolatilization treatment under high vacuum heating is effective in reducing the volatile component content.

本発明のフィルムは、23℃における引張試験により得られる初期引張弾性率が0.1〜2GPaであることが好ましい。フィルムの初期引張弾性率が0.1GPa以上である場合、実用的な寸法安定性に優れ、フィルム製膜および加工工程で伸びや弛みが発生し難く、取扱い性や工程通過性、スリット加工性に優れるフィルムとすることができる。また2GPa以下であると、特に袋やラップフィルムなどの包装材料と使用する際には、包装する物品や食品の形状に追随して変形し易く、効率よく包装するするにあたって好適である。さらに、初期引張弾性率を上記の範囲とした場合、実用的な柔軟性を付与できるため、例えば、包装用ラップフィルムなどの包装材料、農業用フィルム、自動車塗膜保護シート、ごみ袋、堆肥袋などの産業資材、各種軟質塩化ビニルが用いられている工業材料用途など幅広い用途での使用に好適となる。初期引張弾性率のより好ましい範囲としては、0.1〜1.5GPaであり、さらに好ましくは0.15〜1.2GPa、特に好ましくは0.2〜1GPaである。なお、本発明において引張試験とは、23℃の雰囲気下でJIS K7161およびJIS K7127に準じて、テンシロン万能試験機を用い、引張速度300mm/分条件で行う試験を意味する。また、本発明において初期引張弾性率とは、上記引張試験で得られる応力−歪み曲線の最初の直線部分を用いて、直線上の2点間の応力の差を同じ2点間の歪みの差で除し求められる値である。   The film of the present invention preferably has an initial tensile elastic modulus of 0.1 to 2 GPa obtained by a tensile test at 23 ° C. When the initial tensile elastic modulus of the film is 0.1 GPa or more, it is excellent in practical dimensional stability, hardly stretches or sags during film formation and processing, and is easy to handle, processability, and slit workability. An excellent film can be obtained. In addition, when it is 2 GPa or less, particularly when used with a packaging material such as a bag or a wrap film, it is easily deformed following the shape of the article or food to be packaged, and is suitable for efficient packaging. Furthermore, when the initial tensile elastic modulus is in the above range, practical flexibility can be imparted. For example, packaging materials such as packaging wrap films, agricultural films, automobile coating film protection sheets, garbage bags, compost bags It is suitable for use in a wide range of applications such as industrial materials such as industrial materials where various soft vinyl chlorides are used. A more preferable range of the initial tensile elastic modulus is 0.1 to 1.5 GPa, more preferably 0.15 to 1.2 GPa, and particularly preferably 0.2 to 1 GPa. In the present invention, the term “tensile test” means a test performed under a tensile speed of 300 mm / min using a Tensilon universal testing machine in accordance with JIS K7161 and JIS K7127 in an atmosphere of 23 ° C. In the present invention, the initial tensile elastic modulus means the difference in stress between two points on the straight line by using the first linear portion of the stress-strain curve obtained in the tensile test. The value obtained by dividing by.

ポリ乳酸は本来硬質な樹脂であるため、柔軟性を付与するためには一般的に可塑剤の添加や、柔軟化成分の共重合化、さらにはより柔軟な他のポリマーとのブレンドなどの手法が取られる。このうち、一般的に融点降下がほとんどなくまた柔軟性の制御も比較的容易であることから、可塑剤の添加による方法が好ましい。この場合、安定性などの観点から、可塑剤の揮発や滲出、抽出(ブリードアウト)などの現象を抑制することが重要であり、また臭気抑制の観点からは、添加する可塑剤以外の第3成分として微量な低分子量物が系内へ混入し易いがこれを低減し、溶融成形時の臭気成分生成を抑制すること、さらには前述した方法と同様にして成形品から臭気物質を除去することが重要である。   Polylactic acid is inherently a hard resin, so in order to give flexibility, it is common to add plasticizers, copolymerize softening components, and blend with other softer polymers. Is taken. Of these, the method by adding a plasticizer is preferred because generally there is almost no melting point drop and the control of flexibility is relatively easy. In this case, it is important to suppress the phenomenon such as volatilization, leaching, and extraction (bleed out) of the plasticizer from the viewpoint of stability and the like, and from the viewpoint of odor suppression, a third other than the plasticizer to be added. A small amount of low-molecular-weight substances are easily mixed into the system as a component, but this is reduced and the generation of odorous components during melt molding is suppressed, and furthermore, odorous substances are removed from molded products in the same manner as described above. is important.

本発明のポリ乳酸用可塑剤は、一分子中に、ポリエーテル系および/またはポリエステル系セグメントを有するか、あるいはエーテル結合部分とエステル結合部分をともに有する構造の化合物であって、水分率が0.5wt%以下であることを特徴とするポリ乳酸用可塑剤である。   The plasticizer for polylactic acid of the present invention is a compound having a polyether-based and / or polyester-based segment in one molecule, or a structure having both an ether bond portion and an ester bond portion, and has a moisture content of 0. It is a plasticizer for polylactic acid characterized by being 5 wt% or less.

ポリ乳酸用可塑剤としては、現在までに様々な化合物が提案されているが、基質となるポリ乳酸系重合体との十分な親和性を有する必要があるため、本発明のポリ乳酸用可塑剤は、少なくともポリエーテル系および/またはポリエステル系セグメントを有するか、あるいはエーテル結合部分とエステル結合部分をともに有する構造の化合物が選択される。また、本発明のポリ乳酸用可塑剤は、好ましくはポリエーテル系および/またはポリエステル系セグメントを有する。   As a plasticizer for polylactic acid, various compounds have been proposed so far. However, since it is necessary to have sufficient affinity with a polylactic acid polymer as a substrate, the plasticizer for polylactic acid of the present invention A compound having at least a polyether-based and / or polyester-based segment or a structure having both an ether bond portion and an ester bond portion is selected. The plasticizer for polylactic acid of the present invention preferably has a polyether-based and / or polyester-based segment.

本発明のポリ乳酸用可塑剤は、水分率が0.5wt%以下であることが必要である。水分率が0.5wt%を越える可塑剤をポリ乳酸系重合体に添加した場合には、混練時や加熱溶融して成形する際にポリ乳酸成分の加水分解が進み、さらには加水分解により生じたオリゴマーや低分子量物に起因する熱劣化が進むため、成形品とした際には、特有の臭気成分を有するアセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートの含有量が大きく増加してしまう。また、本発明のポリ乳酸用可塑剤の水分率は、好ましくは0.2wt%以下であり、さらに好ましくは0.1wt%以下である。   The plasticizer for polylactic acid of the present invention needs to have a water content of 0.5 wt% or less. When a plasticizer with a moisture content exceeding 0.5 wt% is added to the polylactic acid polymer, hydrolysis of the polylactic acid component proceeds during kneading or molding by heating and melting, and further occurs due to hydrolysis. As a result of thermal degradation due to oligomers and low molecular weight substances, the content of acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate having specific odor components greatly increases when molded articles are formed. . Further, the water content of the plasticizer for polylactic acid of the present invention is preferably 0.2 wt% or less, and more preferably 0.1 wt% or less.

さらに、本発明のポリ乳酸用可塑剤は酸価が50当量/t以下であることが好ましい。ポリ乳酸系重合体に可塑剤を添加し加熱溶融、混練した場合、可塑剤がカルボキシル基を有すると、その触媒作用を受けて、極少量併存する水分によっても加水分解が進みやすく、引いては熱劣化が起こり易くなるが、可塑剤の酸価が50当量/t以下であるとこの劣化を良好に抑制し、溶融成形時における、特有の臭気成分を有するアセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートの生成を抑制することができる。同様の観点から、さらに好ましくは可塑剤の酸価は20当量/t以下である。   Furthermore, the plasticizer for polylactic acid of the present invention preferably has an acid value of 50 equivalent / t or less. When a plasticizer is added to a polylactic acid polymer and heated and melted and kneaded, if the plasticizer has a carboxyl group, it will be catalyzed and hydrolysis will proceed easily even with moisture present in a very small amount. Thermal degradation is likely to occur, but if the acid value of the plasticizer is 50 equivalents / t or less, this degradation is satisfactorily suppressed, and acetaldehyde having a characteristic odor component at the time of melt molding, 2,3-pentanedione, Formation of methoxyethyl acetate can be suppressed. From the same viewpoint, the acid value of the plasticizer is more preferably 20 equivalent / t or less.

本発明のポリ乳酸用可塑剤は、ポリエーテル系および/またはポリエステル系セグメント、あるいはエーテル結合部分とエステル結合部分をともに有することに加えて、一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有することが好ましい。この場合、特に、ポリエーテル系および/またはポリエステル系セグメントを有することが好ましく、ポリ乳酸系重合体との組成物とした際には以下の様な効果を発揮する。   The plasticizer for polylactic acid of the present invention has a polyether-based and / or polyester-based segment, or a polylactic acid segment having a molecular weight of 1,500 or more in one molecule in addition to having both an ether bond portion and an ester bond portion. It is preferable to have one or more. In this case, it is particularly preferable to have a polyether-based and / or polyester-based segment, and when the composition is made with a polylactic acid-based polymer, the following effects are exhibited.

すなわち、本発明の好ましい様態のフィルムとしては、ポリ乳酸系重合体(A)と可塑剤(B)を含有する組成物(以下、「組成物(A/B)」と記載する)からなるフィルムであって、ポリ乳酸系重合体(A)が結晶性を有し、可塑剤(B)が一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有し、さらにポリエーテル系および/またはポリエステル系セグメントを有するものである。この場合、可塑剤(B)の有するポリ乳酸セグメントが母材であるポリ乳酸系重合体(A)から形成される結晶中に取り込まれることで可塑剤の分子を母材につなぎ止める作用を生じ、この作用によって可塑剤の揮発や滲出、抽出(ブリードアウト)を十分に抑制することができる。   That is, as a film according to a preferred embodiment of the present invention, a film comprising a composition containing a polylactic acid polymer (A) and a plasticizer (B) (hereinafter referred to as “composition (A / B)”). The polylactic acid polymer (A) has crystallinity, the plasticizer (B) has one or more polylactic acid segments having a molecular weight of 1,500 or more in one molecule, and is further polyether-based And / or having a polyester-based segment. In this case, the plasticizer (B) has a polylactic acid segment incorporated into a crystal formed from the base polylactic acid polymer (A), thereby causing the plasticizer molecule to be anchored to the base material. This action can sufficiently suppress the volatilization, exudation, and extraction (bleed out) of the plasticizer.

本発明における可塑剤(B)中のポリ乳酸セグメントの分子量は通常、10,000未満である。分子量が10,000以上の場合、可塑化効率が低くなり、実用的な柔軟性の付与が困難となる場合がある。なお、可塑剤(B)の有するポリ乳酸セグメントは、L−乳酸由来の成分がその95重量%以上であるか、あるいはD−乳酸由来の成分がその95重量%以上であることが好ましく、L−乳酸由来の成分がその98重量%以上であるか、あるいはD−乳酸由来の成分がその98重量%以上であることがさらに好ましい。これらの可塑剤を添加した場合には可塑剤の揮発や滲出、抽出(ブリードアウト)が特に抑制されたポリ乳酸系重合体からなる成形品を得ることができる。   The molecular weight of the polylactic acid segment in the plasticizer (B) in the present invention is usually less than 10,000. When the molecular weight is 10,000 or more, the plasticizing efficiency is lowered, and it may be difficult to impart practical flexibility. The polylactic acid segment of the plasticizer (B) is preferably such that the component derived from L-lactic acid is 95% by weight or more, or the component derived from D-lactic acid is 95% by weight or more. More preferably, the component derived from lactic acid is 98% by weight or more, or the component derived from D-lactic acid is 98% by weight or more. When these plasticizers are added, it is possible to obtain a molded article made of a polylactic acid polymer in which volatilization, leaching and extraction (bleed out) of the plasticizer are particularly suppressed.

本発明における可塑剤(B)は、可塑剤のポリ乳酸セグメント成分の重量割合が、可塑剤全体の50重量%未満であることが好ましい。この場合、可塑剤の可塑化効率が比較的高いため、より少量の添加で所望の柔軟性を有する耐ブリード性組成物を得ることができる。また、可塑剤のポリ乳酸セグメント成分の重量割合は、可塑剤分子中の可塑化成分割合などの構成にもよるが、通常可塑剤全体の5重量%以上である。なお、本発明のポリ乳酸用可塑剤の好ましい様態についても同様である。   In the plasticizer (B) in the present invention, the weight ratio of the polylactic acid segment component of the plasticizer is preferably less than 50% by weight of the entire plasticizer. In this case, since the plasticizing efficiency of the plasticizer is relatively high, a bleed-resistant composition having desired flexibility can be obtained with a smaller amount of addition. The weight ratio of the polylactic acid segment component of the plasticizer is usually 5% by weight or more of the total plasticizer, although it depends on the composition of the plasticizer component in the plasticizer molecule. The same applies to the preferred embodiment of the plasticizer for polylactic acid of the present invention.

また、本発明のフィルムは、母材であるポリ乳酸系重合体を配向させ、透明性を保持したまま結晶化を促進させることが可能となることから、延伸して用いることが好ましい。延伸倍率は、少なくとも一軸方向に1.1倍以上であることが好ましく、さらに好ましくは少なくとも一軸方向に1.1〜10倍である。さらに、組成物(A/B)を用いた場合には配向結晶化と同時に可塑剤のポリ乳酸セグメントがこの結晶中に取り込まれることを促進することで、可塑剤の揮発や滲出、抽出(ブリードアウト)をさらに抑制することができる。また、配向結晶化によりフィルムの強度物性も向上するため、柔軟性と強度を併せ持つフィルムを得ることができる。フィルムとしての延伸条件は、目的とする熱収縮特性、寸法安定性、強度、弾性率などに応じて、適宜調整し任意の方法で行うことができるが、例えば延伸温度は、用いるポリ乳酸系重合体のガラス転移温度以上、結晶化温度以下で行うことが、延伸性や透明性の点で好ましい。延伸倍率は、フィルムの長手方向、幅方向にそれぞれ1.1倍〜10倍の範囲の任意とすることが好ましく、特に長手方向、幅方向のどちらかの延伸倍率を大きくしてもよく、同一であってもよい。なお、一軸方向の延伸倍率が10倍を超えると、延伸性が低下してフィルムの破断が頻発し、安定した延伸性を得られないことがある。また、延伸温度や延伸(変形)速度などの条件によっては不均一延伸となる場合もあり、一軸方向の好ましい延伸倍率は好ましくは2倍以上、さらに好ましくは2.5倍以上である。また、例えば2軸延伸フィルムとする場合の延伸倍率としては、延伸前後のフィルムの面積割合である面積倍率として、好ましくは4倍以上、さらに好ましくは7倍以上である。   In addition, the film of the present invention is preferably stretched and used because the polylactic acid polymer as a base material can be oriented and crystallization can be promoted while maintaining transparency. The draw ratio is preferably 1.1 times or more in at least uniaxial direction, and more preferably 1.1 to 10 times in at least uniaxial direction. Furthermore, in the case of using the composition (A / B), the plasticizer volatilization, leaching and extraction (bleeding) are promoted by promoting the incorporation of the polylactic acid segment of the plasticizer into the crystal simultaneously with the orientation crystallization. Out) can be further suppressed. Moreover, since the strength physical properties of the film are improved by orientation crystallization, a film having both flexibility and strength can be obtained. The stretching conditions for the film can be adjusted appropriately according to the desired heat shrinkage characteristics, dimensional stability, strength, elastic modulus, etc., and can be carried out by any method. It is preferable to carry out at or above the glass transition temperature of the coalescence and below the crystallization temperature in terms of stretchability and transparency. The draw ratio is preferably arbitrarily in the range of 1.1 to 10 times in the longitudinal direction and the width direction of the film, respectively. In particular, the draw ratio in either the longitudinal direction or the width direction may be increased. It may be. In addition, when the draw ratio of a uniaxial direction exceeds 10 times, a drawability will fall, the fracture | rupture of a film will occur frequently and the stable drawability may not be acquired. Depending on conditions such as stretching temperature and stretching (deformation) speed, non-uniform stretching may occur, and the preferred stretching ratio in the uniaxial direction is preferably 2 times or more, and more preferably 2.5 times or more. For example, the draw ratio in the case of a biaxially stretched film is preferably 4 times or more, more preferably 7 times or more, as an area ratio that is the area ratio of the film before and after stretching.

なお、本発明のフィルムに組成物(A/B)を用いる場合、延伸を伴わない場合も含めて、例えばタルクなどの無機系あるいはエルカ酸アミドなどの有機系核剤を併用すると、延伸時の配向結晶化と同様に、可塑剤の有するポリ乳酸セグメントが母材であるポリ乳酸系重合体から形成される結晶中に取り込まれ可塑剤の分子を母材につなぎ止める作用を促進し、この効果によって可塑剤の揮発や滲出、抽出(ブリードアウト)をさらに抑制できる場合がある。   In addition, when using a composition (A / B) for the film of the present invention, including the case where stretching is not involved, for example, when an inorganic nucleating agent such as talc or an organic nucleating agent such as erucic acid amide is used in combination, Similar to oriented crystallization, the polylactic acid segment of the plasticizer is incorporated into the crystal formed from the polylactic acid polymer, which is the base material, and promotes the action of anchoring the plasticizer molecules to the base material. In some cases, plasticizer volatilization, exudation, and extraction (bleed out) can be further suppressed.

本発明のフィルムに組成物(A/B)を用いる場合、所望の用途で必要な柔軟性や強度などの特性に合わせて適宜可塑剤(B)の添加量を決定すれば良いが、可塑剤のポリ乳酸セグメント成分を除いた可塑化成分の重量割合が、組成物全体の5重量%以上、30重量%以下であることが好ましい。この場合、柔軟性と強度物性などの機械的物性のバランスに優れたフィルムを得ることができる。   When the composition (A / B) is used for the film of the present invention, the addition amount of the plasticizer (B) may be appropriately determined in accordance with characteristics such as flexibility and strength required for a desired application. It is preferable that the weight ratio of the plasticizing component excluding the polylactic acid segment component is 5% by weight or more and 30% by weight or less of the entire composition. In this case, a film having an excellent balance between mechanical properties such as flexibility and strength properties can be obtained.

また、本発明における可塑剤(B)は、ポリエーテル系および/またはポリエステル系セグメントを有することが好ましい。ポリエーテル系および/またはポリエステル系セグメントを可塑剤(B)に導入することによって、実用的な柔軟性を成形品に付与することができる。ポリエーテル系の中でもポリアルキレンエーテルからなるセグメントを有することが好ましく、ポリエチレングリコールからなるセグメントを有することがさらに好ましい。可塑剤(B)がポリエチレングリコールやポリプロピレングリコールあるいはポリエチレングリコール・ポリプロピレングリコール共重合体などのポリアルキレンエーテル、中でも特にポリエチレングリコールセグメントを有する場合、ポリ乳酸系重合体(A)との親和性が高いため可塑化効率に優れ、特に少量の可塑剤の添加で所望の柔軟性を有する組成物(A/B)を得ることができる。なお、本発明の可塑剤(B)がポリアルキレンエーテルからなるセグメントを有する場合、成形時などで加熱する際にポリアルキレンエーテルセグメント部分が酸化や熱分解され易い傾向があるため、後述するヒンダードフェノール系、ヒンダードアミン系などの酸化防止剤やリン系などの熱安定剤を併用することが好ましい。なお、本発明のポリ乳酸用可塑剤の好ましい様態についても同様である。   Moreover, it is preferable that the plasticizer (B) in this invention has a polyether-type and / or polyester-type segment. By introducing polyether-based and / or polyester-based segments into the plasticizer (B), practical flexibility can be imparted to the molded article. Among polyether series, it is preferable to have a segment made of polyalkylene ether, and more preferably to have a segment made of polyethylene glycol. When the plasticizer (B) has a polyalkylene ether such as polyethylene glycol, polypropylene glycol or polyethylene glycol / polypropylene glycol copolymer, and particularly has a polyethylene glycol segment, it has high affinity with the polylactic acid polymer (A). A composition (A / B) having excellent plasticization efficiency and having desired flexibility can be obtained by adding a small amount of plasticizer. In addition, when the plasticizer (B) of the present invention has a segment composed of a polyalkylene ether, the polyalkylene ether segment portion tends to be easily oxidized or thermally decomposed when heated at the time of molding or the like. It is preferable to use an antioxidant such as phenol and hindered amine and a heat stabilizer such as phosphorus. The same applies to the preferred embodiment of the plasticizer for polylactic acid of the present invention.

また、本発明における可塑剤(B)としては、成型品の臭気を抑制する観点より、水分率が0.5wt%以下の可塑剤(B)を用いることが好ましく、さらに好ましくは0.2wt%以下、特に好ましくは0.1wt%以下である。同じく成型品の臭気を抑制する観点より、酸価が50当量/t以下の可塑剤(B)を用いることも好ましく、さらに好ましくは20当量/t以下である。   Moreover, as a plasticizer (B) in this invention, it is preferable to use the plasticizer (B) whose moisture content is 0.5 wt% or less from a viewpoint of suppressing the odor of a molded article, More preferably, it is 0.2 wt%. Hereinafter, it is particularly preferably 0.1 wt% or less. Similarly, from the viewpoint of suppressing the odor of the molded product, it is also preferable to use a plasticizer (B) having an acid value of 50 equivalent / t or less, and more preferably 20 equivalent / t or less.

なお、本発明における可塑剤(B)のポリ乳酸セグメント以外の成分としては、生分解性を有する成分を選択することが好ましい。   In addition, it is preferable to select the component which has biodegradability as components other than the polylactic acid segment of the plasticizer (B) in this invention.

さらに、本発明のフィルムは、90℃、30分間の熱水処理後の重量減少率が2%以下であることが好ましい。この場合、フィルムを熱水と接して使用する際には流出物で周囲を汚染したり、フィルムの柔軟性が失われたりする等の問題がほとんどなく、例えば、包装材として用い、食品を包装して水中で加熱使用する場合には内容物に移行したりする恐れも非常に低く、実用性に優れた、特に袋やラップフィルムなどの包装材料に好適なフィルムとすることができる。本発明のフィルムは、90℃、30分間の熱水処理後の重量減少率が1%以下であることがさらに好ましく、0.5%以下であることがより好ましい。   Furthermore, the film of the present invention preferably has a weight loss rate of 2% or less after hydrothermal treatment at 90 ° C. for 30 minutes. In this case, when the film is used in contact with hot water, there are almost no problems such as contamination of the surroundings by the spilled material or loss of flexibility of the film. When heated and used in water, the possibility of shifting to the contents is very low, and the film can be made into a film that is excellent in practical use and particularly suitable for packaging materials such as bags and wrap films. In the film of the present invention, the weight loss after hot water treatment at 90 ° C. for 30 minutes is more preferably 1% or less, and more preferably 0.5% or less.

なお、本発明の成形品は、本発明の効果を損なわない範囲で上記した特定の可塑剤以外の成分を含有してもよい。例えば、公知の各種可塑剤、酸化防止剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、離型剤、抗酸化剤、イオン交換剤あるいは着色顔料等として無機微粒子や有機化合物を必要に応じて添加してもよい。公知の可塑剤としては、例えば、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジシクロヘキシルなどのフタル酸エステル系、アジピン酸ジ−1−ブチル、アジピン酸ジ−n−オクチル、セバシン酸ジ−n−ブチル、アゼライン酸ジ−2−エチルヘキシルなどの脂肪族二塩基酸エステル系、リン酸ジフェニル−2−エチルヘキシル、リン酸ジフェニルオクチルなどのリン酸エステル系、アセチルクエン酸トリブチル、アセチルクエン酸トリ−2−エチルヘキシル、クエン酸トリブチルなどのヒドロキシ多価カルボン酸エステル系、アセチルリシノール酸メチル、ステアリン酸アミルなどの脂肪酸エステル系、グリセリントリアセテート、トリエチレングリコールジカプリレートなどの多価アルコールエステル系、エポキシ化大豆油、エポキシ化アマニ油脂肪酸ブチルエステル、エポキシステアリン酸オクチルなどのエポキシ系可塑剤、ポリプロピレングリコールセバシン酸エステルなどのポリエステル系可塑剤、ポリアルキレンエーテル系、エーテルエステル系、アクリレート系などが挙げられる。なお、安全性の面から、米食品衛生局(FDA)の認可がなされている可塑剤を用いることが好ましい。酸化防止剤としてはヒンダードフェノール系、ヒンダードアミン系などが例示される。着色顔料としてはカーボンブラック、酸化チタン、酸化亜鉛、酸化鉄などの無機顔料の他、シアニン系、スチレン系、フタロシアイン系、アンスラキノン系、ペリノン系、イソインドリノン系、キノフタロン系、キノクリドン系、チオインディゴ系などの有機顔料等を使用することができる。また、成形品の易滑性や耐ブロッキング性の向上を目的として、無機微粒子を添加する際には、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウムなどを用いることができる。その平均粒径は、特に限定されないが、0.01〜5μmが好ましく、より好ましくは0.05〜3μm、最も好ましくは0.08〜2μmである。   In addition, the molded article of this invention may contain components other than the specific plasticizer mentioned above in the range which does not impair the effect of this invention. For example, various known plasticizers, antioxidants, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, mold release agents, antioxidants, ion exchange agents Alternatively, inorganic fine particles or organic compounds may be added as necessary as coloring pigments. Known plasticizers include, for example, phthalate esters such as diethyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, di-1-butyl adipate, di-n-octyl adipate, di-n-butyl sebacate , Aliphatic dibasic acid esters such as di-2-ethylhexyl azelate, phosphate esters such as diphenyl-2-ethylhexyl phosphate and diphenyloctyl phosphate, tributyl acetylcitrate, tri-2-ethylhexyl acetylcitrate , Hydroxy polycarboxylic acid esters such as tributyl citrate, fatty acid esters such as methyl acetylricinoleate and amyl stearate, polyhydric alcohol esters such as glycerin triacetate and triethylene glycol dicaprylate, epoxidized soybean oil, Epo Shi linseed oil fatty acid butyl ester, epoxy plasticizers such as epoxy stearic octyl, polyester plasticizers such as polypropylene glycol sebacic acid ester, polyalkylene ether, ether ester type, and the like acrylate. From the viewpoint of safety, it is preferable to use a plasticizer that is approved by the US Food and Drug Administration (FDA). Examples of the antioxidant include hindered phenols and hindered amines. Color pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, iron oxide, cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, quinophthalone, and quinocridone. Organic pigments such as thioindigo can be used. In addition, when adding inorganic fine particles for the purpose of improving the slipperiness and blocking resistance of a molded product, for example, silica, colloidal silica, alumina, alumina sol, kaolin, talc, mica, calcium carbonate, etc. should be used. Can do. The average particle diameter is not particularly limited, but is preferably 0.01 to 5 μm, more preferably 0.05 to 3 μm, and most preferably 0.08 to 2 μm.

さらに、本発明の成形品は、溶融粘度を低減させたりあるいは生分解性を向上させるなどの目的で、本発明の効果を損なわない範囲でポリ乳酸系重合体(A)以外の脂肪族ポリエステルを含有しても良い。ポリ乳酸系重合体以外の脂肪族ポリエステルとしては、ポリグリコール酸、ポリ(3−ヒドロキシブチレート)、ポリ(3−ヒドロキシブチレート・3−ヒドロキシバリレート)、ポリカプロラクトン、あるいはエチレングリコール、1,4−ブタンジオールなどの脂肪族ジオールとコハク酸、アジピン酸などの脂肪族ジカルボン酸よりなるポリエステル、ポリグリコール酸などの脂肪族ポリヒドロキシカルボン酸などが挙げられる。   Furthermore, the molded article of the present invention contains an aliphatic polyester other than the polylactic acid polymer (A) for the purpose of reducing the melt viscosity or improving the biodegradability, so long as the effects of the present invention are not impaired. It may be contained. Examples of aliphatic polyesters other than polylactic acid polymers include polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate / 3-hydroxyvalerate), polycaprolactone, ethylene glycol, 1, Examples thereof include aliphatic diols such as 4-butanediol and aliphatic dicarboxylic acids such as succinic acid and adipic acid, and aliphatic polyhydroxycarboxylic acids such as polyglycolic acid.

なお、本発明のフィルムに、ポリ乳酸系重合体(A)や一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有し、ポリエーテル系および/またはポリエステル系セグメントを有する可塑剤(B)以外の成分を含有させる場合は、生分解性を有する成分を選択することが好ましい。   The film of the present invention has a polylactic acid polymer (A) and one or more polylactic acid segments having a molecular weight of 1,500 or more in one molecule, and a plastic having a polyether and / or polyester segment. When components other than the agent (B) are contained, it is preferable to select components having biodegradability.

本発明の可塑剤(B)は、例えば、あらかじめ分子量が1,500以上のポリ乳酸オリゴマーをラクチド開環法あるいは乳酸縮合重合法などの常法により重合し、一つ以上の官能基を有する、可塑剤の主成分と成すポリエーテル系および/またはポリエステル系セグメントを有する化合物と適量反応させることで得ることができるが、可塑剤の主成分と成す化合物を重合開始剤としてラクチドの開環重合によりこれに付加する、あるいは可塑剤の主成分と成す化合物を重合開始剤とし乳酸の脱水縮合重合によりこれに付加しても良い。また、分子量が1,500以上のポリ乳酸オリゴマーと可塑剤の主成分と成す化合物の併存下で加熱混練などの処理により、ジカルボン酸無水物系化合物やジイソシアネート系化合物などの2官能性化合物を鎖連結剤として作用させて、両者を化学的に結合させても良い。なお、本発明のポリ乳酸用可塑剤の好ましい様態についても同様である。   The plasticizer (B) of the present invention, for example, polymerizes a polylactic acid oligomer having a molecular weight of 1,500 or more in advance by a conventional method such as a lactide ring-opening method or a lactic acid condensation polymerization method, and has one or more functional groups. It can be obtained by reacting an appropriate amount with a compound having a polyether-based and / or polyester-based segment composed of the main component of the plasticizer, but by ring-opening polymerization of lactide using the compound composed of the main component of the plasticizer as a polymerization initiator. You may add to this by the dehydration condensation polymerization of lactic acid by using as a polymerization initiator the compound which becomes a main component of a plasticizer. In addition, a polyfunctional oligomer such as a dicarboxylic acid anhydride compound or a diisocyanate compound is chained by a treatment such as heat kneading in the presence of a polylactic acid oligomer having a molecular weight of 1,500 or more and a compound comprising the main component of the plasticizer. Both may be chemically bonded by acting as a linking agent. The same applies to the preferred embodiment of the plasticizer for polylactic acid of the present invention.

次に、一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有し、ポリエーテル系および/またはポリエステル系セグメントを有する可塑剤(B)のより具体的な例を説明する。なお、以下は、本発明のポリ乳酸用可塑剤の好ましい様態についても同様である。   Next, a more specific example of the plasticizer (B) having one or more polylactic acid segments having a molecular weight of 1,500 or more in one molecule and having a polyether-based and / or polyester-based segment will be described. In addition, the following is the same also about the preferable aspect of the plasticizer for polylactic acids of this invention.

両末端に水酸基末端を有するポリエチレングリコール(PEG)を用意する。両末端に水酸基末端を有するポリエチレングリコール(PEG)の平均分子量(MPEG)は、通常、市販品などの場合、中和法などにより求めた水酸基価から計算される。両末端に水酸基末端を有するポリエチレングリコール(PEG)w重量部に対し、ラクチドwA重量部を添加した系において、PEGの両水酸基末端にラクチドを開環付加重合させ十分に反応させると、実質的にPLA(A)−PEG(B)−PLA(A)型のブロック共重合体を得ることができる。この反応は、必要に応じてオクチル酸錫などの触媒併存下でおこなわれる。このブロック共重合体からなる可塑剤の一つのポリ乳酸セグメントの数平均分子量は、実質的に(1/2)×(w/w)×MPEGと求めることができる。また、ポリ乳酸セグメント成分の可塑剤全体に対する重量割合は、実質的に100×w/(w+w)%と求めることができる。さらに、ポリ乳酸セグメント成分を除いた可塑化成分の可塑剤全体に対する重量割合は、実質的に100×w/(w+w)%と求めることができる。前記に例示した数値は、実際には平均値としての値となり生成した可塑剤の分子量やポリ乳酸部分のセグメント長などは一定の分布を有するが、前記した値のA−B−A型ブロック共重合体を主成分とする化合物を得ることができる。 Prepare polyethylene glycol (PEG) having hydroxyl ends at both ends. The average molecular weight (M PEG ) of polyethylene glycol (PEG) having hydroxyl ends at both ends is usually calculated from the hydroxyl value determined by a neutralization method or the like in the case of commercially available products. In a system in which lactide wA parts by weight are added to polyethylene glycol (PEG) w B parts by weight having a hydroxyl group at both ends, lactide is ring-opening addition-polymerized at both hydroxyl terminals of PEG and sufficiently reacted. In addition, a block copolymer of the PLA (A) -PEG (B) -PLA (A) type can be obtained. This reaction is performed in the presence of a catalyst such as tin octylate as necessary. The number average molecular weight of one polylactic acid segment of the plasticizer made of this block copolymer can be substantially determined as (1/2) × (w A / w B ) × M PEG . The weight percentage of the total plasticizer of the polylactic acid segment component can be substantially determined as 100 × w A / (w A + w B)%. Furthermore, the weight ratio of the plasticizing component excluding the polylactic acid segment component to the entire plasticizer can be substantially calculated as 100 × w B / (w A + w B )%. The numerical values exemplified above are actually average values, and the molecular weight of the generated plasticizer and the segment length of the polylactic acid portion have a certain distribution. A compound containing a polymer as a main component can be obtained.

可塑剤が未反応PEGや末端のポリ乳酸セグメント分子量が1,500に満たないPEGなどの未反応物や、ラクチドオリゴマーなどの副生成物、あるいは、不純物を多量に含む場合には、例えば次の精製方法によりこれを除去することが好ましい。通常、ラクチドオリゴマーやこれが加水分解した乳酸を精製により除去することで、可塑剤の酸価を大きく低減することができる。精製方法としては、例えば、クロロホルムなどの適当な良溶媒に、合成した可塑剤を均一溶解した後、水/メタノール混合溶液やジエチルエーテルなど適当な貧溶媒を滴下する。あるいは、大過剰の貧溶媒中に良溶媒溶液を加えるなどして沈殿させ、遠心分離あるいはろ過などにより沈殿物を分離した後に溶媒を揮散させる。可塑剤を水に浸漬後50〜90℃に加熱し必要に応じて攪拌の後、可塑剤を含有する有機相を抽出し乾燥して水を除去する。精製方法は上記に限られず、また、必要に応じて上記の操作を複数回繰り返しても良い。   When the plasticizer contains a large amount of unreacted PEG or unreacted product such as PEG having a molecular weight of less than 1,500 at the terminal polylactic acid segment, lactide oligomers, or impurities, for example, This is preferably removed by a purification method. Usually, the acid value of the plasticizer can be greatly reduced by removing the lactide oligomer and lactic acid hydrolyzed by the purification by purification. As a purification method, for example, the synthesized plasticizer is uniformly dissolved in an appropriate good solvent such as chloroform, and then an appropriate poor solvent such as a water / methanol mixed solution or diethyl ether is added dropwise. Alternatively, precipitation is performed by adding a good solvent solution in a large excess of poor solvent, and the solvent is evaporated after separating the precipitate by centrifugation or filtration. After immersing the plasticizer in water, it is heated to 50 to 90 ° C. and stirred as necessary, and then the organic phase containing the plasticizer is extracted and dried to remove water. The purification method is not limited to the above, and the above operation may be repeated a plurality of times as necessary.

上記した方法で、PLA(A)−PEG(B)−PLA(A)型のブロック共重合体の可塑剤を作成した場合、作成した可塑剤が有する一つのポリ乳酸セグメントの分子量は、次の方法で求めることができる。すなわち、可塑剤の重クロロホルム溶液を用いて、1H−NMR測定により得られたチャートを基に、(1/2)×(IPLA×72)/(IPEG×44/4)×MPEGと算出する。ただし、IPEGは、PEG主鎖部のメチレン基の水素に由来するシグナル積分強度、IPLAは、PLA主鎖部のメチン基の水素に由来するシグナル積分強度である。可塑剤合成時のラクチドの反応率が十分に高くほぼ全てのラクチドがPEG末端部に開環付加する条件にて合成した場合は、多くの場合、1H−NMR測定により得られたチャートを基にした方法が好ましい。 When a plasticizer of a PLA (A) -PEG (B) -PLA (A) type block copolymer is prepared by the method described above, the molecular weight of one polylactic acid segment of the prepared plasticizer is as follows: It can be determined by the method. That is, based on a chart obtained by 1H-NMR measurement using a deuterated chloroform solution of a plasticizer, (1/2) × (I PLA × 72) / (I PEG × 44/4) × M PEG and calculate. However, I PEG is the signal integral intensity derived from the hydrogen of the methylene group of the PEG main chain part, and I PLA is the signal integral intensity derived from the hydrogen of the methine group of the PLA main chain part. When synthesizing under the condition that the reaction rate of lactide at the time of plasticizer synthesis is sufficiently high and almost all lactide is subjected to ring-opening addition to the PEG end, in many cases, it is based on the chart obtained by 1H-NMR measurement. This method is preferred.

なお、本発明における組成物(A/B)から成形品を得た後などに、可塑剤(B)のポリ乳酸セグメント分子量などの評価のために使用した可塑剤(B)を分離する方法としては、例えばクロロホルムなどの適当な良溶媒に組成物(A/B)を均一溶解した後、水や水/メタノール混合溶液など適当なポリ乳酸系重合体(A)の貧溶媒に滴下してろ過などによりポリ乳酸系重合体(A)を主に含む沈殿物を除去し、ろ液の溶媒を揮散させて分離した可塑剤を得る方法などが挙げられるが、これに限られるものではなく、使用する可塑剤やポリ乳酸系重合体などに応じて適当な手法を選択し、あるいは組み合わせると良い。   In addition, after obtaining a molded article from the composition (A / B) in the present invention, as a method of separating the plasticizer (B) used for evaluating the polylactic acid segment molecular weight of the plasticizer (B), etc. For example, after the composition (A / B) is uniformly dissolved in a suitable good solvent such as chloroform, it is dropped into a poor solvent of a suitable polylactic acid polymer (A) such as water or a water / methanol mixed solution and filtered. For example, a method of removing a precipitate mainly containing a polylactic acid-based polymer (A) and volatilizing a solvent of a filtrate to obtain a separated plasticizer is not limited thereto. An appropriate method may be selected or combined depending on the plasticizer or polylactic acid polymer to be used.

例えば上述した方法により得られた、一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有するPLA(A)−PEG(B)−PLA(A)型のブロック共重合体を可塑剤(B)として使用すれば、従来技術ではなしえなかった、十分な柔軟性を有し臭気が抑制されていることに加えて可塑剤の揮発や滲出、抽出(ブリードアウト)の問題がなく実用性に優れた、特に包装用ラップフィルムに好適なフィルムを提供するにあたり十分な効果を得ることができる。   For example, a PLA (A) -PEG (B) -PLA (A) type block copolymer having one or more polylactic acid segments having a molecular weight of 1,500 or more in one molecule is obtained by the above-described method. When used as a plasticizer (B), there is no problem of volatilization, exudation or extraction (bleed out) of plasticizers in addition to sufficient flexibility and odor suppression, which could not be achieved with the prior art. A sufficient effect can be obtained in providing a film excellent in practicality, particularly suitable for a packaging wrap film.

また、ポリ乳酸系重合体(A)に前述した可塑剤(B)を添加する方法としては、ポリ乳酸系重合体の溶融状態で可塑剤を所望の重量割合にて添加・溶融混練することで得ることができるが、ポリ乳酸系重合体の高重合度化、ラクチドや残存低分子量物の抑制などの観点から、ポリマーの重合反応終了後に可塑剤を添加・溶融混練することが好ましい。また、本発明のポリ乳酸用可塑剤ではポリ乳酸系重合体へ添加・溶融混練する際の水分率の管理が重要である。通常雰囲気下での保管などにより水分率の高くなった可塑剤を使用する際には、あらかじめ加熱・減圧下で脱水するなどして可塑剤の水分率を0.5wt%以下とすると良い。さらに、上述したポリ乳酸系重合体と可塑剤の添加・溶融混練方法としては、例えば、重縮合反応終了直後、溶融状態のポリ乳酸系重合体に可塑剤を添加し攪拌・溶融混練させる方法、ポリ乳酸系重合体のチップに可塑剤を添加・混合した後に反応缶あるいはエクストルーダなどで溶融混練する方法、エクストルーダ中でポリ乳酸系重合体に必要に応じて加熱するなどして液状とした可塑剤を連続的に添加し、溶融混練する方法、可塑剤を高濃度含有させたポリ乳酸系重合体のマスターチップとポリ乳酸系重合体のホモチップとを混合したブレンドチップをエクストルーダなどで溶融混練する方法などにより行うことができる。   Moreover, as a method of adding the plasticizer (B) described above to the polylactic acid polymer (A), the plasticizer is added and melt kneaded in a desired weight ratio in the molten state of the polylactic acid polymer. Although it can be obtained, it is preferable to add and melt knead the plasticizer after the polymerization reaction of the polymer from the viewpoint of increasing the degree of polymerization of the polylactic acid-based polymer and suppressing lactide and residual low molecular weight substances. In addition, in the plasticizer for polylactic acid of the present invention, it is important to manage the moisture content when it is added to the polylactic acid polymer and melt kneaded. When using a plasticizer having a high moisture content due to storage in a normal atmosphere or the like, the moisture content of the plasticizer is preferably adjusted to 0.5 wt% or less by dehydration in advance under heating and reduced pressure. Furthermore, as the addition / melt kneading method of the above-mentioned polylactic acid polymer and plasticizer, for example, immediately after the end of the polycondensation reaction, a method of adding a plasticizer to the molten polylactic acid polymer and stirring and melt kneading, A method in which a plasticizer is added to and mixed with a polylactic acid polymer chip and then melted and kneaded in a reactor or an extruder, etc., and a plasticizer in a liquid state by heating the polylactic acid polymer in the extruder as necessary. A method of melt-kneading a blend chip in which a polylactic acid polymer master chip containing a high concentration of plasticizer and a polylactic acid polymer homochip are mixed with an extruder or the like Etc.

本発明の成形品では既存の溶融成形法により得ることができるが、特にアセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートなどの揮発成分含有量を低減させる方法を含めて、フィルムを例にして以下に説明する。   In the molded article of the present invention, it can be obtained by an existing melt molding method. In particular, a film is taken as an example, including a method for reducing the content of volatile components such as acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate. This will be described below.

フィルムでは、インフレーション法、逐次二軸延伸法、同時二軸延伸法などの既存の延伸フィルムの製造法により得ることが出来る。いずれの場合にも使用するポリ乳酸系重合体の水分量に加えて、ラクチドや残存低分子量物、揮発成分含有量を低減するため、80℃〜120℃にて真空乾燥し、真空度を10Torr以下の高真空とし、乾燥時間は6時間以上とすることが好ましい。また、さらに好ましい方法としては、ポリ乳酸重合体を10倍体積量以上のアセトンに24時間以上浸漬したのち、アセトン溶液を分離してさらに真空乾燥する方法が挙げられる。逐次二軸延伸法や同時二軸延伸法でのフィルムの製造においては、ポリ乳酸系重合体あるいはこれを主体とする組成物を公知の方法でスリット状の口金よりシート状に溶融押し出しすることができるが、押出し機やポリマー配管、口金などの温度は200℃以下が好ましく、190℃以下がさらに好ましく、180℃以下がより好ましい。また、ポリ乳酸重合体組成物が押出し機内で溶融されてから口金より吐出されるまでの滞留時間は20分以下であることが好ましく、10分以下であることがさらに好ましく、5分以下であることがより好ましい。押出されたシート状の溶融物はキャスティングドラムに密着させて冷却固化せしめて未延伸フィルムを得る。ポリ乳酸系重合体(A)に可塑剤(B)を添加する方法は、例えば、可塑剤を高濃度含有させたポリ乳酸系重合体のマスターチップとポリ乳酸系重合体のホモチップとを混合したブレンドチップをエクストルーダなど製膜機の押出系へ供して溶融混練しても良いが、組成物の熱劣化を最小限にしラクチド含有量を低減するためには、2軸の押出機を使用するなどして押出機中で溶融したポリ乳酸系重合体に、必要に応じて加熱するなどして液状とした可塑剤を計量しつつ連続的に添加し、溶融混練する方法が好ましい。さらに2軸押出機の途中にベントポートを設け、ベントポートの減圧化により溶融時に発生する揮発成分を除去する方法がより好ましい。かかる方法で得た未延伸フィルムを連続して少なくとも一方向に延伸した後、必要に応じて1段目延伸方向と直交する方向に延伸する。延伸に引き続いてあるいは一旦巻き取った後、100〜135℃のより高い温度で、10秒以上のより長時間熱処理しフィルム中の揮発成分を除去することが好ましい。製膜後のフィルムを0.1〜30Torrの高真空下、100〜135℃のより高い温度で、処理時間30分以上のより長時間脱揮処理する方法が好ましい。   The film can be obtained by an existing stretched film manufacturing method such as an inflation method, a sequential biaxial stretching method, or a simultaneous biaxial stretching method. In any case, in addition to the water content of the polylactic acid polymer used, in order to reduce the content of lactide, residual low molecular weight substances, and volatile components, vacuum drying is performed at 80 ° C. to 120 ° C., and the degree of vacuum is 10 Torr. The following high vacuum is used, and the drying time is preferably 6 hours or more. Further, a more preferable method is a method in which the polylactic acid polymer is immersed in 10 times volume or more of acetone for 24 hours or more, and then the acetone solution is separated and vacuum dried. In the production of a film by the sequential biaxial stretching method or the simultaneous biaxial stretching method, a polylactic acid polymer or a composition mainly composed thereof can be melt-extruded into a sheet form from a slit-shaped die by a known method. However, the temperature of the extruder, polymer piping, die, etc. is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, and more preferably 180 ° C. or lower. The residence time from when the polylactic acid polymer composition is melted in the extruder until it is discharged from the die is preferably 20 minutes or less, more preferably 10 minutes or less, and further preferably 5 minutes or less. It is more preferable. The extruded sheet-like melt is brought into close contact with a casting drum and cooled and solidified to obtain an unstretched film. The method of adding the plasticizer (B) to the polylactic acid polymer (A) is, for example, mixing a polylactic acid polymer master chip containing a high concentration of plasticizer and a polylactic acid polymer homochip. The blended chip may be subjected to melt kneading by being fed to an extrusion system of a film forming machine such as an extruder. However, in order to minimize thermal deterioration of the composition and reduce the lactide content, a twin screw extruder is used. Then, a method of continuously adding a plasticizer in a liquid state by heating it to the polylactic acid polymer melted in an extruder while measuring it is melted and kneaded is preferable. Further, a method of providing a vent port in the middle of the twin-screw extruder and removing volatile components generated during melting by reducing the pressure of the vent port is more preferable. The unstretched film obtained by this method is continuously stretched in at least one direction, and then stretched in a direction perpendicular to the first-stage stretching direction as necessary. It is preferable to remove the volatile components in the film by carrying out heat treatment for 10 seconds or longer at a higher temperature of 100 to 135 ° C. after the stretching or after winding. A method in which the film after film formation is subjected to devolatilization treatment at a higher temperature of 100 to 135 ° C. under a high vacuum of 0.1 to 30 Torr for a treatment time of 30 minutes or longer is preferable.

さらに、フィルムに成形した後に、印刷性、ラミネート適性、コーティング適性などを向上させる目的で各種の表面処理を施しても良い。表面処理の方法としては、コロナ放電処理、プラズマ処理、火炎処理、酸処理などが挙げられ、いずれの方法をも用いることができが、連続処理が可能であり、既存の製膜設備への装置設置が容易な点や処理の簡便さからコロナ放電処理が最も好ましいものとして例示できる。   Furthermore, after forming into a film, various surface treatments may be applied for the purpose of improving printability, laminate suitability, coating suitability, and the like. Examples of surface treatment methods include corona discharge treatment, plasma treatment, flame treatment, acid treatment, etc., and any method can be used, but continuous treatment is possible, and equipment for existing film forming equipment is used. Corona discharge treatment can be exemplified as the most preferable because of its easy installation and simple processing.

本発明のフィルムの厚さは特に制限はなく、用途に応じて要求される性能、例えば、柔軟性、機械特性、透明性、生分解速度、価格などにより適宜な厚さにすればよいが、通常5μm以上、1mm以下であり、特に5μm以上、200μm以下の範囲が好んで選択される。また、包装用ラップフィルム、中でも食品包装用ラップフィルムとしては、5μm以上、25μm以下の範囲が好んで選択される。   The thickness of the film of the present invention is not particularly limited, and may be an appropriate thickness depending on the performance required according to the application, for example, flexibility, mechanical properties, transparency, biodegradation rate, price, Usually, it is 5 μm or more and 1 mm or less, and particularly, a range of 5 μm or more and 200 μm or less is preferably selected. In addition, a wrapping film for packaging, especially a wrapping film for food packaging, is preferably selected in the range of 5 μm or more and 25 μm or less.

本発明のフィルムは、フィルムヘイズ値が0.2〜5%であることが好ましい。フィルムヘイズ値は、実施例に記載の方法にて評価され、実際の測定値から比例計算によりフィルム厚さが10μmの場合に換算して得られる値を言う。特に包装用ラップフィルム、中でも食品包装用ラップフィルムの用途においては、フィルムヘイズ値が0.2〜5%であれば内容物を容易に見分けることができ、好適である。フィルムヘイズ値の好ましい範囲としては、0.2〜3%であり、さらに好ましい範囲は0.2〜1.5%である。また、実際の測定値においてもフィルム厚さにかかわらず10%以下であることが好ましい。さらに、ゴミ袋や農業用マルチフィルムなどむしろ一定の隠蔽性が必要とされたり、光線透過率が低いあるいは太陽光などの吸収率が高い方が好ましい用途においては、必要に応じて例えば着色顔料などを添加すると良い。   The film of the present invention preferably has a film haze value of 0.2 to 5%. The film haze value is evaluated by the method described in the Examples, and refers to a value obtained by converting the actual measured value when the film thickness is 10 μm by proportional calculation. In particular, in the use of a wrapping film for packaging, especially a wrapping film for food packaging, if the film haze value is 0.2 to 5%, the contents can be easily distinguished, which is preferable. A preferable range of the film haze value is 0.2 to 3%, and a more preferable range is 0.2 to 1.5%. Further, the actual measured value is preferably 10% or less regardless of the film thickness. Furthermore, in applications where a certain level of concealment is required, such as garbage bags or agricultural multi-films, or where it is preferable that the light transmittance is low or the absorption rate of sunlight is high, for example, coloring pigments, etc. It is good to add.

また、本発明の成形品が繊維である場合についても、既存の溶融紡糸法により得ることができる。すなわち、乾燥処理されたポリ乳酸系重合体をはじめとする原料ポリマーを例えばエクストルーダーやプレッシャーメルターで溶融した後メタリングポンプによって計量し、紡糸パック内等で濾過を行った後、口金から吐出される。吐出された糸は冷却風等によって冷却・固化された後、油剤を付与されて、引き取られ、その後延伸される。口金の吐出孔径は丸断面の場合0.2〜1.0mm程度が好ましく使用される。冷却域では、常温、加熱あるいは冷却されたの気体を、15〜50m/分の速度で吹き付ければよい。この冷却域の条件も、紡出される糸条の粘度、単糸太さ、ドラフト率、単糸数等の設定条件て選択すればよい。   Moreover, also when the molded article of this invention is a fiber, it can be obtained by the existing melt spinning method. That is, raw polymer such as polylactic acid polymer that has been dried is melted with an extruder or pressure melter, then measured with a metering pump, filtered in a spinning pack, etc., and then discharged from the die. The The discharged yarn is cooled and solidified by cooling air or the like, then applied with an oil agent, taken up, and then drawn. The diameter of the discharge hole of the die is preferably about 0.2 to 1.0 mm in the case of a round cross section. In the cooling zone, normal temperature, heated or cooled gas may be blown at a speed of 15 to 50 m / min. The conditions for the cooling region may be selected according to setting conditions such as the viscosity of the yarn to be spun, the single yarn thickness, the draft rate, the number of single yarns, and the like.

延伸に当たっては延伸の前に一旦巻き取る2工程法を用いても、紡糸後巻き取ることなく引き続いて延伸を行う直接紡糸延伸法を用いてもどちらでも構わない。引き取り速度は繊維強度の観点から4000m/分以下、また生産性の観点から300m/分以上であることが好ましい。延伸倍率は引き取り速度によって変わり、用途によって適宜調整されればよい。さらに、紡出直下、冷却・固化の前には加熱帯を設置して糸条をポリマーの融点以上の温度に加熱し、繊維の強度を高めることが好ましい。延伸は1段延伸でも2段以上の多段延伸でも構わないが、強度を得る観点からは2〜4段延伸が好ましく、巻き取り前にはポリマーの融点より20〜80℃程度低い温度で熱処理が行われることが好ましく、また寸法安定性の観点から1〜20%の弛緩処理が行われることが好ましい。   For stretching, either a two-step method of winding once before stretching or a direct spinning stretching method in which stretching is performed without winding after spinning may be used. The take-up speed is preferably 4000 m / min or less from the viewpoint of fiber strength and 300 m / min or more from the viewpoint of productivity. The draw ratio varies depending on the take-up speed and may be appropriately adjusted depending on the application. Further, it is preferable that a heating zone is provided immediately under spinning and before cooling and solidification to heat the yarn to a temperature equal to or higher than the melting point of the polymer to increase the strength of the fiber. Stretching may be one-stage stretching or multi-stage stretching of two or more stages, but from the viewpoint of obtaining strength, 2 to 4 stage stretching is preferable, and before winding, heat treatment is performed at a temperature about 20 to 80 ° C. lower than the melting point of the polymer. It is preferable to be performed, and it is preferable that a relaxation treatment of 1 to 20% is performed from the viewpoint of dimensional stability.

本発明の成形品の繊維としての形態は特に限られないが、例えば、マルチフィラメント、ステープルファイバー、トウ、スパンボンドなどとして用いることができる。また単繊維繊度は使用形態や、機械的強度、生分解速度などの要求特性に応じて選択すればよいが、通常0.5dtex以上、11111dtex以下である。また、マルチフィラメントとしての総繊度では33dtex以上、11111dtex以下とすることが好ましい。さらに、断面形状は、丸、扁平、中空、Y型、T型、多角形など任意であるが、製糸性の観点から丸断面が好ましい。   Although the form as a fiber of the molded article of the present invention is not particularly limited, for example, it can be used as a multifilament, a staple fiber, a tow, a spunbond, and the like. Further, the single fiber fineness may be selected according to required characteristics such as the usage form, mechanical strength, biodegradation rate, etc., but is usually 0.5 dtex or more and 11111 dtex or less. In addition, the total fineness as a multifilament is preferably 33 dtex or more and 11111 dtex or less. Furthermore, the cross-sectional shape is arbitrary, such as round, flat, hollow, Y-type, T-type, and polygonal, but a round cross-section is preferable from the viewpoint of yarn production.

本発明の成形品は、従来技術では成し得なかった、臭気の発生が十分に抑制された成形品であり、従来以上に広い分野での利用が可能である。例えば、フィルムやシートでは包装用ラップフィルムなどの包装材料、農業用フィルム、自動車塗膜保護シート、ごみ袋、堆肥袋などの産業資材、各種軟質塩化ビニルが用いられている工業材料用途、繊維分野では衣料用途、漁網、海苔網、植生保護用不織布、土木用ネット、土嚢、育苗用ポット、農業用資材、水切り袋などの用途、その他の成形品では飲料や化粧品のボトル、ディスポーザブルカップ、トレイなどの容器類、育苗ポット、植木鉢などが挙げらる。   The molded product of the present invention is a molded product in which the generation of odors, which could not be achieved by the prior art, is sufficiently suppressed, and can be used in a wider field than before. For example, in the case of films and sheets, packaging materials such as wrapping films for packaging, agricultural films, automobile coating film protection sheets, industrial materials such as garbage bags, compost bags, industrial materials for which various soft vinyl chlorides are used, textile field For clothing, fishing nets, laver nets, vegetation protection nonwoven fabrics, civil engineering nets, sandbags, seedling pots, agricultural materials, draining bags, etc. Containers, nursery pots, flower pots and the like.

本発明のフィルムに組成物(A/B)を用いる場合、上述した形態のなかでも体積比表面積が大きく、臭気の原因となる揮発物質が揮散し易く、また可塑剤の揮発や滲出、抽出(ブリードアウト)が問題となり易いフィルムの分野において特に有効である。例えば、包装用ラップフィルムとして使用する場合では、使用開始直後から実用上十分な柔軟性や透明性および強度物性を併せ持ち、使用時においては経時における可塑剤の揮発や滲出、抽出(ブリードアウト)が事実上ほとんどないために柔軟性や透明性は使用開始時の性能を使用期間の長期にわたって維持することができ、さらに、特に加熱使用時においても強い臭気を発生するといった問題がない。また可塑剤として生分解性を有するものを含有させた場合には、使用後は食品などの内容物とともに分別することなくそのままコンポスト化可能な包装用ラップフィルムを得ることができる。さらには経時安定性に富んでいるため製造後長期間経た後でも劣化することもなく当初の性能を発揮するフィルムを得ることができる。また、フィルム製膜後に行われる、各種後加工工程で種々の乾熱加工時や高温雰囲気中で処理した後においても、安定した柔軟性や透明性を有するフィルムとすることができる。   When the composition (A / B) is used for the film of the present invention, the volume specific surface area is large in the above-described form, and volatile substances that cause odor are easily volatilized, and plasticizer volatilization, leaching, and extraction ( This is particularly effective in the field of films where bleeding out is likely to be a problem. For example, when used as a packaging wrap film, it has practically sufficient flexibility, transparency and strength properties immediately after the start of use, and during use, plasticizer volatilization, leaching and extraction (bleed out) over time Since there is virtually no flexibility and transparency, the performance at the start of use can be maintained over a long period of use, and there is no problem of generating a strong odor, especially during heating. In addition, when a biodegradable plasticizer is contained, a packaging wrap film that can be composted as it is without being separated together with contents such as food after use can be obtained. Furthermore, since it is rich in stability over time, it is possible to obtain a film that exhibits the original performance without deterioration even after a long period of time after production. Moreover, it can be set as the film which has the stable softness | flexibility and transparency also after processing at the time of various dry-heat processings in various post-processing processes performed after film forming, or in a high temperature atmosphere.

以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例により限定されるものではない。なお、実施例中の物性は次の方法で測定した値である。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by a following example. In addition, the physical property in an Example is the value measured with the following method.

(1)揮発成分の分析・定量方法:
熱脱離装置としてヘッドスペースサンプラーJHS−100A型(日本分析工業社製)を用い、成形品試料0.5gをJHS−100A用試料管(約10cm×1cmφ)に採取し、Heを流しながら100℃、30分間加熱し、発生した揮発成分を−40℃のTENAX−TA管に一旦捕集した。さらに、このTENAX−TA管をGC/MS装置に接続してから急速加熱(220℃、20分間)により捕集した揮発成分を脱離させ、GC/MS装置に導入し、揮発成分のうち、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートの各成分量を測定した。GC装置にはHP5890型(ヒューレットパッカード社製)を、MS装置にはJMS SX102A型質量分析計(日本電子社製)を、データ処理にはMS−MP7000データ処理システム(日本電子社製)を用いた。GC用カラムには“Pora PROT Q”(クロムパック社製、30m×0.25mmID)を使用し、カラム温度:60℃(4分ホールド)〜250℃(昇温速度:8℃/分)、キャリアーガス:He、注入口温度:270℃とした。また、MS装置のイオン化方式:EI、イオン化エネルギー:70eVとした。
(1) Analysis and quantification method of volatile components:
A head space sampler JHS-100A type (manufactured by Nippon Analytical Industrial Co., Ltd.) was used as a thermal desorption device, and 0.5 g of a molded product sample was collected in a sample tube for JHS-100A (about 10 cm × 1 cmφ), and while flowing He, 100 C. for 30 minutes and the generated volatile components were once collected in a TENAX-TA tube at -40.degree. Furthermore, after connecting the TENAX-TA tube to the GC / MS device, the volatile components collected by rapid heating (220 ° C., 20 minutes) are desorbed and introduced into the GC / MS device. The amount of each component of acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate was measured. HP 5890 (manufactured by Hewlett Packard) is used for the GC device, JMS SX102A mass spectrometer (manufactured by JEOL Ltd.) is used for the MS device, and an MS-MP7000 data processing system (JEOL Ltd.) is used for data processing. It was. The column for GC uses “Pora PROT Q” (Chrome Pack, 30 m × 0.25 mm ID), column temperature: 60 ° C. (hold for 4 minutes) to 250 ° C. (temperature increase rate: 8 ° C./min), Carrier gas: He, inlet temperature: 270 ° C. Further, the ionization method of the MS apparatus was EI, and the ionization energy was 70 eV.

また、既知濃度のエタノール標準ガスで検量線を作成し、作成した検量線を用いて、検出されたアセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテートの各揮発成分を定量し、発生量を次式により求めた。
揮発成分発生量(μg/g)=検出量(μg)/成形品試料量(g) 。
Also, create a calibration curve with ethanol standard gas at a known concentration, and use the calibration curve created to quantify each detected volatile component of acetaldehyde, 2,3-pentanedione, and methoxyethyl acetate, Obtained by the formula.
Volatile component generation amount (μg / g) = detection amount (μg) / molded product sample amount (g).

(2)フィルムの初期引張弾性率[GPa]
フィルムサンプルを長手方向150mm、幅方向10mmに切り出し、あらかじめ温度23℃、湿度65%RHの雰囲気下で24時間調湿した。この試料を23℃の雰囲気下でJIS K7161およびJIS K7127に準じて、テンシロン万能試験機UTC−100型(株式会社オリエンテック)を用い、初期長50mm、引張速度300mm/分条件で引張試験を行った。次いで引張試験で得られた応力−歪み曲線の最初の直線部分を用いて、直線上の2点間の応力の差を同じ2点間の歪みの差で除し、計5回の試験を行い、平均値を求め、これを初期引張弾性率とした。
(2) Initial tensile elastic modulus [GPa] of the film
A film sample was cut into a longitudinal direction of 150 mm and a width direction of 10 mm, and conditioned for 24 hours in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH in advance. This sample was subjected to a tensile test under the conditions of an initial length of 50 mm and a tensile speed of 300 mm / min using a Tensilon universal tester UTC-100 type (Orientec Co., Ltd.) in an atmosphere of 23 ° C. according to JIS K7161 and JIS K7127. It was. Next, using the first linear part of the stress-strain curve obtained in the tensile test, the difference in stress between two points on the straight line is divided by the difference in strain between the same two points, and a total of five tests are performed. The average value was obtained and used as the initial tensile elastic modulus.

(3)熱水処理後の重量減少率[%]
あらかじめ、温度23℃、湿度65%RHの雰囲気下で24時間調湿した二軸延伸フィルムサンプルについて処理前の重量を測定し、90℃の蒸留水中で30分間処理した後に再度処理前と同様の条件で調湿してから重量を測定した。重量減少率は、処理前後での重量変化(減少)の処理前の重量に対する割合として算出した。
(3) Weight reduction rate after hydrothermal treatment [%]
The weight before treatment was measured in advance for a biaxially stretched film sample that had been conditioned for 24 hours in an atmosphere of temperature 23 ° C. and humidity 65% RH, and treated in distilled water at 90 ° C. for 30 minutes, and then again the same as before treatment. After adjusting the humidity under the conditions, the weight was measured. The weight reduction rate was calculated as the ratio of the weight change (decrease) before and after treatment to the weight before treatment.

(4)フィルムヘイズ値[%]
フィルムサンプルを長手方向40mm、幅方向に30mmに切り出し、温度23℃、湿度65%RHの雰囲気下で24時間調湿した。この試料を23℃の雰囲気下でJIS K7136に準じて、ヘイズメーターHGM−2DP(スガ試験器株式会社)を用い、計5回測定してその平均値を求め、厚み10μmのフィルムとした場合の換算値としてフィルムヘイズ値%を求めた。
なお、上記測定器により得られるフィルムヘイズ値は、散乱光透過率を全光線透過率で除し、100を乗じて得られる値である。
(4) Film haze value [%]
A film sample was cut into a longitudinal direction of 40 mm and a width direction of 30 mm, and conditioned for 24 hours in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH. This sample was measured 5 times in total using a haze meter HGM-2DP (Suga Test Instruments Co., Ltd.) in an atmosphere of 23 ° C. according to JIS K7136, and the average value was obtained to obtain a film having a thickness of 10 μm. The film haze value% was determined as a converted value.
The film haze value obtained by the measuring instrument is a value obtained by dividing the scattered light transmittance by the total light transmittance and multiplying by 100.

(5)加熱時の臭気:
成形品サンプル2gを120℃のホットプレート上に置き、直ちにガラス製のシャーレを下向きにして覆い被せて1分間放置した後、覆い被せたシャーレを取り除いた直後の臭気の有無を下記基準にて評価した。
◎:無作為に抽出した10人中9人以上が臭気を感じない。
○:無作為に抽出した10人中7人以上が臭気を感じない。
△:無作為に抽出した10人中5人以上が臭気を感じない。
×:上記以外。
(5) Odor during heating:
Place 2 g of the molded product sample on a hot plate at 120 ° C., immediately cover it with a glass petri dish facing down and leave it for 1 minute. did.
A: Randomly extracted 9 out of 10 people do not feel odor.
○: Randomly extracted 7 out of 10 people do not feel odor.
(Triangle | delta): Five or more out of ten people extracted at random do not feel an odor.
X: Other than the above.

(6)可塑剤の水分率[wt%]
カ−ルフィッシャ−水分計MKC−510N(京都電子工業株式会社)を使用してカールフィッシャー法(電量滴定法)により測定した。
(6) Moisture content of plasticizer [wt%]
It measured by Karl Fischer method (coulometric titration method) using a Karl Fischer moisture meter MKC-510N (Kyoto Electronics Co., Ltd.).

(7)可塑剤の酸価[当量/t]
精秤した試料をo−クレゾール(水分5%)調整液に溶解し、この溶液にジクロロメタンを適量添加の後、0.02規定のKOHメタノール溶液にて滴定することにより測定した。
(7) Acid value [equivalent / t] of plasticizer
A precisely weighed sample was dissolved in an o-cresol (water 5%) adjusting solution, and an appropriate amount of dichloromethane was added to this solution, followed by titration with a 0.02 N KOH methanol solution.

本実施例で用いたポリ乳酸系重合体、脂肪族ポリエステル、可塑剤は次のとおりにして得られた。   The polylactic acid polymer, aliphatic polyester, and plasticizer used in this example were obtained as follows.

<ポリ乳酸系重合体(P1)>
L−ラクチド100重量部に対しオクチル酸錫を0.1重量部、ラウリルアルコールを0.1重量部混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で15分間重合し、さらに2軸混練押出し機にてチップ化した後、140℃の窒素雰囲気下で3時間固相重合してポリ乳酸系重合体P1を得た。P1についてDSC測定を行ったところ、P1は結晶性を有し、結晶化温度は128℃、融点は172℃であった。
<Polylactic acid polymer (P1)>
0.1 parts by weight of octylate and 0.1 parts by weight of lauryl alcohol are mixed with 100 parts by weight of L-lactide and polymerized in a reaction vessel equipped with a stirrer at 190 ° C. for 15 minutes in a nitrogen atmosphere. After chipping with a shaft kneading extruder, solid-phase polymerization was performed in a nitrogen atmosphere at 140 ° C. for 3 hours to obtain a polylactic acid polymer P1. When DSC measurement was performed on P1, P1 had crystallinity, the crystallization temperature was 128 ° C., and the melting point was 172 ° C.

<ポリ乳酸系重合体(P2)>
L−ラクチド65重量部およびDL−ラクチド35重量部に対しオクチル酸錫を0.1重量部、ラウリルアルコールを0.1重量部混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で3時間重合し、さらに2軸混練押出し機にてチップ化してポリ乳酸系重合体P2を得た。P2についてDSC測定を行ったところ、P2は結晶性を示さず、結晶化温度および融点は観測されなかった。
<Polylactic acid polymer (P2)>
0.1 part by weight of octylate and 0.1 part by weight of lauryl alcohol are mixed with 65 parts by weight of L-lactide and 35 parts by weight of DL-lactide, and the mixture is stirred at 190 ° C. in a nitrogen atmosphere in a reaction vessel equipped with a stirrer. Polymerization was carried out for 3 hours, and further chipped with a biaxial kneading extruder to obtain a polylactic acid polymer P2. When DSC measurement was performed on P2, P2 did not exhibit crystallinity, and the crystallization temperature and melting point were not observed.

<脂肪族ポリエステル(P3)>
昭和高分子社製PBSA系樹脂:“ビオノーレ”#3001を用いた。
<Aliphatic polyester (P3)>
PBSA resin manufactured by Showa Polymer Co., Ltd .: “Bionore” # 3001 was used.

<可塑剤(S1)>
平均分子量8,000のポリ(1,3−ブタンジオールアジペート)40重量部とL−ラクチド60重量部に対し、オクチル酸錫0.05重量部を混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で60分間重合し、両末端に平均分子量6,000のポリ乳酸セグメントを有する、ポリ(1,3−ブタンジオールアジペート)とポリ乳酸のブロック共重合物を得た。この化合物をクロロホルムに溶解し撹拌した後、クロロホルムの20倍体積量のジエチルエーテル中に投入し沈殿物を得た。この沈殿物をろ過・分離し、10torrの高真空下、常温で24時間乾燥して可塑剤(S1)を得た。
<Plasticizer (S1)>
0.05 parts by weight of tin octylate is mixed with 40 parts by weight of poly (1,3-butanediol adipate) having an average molecular weight of 8,000 and 60 parts by weight of L-lactide, and nitrogen is added in a reaction vessel equipped with a stirrer. Polymerization was carried out at 190 ° C. for 60 minutes in an atmosphere to obtain a block copolymer of poly (1,3-butanediol adipate) and polylactic acid having polylactic acid segments having an average molecular weight of 6,000 at both ends. This compound was dissolved in chloroform and stirred, and then poured into 20 times volume of diethyl ether of chloroform to obtain a precipitate. This precipitate was filtered and separated, and dried at room temperature under a high vacuum of 10 torr for 24 hours to obtain a plasticizer (S1).

<可塑剤(S2)>
平均分子量2,000のポリプロピレングリコールの両末端にエチレンオキサイドを付加反応させて作成した、分子量10,000のポリプロピレングリコール・エチレングリコールブロック共重合体71重量部とL−ラクチド29重量部に対し、オクチル酸錫0.07重量部を混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で60分間重合し、両末端に平均分子量2,000のポリ乳酸セグメントを有する、ポリプロピレングリコール・エチレングリコールとポリ乳酸のブロック共重合物を得た。この化合物をクロロホルムに溶解し撹拌した後、クロロホルムの20倍体積量のジエチルエーテル中に投入し沈殿物を得た。この沈殿物をろ過・分離し、10torrの高真空下、常温で24時間乾燥して可塑剤(S2)を得た。
<Plasticizer (S2)>
Octyl with respect to 71 parts by weight of polypropylene glycol / ethylene glycol block copolymer having a molecular weight of 10,000 and 29 parts by weight of L-lactide prepared by addition reaction of ethylene oxide at both ends of polypropylene glycol having an average molecular weight of 2,000 Polypropylene glycol / ethylene glycol having 0.07 parts by weight of tin oxide mixed and polymerized in a reaction vessel equipped with a stirrer at 190 ° C. for 60 minutes in a nitrogen atmosphere and having polylactic acid segments with an average molecular weight of 2,000 at both ends A block copolymer of polylactic acid was obtained. This compound was dissolved in chloroform and stirred, and then poured into 20 times volume of diethyl ether of chloroform to obtain a precipitate. This precipitate was filtered and separated, and dried at room temperature under a high vacuum of 10 torr for 24 hours to obtain a plasticizer (S2).

<可塑剤(S2’)>
可塑剤(S2)と同様の重合方法により得た、両末端に平均分子量2,000のポリ乳酸セグメントを有する、ポリエチレングリコールとポリ乳酸のブロック共重合物を用い、クロロホルム/ジエチルエーテルによる精製操作を行わずそのまま可塑剤(S2’)として用いた。
<Plasticizer (S2 ')>
Using a block copolymer of polyethylene glycol and polylactic acid having a polylactic acid segment with an average molecular weight of 2,000 at both ends, obtained by the same polymerization method as the plasticizer (S2), purification operation with chloroform / diethyl ether The plasticizer (S2 ′) was used as it was without performing.

<可塑剤(S3)>
平均分子量10,000のポリエチレングリコール71重量部とL−ラクチド29重量部に対し、オクチル酸錫0.07重量部を混合し、撹拌装置付きの反応容器中で窒素雰囲気中190℃で60分間重合し、両末端に平均分子量2,000のポリ乳酸セグメントを有する、ポリエチレングリコールとポリ乳酸のブロック共重合物を得た。この化合物をクロロホルムに溶解し撹拌した後、クロロホルムの20倍体積量のジエチルエーテル中に投入し沈殿物を得た。この沈殿物をろ過・分離し、10torrの高真空下、常温で24時間乾燥して可塑剤(S3)を得た。
<Plasticizer (S3)>
0.07 part by weight of tin octylate is mixed with 71 parts by weight of polyethylene glycol having an average molecular weight of 10,000 and 29 parts by weight of L-lactide, and polymerization is carried out at 190 ° C. for 60 minutes in a nitrogen atmosphere in a reaction vessel equipped with a stirrer. Thus, a block copolymer of polyethylene glycol and polylactic acid having a polylactic acid segment having an average molecular weight of 2,000 at both ends was obtained. This compound was dissolved in chloroform and stirred, and then poured into 20 times volume of diethyl ether of chloroform to obtain a precipitate. This precipitate was filtered and separated, and dried at room temperature under a high vacuum of 10 torr for 24 hours to obtain a plasticizer (S3).

可塑剤(S3)の重クロロホルム溶液を1H−NMR測定して得られたチャートを基に、
(1/2)×(IPLA×72)/(IPEG×44/4)×MPEG
(ただし、IPEG:PEG主鎖部のメチレン基の水素に由来するシグナル積分強度、IPLA:PLA主鎖部のメチン基の水素に由来するシグナル積分強度、MPEG:ポリエチレングリコールの平均分子量)
の式より算出したポリ乳酸セグメントの数平均分子量は1910であった。この値は、原料仕込み比から
(1/2)×(wA/wB)×MPEG
(ただし、w:L−ラクチド重量部、w:ポリエチレングリコール重量部、MPEG:ポリエチレングリコールの平均分子量)
の式により算出した値と非常に良く対応していた。
Based on a chart obtained by 1H-NMR measurement of a deuterated chloroform solution of a plasticizer (S3),
(1/2) × (I PLA × 72) / (I PEG × 44/4) × M PEG
(However, I PEG : Signal integrated intensity derived from hydrogen of methylene group of PEG main chain part, I PLA : Signal integrated intensity derived from hydrogen of methine group of PLA main chain part, M PEG : Average molecular weight of polyethylene glycol)
The number average molecular weight of the polylactic acid segment calculated from the formula was 1910. This value is (1/2) × (wA / wB) × M PEG from the raw material charge ratio.
(W A : L-lactide parts by weight, w B : polyethylene glycol parts by weight, M PEG : average molecular weight of polyethylene glycol)
Corresponds very well with the value calculated by the equation.

<可塑剤(S3’)>
可塑剤(S3)と同様の重合方法により得た、両末端に平均分子量2,000のポリ乳酸セグメントを有する、ポリエチレングリコールとポリ乳酸のブロック共重合物を用い、クロロホルム/ジエチルエーテルによる精製に代えて、水に浸漬し80℃まで加熱して攪拌した後、分離した有機相を抽出し、さらに90℃の加熱窒素にて乾燥して水分率が1%となるまで乾燥して可塑剤(S3’)を得た。
<Plasticizer (S3 ')>
A block copolymer of polyethylene glycol and polylactic acid having a polylactic acid segment with an average molecular weight of 2,000 at both ends, obtained by the same polymerization method as the plasticizer (S3), is used instead of purification with chloroform / diethyl ether. Then, after being immersed in water and heated to 80 ° C. and stirred, the separated organic phase is extracted, further dried with heated nitrogen at 90 ° C. and dried until the moisture content becomes 1%, and the plasticizer (S3 ') Got.

<可塑剤(S3”)>
可塑剤(S3)と同様の重合方法により得た、両末端に平均分子量2,000のポリ乳酸セグメントを有する、ポリエチレングリコールとポリ乳酸のブロック共重合物を用い、可塑剤(S3)と同様のクロロホルム/ジエチルエーテルによる一連の精製工程(含む沈殿・ろ過・乾燥)を3回繰り返して可塑剤(S3”)を得た。
<Plasticizer (S3 ")>
A block copolymer of polyethylene glycol and polylactic acid having a polylactic acid segment having an average molecular weight of 2,000 at both ends, obtained by the same polymerization method as that of the plasticizer (S3), is the same as the plasticizer (S3). A series of purification steps (including precipitation, filtration and drying) with chloroform / diethyl ether was repeated three times to obtain a plasticizer (S3 ″).

<可塑剤(S4)>
旭電化工業(株)社製エーテルエステル系可塑剤“RS−1000”(室温で液状)を可塑剤S4として使用した。
<Plasticizer (S4)>
Asahi Denka Kogyo Co., Ltd. ether ester plasticizer “RS-1000” (liquid at room temperature) was used as the plasticizer S4.

<可塑剤(S5)>
平均分子量10,000のポリエチレングリコールを可塑剤S5として使用した。なお、数平均分子量は、JIS K−1557 6.4に準じてピリジン無水フタル酸法より求めた水酸基価より算出した。
<Plasticizer (S5)>
Polyethylene glycol having an average molecular weight of 10,000 was used as the plasticizer S5. The number average molecular weight was calculated from the hydroxyl value determined by the pyridine phthalic anhydride method in accordance with JIS K-1557 6.4.

(実施例1)
ポリ乳酸系重合体(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を120℃で6時間、10torrの高真空下で乾燥した後、溶融温度200℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を3分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ200μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度80℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、130℃の雰囲気下で60秒加熱処理して二軸延伸フィルムに成形した。さらに、成形した二軸延伸フィルムを100℃で12時間、5torrの高真空下で脱揮処理した。得られた二軸延伸フィルムの評価結果を表1に示す。
(Example 1)
After drying a mixture of 100 parts by weight of a polylactic acid polymer (P1) and 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. at 120 ° C. for 6 hours under a high vacuum of 10 torr. , Melt with a uniaxial extruder set at a melting temperature of 200 ° C, adjust the discharge amount so that the residence time from melting to discharging from the die is 3 minutes, and lead the molten polymer to the T die die It was extruded into a sheet shape and cast on a drum cooled to 5 ° C. to form an unstretched film having a thickness of 200 μm. Using this unstretched film with a batch-type biaxial stretching apparatus for film, the stretching temperature is 80 ° C., the stretching ratio in the longitudinal and transverse directions is 3.2 times, and the biaxial stretching ratio is 10 times as the area ratio. After stretching, the film was heat-treated at 130 ° C. for 60 seconds under tension and formed into a biaxially stretched film. Further, the formed biaxially stretched film was devolatilized at 100 ° C. for 12 hours under a high vacuum of 5 torr. The evaluation results of the obtained biaxially stretched film are shown in Table 1.

Figure 2005146274
Figure 2005146274

(実施例2)
成形した二軸延伸フィルムを1000倍体積量の水中に浸漬し、常温で48時間処理した後に水中から取り出し、100℃で12時間、5torrの高真空下で乾燥したこと以外は実施例1と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。
(Example 2)
Except that the formed biaxially stretched film was immersed in 1000 times volume of water, treated at room temperature for 48 hours, taken out from the water, and dried at 100 ° C. for 12 hours under a high vacuum of 5 torr, as in Example 1. Thus, a biaxially stretched film was obtained. The evaluation results of the obtained biaxially stretched film are shown in Table 1.

(実施例3)
成形した二軸延伸フィルムを1000倍体積量の水/エタノール(85/15)混合溶液中に浸漬し、常温で24時間処理した後に混合溶液から取り出し、100℃で12時間、5torrの高真空下で乾燥したこと以外は実施例1と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。
(Example 3)
The formed biaxially stretched film is immersed in a 1000 times volume of water / ethanol (85/15) mixed solution, treated at room temperature for 24 hours, then taken out of the mixed solution, and at 100 ° C. for 12 hours under a high vacuum of 5 torr. A biaxially stretched film was obtained in the same manner as in Example 1 except that the film was dried. The evaluation results of the obtained biaxially stretched film are shown in Table 1.

(実施例4)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)70重量部と、10torrの高真空下、50℃で48時間減圧乾燥した脂肪族ポリエステル(P3)30重量部の混合物をシリンダー温度200℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化した組成物を得た。得られた組成物は白濁していた。このチップをさらに10torrの高真空下、70℃で24時間乾燥し以下の製膜に供した。
Example 4
70 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, and 30 parts by weight of an aliphatic polyester (P3) dried under reduced pressure for 48 hours at 50 ° C. under a high vacuum of 10 torr. The mixture was subjected to a twin-screw kneading extruder having a cylinder temperature of 200 ° C., melt-kneaded and homogenized to obtain a chipped composition. The obtained composition was cloudy. This chip was further dried at 70 ° C. for 24 hours under a high vacuum of 10 torr and subjected to the following film formation.

上記のチップを溶融温度200℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を3分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ200μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度70℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、130℃の雰囲気下で90秒加熱処理して二軸延伸フィルムに成形した。さらに、成形した二軸延伸フィルムを1000倍体積量の水/エタノール(85/15)混合溶液中に浸漬し、常温で24時間処理した後に混合溶液から取り出し、80℃で6時間、5torrの高真空下で乾燥した。得られた二軸延伸フィルムの評価結果を表1に示す。   The above chip is melted with a uniaxial extruder set at a melting temperature of 200 ° C., and the discharge amount is adjusted so that the residence time from the melting to the discharge from the die is 3 minutes. An unstretched film having a thickness of 200 μm was formed by being guided to a die, extruded into a sheet, and cast on a drum cooled to 5 ° C. Using this unstretched film with a batch-type biaxial stretching apparatus for film, the stretching temperature is 70 ° C., the stretching ratio in the longitudinal and transverse directions is 3.2 times, and the biaxial stretching ratio is 10 times as the area magnification. After stretching, the film was heat-treated for 90 seconds under tension at 130 ° C. to form a biaxially stretched film. Further, the formed biaxially stretched film was immersed in a 1000 times volume of water / ethanol (85/15) mixed solution, treated at room temperature for 24 hours, then taken out from the mixed solution, and at 80 ° C. for 6 hours, 5 torr high Dry under vacuum. The evaluation results of the obtained biaxially stretched film are shown in Table 1.

(実施例5)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)を二軸混練押出機で200℃で溶融しつつ、10torrの高真空下、90℃で6時間減圧乾燥した市販のエーテルエステル系可塑剤(S4)を(P1)75重量部あたり(S4)25重量部となるように連続的に計量・供給し、溶融混練して均質化した後にチップ化した組成物を得た。このチップを、10torrの高真空下、80℃で24時間乾燥し以下の製膜に供した。
(Example 5)
The polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr was melted at 200 ° C. with a twin-screw kneading extruder and dried under reduced pressure at 90 ° C. for 6 hours under a high vacuum of 10 torr. A commercially available ether ester plasticizer (S4) is continuously weighed and supplied so as to be 25 parts by weight per 75 parts by weight of (P1) (S4). Obtained. This chip was dried at 80 ° C. for 24 hours under a high vacuum of 10 torr and subjected to the following film formation.

上記のチップを溶融温度190℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を3分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ200μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度60℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、130℃の雰囲気下で90秒加熱処理して二軸延伸フィルムに成形した。さらに、成形した二軸延伸フィルムを60℃で12時間、5torrの高真空下で脱揮処理した。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S4)の水分率は0.2wt%、酸価は5当量/tであった。   The above chip is melted with a uniaxial extruder set at a melting temperature of 190 ° C., and the discharge amount is adjusted so that the residence time from the melting to the discharge from the die is 3 minutes. An unstretched film having a thickness of 200 μm was formed by being guided to a die, extruded into a sheet, and cast on a drum cooled to 5 ° C. Using this unstretched film with a batch type biaxial stretching apparatus for film, the stretching temperature is 60 ° C., the stretching ratio in the longitudinal and lateral directions is 3.2 times, and the simultaneous biaxial is 10 times as the area ratio. After stretching, the film was heat-treated for 90 seconds under tension at 130 ° C. to form a biaxially stretched film. Further, the formed biaxially stretched film was devolatilized at 60 ° C. for 12 hours under a high vacuum of 5 torr. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S4) used for melt-kneading was 0.2 wt%, and the acid value was 5 equivalent / t.

(実施例6)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)50重量部と、10torrの高真空下、100℃で6時間減圧乾燥した可塑剤(S1)50重量部およびチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をシリンダー温度200℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化した組成物を得た。このチップをさらに10torrの高真空下、80℃で24時間乾燥し以下の製膜に供した。
(Example 6)
50 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, 50 parts by weight of a plasticizer (S1) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr, and A mixture of 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was melt-kneaded and homogenized by using a twin-screw kneading extruder with a cylinder temperature of 200 ° C. to obtain a chipped composition. It was. This chip was further dried at 80 ° C. for 24 hours under a high vacuum of 10 torr and subjected to the following film formation.

上記のチップを溶融温度190℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を3分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ200μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度70℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、130℃の雰囲気下で90秒加熱処理して二軸延伸フィルムに成形した。さらに、成形した二軸延伸フィルムを1000倍体積量の水/エタノール(85/15)混合溶液中に浸漬し、常温で24時間処理した後に混合溶液から取り出し、80℃で12時間、5torrの高真空下で乾燥した。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S1)の水分率は0.1wt%、酸価は46当量/tであった。   The above chip is melted with a uniaxial extruder set at a melting temperature of 190 ° C., and the discharge amount is adjusted so that the residence time from the melting to the discharge from the die is 3 minutes. An unstretched film having a thickness of 200 μm was formed by being guided to a die, extruded into a sheet, and cast on a drum cooled to 5 ° C. Using this unstretched film with a batch-type biaxial stretching apparatus for film, the stretching temperature is 70 ° C., the stretching ratio in the longitudinal and transverse directions is 3.2 times, and the biaxial stretching ratio is 10 times as the area magnification. After stretching, the film was heat-treated for 90 seconds under tension at 130 ° C. to form a biaxially stretched film. Further, the formed biaxially stretched film was immersed in a 1000 times volume of water / ethanol (85/15) mixed solution, treated at room temperature for 24 hours, then taken out from the mixed solution, and at 80 ° C. for 12 hours, a high torr of 5 torr. Dry under vacuum. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S1) used for melt-kneading was 0.1 wt%, and the acid value was 46 equivalents / t.

(実施例7)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)72重量部と、10torrの高真空下、100℃で6時間減圧乾燥した可塑剤(S2)28重量部およびチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を用い、未延伸フィルムの厚さを120μmとし、未延伸フィルムの延伸温度を60℃としたこと以外は実施例6と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S2)の水分率は0.2wt%、酸価は23当量/tであった。
(Example 7)
72 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, and 28 parts by weight of a plasticizer (S2) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr; Implemented except that 0.3 parts by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was used, the thickness of the unstretched film was 120 μm, and the stretch temperature of the unstretched film was 60 ° C. In the same manner as in Example 6, a biaxially stretched film was obtained. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S2) used for melt-kneading was 0.2 wt%, and the acid value was 23 equivalents / t.

(実施例8)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)86重量部と、10torrの高真空下、100℃で6時間減圧乾燥した可塑剤(S3)14重量部およびチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を用い、未延伸フィルムの延伸温度を60℃としたこと以外は実施例6と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S3)の水分率は0.2wt%、酸価は26当量/tであった。
(Example 8)
86 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, 14 parts by weight of a plasticizer (S3) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr, and A biaxially stretched film in the same manner as in Example 6 except that a mixture of 0.3 parts by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was used and the stretching temperature of the unstretched film was 60 ° C. Got. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S3) used for melt-kneading was 0.2 wt%, and the acid value was 26 equivalents / t.

(実施例9)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)72重量部と、10torrの高真空下、100℃で6時間減圧乾燥した可塑剤(S3)28重量部およびチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を用い、未延伸フィルムの延伸温度を60℃としたこと以外は実施例6と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S3)の水分率は0.2wt%、酸価は26当量/tであった。
Example 9
72 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, 28 parts by weight of a plasticizer (S3) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr, and A biaxially stretched film in the same manner as in Example 6 except that a mixture of 0.3 parts by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was used and the stretching temperature of the unstretched film was 60 ° C. Got. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S3) used for melt-kneading was 0.2 wt%, and the acid value was 26 equivalents / t.

(実施例10)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)17重量部と、10torrの高真空下、100℃で6時間減圧乾燥した可塑剤(S3)28重量部と、10torrの高真空下、50℃で48時間減圧乾燥したポリ乳酸系重合体(P2)55重量部およびチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をシリンダー温度200℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化した組成物を得た。このチップをさらに10torrの高真空下、70℃で24時間乾燥し以下の製膜に供した。
(Example 10)
17 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, and 28 parts by weight of a plasticizer (S3) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr. A mixture of 55 parts by weight of a polylactic acid polymer (P2) dried under reduced pressure at 50 ° C. for 48 hours under a high vacuum of 10 torr and 0.3 part by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation The mixture was melt-kneaded and homogenized by using a twin-screw kneading extruder with a cylinder temperature of 200 ° C. to obtain a chipped composition. This chip was further dried at 70 ° C. for 24 hours under a high vacuum of 10 torr and subjected to the following film formation.

上記のチップを溶融温度190℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を3分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ120μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度50℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、130℃の雰囲気下で90秒加熱処理して二軸延伸フィルムに成形した。さらに、成形した二軸延伸フィルムを1000倍体積量の水/エタノール(85/15)混合溶液中に浸漬し、常温で24時間処理した後に混合溶液から取り出し、80℃で12時間、5torrの高真空下で乾燥した。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S3)の水分率は0.2wt%、酸価は26当量/tであった。   The above chip is melted with a uniaxial extruder set at a melting temperature of 190 ° C., and the discharge amount is adjusted so that the residence time from the melting to the discharge from the die is 3 minutes. The film was guided to a die, extruded into a sheet, and cast on a drum cooled to 5 ° C. to form an unstretched film having a thickness of 120 μm. Using this unstretched film with a batch-type biaxial stretching apparatus for film, the stretching temperature is 50 ° C., the stretching ratio in the longitudinal and transverse directions is 3.2 times, and the simultaneous biaxial so that the area ratio is 10 times. After stretching, the film was heat-treated for 90 seconds under tension at 130 ° C. to form a biaxially stretched film. Further, the formed biaxially stretched film was immersed in a 1000 times volume of water / ethanol (85/15) mixed solution, treated at room temperature for 24 hours, then taken out from the mixed solution, and at 80 ° C. for 12 hours, a high torr of 5 torr. Dry under vacuum. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S3) used for melt-kneading was 0.2 wt%, and the acid value was 26 equivalents / t.

(実施例11)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)27重量部と、10torrの高真空下、100℃で6時間減圧乾燥した可塑剤(S3)43重量部と、10torrの高真空下、50℃で48時間減圧乾燥したポリ乳酸系重合体(P2)30重量部の混合物を用いたこと以外は実施例10と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S3)の水分率は0.2wt%、酸価は26当量/tであった。
(Example 11)
27 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, and 43 parts by weight of a plasticizer (S3) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr A biaxially stretched film was obtained in the same manner as in Example 10 except that a mixture of 30 parts by weight of a polylactic acid polymer (P2) dried under reduced pressure at 50 ° C. for 48 hours under a high vacuum of 10 torr was used. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S3) used for melt-kneading was 0.2 wt%, and the acid value was 26 equivalents / t.

(実施例12)
ポリ乳酸系重合体(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を120℃で6時間、10torrの高真空下で乾燥した後、以下の製糸に供した。
(Example 12)
After drying a mixture of 100 parts by weight of a polylactic acid polymer (P1) and 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. at 120 ° C. for 6 hours under a high vacuum of 10 torr. The following yarns were used.

上記のチップを溶融温度190℃で2カ所のベントポート付きの2軸エクストル−ダー型の押出機に供し、ペントポートを10torr以下の高真空として低分子量物を吸引・除去しながら押し出し、環状3列配孔で0.6φの吐出孔を96個持つ口金から吐出して、口金から吐出直後長さ300mm、の断熱筒内を通過させた後、環状チムニーを通過させて風速20m/分のチムニー風により冷却し油剤を付与した後、1000m/分の速度で引取ることにより未延伸糸を一旦巻き取った。この未延伸糸を1段目延伸温度80℃、2段目延伸温度100℃、総延伸倍率6.5倍にて2段延伸し、引き続いて温度135℃において熱固定、0.5%の弛緩処理を施した後、延伸糸を引き取った。このようにして556dtex/96fil、のポリ乳酸系重合体からなる繊維を得た。得られた繊維の評価結果を表1に示す。   The above chip was subjected to a twin-screw extruder type extruder with two vent ports at a melting temperature of 190 ° C., and the pent port was extruded under a high vacuum of 10 torr or less while sucking and removing low molecular weight substances. After discharging from a base having 96 0.6φ discharge holes in a row, and passing through a 300 mm long heat insulating cylinder immediately after discharge from the base, the annular chimney is passed through and the chimney with a wind speed of 20 m / min After cooling with wind and applying an oil agent, the undrawn yarn was wound up once by taking it up at a speed of 1000 m / min. This undrawn yarn was drawn in two stages at a first stage drawing temperature of 80 ° C., a second stage drawing temperature of 100 ° C. and a total draw ratio of 6.5 times, followed by heat setting at a temperature of 135 ° C., 0.5% relaxation. After the treatment, the drawn yarn was taken up. In this way, a fiber composed of a polylactic acid polymer of 556 dtex / 96 fil was obtained. The evaluation results of the obtained fiber are shown in Table 1.

(実施例13)
ポリ乳酸系重合体(P1)と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”との溶融混連に供した可塑剤(S1)をあらかじめ10torrの真空下、60℃で6時間減圧乾燥したこと以外は、実施例6と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S1)の水分率は0.4wt%、酸価は46当量/tであった。
(Example 13)
A plasticizer (S1) subjected to melt blending of a polylactic acid polymer (P1) with a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was previously applied at 60 ° C. for 6 hours under a vacuum of 10 torr. A biaxially stretched film was obtained in the same manner as in Example 6 except that it was dried under reduced pressure. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S1) used for melt-kneading was 0.4 wt%, and the acid value was 46 equivalents / t.

(実施例14)
可塑剤(S3)に代えて可塑剤(S3”)を使用したこと以外は、実施例10と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S3”)の水分率は0.2wt%、酸価は13当量/tであった。
(Example 14)
A biaxially stretched film was obtained in the same manner as in Example 10 except that the plasticizer (S3 ″) was used in place of the plasticizer (S3). The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S3 ″) used for melt-kneading was 0.2 wt%, and the acid value was 13 equivalents / t.

(実施例15)
可塑剤(S2)に代えて可塑剤(S2’)を使用したこと以外は、実施例7と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S2’)の水分率は0.2wt%、酸価は135当量/tであった。
(Example 15)
A biaxially stretched film was obtained in the same manner as in Example 7 except that the plasticizer (S2 ′) was used instead of the plasticizer (S2). The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S2 ′) used for melt-kneading was 0.2 wt%, and the acid value was 135 equivalents / t.

(実施例16)
10torrの高真空下、120℃で6時間減圧乾燥したポリ乳酸系重合体(P1)80重量部と、10torrの高真空下、40℃で12時間減圧乾燥した可塑剤(S5)20重量部およびチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を用い、未延伸フィルムの延伸温度を60℃としたこと以外は実施例9と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S5)の水分率は0.2wt%、酸価は4当量/tであった。
(Example 16)
80 parts by weight of a polylactic acid polymer (P1) dried under reduced pressure at 120 ° C. for 6 hours under a high vacuum of 10 torr, 20 parts by weight of a plasticizer (S5) dried under reduced pressure at 40 ° C. under a high vacuum of 10 torr, and Biaxially stretched film in the same manner as in Example 9, except that 0.3 parts by weight of hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Co., Ltd. was used and the stretching temperature of the unstretched film was 60 ° C. Got. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S5) used for melt-kneading was 0.2 wt%, and the acid value was 4 equivalent / t.

(比較例1)
ポリ乳酸系重合体(P1)100重量部とチバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物を100℃で3時間、200torrの減圧下で乾燥した後、溶融温度230℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を3分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ200μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度80℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、140℃の雰囲気下で60秒加熱処理して二軸延伸フィルムに成形した。得られた二軸延伸フィルムの評価結果を表1に示す。
(Comparative Example 1)
After drying a mixture of 100 parts by weight of a polylactic acid polymer (P1) and 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corp. at 100 ° C. for 3 hours under a reduced pressure of 200 torr, Melting with a uniaxial extruder set at a melting temperature of 230 ° C, adjusting the discharge amount so that the residence time from melting to discharging from the die is 3 minutes, and guiding the molten polymer to the T die die The film was extruded on a sheet and cast on a drum cooled to 5 ° C. to form an unstretched film having a thickness of 200 μm. Using this unstretched film with a batch-type biaxial stretching apparatus for film, the stretching temperature is 80 ° C., the stretching ratio in the longitudinal and transverse directions is 3.2 times, and the biaxial stretching ratio is 10 times as the area ratio. After stretching, the film was heat-treated at 140 ° C. for 60 seconds under tension and formed into a biaxially stretched film. The evaluation results of the obtained biaxially stretched film are shown in Table 1.

(比較例2)
5torrの高真空下、100℃で6時間減圧乾燥したポリ乳酸系重合体(P1)72重量部および可塑剤(S2’)28重量部の混合物をシリンダー温度190℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化した組成物を得た。このチップをさらに5torrの高真空下、80℃で24時間乾燥し以下の製膜に供した。
(Comparative Example 2)
A mixture of 72 parts by weight of a polylactic acid polymer (P1) and 28 parts by weight of a plasticizer (S2 ′) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 5 torr was supplied to a twin-screw kneading extruder having a cylinder temperature of 190 ° C. Thus, a melted kneaded and homogenized composition was obtained. This chip was further dried at 80 ° C. for 24 hours under a high vacuum of 5 torr and subjected to the following film formation.

上記のチップを溶融温度190℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を10分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ120μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度60℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時二軸延伸した後、緊張下、140℃の雰囲気下で60秒加熱処理して二軸延伸フィルムに成形した。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S2’)の水分率は0.8wt%、酸価は135当量/tであった。   The above chip is melted with a uniaxial extruder set at a melting temperature of 190 ° C., and the discharge amount is adjusted so that the residence time from melting to discharging from the die is 10 minutes. The film was guided to a die, extruded into a sheet, and cast on a drum cooled to 5 ° C. to form an unstretched film having a thickness of 120 μm. Using this unstretched film with a batch type biaxial stretching apparatus for film, the stretching temperature is 60 ° C., the stretching ratio in the longitudinal and lateral directions is 3.2 times, and the simultaneous biaxial is 10 times as the area ratio. After stretching, the film was heat-treated at 140 ° C. for 60 seconds under tension and formed into a biaxially stretched film. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S2 ') used for melt kneading was 0.8 wt%, and the acid value was 135 equivalents / t.

(比較例3)
10torrの高真空下、100℃で6時間減圧乾燥したポリ乳酸系重合体(P1)17重量部および可塑剤(S3’)28重量部と、10torrの高真空下、50℃で48時間以上減圧乾燥したポリ乳酸系重合体(P2)55重量部と、チバガイギー社製ヒンダードフェノール系酸化防止剤“イルガノックス1010”0.3重量部の混合物をシリンダー温度200℃の二軸混練押出機に供して溶融混練し均質化した後にチップ化した組成物を得た。このチップをさらに10torrの高真空下、70℃で24時間乾燥し以下の製膜に供した。
(Comparative Example 3)
17 parts by weight of a polylactic acid polymer (P1) and 28 parts by weight of a plasticizer (S3 ′) dried under reduced pressure at 100 ° C. for 6 hours under a high vacuum of 10 torr, and reduced pressure for 48 hours or more at 50 ° C. under a high vacuum of 10 torr. A mixture of 55 parts by weight of the dried polylactic acid polymer (P2) and 0.3 parts by weight of a hindered phenol antioxidant “Irganox 1010” manufactured by Ciba Geigy Corporation was supplied to a twin-screw kneading extruder having a cylinder temperature of 200 ° C. Thus, a melted kneaded and homogenized composition was obtained. This chip was further dried at 70 ° C. for 24 hours under a high vacuum of 10 torr and subjected to the following film formation.

上記のチップを溶融温度190℃に設定した一軸エクストルーダーにて溶融し、溶融してから口金から吐出されるまでの滞留時間を10分となるように吐出量を調整し、溶融ポリマーをTダイ口金に導いてシート状に押し出し、5℃に冷却したドラム上にキャストして厚さ120μmの未延伸フィルムを形成した。バッチ式のフィルム用二軸延伸装置により、この未延伸フィルムを用いて、延伸温度50℃、縦および横方向の延伸倍率をともに3.2倍、面積倍率として10倍となるように同時2軸延伸した後、緊張下、140℃の雰囲気下で90秒加熱処理して二軸延伸フィルムに成形した。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S3’)の水分率は1.0wt%、酸価は29当量/tであった。   The above chip is melted with a uniaxial extruder set at a melting temperature of 190 ° C., and the discharge amount is adjusted so that the residence time from melting to discharging from the die is 10 minutes. The film was guided to a die, extruded into a sheet, and cast on a drum cooled to 5 ° C. to form an unstretched film having a thickness of 120 μm. Using this unstretched film with a batch-type biaxial stretching apparatus for film, the stretching temperature is 50 ° C., the stretching ratio in the longitudinal and transverse directions is 3.2 times, and the simultaneous biaxial so that the area ratio is 10 times. After stretching, the film was heat-treated for 90 seconds under tension at 140 ° C. to form a biaxially stretched film. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The water content of the plasticizer (S3 ′) used for melt-kneading was 1.0 wt%, and the acid value was 29 equivalent / t.

(比較例4)
市販のエーテルエステル系可塑剤(S4)を乾燥することなくポリ乳酸系重合体(P1)に溶融混練した以外は、実施例5と同様にして二軸延伸フィルムを得た。得られた二軸延伸フィルムの評価結果を表1に示す。なお、溶融混練に用いた可塑剤(S4)の水分率は1.1wt%、酸価は5当量/tであった。
(Comparative Example 4)
A biaxially stretched film was obtained in the same manner as in Example 5, except that the commercially available ether ester plasticizer (S4) was melt kneaded into the polylactic acid polymer (P1) without drying. The evaluation results of the obtained biaxially stretched film are shown in Table 1. The plasticizer (S4) used for melt kneading had a moisture content of 1.1 wt% and an acid value of 5 equivalents / t.

本発明は、包装用ラップフィルムに限らず、その他包装材料、農業用フィルム、自動車塗膜保護シート、ごみ袋、堆肥袋などの産業資材用フィルム、各種軟質塩化ビニルが用いられている工業材料用フィルムや、ボトル、ディスポーザブルカップ、トレイなどの容器類、あるいは繊維などフィルム以外の成形品などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention is not limited to wrapping films for packaging, but for other packaging materials, films for agriculture, films for industrial materials such as automobile coating film protection sheets, garbage bags, compost bags, and industrial materials in which various types of soft vinyl chloride are used. Although it can be applied to containers such as films, bottles, disposable cups, trays, and molded articles other than films such as fibers, the application range is not limited thereto.

Claims (18)

ポリ乳酸系重合体(A)を主体とする成形品であって、該成形品を不活性ガス下で100℃、30分間加熱して発生する揮発成分のうち、アセトアルデヒド、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が2μg/g以下であることを特徴とする成形品。   Among the volatile components generated by heating the molded product at 100 ° C. for 30 minutes under an inert gas, acetaldehyde and 2,3-pentanedione. A molded product characterized in that the total amount of methoxyethyl acetate components is 2 μg / g or less. 揮発成分のうち、2,3−ペンタンジオン、メトキシエチルアセテート成分の総量が1μg/g以下であることを特徴とする請求項1記載の成形品。   The molded article according to claim 1, wherein the total amount of 2,3-pentanedione and methoxyethyl acetate components is 1 μg / g or less among the volatile components. 成形品がフィルムである請求項1または2に記載の成形品。   The molded article according to claim 1 or 2, wherein the molded article is a film. 23℃における初期引張弾性率が0.1〜2GPaであることを特徴とする請求項3記載のフィルム。   4. The film according to claim 3, wherein an initial tensile elastic modulus at 23 [deg.] C. is 0.1 to 2 GPa. 90℃、30分間の熱水処理後の重量減少率が2%以下であることを特徴とする請求項3または4に記載のフィルム。   5. The film according to claim 3, wherein a weight reduction rate after hydrothermal treatment at 90 ° C. for 30 minutes is 2% or less. フィルムヘイズ値が0.2〜5%であることを特徴とする請求項3〜5のいずれかに記載のフィルム。   Film haze value is 0.2 to 5%, The film in any one of Claims 3-5 characterized by the above-mentioned. ポリ乳酸系重合体(A)と可塑剤(B)を含有する組成物からなるフィルムであって、ポリ乳酸系重合体(A)が結晶性を有し、可塑剤(B)が一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有し、さらにポリエーテル系および/またはポリエステル系セグメントを有することを特徴とする請求項3〜6のいずれかに記載のフィルム。   A film comprising a composition containing a polylactic acid polymer (A) and a plasticizer (B), wherein the polylactic acid polymer (A) has crystallinity and the plasticizer (B) is in one molecule. The film according to any one of claims 3 to 6, further comprising one or more polylactic acid segments having a molecular weight of 1,500 or more, and further having a polyether-based and / or polyester-based segment. 可塑剤(B)のポリ乳酸セグメント成分の重量割合が、可塑剤全体の50重量%未満であることを特徴とする請求項7に記載のフィルム。   The film according to claim 7, wherein the weight ratio of the polylactic acid segment component of the plasticizer (B) is less than 50% by weight of the entire plasticizer. 可塑剤(B)のポリ乳酸セグメント成分を除いた可塑化成分の重量割合が、組成物全体の5重量%以上、30重量%以下であることを特徴とする請求項7または8記載のフィルム。   The film according to claim 7 or 8, wherein a weight ratio of the plasticizing component excluding the polylactic acid segment component of the plasticizer (B) is 5% by weight or more and 30% by weight or less of the entire composition. 可塑剤(B)がポリアルキレンエーテルからなるセグメントを有することを特徴とする請求項7〜9のいずれかに記載のフィルム。   The film according to any one of claims 7 to 9, wherein the plasticizer (B) has a segment composed of a polyalkylene ether. ポリアルキレンエーテルがポリエチレングリコールであることを特徴とする請求項10に記載のフィルム。   The film according to claim 10, wherein the polyalkylene ether is polyethylene glycol. 包装用ラップフィルムであることを特徴とする請求項3〜11のいずれかに記載のフィルム。   It is a wrapping film for packaging, The film in any one of Claims 3-11 characterized by the above-mentioned. 一分子中に、ポリエーテル系および/またはポリエステル系セグメントを有するか、あるいはエーテル結合部分とエステル結合部分をともに有する構造の化合物であって、水分率が0.5wt%以下であることを特徴とするポリ乳酸用可塑剤。   A compound having a polyether-based and / or polyester-based segment in one molecule, or a structure having both an ether bond portion and an ester bond portion, and having a moisture content of 0.5 wt% or less. A plasticizer for polylactic acid. 酸価が50当量/t以下であることを特徴とする請求項13記載のポリ乳酸用可塑剤。   The plasticizer for polylactic acid according to claim 13, wherein the acid value is 50 equivalent / t or less. ポリエーテル系および/またはポリエステル系セグメント、あるいはエーテル結合部分とエステル結合部分をともに有することに加えて、一分子中に分子量が1,500以上のポリ乳酸セグメントを一つ以上有することを特徴とする請求項13又は14記載のポリ乳酸用可塑剤。   In addition to having a polyether-based and / or polyester-based segment, or both an ether bond portion and an ester bond portion, each molecule has one or more polylactic acid segments having a molecular weight of 1,500 or more. The plasticizer for polylactic acid according to claim 13 or 14. ポリ乳酸セグメント成分の重量割合が、可塑剤全体の50重量%未満であることを特徴とする請求項15記載のポリ乳酸用可塑剤。   The plasticizer for polylactic acid according to claim 15, wherein the weight ratio of the polylactic acid segment component is less than 50% by weight of the whole plasticizer. ポリアルキレンエーテルからなるセグメントを有することを特徴とする請求項13〜16のいずれかに記載のポリ乳酸用可塑剤。   The plasticizer for polylactic acid according to any one of claims 13 to 16, comprising a segment made of polyalkylene ether. ポリアルキレンエーテルがポリエチレングリコールであることを特徴とする請求項17記載のポリ乳酸用可塑剤。   The plasticizer for polylactic acid according to claim 17, wherein the polyalkylene ether is polyethylene glycol.
JP2004308052A 2003-10-24 2004-10-22 Molded article made of polylactic acid polymer and plasticizer for polylactic acid Active JP5067825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308052A JP5067825B2 (en) 2003-10-24 2004-10-22 Molded article made of polylactic acid polymer and plasticizer for polylactic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003364177 2003-10-24
JP2003364177 2003-10-24
JP2004308052A JP5067825B2 (en) 2003-10-24 2004-10-22 Molded article made of polylactic acid polymer and plasticizer for polylactic acid

Publications (2)

Publication Number Publication Date
JP2005146274A true JP2005146274A (en) 2005-06-09
JP5067825B2 JP5067825B2 (en) 2012-11-07

Family

ID=34703183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308052A Active JP5067825B2 (en) 2003-10-24 2004-10-22 Molded article made of polylactic acid polymer and plasticizer for polylactic acid

Country Status (1)

Country Link
JP (1) JP5067825B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094352A1 (en) * 2006-02-16 2007-08-23 Toray Industries, Inc. Polyether-polylactic acid composition and polylactic acid film containing same
WO2008004490A1 (en) * 2006-07-07 2008-01-10 Kureha Corporation Aliphatic polyester composition and method for producing the same
JP2008050583A (en) * 2006-07-28 2008-03-06 Teijin Ltd Resin composition
JP2008050582A (en) * 2006-07-28 2008-03-06 Teijin Ltd Resin composition and molded product
JP2008069197A (en) * 2006-09-12 2008-03-27 Unitika Ltd Polylactic acid-based biaxially oriented film
JP2008120865A (en) * 2006-11-09 2008-05-29 Toray Ind Inc Manufacturing method of polylactic acid resin film
JP2008138102A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Polylactic acid-based resin composition
JP2008189825A (en) * 2007-02-06 2008-08-21 Toray Ind Inc Polylactic acid based resin workpiece
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931179A (en) * 1995-07-25 1997-02-04 Dainippon Ink & Chem Inc Lactic acid base polyether copolymer resin composition
JP2003094585A (en) * 2001-09-26 2003-04-03 Dainippon Ink & Chem Inc Heat sealing film
JP2004231773A (en) * 2003-01-30 2004-08-19 Dainippon Ink & Chem Inc Method for producing polylactic acid copolymer
JP2005105150A (en) * 2003-09-30 2005-04-21 Toray Ind Inc Polyester film
JP2005126574A (en) * 2003-10-24 2005-05-19 Toray Ind Inc Polyester film
JP2005126701A (en) * 2003-09-30 2005-05-19 Toray Ind Inc Molded product made from polylactic acid-based polymer composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931179A (en) * 1995-07-25 1997-02-04 Dainippon Ink & Chem Inc Lactic acid base polyether copolymer resin composition
JP2003094585A (en) * 2001-09-26 2003-04-03 Dainippon Ink & Chem Inc Heat sealing film
JP2004231773A (en) * 2003-01-30 2004-08-19 Dainippon Ink & Chem Inc Method for producing polylactic acid copolymer
JP2005105150A (en) * 2003-09-30 2005-04-21 Toray Ind Inc Polyester film
JP2005126701A (en) * 2003-09-30 2005-05-19 Toray Ind Inc Molded product made from polylactic acid-based polymer composition
JP2005126574A (en) * 2003-10-24 2005-05-19 Toray Ind Inc Polyester film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094352A1 (en) * 2006-02-16 2007-08-23 Toray Industries, Inc. Polyether-polylactic acid composition and polylactic acid film containing same
JP5239336B2 (en) * 2006-02-16 2013-07-17 東レ株式会社 Polyether-polylactic acid composition and polylactic acid film containing the same
KR101281861B1 (en) * 2006-02-16 2013-07-03 도레이 카부시키가이샤 Polyether-polylactic acid composition and polylactic acid film containing same
US8003721B2 (en) 2006-07-07 2011-08-23 Kureha Corporation Aliphatic polyester composition and method for producing the same
WO2008004490A1 (en) * 2006-07-07 2008-01-10 Kureha Corporation Aliphatic polyester composition and method for producing the same
JP5291461B2 (en) * 2006-07-07 2013-09-18 株式会社クレハ Aliphatic polyester composition and method for producing the same
JP2008050582A (en) * 2006-07-28 2008-03-06 Teijin Ltd Resin composition and molded product
JP2008050583A (en) * 2006-07-28 2008-03-06 Teijin Ltd Resin composition
JP2008069197A (en) * 2006-09-12 2008-03-27 Unitika Ltd Polylactic acid-based biaxially oriented film
JP2008120865A (en) * 2006-11-09 2008-05-29 Toray Ind Inc Manufacturing method of polylactic acid resin film
JP2008138102A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Polylactic acid-based resin composition
JP2008189825A (en) * 2007-02-06 2008-08-21 Toray Ind Inc Polylactic acid based resin workpiece
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin

Also Published As

Publication number Publication date
JP5067825B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4363325B2 (en) Polylactic acid polymer composition, molded article thereof, and film
JP5239336B2 (en) Polyether-polylactic acid composition and polylactic acid film containing the same
KR20130108277A (en) Porous film
KR20140007859A (en) Polylactic acid-based film
JP2004002683A (en) Biodegradable resin composition and molded product thereof
JP5867406B2 (en) Biodegradable film
JP2001261797A (en) Aliphatic polyester resin and molded product
JP5067825B2 (en) Molded article made of polylactic acid polymer and plasticizer for polylactic acid
JP2008169239A (en) Polyester film
JP5145695B2 (en) Method for producing polylactic acid resin film
JP4626137B2 (en) Polylactic acid resin stretched film and method for producing the same
JP5332552B2 (en) Chip-like product made of polylactic acid resin composition
JP2005126701A (en) Molded product made from polylactic acid-based polymer composition
JP2005105150A (en) Polyester film
JP4511099B2 (en) Lactic acid-based resin composition, sheet-like product thereof, and bag-like product
JP2005139280A (en) Polyester resin composition and film
JP2015083661A (en) Porous film and manufacturing method therefor
JP2005126574A (en) Polyester film
JP2005219487A (en) Laminated film
JP2008200860A (en) Method for producing polylactic acid resin film
JP5957908B2 (en) Biodegradable film
JP2007106996A (en) Wrap film and its manufacturing method
JP5141027B2 (en) Polylactic acid resin processed products
JP2008179033A (en) Polylactic acid resin laminated film
JP2013159747A (en) Polylactic acid-based film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5067825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3