JP2005145804A - Manufacturing method of active carbon from cigarette butt as main raw material and active carbon manufactured therewith - Google Patents
Manufacturing method of active carbon from cigarette butt as main raw material and active carbon manufactured therewith Download PDFInfo
- Publication number
- JP2005145804A JP2005145804A JP2003390223A JP2003390223A JP2005145804A JP 2005145804 A JP2005145804 A JP 2005145804A JP 2003390223 A JP2003390223 A JP 2003390223A JP 2003390223 A JP2003390223 A JP 2003390223A JP 2005145804 A JP2005145804 A JP 2005145804A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- activated carbon
- raw material
- heating
- active carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、煙草の吸殻を主体とする有機廃棄物原料からの活性炭の製造方法に関し、とくに湿潤状態の上記原料から、簡単な工程で吸着性能の良好な活性炭を製造し得る製造方法と、この方法により製造された活性炭に関する。 The present invention relates to a method for producing activated carbon from a raw material of organic waste mainly composed of cigarette butts, and in particular, a production method capable of producing activated carbon with good adsorption performance in a simple process from the raw material in a wet state. The present invention relates to activated carbon produced by the method.
わが国では、年間約3,500億本の紙巻煙草が消費されている。1本の煙草の約半分は吸殻として捨てられるから、廃棄物となる吸殻の量は、年間約10万トンにのぼり、資源の有効利用という観点から決して無視できない量と言える。しかし、現状では煙草の吸殻はすべて都市ゴミとして廃棄され、焼却又は埋立て処理されている。 In Japan, about 350 billion cigarettes are consumed annually. About half of each cigarette is thrown away as cigarette butts, and the amount of cigarette butts is about 100,000 tons per year, which can never be ignored in terms of effective use of resources. However, at present, all cigarette butts are discarded as municipal waste and incinerated or landfilled.
煙草の吸殻を資源化するのに有利な点は、分別して回収される比率が高く、かつ比較的混雑物が少ないことである。駅や各種のビルなど公共の施設では、喫煙場所が限定されて備付けの灰皿があるから、ほぼ吸殻だけが分別して回収される。オフィスや飲食店等でもその意志があれば、吸殻だけの分別回収は容易である。また、近年パチンコ店では、自動吸殻回収装置が開発されて実用化されるようになり、その利用の度合は今後さらに高まると考えられる。一般家庭での分別回収はあまり進まないにしても、廃棄されている吸殻のかなりの割合、例えばその半分以上は、混雑物の少ない状態で分別回収可能と考えられる。 The advantage of recycling cigarette butts is that the fraction collected separately is high and that there is relatively little congestion. In public facilities such as stations and various buildings, smoking areas are limited and there are built-in ashtrays, so only the butts are separated and collected. If there is a will in an office or a restaurant, it is easy to separate and collect butts. In addition, in recent years, pachinko parlors have been developed and put into practical use, and the degree of use is expected to increase in the future. Even if the fractional collection at a general household does not progress so much, it can be considered that a significant percentage of discarded cigarette butts, for example, more than half of the butts can be separated and collected with a small amount of congestion.
一方、吸殻を資源化する際の問題点は、ほとんどの場合多量の水とともに回収されることである。公共の場所の大型の灰皿は、煙草が燻るのを防ぐため、予め注水されていることが多い。また、乾いた状態で回収しても保存中に発火のおそれがあるから、通常は十分湿潤した状態になるように注水して保管される。このように多量の水とともに回収される吸殻は、その焼却や乾燥に多量のエネルギーを必要とするのみならず、作業者の衣服や容器を汚すおそれがあって、非常にハンドリングしにくいという問題がある。 On the other hand, the problem in recycling butts is that in most cases it is recovered with a large amount of water. Large ashtrays in public places are often pre-watered to prevent cigarettes from burning. In addition, even if recovered in a dry state, there is a risk of ignition during storage, so water is usually poured and stored so as to be in a sufficiently wet state. In this way, the butt collected with a large amount of water not only requires a large amount of energy for incineration and drying, but also may contaminate the clothes and containers of the worker and is very difficult to handle. is there.
吸殻の資源としての再利用に関しては、従来ほとんど具体的な提案がなされておらず、わずかに下記特許文献1に、吸殻からリサイクルペーパーを製造する方法が提案されている程度である。
本発明者らは、煙草の吸殻から活性炭を製造する方法について、種々の検討を行なってきた。まず、第一に考慮すべき点は、湿潤状態の吸殻を一旦脱水・乾燥してから、炭化や賦活等の処理を行なったのでは、工程が長くなりかつ作業性も悪いため、安価に処理することが難しいということである。したがって、湿潤状態の原料をそのまま処理し、なるべく処理容器の移し変えを行なわず、かつ1回の加熱工程で、目標とする製品が得られるような方法が望ましい。 The present inventors have conducted various studies on methods for producing activated carbon from cigarette butts. First of all, the first point to consider is that once the wet butt is dehydrated and dried, carbonization, activation, etc. are performed. It is difficult to do. Therefore, it is desirable that the raw material in a wet state is processed as it is, the processing container is not changed as much as possible, and the target product is obtained in one heating step.
また、最近では紙巻煙草の大部分はフィルタ付である。一部のフィルタには活性炭を担持させたものもあるが、フィルタの主な構成材料はセルロースアセテート、ポリエチレン等の繊維である。吸殻を原形のまま活性炭にしたのでは、煙草部分とフィルタ部分の炭化挙動が異なるため、製品部位によってその性状に差が生じて好ましくない。一方、これを乾燥して、煙草部分とフィルタ部分を分離するような処理をしたのでは、処理コストが過大になる。したがって、湿潤状態のまま一括処理して、一様な性状の活性炭が得られるような方法であることが望ましい。 Recently, most cigarettes have filters. Some filters carry activated carbon, but the main constituent material of the filter is fibers such as cellulose acetate and polyethylene. If activated carbon is used in its original form, the carbonization behavior of the cigarette portion and the filter portion is different, so that the properties differ depending on the product part, which is not preferable. On the other hand, if this is dried and processed so as to separate the tobacco portion and the filter portion, the processing cost becomes excessive. Therefore, it is desirable that the method is such that activated carbon having a uniform property can be obtained by batch processing in a wet state.
さらに、吸殻からの活性炭の製造は、処理コストを度外視してよいものではなく、実用可能な性能の活性炭を如何に低コストで製造するかが課題となる。従来から、高品質の活性炭を製造するには、炭化工程と賦活工程の2工程が必要で、炭化工程のみでは活性炭として十分な吸着性能が得られないことが知られている。 Furthermore, the production of activated carbon from the butts is not limited to the processing cost, and the issue is how to produce activated carbon with practical performance at a low cost. Conventionally, in order to produce high quality activated carbon, it is known that two steps of a carbonization step and an activation step are required, and sufficient adsorption performance as activated carbon cannot be obtained only by the carbonization step.
賦活の方法としては、ガス(とくに水蒸気)賦活法と薬品賦活法がある。後者は処理後の活性炭を洗浄して薬品のリサイクルを行なう必要が有り、水処理工程の負担が非常に大きいため、ガス賦活法が主流になっている。しかし、ガス賦活法も750〜1050℃という高温で、H2OやCO2をCと反応させる必要が有り(前記非特許文献1)、熱エネルギーのロスが大きい上に反応容器の耐熱性も問題になって、処理コストの増大が避けられない。 As activation methods, there are a gas (especially water vapor) activation method and a chemical activation method. In the latter case, it is necessary to clean the activated carbon after the treatment and recycle the chemicals, and the burden of the water treatment process is very large, so the gas activation method has become the mainstream. However, in the gas activation method, it is necessary to react H 2 O or CO 2 with C at a high temperature of 750 to 1050 ° C. (Non-patent Document 1), and the heat resistance is large and the heat resistance of the reaction vessel is also high. It becomes a problem and an increase in processing cost is inevitable.
したがって、吸殻からの活性炭の製造には、炭化と賦活を比較的低温の一段の加熱処理で行い、かつ実用上十分な性能の活性炭を得ることのできる技術を実現することが望まれる。
そこで本発明は、湿潤状態の吸殻を乾燥することなく、かつ煙草の燃え残り部分とフィルタを分離することなく一括して処理することができ、かつ炭化と賦活を一段の低温加熱処理で同時に行って、実用上十分な性能の活性炭を得ることのできる煙草の吸殻を主原料とする活性炭の製造方法を提供することを課題としている。
Therefore, in the production of activated carbon from the butts, it is desired to realize a technique that can perform carbonization and activation by one-stage heat treatment at a relatively low temperature and obtain activated carbon having practically sufficient performance.
Therefore, the present invention can process the cigarette butts in a wet state without drying and without separating the unburned portion of the cigarette from the filter, and simultaneously performing carbonization and activation by a single low-temperature heat treatment. Thus, an object of the present invention is to provide a method for producing activated carbon using cigarette butts as a main raw material from which activated carbon having practically sufficient performance can be obtained.
本発明者らは、紙巻煙草の吸殻からの活性炭の製造について種々の検討を行い、煙草部分のみならずフィルタ部分も活性炭の原料になりうることを知見した。また、吸殻を原料とし、炭化と賦活を一段の低温加熱処理で行なっても、ある特定の条件下では、実用上十分な性能の活性炭が得られることを知見し、これらの知見に基づいて本発明を完成させたものである。 The present inventors have conducted various studies on the production of activated carbon from cigarette butts and found that not only the tobacco portion but also the filter portion can be a raw material for the activated carbon. In addition, it was found that activated carbon with practically sufficient performance can be obtained under certain specific conditions even if carbonization and activation are performed by one-stage low-temperature heat treatment using butts as raw materials. The invention has been completed.
すなわち、上記課題を解決するための本発明の活性炭の製造方法は、
煙草の吸殻を主体とする有機廃棄物原料を湿潤状態又は乾状態で粉砕・混合し、この粉末原料を必要に応じて加水又は脱水してその含水率を所定の範囲内に調整し、この含水原料を非酸化雰囲気において所定の温度パターンで加熱して、該原料の炭化および賦活を一段の加熱処理工程内で行なうことを特徴とする。
なお、本発明において、非酸化雰囲気とは酸化性ガスを含まない雰囲気(真空雰囲気を含む)又は燃焼排ガスとしてH2O,CO2等を含んでいても、温度が低いために、これらの酸化性ガス成分と炭素との反応が実質的に起こらない雰囲気をいう。
That is, the manufacturing method of the activated carbon of the present invention for solving the above problems is as follows.
Organic waste materials mainly composed of cigarette butts are pulverized and mixed in a wet or dry state, and this powder material is hydrated or dehydrated as necessary to adjust its moisture content within a predetermined range. The raw material is heated in a predetermined temperature pattern in a non-oxidizing atmosphere, and carbonization and activation of the raw material are performed in a single heat treatment step.
In the present invention, the non-oxidizing atmosphere is an atmosphere that does not contain an oxidizing gas (including a vacuum atmosphere) or contains H 2 O, CO 2 or the like as combustion exhaust gas. An atmosphere in which no reaction between the reactive gas component and carbon occurs.
上記の活性炭の製造方法においては、加熱前の前記含水原料中の含水率を、原料中の水分量の乾燥状態の有機廃棄物原料に対する重量比で150〜250%とすることが好ましい。このように含水率の高い原料から加熱処理を開始し、原料粒子内部で水蒸気の微細気泡を生成させて、これにより製品活性炭の比表面積を増大させることが、一段の低温加熱処理で吸着性能の良好な活性炭を製造するための第一のポイントである。 In the method for producing activated carbon, the water content in the water-containing raw material before heating is preferably 150 to 250% in terms of the weight ratio of the water content in the raw material to the dry organic waste raw material. In this way, heat treatment is started from a raw material having a high water content, and fine bubbles of water vapor are generated inside the raw material particles, thereby increasing the specific surface area of the activated carbon of the product. This is the first point for producing good activated carbon.
また、本発明の方法においては、前記の温度パターンは、所定の昇温速度で昇温する昇温過程と、600〜900℃の範囲内に所定時間保持する温度保持過程からなるものであることが好ましい。より好ましくは、上記温度保持過程での温度を600〜750℃とする。このように比較的低温での温度保持過程を設けることにより、その後に賦活処理をしなくても、吸着性能の良好な活性炭の製造を可能にしたことが、本発明の第二のポイントである。なお、このような温度保持過程を設ける効果については、後に詳述する。 In the method of the present invention, the temperature pattern includes a temperature rising process in which the temperature is increased at a predetermined temperature increase rate and a temperature holding process in which the temperature is maintained in a range of 600 to 900 ° C. for a predetermined time. Is preferred. More preferably, the temperature in the temperature holding process is set to 600 to 750 ° C. As described above, the second point of the present invention is that by providing a temperature holding process at a relatively low temperature, it is possible to produce activated carbon with good adsorption performance without performing an activation process thereafter. . The effect of providing such a temperature holding process will be described in detail later.
本発明において、吸着能の高い活性炭が製造される理由は上記にように考えられるから、前記の昇温過程における昇温速度は、原料粒子中での水蒸気による気孔の生成と関連して重要であり、本発明者らの知見によれば、昇温速度は3〜10℃/minであることが好ましい。また、温度保持過程は、従来の賦活と同様な効果を与える工程として重要であり、略同一温度又は所定の範囲内の温度に0.5〜1.0時間程度保持することが好ましい。なお、昇温過程の昇温速度や温度保持過程での温度必ずしも一定である必要はなく、所定の範囲に入っていれば多少の変動があっても差し支えない。 In the present invention, the reason why activated carbon having a high adsorptive capacity is produced is considered as described above. Therefore, the rate of temperature increase in the temperature increasing process is important in relation to the generation of pores by water vapor in the raw material particles. And according to the knowledge of the present inventors, the rate of temperature rise is preferably 3 to 10 ° C./min. Further, the temperature holding process is important as a process for providing the same effect as that of the conventional activation, and it is preferable to hold at approximately the same temperature or a temperature within a predetermined range for about 0.5 to 1.0 hour. It should be noted that the temperature rising rate in the temperature raising process and the temperature in the temperature holding process do not necessarily have to be constant, and there may be some fluctuation as long as they are within a predetermined range.
本発明の方法では、吸殻の乾燥処理をせずに、そのまま原料にすることを基本としているから、原料の一部には湿潤状態のものが含まれる。しかし、粉砕の程度は軽粉砕(解砕又は破砕)でよく、従来の軽粉砕機又はミキサー等を全く問題無く適用できる。なお、必要に応じて水を添加して粉砕してもよい。このように粉砕機を通すことによって、煙草部分、フィルタ部分、巻紙部分やその他の混雑物が均一に混合され、一様な品質の活性炭を得ることができる。 In the method of the present invention, it is based on using raw materials as they are without drying the butts, so some of the raw materials include those in a wet state. However, the degree of pulverization may be light pulverization (pulverization or crushing), and a conventional light pulverizer or mixer can be applied without any problem. In addition, you may grind | pulverize by adding water as needed. By passing through the pulverizer in this way, the cigarette part, the filter part, the wrapping paper part and other congested materials are uniformly mixed, and an activated carbon having a uniform quality can be obtained.
本発明の方法により得られる活性炭は、測定される比表面積が500m2/g以上であり、かつJIS−K1474に規定されるヨウ素吸着量が800mg/g以上である。したがって、脱臭・脱香剤等としての性能を十分に備えている。また、この活性炭は、水銀圧入法により測定されるメソ孔容積の全細孔容積に対する比率が4.5%以上であり、メソ孔比率の高い活性炭ということができる。したがって、この活性炭は、たばこの脱臭・脱煙等の用途に適している。 The activated carbon obtained by the method of the present invention has a measured specific surface area of 500 m 2 / g or more, and an iodine adsorption amount specified in JIS-K1474 is 800 mg / g or more. Therefore, it has sufficient performance as a deodorizing / deodorizing agent. In addition, this activated carbon has a mesopore volume ratio measured by mercury porosimetry of 4.5% or more and can be said to be an activated carbon having a high mesopore ratio. Therefore, this activated carbon is suitable for uses such as tobacco deodorization and smoke removal.
本発明により、回収された煙草の吸殻が多量の水を含んでいても、これを乾燥することなく、かつ煙草部分とフィルタを分離することなく一括して処理することができ、かつ炭化と賦活を一段の低温加熱処理で同時に行って、実用上十分な性能の活性炭を得ることが可能になった。これにより、吸殻から低コストで活性炭を製造することができ、従来ほとんど資源として利用されていない吸殻を再利用することが可能になった。 According to the present invention, even if the collected cigarette butt contains a large amount of water, it can be processed in a lump without drying and separating the cigarette part and the filter, and carbonization and activation. It is now possible to obtain activated carbon with a practically sufficient performance by simultaneously carrying out the above by a single low-temperature heat treatment. As a result, activated carbon can be produced from the butts at low cost, and it has become possible to reuse the butts that have been hardly used as resources in the past.
本発明の活性炭の製造方法は、煙草の吸殻を主体とする有機廃棄物原料を主に湿潤状態で粉砕・混合する工程(粉砕工程)と、この湿潤粉末原料を必要に応じて加水又は濾過脱水してその含水率を所定の範囲内に調整する工程(水分調節工程)と、この含水原料を非酸化雰囲気において所定の温度パターンで加熱して、該原料の炭化および賦活を行なう工程(炭化・賦活工程)とからなっている。また、必要に応じて、粉砕工程の前に簡単な予備処理を行なってもよい。以下、これらの各工程の好ましい実施態様について説明する。 The method for producing activated carbon according to the present invention includes a step of pulverizing and mixing organic waste raw materials mainly composed of cigarette butts in a wet state (pulverizing step), and adding the wet powder raw material to water or filter dehydration as necessary. A step of adjusting the moisture content within a predetermined range (moisture control step), and a step of carbonizing and activating the raw material by heating the water-containing raw material in a non-oxidizing atmosphere in a predetermined temperature pattern (carbonization / activation). Activation process). Moreover, you may perform a simple preliminary process before a grinding | pulverization process as needed. Hereinafter, preferred embodiments of each of these steps will be described.
予備処理としては、例えば、煙草の灰の除去、大きな混雑物の除去等があげられる。吸殻に煙草の灰が混入しており、これが製品活性炭の品質に悪影響を及ぼすような場合には、これをある程度除去してから粉砕処理すればよい。湿式処理が原則であるから、水で洗って篩にかけるような方法で容易に除去することができる。煙草の空箱、銀紙やチリ紙等が混雑していることも少なくないが、好ましくない混雑物であれば、目の大きい篩を用いて除去することに何ら困難はない。
なお、本発明において、活性炭の原料を「煙草の吸殻を主体とする有機廃棄物原料」と規定したのは、吸殻の他に紙屑類等を多少含んでいてよいとの意であり、例えば吸殻が70%程度以上含まれていればよい。
Examples of the pretreatment include removal of cigarette ash and removal of large congestion. If cigarette ash is mixed in the cigarette butts, which adversely affects the quality of the activated carbon, it may be pulverized after removing it to some extent. Since wet processing is the principle, it can be easily removed by washing with water and sieving. There are many cases where cigarette empty boxes, silver paper, dust paper, and the like are congested, but if it is an undesired congested material, there is no difficulty in removing it using a sieve with large eyes.
In the present invention, the raw material for activated carbon is defined as “an organic waste raw material mainly composed of cigarette butts” which means that it may contain some paper scraps in addition to the cigarette butts. About 70% or more.
粉砕工程は湿式粉砕になることが多い。本発明の方法では、吸殻の乾燥処理をせずに、そのまま原料にすることを基本としているから、多くの場合、原料の一部には湿潤状態のものが含まれる。したがって、これを粉砕する粉砕機としては、湿潤原料にも適用できる粉砕機を用いる。かかる湿式又は半湿式の粉砕は従来の技術を全く問題無く適用できる。なお、必要に応じて適宜水を添加して粉砕すればよい。 The grinding process is often wet grinding. In the method of the present invention, since the raw material is used as it is without drying the butts, in many cases, a part of the raw material includes a wet material. Therefore, as a pulverizer for pulverizing this, a pulverizer applicable to wet raw materials is used. Such wet or semi-wet grinding can apply conventional techniques without any problem. In addition, what is necessary is just to add water suitably as needed and to grind | pulverize.
なお、粉砕といっても、微粉砕する必要はなく、煙草の部分は巻紙がほぐれて、刻んだ煙草の葉がバラバラになる程度でよく、フィルタの部分も成形のため使用されているバインダーがほぐれて、フィルタの繊維がバラバラになる程度でよい。したがって、簡単な解砕機又はミキサー程度のもので十分である。 There is no need to finely pulverize, but the cigarette part may be the extent that the wrapping paper is loosened and the chopped tobacco leaves fall apart, and the filter part is also made of a binder used for molding. It is sufficient that the fibers of the filter become loose and the fibers of the filter fall apart. Therefore, a simple crusher or a mixer is sufficient.
このように、粉砕機を通すことによって、煙草部分、フィルタ部分、巻紙部分やその他の混雑物が均一に混合され、一様な品質の活性炭を得ることができる。なお、煙草部分、フィルタ部分を混合して原料とすることにより、製品活性炭が固結してハンドリングし易くなるという副次的な効果もある。 Thus, by passing through the pulverizer, the cigarette part, the filter part, the wrapping paper part and other congested materials are uniformly mixed, and an activated carbon having a uniform quality can be obtained. In addition, by mixing the tobacco part and the filter part as a raw material, there is also a secondary effect that the activated carbon of the product is consolidated and becomes easy to handle.
すなわち、フィルタ部分の主な材料であるセルロースエステルやポリエチレン等の樹脂は熱可塑性樹脂である。したがって、昇温時に一旦軟化・溶融して、バインダーとして作用する。したがって、煙草部分のみで、炭化させたのでは製品は粉状になり易いが、フィルタ部分と混合して炭化することにより、ある程度固結した製品を得ることができ、必要に応じて破砕・篩分して粒状又は粉状の活性炭として使用すればよい。 That is, a resin such as cellulose ester or polyethylene which is a main material of the filter portion is a thermoplastic resin. Therefore, it softens and melts at the time of temperature rise and acts as a binder. Therefore, if carbonized only in the cigarette part, the product tends to become powdery, but by mixing with the filter part and carbonizing, a product consolidated to some extent can be obtained. Divided and used as granular or powdery activated carbon.
水分調整工程においては、粉砕された原料の含水率(乾燥状態の廃棄物原料の重量に対する原料中の水分の重量比)を150〜250%の範囲内の所定の目標値に調節する。なお、この含水率の調整は、さほど厳密に目標値に一致させる必要は無く、±20%程度の範囲内に入ればよい。粉砕後の原料の含水率を何らかの方法(例えば乾燥重量の測定、スラリー状原料の比重測定等)で測定又は推定し、必要に応じて加水したり、乾燥原料を追加したり、脱水したりすればよい。脱水は篩や濾紙で簡単に行なうことができる。 In the moisture adjustment step, the moisture content of the pulverized material (weight ratio of moisture in the material to the weight of the waste material in the dry state) is adjusted to a predetermined target value in the range of 150 to 250%. It should be noted that the adjustment of the moisture content does not have to be exactly the same as the target value, and may be within a range of about ± 20%. Measure or estimate the moisture content of the crushed raw material by some method (for example, dry weight measurement, specific gravity measurement of slurry raw material, etc.), add water as needed, add dry raw material, dehydrate That's fine. Dehydration can be easily performed with a sieve or filter paper.
炭化・賦活工程は、上述のように多量の水を含む粉末原料を、所定の温度パターンで、一回の加熱過程のみで、乾燥、炭化、賦活の一連の操作を行なうことが特徴である。これにより熱効率が高くなり、容器の移し変え等の作業も不要となる。この工程で用いる反応容器の形式はとくに限定を要しないが、通常は加熱パターンの制御の容易なバッチ式の反応器を用いる。反応器内の温度を一様にするため、回転容器や攪拌羽根を用いてもよい。 The carbonization / activation process is characterized in that a powder raw material containing a large amount of water as described above is subjected to a series of operations of drying, carbonization, and activation only in a single heating process in a predetermined temperature pattern. This increases the thermal efficiency and eliminates the need for operations such as container transfer. The type of the reaction vessel used in this step is not particularly limited, but usually a batch type reactor in which the heating pattern is easily controlled is used. In order to make the temperature in the reactor uniform, a rotating container or a stirring blade may be used.
加熱方式は、外熱式でも内熱式でもよい。内熱式加熱は一般には燃焼排ガスを流通させて行なう。本発明の場合、水の蒸発が完了した後の比較的高温の領域で、過剰空気を含む燃焼排ガスを流通させると、非酸化雰囲気という条件が維持できなくなるので、過剰空気を含まない燃焼排ガスを流通させる必要がある。なお、燃焼排ガスのH2O,CO2は、本発明での温度範囲(主に750℃以下)ではほとんどCと反応しないので、流通ガス中に含まれていても差し支えない。 The heating method may be an external heating type or an internal heating type. Internal heating type heating is generally performed by circulating combustion exhaust gas. In the case of the present invention, if the flue gas containing excess air is circulated in a relatively high temperature region after the evaporation of water is completed, the condition of non-oxidizing atmosphere cannot be maintained. It is necessary to distribute. Note that H 2 O and CO 2 of the combustion exhaust gas hardly reacts with C in the temperature range (mainly 750 ° C. or less) in the present invention, and may be contained in the circulating gas.
本発明においては、後記実施例で示すように、含水率の高い状態から加熱を開始することによって、製品活性炭の比表面積が増大することが明らかになった。そのメカニズムは十分明らかではないが、水の蒸発により有機物粒子内部に空孔、空隙が多く形成されるのでないかと推測される。すなわち、含水率が高いと100℃を超えて加熱される過程で、粒子内部に水蒸気の微細気泡が生成し、これが植物性の繊維や細胞の内部にミクロな孔や空隙をつくって、炭化後の比表面積の増大に寄与しているのではないかと考えられる。 In the present invention, as shown in Examples described later, it has been clarified that the specific surface area of the activated carbon product is increased by starting the heating from a high water content state. The mechanism is not sufficiently clear, but it is presumed that many holes and voids are formed inside the organic particles due to the evaporation of water. That is, when the water content is high, fine bubbles of water vapor are generated inside the particles in the process of heating above 100 ° C., which creates microscopic pores and voids inside the plant fibers and cells, and after carbonization It is thought that it contributes to the increase of the specific surface area.
加熱の温度パターンは、所定の昇温速度で昇温する昇温過程と、600〜900℃、より好ましくは600〜750℃の範囲内に所定時間保持する温度保持過程からなることが好ましい。また、昇温過程における昇温速度を3〜10℃/min、より好ましくは5〜10℃/minとし、温度保持過程において略同一温度に0.5〜1.0時間保持することが好ましい。 The heating temperature pattern preferably includes a temperature rising process in which the temperature is increased at a predetermined temperature increase rate and a temperature holding process in which the temperature is maintained within a range of 600 to 900 ° C, more preferably 600 to 750 ° C. Further, it is preferable that the temperature rising rate in the temperature raising process is 3 to 10 ° C./min, more preferably 5 to 10 ° C./min, and the temperature is kept at substantially the same temperature for 0.5 to 1.0 hour in the temperature holding process.
後記実施例で示すように、この温度保持過程を置くことによって、製品活性炭の比表面積や吸着性能は著しく増大する。また、この過程で原料中の炭素の相当量がCO,CO2となって雰囲気中に逸出していることが確かめられている。したがって、この過程で、従来の賦活工程と同様な吸着性能増大の作用が得られているものと思われる。しかし、本発明の方法においては、賦活の機構が従来の賦活方法とは相違しているのではないかと考えられる。 As shown in the examples described later, the specific surface area and adsorption performance of the product activated carbon are remarkably increased by placing this temperature holding process. In addition, it has been confirmed that a considerable amount of carbon in the raw material escapes into the atmosphere as CO and CO 2 during this process. Therefore, in this process, it seems that the same effect of increasing adsorption performance as that of the conventional activation process is obtained. However, in the method of the present invention, it is considered that the activation mechanism is different from the conventional activation method.
ガス賦活法の機構は、H2O又はCO2がCと反応して、閉ざされた内部気孔の壁になっている炭素が除去され、外部への通路が確保されることによる賦活とされている。しかし、これらのガスは相当な高温でないとCと反応しない。例えばH2Oは750℃以上、CO2は850℃以上でないと、Cとほとんど反応しないことが知られている(前記非特許文献1)。したがって、前記の温度保持過程の温度域では、気相中のH2OによるCの酸化は殆ど無いか、あってもその割合は少ないのでないかと推測される(また、当初の原料中の水分は、より低い温度域で完全に蒸発し反応器外に排出されていると考えられる)。 The mechanism of the gas activation method is that H 2 O or CO 2 reacts with C, the carbon that forms the walls of the closed internal pores is removed, and the passage to the outside is secured, thereby being activated. Yes. However, these gases do not react with C unless the temperature is considerably high. For example, it is known that when H 2 O is not higher than 750 ° C. and CO 2 is not higher than 850 ° C., it hardly reacts with C (Non-patent Document 1). Therefore, in the temperature range of the above temperature holding process, it is presumed that there is almost no oxidation of C due to H 2 O in the gas phase, or even if the ratio is small (the moisture in the original raw material) Is considered to be completely evaporated in the lower temperature range and discharged outside the reactor).
一方、薬品賦活法は、不活性ガス雰囲気中で400〜700℃程度の温度で行われる。この場合は、塩化亜鉛やリン酸による強力な脱水又は酸化によりミクロな気孔が増えることによる賦活であるとされている。しかし、本発明の方法では、かかる酸化剤又は脱水剤は全く存在していないから、賦活の機構はこれとも相違する。 On the other hand, the chemical activation method is performed at a temperature of about 400 to 700 ° C. in an inert gas atmosphere. In this case, it is said that the activation is due to an increase in micropores due to strong dehydration or oxidation with zinc chloride or phosphoric acid. However, in the method of the present invention, since such an oxidizing agent or dehydrating agent does not exist at all, the activation mechanism is different from this.
本発明における賦活の機構は十分明らかではないが、原料の大部分が炭水化物であることから、原料中の酸素が賦活に関与していることが考えられる。すなわち、煙草および巻紙の主成分はセルロースである。また、フィルタ中にもセルロース・エステルの形で多量のセルロースが含まれている。セルロースは代表的な炭水化物で、化学式(C6H10O5)nで表され、原子比でCの5/6のOを含有する。このセルロースは、かなりの高温域まで完全には分解されず、前記の温度保持過程で、未分解のOがH2O又はCOとなって外気中に逸出し、その際に外部に通ずる細孔が多量に形成されて賦活されるのではないかと推測される。 Although the activation mechanism in the present invention is not sufficiently clear, it is considered that oxygen in the raw material is involved in the activation because most of the raw material is a carbohydrate. That is, the main component of tobacco and wrapping paper is cellulose. The filter also contains a large amount of cellulose in the form of cellulose ester. Cellulose is a typical carbohydrate, represented by the chemical formula (C 6 H 10 O 5 ) n and containing 5/6 O of C by atomic ratio. This cellulose is not completely decomposed to a considerably high temperature range, and in the above temperature holding process, undecomposed O escapes into the outside air as H 2 O or CO, and in this case, pores that lead to the outside It is presumed that a large amount is formed and activated.
いずれにしても、上記の方法で製造された活性炭は、後記実施例に示すように、液体窒素温度での窒素吸着法により測定される比表面積が500m2/g以上であり、かつJIS−K1474に規定されるヨウ素吸着量が800mg/g以上である。また、この活性炭は、水銀圧入法により測定されるメソ孔容積の全細孔容積に対する比率が4.5%以上であり、メソ孔比率の高い活性炭ということができる。したがって、この活性炭は、脱臭、脱香、脱煙、脱油煙等の用途に好適である。 In any case, the activated carbon produced by the above method has a specific surface area measured by a nitrogen adsorption method at a liquid nitrogen temperature of 500 m 2 / g or more as shown in the Examples below, and JIS-K1474. Is an iodine adsorption amount of 800 mg / g or more. In addition, this activated carbon has a mesopore volume ratio measured by mercury porosimetry of 4.5% or more and can be said to be an activated carbon having a high mesopore ratio. Therefore, this activated carbon is suitable for uses such as deodorization, deodorization, smoke removal, and oil removal smoke.
(実施例1)
公共の場所に設置された灰皿中の湿潤状態の吸殻を、家庭用ミキサーで破砕して、炭化用の原料とした。同一ロットの原料で含水率が約12、50、100、150、200、250、300%の7種類の原料を各50g準備し、それぞれ同一の条件で加熱した。なお、含水率の調整は、破砕後の原料の含水率を乾燥秤量して測定し、適宜加水又は脱水して調節した。
(Example 1)
The wet butt in an ashtray installed in a public place was crushed with a household mixer to obtain a raw material for carbonization. 50 g of 7 types of raw materials of the same lot of raw materials having a moisture content of about 12, 50, 100, 150, 200, 250, and 300% were prepared and heated under the same conditions. The water content was adjusted by measuring the water content of the raw material after crushing by dry weighing and adding water or dehydrating as appropriate.
反応容器としては、内容積約2リットルの外熱式回転電気炉(回転数は毎分4回)を用いて、バッチ処理で活性炭の製造を行なった。前記の原料50gを窒素ガス置換をした電気炉内に入れ、窒素ガスを毎分2リットル流しつつ、加熱して炭化と賦活を行なった。昇温速度を5℃/minとして常温から700℃まで連続的に昇温し、700℃で1時間の温度保持を行なった。加熱終了後、窒素雰囲気のまま炉内で放冷して、活性炭のサンプルを得た。 As the reaction vessel, activated carbon was produced by batch processing using an externally heated rotary electric furnace (the number of revolutions was 4 times per minute) having an internal volume of about 2 liters. 50 g of the raw material was placed in an electric furnace with nitrogen gas replacement, and heated and carbonized and activated while flowing 2 liters of nitrogen gas per minute. The temperature was raised continuously from room temperature to 700 ° C. at a rate of temperature increase of 5 ° C./min, and the temperature was maintained at 700 ° C. for 1 hour. After the heating, the sample was allowed to cool in a furnace in a nitrogen atmosphere to obtain a sample of activated carbon.
このようにした得られたサンプルは塊状なので、これを300メッシュに粉砕した。このサンプルそれぞれについて、比表面積、細孔容積、ヨウ素吸着量及びメチレンブルー吸着量を測定した。比表面積と細孔容積のの測定は液体窒素温度での窒素吸着法で、ヨウ素吸着量及びメチレンブルー吸着量の測定は、JIS−K1474に準ずる方法で行なった。測定結果の一覧を表1に示す。 Since the sample obtained in this way was agglomerated, it was crushed to 300 mesh. For each sample, the specific surface area, pore volume, iodine adsorption amount and methylene blue adsorption amount were measured. The specific surface area and pore volume were measured by a nitrogen adsorption method at a liquid nitrogen temperature, and the iodine adsorption amount and the methylene blue adsorption amount were measured by a method according to JIS-K1474. A list of measurement results is shown in Table 1.
この結果から、加熱前の含水率が150〜250%のものが、比表面積、細孔容積や吸着量が高く、この範囲を外れているものは、これらの諸数値のいずれも低くなっており、上記の範囲外では、吸着性能の良好な活性炭が得られないことが確かめられた。 From this result, those with a moisture content before heating of 150 to 250% have a high specific surface area, pore volume and adsorption amount, and those outside this range have low values. Outside of the above range, it was confirmed that activated carbon with good adsorption performance could not be obtained.
(実施例2)
実施例1と同様の方法で、含水率200%のサンプル各50gを16個準備し、加熱パターンを変えて活性炭を製造し、吸着性能の比較を行なった。加熱パターンとして、試験番号1〜4は、、温度保持過程の条件は700℃×1.0時間の一定とし、昇温速度を5〜20℃/minの範囲で変えたものである。また、試験番号5〜8は、昇温速度を5℃/min、温度保持過程の温度は700℃の一定とし、温度保持時間を0〜2.0時間の範囲で変えたものである。
(Example 2)
In the same manner as in Example 1, 16 samples of 50 g each having a moisture content of 200% were prepared, activated carbon was produced by changing the heating pattern, and the adsorption performance was compared. As heating patterns, Test Nos. 1 to 4 are conditions in which the temperature holding process condition is constant at 700 ° C. × 1.0 hour, and the rate of temperature increase is changed in the range of 5 to 20 ° C./min. In Test Nos. 5 to 8, the rate of temperature increase is 5 ° C./min, the temperature in the temperature holding process is constant at 700 ° C., and the temperature holding time is changed in the range of 0 to 2.0 hours.
さらに、試験番号9〜16は、昇温速度を5℃/min、温度保持過程の保持時間を1.0時間の一定とし、保持温度を400,500,600,700,750,800,900,1000℃の8段階に変えたものである。実施例2における反応容器、窒素の流量等はすべて実施例1と同じにした。
上記のようにして得られた16種のサンプル(サンプルの調製方法も実施例1と同じ)について、実施例1と同じ方法で比表面積、細孔容積、ヨウ素吸着量及びメチレンブルー吸着量を測定した。測定結果の一覧を表2に示す。
Further, in test numbers 9 to 16, the heating rate was 5 ° C./min, the holding time of the temperature holding process was constant at 1.0 hour, and the holding temperature was 400, 500, 600, 700, 750, 800, 900, It was changed to 8 steps of 1000 ° C. The reaction vessel, the flow rate of nitrogen, and the like in Example 2 were all the same as in Example 1.
About 16 types of samples obtained as described above (sample preparation method is the same as in Example 1), the same specific surface area, pore volume, iodine adsorption amount and methylene blue adsorption amount as in Example 1 were measured. . Table 2 shows a list of measurement results.
試験番号1〜4の比較から、昇温速度は5〜10/minが適切なことが知れる。また、試験番号5〜8の比較から、温度保持時間が短すぎても(0時間)、長すぎても(2.0時間)活性炭の性能が低く、温度保持時間は0.5〜1.0時間が適切なことが知れる。なお、温度保持時間が0の場合に活性炭の性能が低いということは、保持温度のレベル如何にかかわらず共通に認められた。さらに、試験番号9〜16の比較から、温度保持過程の保持温度は、600〜750℃の範囲内が適切なことが明らかになった。 From the comparison of test numbers 1 to 4, it is known that the heating rate is appropriately 5 to 10 / min. Moreover, even if the temperature holding time is too short (0 hour) or too long (2.0 hours), the performance of the activated carbon is low, and the temperature holding time is 0.5 to 1. It is known that 0 time is appropriate. In addition, it was commonly recognized that the performance of activated carbon was low when the temperature holding time was 0 regardless of the holding temperature level. Furthermore, from the comparison of test numbers 9 to 16, it was revealed that the holding temperature in the temperature holding process is appropriate within the range of 600 to 750 ° C.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390223A JP2005145804A (en) | 2003-11-20 | 2003-11-20 | Manufacturing method of active carbon from cigarette butt as main raw material and active carbon manufactured therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390223A JP2005145804A (en) | 2003-11-20 | 2003-11-20 | Manufacturing method of active carbon from cigarette butt as main raw material and active carbon manufactured therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005145804A true JP2005145804A (en) | 2005-06-09 |
Family
ID=34696678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003390223A Pending JP2005145804A (en) | 2003-11-20 | 2003-11-20 | Manufacturing method of active carbon from cigarette butt as main raw material and active carbon manufactured therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005145804A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009508666A (en) * | 2005-09-08 | 2009-03-05 | リサーチ・ファウンデーション・オブ・ザ・シティー・ユニヴァーシティー・オブ・ニュー・ヨーク | Catalytic adsorbent obtained from municipal sludge, industrial sludge, compost and tobacco waste, and method for producing the same |
US8937032B2 (en) | 2005-09-08 | 2015-01-20 | Research Foundation Of The City University Of New York | Catalytic adsorbents obtained from municipal sludges, industrial sludges, compost and tobacco waste and a rotary drying process for their production |
CN108807014A (en) * | 2018-06-14 | 2018-11-13 | 西南科技大学 | The method for preparing electrode material for super capacitor using discarded cigarette butt |
CN110015661A (en) * | 2019-04-12 | 2019-07-16 | 复旦大学 | A method of nitrogen-dopped activated carbon is prepared using discarded cigarette butt |
CN111003709A (en) * | 2020-01-03 | 2020-04-14 | 内蒙古昆明卷烟有限责任公司 | Method for preparing activated carbon by using waste cigarette butts, prepared activated carbon and application |
CN111530465A (en) * | 2020-05-26 | 2020-08-14 | 湘潭大学 | Preparation method of supported cigarette end porous carbon material catalyst and application of supported cigarette end porous carbon material catalyst in nitrocyclohexane hydrogenation reaction |
KR102362474B1 (en) * | 2021-09-08 | 2022-02-14 | 박윤기 | Apparatus and method for manufacturing activated carbon |
-
2003
- 2003-11-20 JP JP2003390223A patent/JP2005145804A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009508666A (en) * | 2005-09-08 | 2009-03-05 | リサーチ・ファウンデーション・オブ・ザ・シティー・ユニヴァーシティー・オブ・ニュー・ヨーク | Catalytic adsorbent obtained from municipal sludge, industrial sludge, compost and tobacco waste, and method for producing the same |
JP2013066890A (en) * | 2005-09-08 | 2013-04-18 | Research Foundation Of The City Univ Of New York | Catalytic adsorbent obtained from municipal sludge, industrial sludge, compost and tobacco waste and process for their production |
JP2014217841A (en) * | 2005-09-08 | 2014-11-20 | リサーチ・ファウンデーション・オブ・ザ・シティー・ユニヴァーシティー・オブ・ニュー・ヨーク | Catalytic absorptive medium obtained from municipal sludge, industrial sludge, compost and tobacco waste, and process for production thereof |
US8937032B2 (en) | 2005-09-08 | 2015-01-20 | Research Foundation Of The City University Of New York | Catalytic adsorbents obtained from municipal sludges, industrial sludges, compost and tobacco waste and a rotary drying process for their production |
US9339806B2 (en) | 2005-09-08 | 2016-05-17 | Research Foundation Of The City University Of New York | Catalytic adsorbents obtained from municipal sludges, industrial sludges, compost and tobacco waste and process for their production |
US9808761B2 (en) | 2005-09-08 | 2017-11-07 | Research Foundation Of The City University Of New York | Catalytic adsorbents obtained from municipal sludges, industrial sludges, compost and tobacco waste and process for their production |
CN108807014A (en) * | 2018-06-14 | 2018-11-13 | 西南科技大学 | The method for preparing electrode material for super capacitor using discarded cigarette butt |
CN108807014B (en) * | 2018-06-14 | 2020-03-24 | 西南科技大学 | Method for preparing supercapacitor electrode material by using waste cigarette ends |
CN110015661A (en) * | 2019-04-12 | 2019-07-16 | 复旦大学 | A method of nitrogen-dopped activated carbon is prepared using discarded cigarette butt |
CN111003709A (en) * | 2020-01-03 | 2020-04-14 | 内蒙古昆明卷烟有限责任公司 | Method for preparing activated carbon by using waste cigarette butts, prepared activated carbon and application |
CN111530465A (en) * | 2020-05-26 | 2020-08-14 | 湘潭大学 | Preparation method of supported cigarette end porous carbon material catalyst and application of supported cigarette end porous carbon material catalyst in nitrocyclohexane hydrogenation reaction |
CN111530465B (en) * | 2020-05-26 | 2023-05-12 | 湘潭大学 | Preparation method of supported cigarette butt porous carbon material catalyst and application of supported cigarette butt porous carbon material catalyst in nitrocyclohexane hydrogenation reaction |
KR102362474B1 (en) * | 2021-09-08 | 2022-02-14 | 박윤기 | Apparatus and method for manufacturing activated carbon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anisuzzaman et al. | Modification of commercial activated carbon for the removal of 2, 4-dichlorophenol from simulated wastewater | |
Kan et al. | The application of activated carbon produced from waste printed circuit boards (PCBs) by H3PO4 and steam activation for the removal of malachite green | |
CN108033448A (en) | A kind of coconut husk-sludge composite activated carbon and its preparation method and application | |
Anis et al. | Production of rubber seed pericarp based activated carbon using microwave-induced different chemical activating agent | |
JP6028186B1 (en) | Rush charcoal, rush charcoal | |
Xia et al. | Production of activated carbon from bagasse (waste) of sugarcane grown in Brazil | |
JP2005145804A (en) | Manufacturing method of active carbon from cigarette butt as main raw material and active carbon manufactured therewith | |
Tech | Proximate analysis of cane bagasse and synthesizing activated carbon: emphasis on material balance | |
Daniel et al. | The production of activated carbon from Acacia erioloba seedpods via phosphoric acid activation method for the removal of methylene blue from water | |
RU2527221C1 (en) | Method of producing activated charcoal from plant wastes | |
JP2001322808A (en) | Manufacturing method of activated carbon from sludge | |
KR100803809B1 (en) | Manufacturing method and manufacturing device for refuse derived fuel | |
JP2005263547A (en) | Composite activated carbonized material and method for manufacturing the same | |
JP2003342014A (en) | Activated carbon and its manufacturing method | |
Yan et al. | Adsorption of heavy metals using activated carbon synthesized from the residues of medicinal herbs | |
JP5843568B2 (en) | Method and apparatus for treating incineration ash | |
JP2000072427A (en) | Production of active carbon by sludge | |
JPWO2020070816A1 (en) | Waste reuse treatment method and its reuse treatment system | |
Abbas et al. | Optimization of activated carbon preparation from date stones by microwave assisted K2CO3 activation | |
JP6136040B1 (en) | Manufacturing method of carbide | |
JP2015157290A (en) | Treatment method and treatment apparatus of incineration ash | |
JP4342114B2 (en) | Method for producing carbide and activated carbon using organic waste | |
Monika et al. | Porous structure improvement of coal activated carbon using steam activation in pilot scale | |
Ulfah et al. | Preparation and Characterization of Activated Carbon From Cacao Shell (Theobroma cacao L.) | |
JP2013095605A (en) | Incineration ash treatment method |