JP2005145792A - Aluminum-doped synthetic quartz glass and its manufacturing method - Google Patents

Aluminum-doped synthetic quartz glass and its manufacturing method Download PDF

Info

Publication number
JP2005145792A
JP2005145792A JP2003389068A JP2003389068A JP2005145792A JP 2005145792 A JP2005145792 A JP 2005145792A JP 2003389068 A JP2003389068 A JP 2003389068A JP 2003389068 A JP2003389068 A JP 2003389068A JP 2005145792 A JP2005145792 A JP 2005145792A
Authority
JP
Japan
Prior art keywords
aluminum
quartz glass
gas
synthetic quartz
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003389068A
Other languages
Japanese (ja)
Inventor
Shigeru Maida
繁 毎田
Motoyuki Yamada
素行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003389068A priority Critical patent/JP2005145792A/en
Publication of JP2005145792A publication Critical patent/JP2005145792A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1438Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. solution doping of the article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic quartz glass containing little aluminum which is feared as a semiconductor poison and having the same or greater heat resistance with a quartz glass prepared from a natural quartz as a raw material by an electric melting method, or an oxyhydrogen melting method, and its manufacturing method. <P>SOLUTION: This aluminum-doped synthetic quartz contains less than 5 ppm aluminum in a synthetic quartz glass, and the synthetic quartz glass contains no more than 5 ppm Cl, no more than 20 ppm OH group, and no more than 0.01 ppm of each of Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, and Au. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミニウムをドープした合成石英ガラスに関するものである。   The present invention relates to a synthetic quartz glass doped with aluminum.

半導体製造工程には、酸化、アニール、各種元素の拡散等、高温熱処理のプロセスが含まれている。従来、同プロセスでは天然水晶を原料に電気溶融法又は酸水素溶融法で製造した石英ガラスがシリコンウェーハを支える治具、炉芯管等に使用されている。これは天然石英を原料に電気溶融法、酸水素溶融法で作製した石英ガラスの粘度(logηポアズ)が1,350℃でそれぞれ11.4、10.9と高粘性を有し、耐熱性に優れているためである。しかし、微量ながら、Fe、Cu、Ca等の半導体毒元素を含むため、酸化、アニール等のプロセスにおいてこれら半導体毒元素がシリコンウェーハ等に拡散し、接合リーク電流の増加、酸化膜耐圧不良等の原因となる不具合があった。従って、耐熱性に優れ、かつ半導体毒の影響の少ない合成石英ガラスの開発が熱望されていた。   The semiconductor manufacturing process includes high-temperature heat treatment processes such as oxidation, annealing, and diffusion of various elements. Conventionally, in this process, quartz glass produced from natural quartz as a raw material by an electric melting method or an oxyhydrogen melting method is used for jigs, furnace core tubes and the like for supporting silicon wafers. This is because quartz glass made from natural quartz by the electric melting method and oxyhydrogen melting method has a high viscosity of 11.4 and 10.9 at 1,350 ° C, respectively. It is because it is excellent. However, since semiconductor poisoning elements such as Fe, Cu, and Ca are contained in a small amount, these semiconductor poisoning elements diffuse into silicon wafers and the like in processes such as oxidation and annealing, resulting in increased junction leakage current, defective oxide film breakdown voltage, etc. There was a bug that caused it. Therefore, development of synthetic quartz glass that has excellent heat resistance and is less affected by semiconductor poisons has been eagerly desired.

石英ガラスの耐熱性を向上させる手法としてはアルミニウムをドープすることが知られている。アルミニウムをドープすることによる耐熱性向上の理論は完全には明らかとなっていないが、おそらく石英ガラス中に残留したアルカリ金属、OH基によって生じたケイ素−酸素の結合ネットワークの切断にアルミニウムが作用し、アルミニウムを介してネットワークの再構築がなされることによるものと思われる。   Doping aluminum is known as a technique for improving the heat resistance of quartz glass. The theory of improving heat resistance by doping aluminum is not completely clear, but aluminum probably acts on the breakage of the silicon-oxygen bond network caused by alkali metal and OH groups remaining in quartz glass. This is probably due to the restructuring of the network via aluminum.

アルミニウムをドープした石英ガラスの製造方法としてはゾル−ゲル法、ベルヌイ法及びスート法等が知られている。   Known methods for producing quartz glass doped with aluminum include the sol-gel method, Bernoulli method and soot method.

ゾル−ゲル法によるアルミニウムドープ石英ガラスに関しては、特許文献1:特許第3040315号公報、特許文献2:特許第3128451号公報等が公知であり、アルミニウムを均一にドープできる利点があるが、クラック、気泡等が入りやすく、大型のアルミニウムドープ石英ガラスの製造が困難である。   Regarding the aluminum-doped quartz glass by the sol-gel method, Patent Document 1: Japanese Patent No. 3040315, Patent Document 2: Japanese Patent No. 3318451 and the like are known, and there is an advantage that aluminum can be uniformly doped, Bubbles and the like are easy to enter, and it is difficult to produce a large aluminum-doped quartz glass.

ベルヌイ法によるアルミニウムドープ石英ガラスに関しては、特許文献3:特開平3−193637号公報が公知であるが、アルミニウムを均質にドープすることが困難であるという難点がある。   Regarding the aluminum-doped quartz glass by the Bernoulli method, Patent Document 3: Japanese Patent Laid-Open No. 3-193737 is known, but there is a problem that it is difficult to dope aluminum uniformly.

一方、スート法はケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させてシリカ母材を作製し、同多孔質シリカ母材を加熱ガラス化する過程の途中でアルミニウムをドープする合成石英ガラスの製造方法であるが、アルミニウムを均質に、かつOH基濃度の少ない合成石英ガラスが得られる利点がある。   On the other hand, in the soot method, silicon source material gas, hydrogen gas and oxygen gas are supplied from a burner to the reaction zone, and in this reaction zone, silica fine particles are generated by flame hydrolysis reaction of the silicon source material gas, and arranged in the reaction zone. The silica fine particles are deposited on the rotatable base material prepared to produce a silica base material, and the method of producing synthetic quartz glass doped with aluminum in the course of heating and vitrifying the porous silica base material. There is an advantage that a synthetic quartz glass having a uniform aluminum content and a low OH group concentration can be obtained.

スート法によるアルミニウムドープ石英ガラスに関しては、特許文献4:特許第3114936号公報、特許文献5:特許第3126187号公報、特許文献6:特開平5−139778号公報が公知である。
特許文献4〜6において、アルミニウムのドープ量は5〜40ppmに規定され、5ppm未満では耐熱性の向上の効果が小さいとされている。
Regarding aluminum-doped quartz glass by the soot method, Patent Document 4: Japanese Patent No. 3114936, Patent Document 5: Japanese Patent No. 3126187, and Patent Document 6: Japanese Patent Laid-Open No. 5-139778 are known.
In Patent Documents 4 to 6, the doping amount of aluminum is regulated to 5 to 40 ppm, and if it is less than 5 ppm, the effect of improving heat resistance is considered to be small.

ところで、アルミニウムも半導体毒となる元素であるが、その害は従来、Fe、Cu、Ca等に比べて少ないものと考えられていた(柏木他 シリコンウェーハ表面のクリーン化技術21.1995.)。しかし、Si/SiO2の界面準位を増加させる効果を持つことが報告され(T. Itoga et al. Tech. Digest of SSDM ’92. 1992.)、アルミニウムをドープした合成石英ガラスを半導体製造プロセスに使用した場合の影響が懸念されている。 By the way, although aluminum is also an element that becomes a semiconductor poison, it has been conventionally considered that the damage is less than that of Fe, Cu, Ca, etc. (Kashiki et al., Silicon wafer surface cleaning technology 21.1995.). However, it has been reported that it has an effect of increasing the interface state of Si / SiO 2 (T. Itoka et al. Tech. Digest of SSDM '92. 1992.), and a synthetic quartz glass doped with aluminum is used as a semiconductor manufacturing process. There are concerns about the effects of using it in

そのため、アルミニウムの含有量が少なく、かつ天然石英を原料に電気溶融法、酸水素溶融法で作製した石英ガラスと同等もしくはそれ以上の耐熱性を有する合成石英ガラスの開発が熱望されていた。
特許第3040315号公報 特許第3128451号公報 特開平3−193637号公報 特許第3114936号公報 特許第3126187号公報 特開平5−139778号公報 柏木他 シリコンウェーハ表面のクリーン化技術21.1995. T. Itoga et al. Tech. Digest of SSDM ’92. 1992.
Therefore, development of a synthetic quartz glass that has a low aluminum content and has heat resistance equal to or higher than that of quartz glass produced by an electric melting method or an oxyhydrogen melting method using natural quartz as a raw material has been eagerly desired.
Japanese Patent No. 3040315 Japanese Patent No. 3318451 JP-A-3-193737 Japanese Patent No. 3114936 Japanese Patent No. 3126187 JP-A-5-139778 Kashiwagi et al. Silicon wafer surface cleaning technology 21.1995. T.A. Itoga et al. Tech. Digest of SSDM '92. 1992.

本発明は、上記要望に応えるためになされたもので、耐熱性に優れ、しかも半導体毒の量が局限されて半導体製造プロセスへの使用に有効なアルミニウムドープ合成石英ガラス及びその製造方法を提供することを目的とする。   The present invention has been made in order to meet the above demands, and provides an aluminum-doped synthetic quartz glass that is excellent in heat resistance and has a limited amount of semiconductor poison and is effective for use in a semiconductor manufacturing process, and a method for manufacturing the same. For the purpose.

本発明者らは上記目的を達成するため、アルミニウムのドープ量に関して種々の検討を行った結果、ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、同多孔質シリカ母材を加熱ガラス化する合成石英ガラスの製造工程において、その途中でアルミニウムを合成石英ガラス中に5ppm未満となる量でドープすることにより、半導体製造プロセスにおける弊害となるアルミニウム濃度が5ppm未満と低濃度で、かつ天然石英を原料に電気溶融法、酸水素溶融法で作製した石英ガラスと同等もしくはそれ以上の耐熱性を有する合成石英ガラスが得られることを知見し、本発明をなすに至ったものである。   In order to achieve the above object, the present inventors have made various studies on the doping amount of aluminum. As a result, a silicon source material gas, a hydrogen gas and an oxygen gas are supplied from a burner to the reaction zone. Silica fine particles are generated by a flame hydrolysis reaction of the raw material gas, and the porous silica base material is produced by depositing the silica fine particles on a rotatable base material disposed in the reaction zone. In the production process of synthetic quartz glass that heats glass, aluminum is doped in the synthetic quartz glass in an amount of less than 5 ppm during the process, so that the aluminum concentration which is a harmful effect in the semiconductor production process is less than 5 ppm. In addition, it has a resistance equal to or better than quartz glass made from natural quartz by the electric melting method and oxyhydrogen melting method. Was found that the synthetic quartz glass having sex is obtained, in which the present invention has been accomplished.

即ち、本発明は、下記のアルミニウムドープ合成石英ガラス及びその製造方法を提供する。
請求項1:
合成石英ガラス中にアルミニウムを5ppm未満含有することを特徴とするアルミニウムドープ石英ガラス。
請求項2:
合成石英ガラス中のCl含有量が5ppm以下、OH基含有量が20ppm以下、かつNa、Mg、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、Auの含有量がそれぞれ0.01ppm以下であることを特徴とする請求項1記載の合成石英ガラス。
請求項3:
ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、同多孔質シリカ母材を加熱ガラス化する合成石英ガラスの製造工程において、その途中でアルミニウムを合成石英ガラス中に5ppm未満となる量でドープすることを特徴とする請求項1記載のアルミニウムドープ合成石英ガラスの製造方法。
請求項4:
ケイ素源原料ガス、水素ガス及び酸素ガスとともにアルミニウム源原料ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガス及びアルミニウム源原料ガスの火炎加水分解反応によりシリカ微粒子及びアルミナ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材にアルミニウムを含有したシリカ微粒子を堆積させてアルミニウムを含有した多孔質シリカ母材を作製し、同アルミニウム含有多孔質シリカ母材を加熱ガラス化することを特徴とする請求項3記載のアルミニウムドープ合成石英ガラスの製造方法。
請求項5:
ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、これをアルミニウム源化合物を溶解させた溶液に含浸させた後、酸素を含む雰囲気中で加熱乾燥させて、多孔質シリカ母材に含浸させたアルミニウム源化合物を酸化アルミニウムに変化させ、得られたアルミニウムを含む多孔質シリカ母材を加熱ガラス化することを特徴とする請求項3記載のアルミニウムドープ合成石英ガラスの製造方法。
請求項6:
ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、これをアルミニウム源原料ガスの含まれる雰囲気で加熱ガラス化することを特徴とする請求項3記載のアルミニウムドープ合成石英ガラスの製造方法。
That is, this invention provides the following aluminum dope synthetic quartz glass and its manufacturing method.
Claim 1:
An aluminum-doped quartz glass characterized in that the synthetic quartz glass contains less than 5 ppm of aluminum.
Claim 2:
The synthetic quartz glass has a Cl content of 5 ppm or less, an OH group content of 20 ppm or less, and the contents of Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, and Au are each 0. The synthetic quartz glass according to claim 1, wherein the content is 0.01 ppm or less.
Claim 3:
A silicon source material gas, hydrogen gas, and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and a rotatable disposed in the reaction zone. In the production process of synthetic quartz glass in which the silica fine particles are deposited on a base material to produce a porous silica base material, and the porous silica base material is heated to vitrify, aluminum is contained in the synthetic quartz glass in the course of less than 5 ppm. The method for producing aluminum-doped synthetic quartz glass according to claim 1, wherein doping is performed in an amount such that
Claim 4:
The aluminum source gas is supplied from the burner to the reaction zone along with the silicon source gas, hydrogen gas and oxygen gas. In this reaction zone, silica particles and alumina particles are generated by the flame hydrolysis reaction of the silicon source gas and the aluminum source gas. At the same time, a silica fine particle containing aluminum is deposited on a rotatable substrate disposed in the reaction zone to produce a porous silica base material containing aluminum, and the aluminum-containing porous silica base material is heated to glass. The method for producing an aluminum-doped synthetic quartz glass according to claim 3, wherein:
Claim 5:
A silicon source material gas, hydrogen gas, and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and a rotatable disposed in the reaction zone. A porous silica base material is prepared by depositing the silica fine particles on a base material, impregnated with a solution in which an aluminum source compound is dissolved, and then heated and dried in an atmosphere containing oxygen to form a porous silica base material. 4. The method for producing an aluminum-doped synthetic quartz glass according to claim 3, wherein the aluminum source compound impregnated in the material is changed to aluminum oxide, and the obtained porous silica base material containing aluminum is heated and vitrified.
Claim 6:
A silicon source material gas, hydrogen gas, and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and a rotatable disposed in the reaction zone. 4. The aluminum-doped synthetic quartz glass according to claim 3, wherein the silica fine particles are deposited on a base material to prepare a porous silica base material, and this is heated and vitrified in an atmosphere containing an aluminum source material gas. Production method.

本発明によれば、半導体毒として懸念されるアルミニウムの含有量が少なく、かつ天然石英を原料に電気溶融法、酸水素溶融法で作製した石英ガラスと同等もしくはそれ以上の耐熱性を有する合成石英ガラスの製造が可能である。   According to the present invention, synthetic quartz having a low content of aluminum, which is a concern as a semiconductor poison, and having heat resistance equal to or higher than that of quartz glass produced from natural quartz by an electric melting method or an oxyhydrogen melting method. Glass can be manufactured.

本発明は、高温耐熱性に優れたアルミニウム含有合成石英ガラスに係わるものであり、本発明においては、高温耐熱性を向上させるために、アルミニウムをドープさせたものである。これは、石英ガラス中に残留したアルカリ金属、OH基によって生じたケイ素−酸素の結合ネットワークの切断にアルミニウムを作用させ、アルミニウムを介してネットワークを再構築させることができるためであると思われる。   The present invention relates to an aluminum-containing synthetic quartz glass excellent in high-temperature heat resistance. In the present invention, aluminum is doped in order to improve high-temperature heat resistance. This is presumably because aluminum acts on the breakage of the silicon-oxygen bond network generated by the alkali metal and OH groups remaining in the quartz glass, and the network can be reconstructed via the aluminum.

本発明の合成石英ガラスにおいて、アルミニウムの含有量(ドープ量)は、5ppm未満であり、好ましくは4.5ppm以下である。その下限は特に制限されないが、アルミニウムドープの効果の有効性の点から1ppm以上である。アルミニウムを5ppm以上ドープした場合においても合成石英ガラス中のCl含有量が5ppm以下、OH基含有量が20ppm以下、Na、K等のアルカリ金属含有量が0.01ppm以下においては合成石英ガラスの高温耐熱性の更なる向上は見られず、また、半導体毒としてのアルミニウムの影響を抑えるため、アルミニウムのドープ量を抑制する必要があるからである。   In the synthetic quartz glass of the present invention, the aluminum content (dope amount) is less than 5 ppm, preferably 4.5 ppm or less. The lower limit is not particularly limited, but is 1 ppm or more from the viewpoint of the effectiveness of the effect of aluminum doping. Even when aluminum is doped 5 ppm or more, the synthetic quartz glass has a high Cl content of 5 ppm or less, an OH group content of 20 ppm or less, and an alkali metal content such as Na or K of 0.01 ppm or less. This is because no further improvement in heat resistance is observed, and it is necessary to suppress the doping amount of aluminum in order to suppress the influence of aluminum as a semiconductor poison.

また、本発明の合成石英ガラスは、Cl含有量が5ppm以下、より好ましくは1ppm以下であることが、高温耐熱性の点から好ましい。
また、OH基含有量は、高温耐熱性の点から20ppm以下、特に10ppm以下であることが好ましい。
The synthetic quartz glass of the present invention preferably has a Cl content of 5 ppm or less, more preferably 1 ppm or less from the viewpoint of high temperature heat resistance.
The OH group content is preferably 20 ppm or less, particularly preferably 10 ppm or less, from the viewpoint of high temperature heat resistance.

更に、本発明のアルミニウム含有合成石英ガラス中のNa、Mg、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、Auの含有量はそれぞれ0.01ppm以下であることが好ましい。これは、半導体毒となり得る元素の半導体製造プロセスでのシリコンウェーハへの拡散を抑制するためである。   Furthermore, the contents of Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, and Au in the aluminum-containing synthetic quartz glass of the present invention are each preferably 0.01 ppm or less. This is to suppress diffusion of an element that can be a semiconductor poison into the silicon wafer in the semiconductor manufacturing process.

本発明における上記アルミニウム含有量が5ppm未満のアルミニウムドープ合成石英ガラスの製造方法は、ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させてシリカ母材を作製し、同多孔質シリカ母材を加熱ガラス化する過程の途中でアルミニウムを合成石英ガラス中に5ppm未満含有されるようにドープするものである。   In the method for producing an aluminum-doped synthetic quartz glass having an aluminum content of less than 5 ppm according to the present invention, a silicon source material gas, a hydrogen gas and an oxygen gas are supplied from a burner to a reaction zone, and the flame of the silicon source material gas in this reaction zone A process of producing silica fine particles by hydrolysis reaction, depositing the silica fine particles on a rotatable substrate disposed in the reaction zone to produce a silica base material, and heating the porous silica base material to vitrification In the middle of the process, aluminum is doped so that the synthetic quartz glass contains less than 5 ppm.

本発明において、アルミニウムをドープする方法としては、以下の3方法のいずれかが適用される。   In the present invention, any of the following three methods is applied as a method of doping aluminum.

第1に、ケイ素源原料ガス、水素ガス及び酸素ガスとともにアルミニウム源原料ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガス及びアルミニウム源原料ガスの火炎加水分解反応によりシリカ微粒子及びアルミナ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材にアルミニウムを含有したシリカ微粒子を堆積させてアルミニウムを含有した多孔質シリカ母材を作製し、同アルミニウム含有多孔質シリカ母材を加熱ガラス化してアルミニウムドープ石英ガラスを製造する方法がある。   First, an aluminum source source gas is supplied from a burner to a reaction zone together with a silicon source source gas, hydrogen gas and oxygen gas, and in this reaction zone, silica fine particles and silica fine particles are produced by a flame hydrolysis reaction of the silicon source source gas and the aluminum source source gas. Alumina fine particles are produced, and a silica fine particle containing aluminum is deposited on a rotatable substrate disposed in the reaction zone to produce a porous silica base material containing aluminum. There is a method for producing an aluminum-doped quartz glass by heating and vitrifying the material.

第2の方法としては、ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、各種アルコール等の溶媒にアルミニウム源化合物を溶解させた溶液に同多孔質シリカ母材を含浸させた後、酸素を含む雰囲気中で加熱乾燥させ、多孔質シリカ母材に含浸させたアルミニウム源化合物を酸化アルミニウムに変化させ、得られたアルミニウムを含む多孔質シリカ母材を加熱ガラス化し、アルミニウムを含有する合成石英ガラスを製造する方法がある。   As a second method, a silicon source material gas, hydrogen gas and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and the reaction zone The porous silica base material is prepared by depositing the above silica fine particles on a rotatable base material disposed on the substrate, and the porous silica base material is impregnated with a solution in which an aluminum source compound is dissolved in a solvent such as various alcohols. After that, the aluminum source compound impregnated in the porous silica base material is changed to aluminum oxide by heating and drying in an atmosphere containing oxygen, and the resulting porous silica base material containing aluminum is heated and vitrified. There is a method for producing a synthetic quartz glass containing the same.

第3の方法としては、ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、同多孔質シリカ母材をアルミニウム源原料ガスの含まれる雰囲気で加熱ガラス化し、アルミニウムを含有する合成石英ガラスを製造する方法がある。   As a third method, silicon source raw material gas, hydrogen gas and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by flame hydrolysis reaction of the silicon source raw material gas. The porous silica base material is produced by depositing the silica fine particles on a rotatable base material disposed on the substrate, and the porous silica base material is heated and vitrified in an atmosphere containing an aluminum source gas, and contains aluminum. There is a method for producing synthetic quartz glass.

本発明において、上記の多孔質シリカ母材の作製方法自体は公知の方法であり、半導体リソグラフィーに使用されるフォトマスクなど光学部材用合成石英ガラスや光ファイバーなどの製造方法としてよく知られるVAD法やOVD法によって行えばよい。従って、バーナーのガス流量などは通常の条件によって操作し得、ケイ素源原料ガスも公知の有機ケイ素化合物が使用することができる。具体的には、四塩化ケイ素などのクロロシラン、テトラメトキシシランなどのアルコキシシラン等が使用される。   In the present invention, the preparation method of the porous silica base material itself is a known method, such as a VAD method well known as a method for producing a synthetic quartz glass for optical members such as a photomask used in semiconductor lithography or an optical fiber. What is necessary is just to perform by OVD method. Accordingly, the gas flow rate of the burner can be operated under normal conditions, and a known organosilicon compound can be used as the silicon source material gas. Specifically, chlorosilanes such as silicon tetrachloride and alkoxysilanes such as tetramethoxysilane are used.

本発明で使用され得るアルミニウム源原料ガス及びアルミニウム源化合物には、塩化アルミニウムなどのハロゲン化物、トリエトキシアルミニウムなどのアルコキシドがある。   Examples of the aluminum source gas and the aluminum source compound that can be used in the present invention include halides such as aluminum chloride and alkoxides such as triethoxyaluminum.

アルミニウム源原料ガスを輸送するキャリアーガスには、アルミニウム源原料ガスと反応しないガスであればいかなるものでも使用可能である。具体的にはヘリウム、窒素、アルゴン等の不活性ガス又は酸素が選択し得る。また、アルミニウム源化合物を溶解する溶媒には水、メタノール、エタノール、イソプロパノール等の低級アルコールなど、各種アルコール等が使用され得る。   Any carrier gas that transports the aluminum source gas can be used as long as it does not react with the aluminum source gas. Specifically, an inert gas such as helium, nitrogen, argon, or oxygen can be selected. Various alcohols such as water, lower alcohols such as methanol, ethanol and isopropanol can be used as the solvent for dissolving the aluminum source compound.

ガラス化の方法も公知の方法、条件を採用し得、例えば不活性ガス混合雰囲気下又は真空ガラス化炉内で1,200〜1,700℃まで加熱し、ガラス化する。
不活性ガスとしては、ヘリウム、アルゴン、窒素などが選択され得る。
Known methods and conditions may be employed for the vitrification method. For example, the vitrification is performed by heating to 1,200 to 1,700 ° C. in an inert gas mixed atmosphere or in a vacuum vitrification furnace.
As the inert gas, helium, argon, nitrogen or the like can be selected.

なお、上記のアルミニウムをドープする第3の方法においては、不活性ガスとともにアルミニウム源原料ガスを含む雰囲気下で加熱ガラス化する。
ガラス化後は同ガラス化炉内で急冷、徐冷又は放冷にて室温まで冷却される。
In the third method of doping aluminum, the glass is heated and vitrified in an atmosphere containing an inert gas and an aluminum source material gas.
After vitrification, it is cooled to room temperature by rapid cooling, slow cooling or standing cooling in the same vitrification furnace.

本発明の合成石英ガラスは、半導体製造プロセスにおいて好適に用いられる。具体的には、シリコンウェーハ熱処理時のシリコンウェーハを支える治具、炉芯管等に使用される。   The synthetic quartz glass of the present invention is suitably used in a semiconductor manufacturing process. Specifically, it is used for jigs, furnace core tubes and the like that support silicon wafers during heat treatment of silicon wafers.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。また、この実施例に記載されている種々の製造条件は、この発明をその範囲に限定することを意味しない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. Also, the various production conditions described in this example do not mean that the invention is limited to that scope.

[実施例1〜6]
ケイ素源原料としてのテトラエトキシシランを1,000g/Hr、O2ガスを4.0m3/Hr、及びH2ガスを2.8m3/Hrでバーナーから反応域に供給するとともに、同反応域にトリエトキシアルミニウムを200℃に加熱して気体としたものをN2ガスに同伴させて供給し、テトラエトキシシラン及びトリエトキシアルミニウムの火炎加水分解反応により、アルミニウム含有多孔質シリカ母材を製造した。
この際、トリエトキシアルミニウムを同伴させるN2ガス量を変化させることでアルミニウムドープ量を変化させた。
上記のアルミニウム含有多孔質シリカ母材を真空ガラス化炉内において1,450℃まで昇温し、溶融ガラス化して直径100mmの合成石英ガラスを得た。
[Examples 1 to 6]
The tetraethoxysilane as a silicon source material is supplied to the reaction zone from the burner at 1,000 g / Hr, O 2 gas at 4.0 m 3 / Hr, and H 2 gas at 2.8 m 3 / Hr. An aluminum-containing porous silica base material was manufactured by a flame hydrolysis reaction of tetraethoxysilane and triethoxyaluminum with triethoxyaluminum heated to 200 ° C. as a gas and accompanied by N 2 gas. .
At this time, the amount of aluminum dope was changed by changing the amount of N 2 gas accompanied by triethoxyaluminum.
The aluminum-containing porous silica base material was heated to 1,450 ° C. in a vacuum vitrification furnace and melted into glass to obtain a synthetic quartz glass having a diameter of 100 mm.

上記条件で製造した合成石英ガラスの中心部分のCl濃度を放射化分析法で測定し、OH基濃度を赤外分光法で測定した。また、アルミニウム濃度及び金属不純物(Na、Mg、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、Au)濃度をICP−MS分析で測定した。それぞれのアルミニウム濃度は0.753、1.482、2.185、2.878、3.545、4.182ppmであった。放射化分析法、赤外分光法及びICP−MS分析の結果を表1に示す。   The Cl concentration in the central portion of the synthetic quartz glass produced under the above conditions was measured by activation analysis, and the OH group concentration was measured by infrared spectroscopy. In addition, the aluminum concentration and the metal impurity (Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Au) concentration were measured by ICP-MS analysis. The respective aluminum concentrations were 0.753, 1.482, 2.185, 2.878, 3.545, 4.182 ppm. The results of activation analysis, infrared spectroscopy and ICP-MS analysis are shown in Table 1.

上記条件で製造した合成石英ガラスの中心部分より100×10×3mmのテストピースを作製し、ビームベンディング法にて1,350℃での粘度を測定した結果、それぞれの粘度(logηポアズ)は11.18、11.38、11.69、11.91、12.01、12.04であった。
アルミニウム濃度と1,350℃での粘度の関係を図1に示す。
A test piece of 100 × 10 × 3 mm was produced from the central part of the synthetic quartz glass produced under the above conditions, and the viscosity at 1,350 ° C. was measured by the beam bending method. As a result, each viscosity (log η poise) was 11 .18, 11.38, 11.69, 11.91, 12.01, 12.04.
The relationship between the aluminum concentration and the viscosity at 1,350 ° C. is shown in FIG.

[比較例1,2]
ケイ素源原料としてのテトラエトキシシランを1,000g/Hr、O2ガスを4.0m3/Hr、及びH2ガスを2.8m3/Hrでバーナーから反応域に供給するとともに、同反応域にトリエトキシアルミニウムを200℃に加熱して気体としたものをN2ガスに同伴させて供給し、テトラエトキシシラン及びトリエトキシアルミニウムの火炎加水分解反応により、アルミニウム含有多孔質シリカ母材を製造した。
この際、トリエトキシアルミニウムを同伴させるN2ガス量を変化させることでアルミニウムドープ量を変化させた。
上記のアルミニウム含有多孔質シリカ母材を真空ガラス化炉内において1,450℃まで昇温し、溶融ガラス化して直径100mmの合成石英ガラスを得た。
[Comparative Examples 1 and 2]
The tetraethoxysilane as a silicon source material is supplied to the reaction zone from the burner at 1,000 g / Hr, O 2 gas at 4.0 m 3 / Hr, and H 2 gas at 2.8 m 3 / Hr. An aluminum-containing porous silica base material was manufactured by a flame hydrolysis reaction of tetraethoxysilane and triethoxyaluminum with triethoxyaluminum heated to 200 ° C. as a gas and accompanied by N 2 gas. .
At this time, the amount of aluminum dope was changed by changing the amount of N 2 gas accompanied by triethoxyaluminum.
The aluminum-containing porous silica base material was heated to 1,450 ° C. in a vacuum vitrification furnace and melted into glass to obtain a synthetic quartz glass having a diameter of 100 mm.

上記条件で製造した合成石英ガラスの中心部分のCl濃度を放射化分析法で測定し、OH基濃度を赤外分光法で測定した。また、アルミニウム濃度及び金属不純物(Na、Mg、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、Au)濃度をICP−MS分析で測定した。それぞれのアルミニウム濃度は5.418、6.628ppmであった。放射化分析法、赤外分光法及びICP−MS分析の結果を表1に示す。   The Cl concentration in the central portion of the synthetic quartz glass produced under the above conditions was measured by activation analysis, and the OH group concentration was measured by infrared spectroscopy. In addition, the aluminum concentration and the metal impurity (Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Au) concentration were measured by ICP-MS analysis. The respective aluminum concentrations were 5.418 and 6.628 ppm. The results of activation analysis, infrared spectroscopy and ICP-MS analysis are shown in Table 1.

上記条件で製造した合成石英ガラスの中心部分より100×10×3mmのテストピースを作製し、ビームベンディング法にて1,350℃での粘度を測定した結果、それぞれの粘度(logηポアズ)は11.98、12.00であった。アルミニウム濃度と粘度の関係を図1に示す。
図1から、合成石英ガラスに含まれるアルミニウム濃度が増加するにつれて粘度も上昇しているが、アルミニウム濃度4ppm程度で粘度は飽和し、それ以上アルミニウム濃度を増加させても粘度は上がらないことがわかる。
A test piece of 100 × 10 × 3 mm was produced from the central part of the synthetic quartz glass produced under the above conditions, and the viscosity at 1,350 ° C. was measured by the beam bending method. As a result, each viscosity (log η poise) was 11 .98, 12.00. The relationship between aluminum concentration and viscosity is shown in FIG.
As can be seen from FIG. 1, the viscosity increases as the concentration of aluminum contained in the synthetic quartz glass increases, but the viscosity is saturated at an aluminum concentration of about 4 ppm, and the viscosity does not increase even if the aluminum concentration is increased further. .

[比較例3,4]
天然石英を原料に電気溶融法、酸水素溶融法で作製した石英ガラスのCl濃度を放射化分析法で測定し、OH基濃度を赤外分光法で測定した。また、アルミニウム濃度及び金属不純物(Na、Mg、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、Au)濃度をICP−MS分析で測定した。放射化分析法、赤外分光法及びICP−MS分析の結果を表1に示す。
[Comparative Examples 3 and 4]
The Cl concentration of quartz glass produced using natural quartz as a raw material by the electric melting method and the oxyhydrogen melting method was measured by activation analysis, and the OH group concentration was measured by infrared spectroscopy. In addition, the aluminum concentration and the metal impurity (Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Au) concentration were measured by ICP-MS analysis. The results of activation analysis, infrared spectroscopy and ICP-MS analysis are shown in Table 1.

天然石英を原料に電気溶融法、酸水素溶融法で作製した石英ガラスより100×10×3mmのテストピースを作製し、ビームベンディング法にて1,350℃での粘度を測定した結果、それぞれの粘度(logηポアズ)は11.40、10.90であった。   As a result of producing a 100 × 10 × 3 mm test piece from quartz glass made from natural quartz by an electric melting method and an oxyhydrogen melting method, and measuring the viscosity at 1,350 ° C. by a beam bending method, The viscosities (log η poise) were 11.40 and 10.90.

実施例1〜6及び比較例1,2で作製したアルミニウム合成石英ガラスのアルミニウムドープ量と粘度との関係を示すグラフである。It is a graph which shows the relationship between the aluminum dope amount and viscosity of the aluminum synthetic quartz glass produced in Examples 1-6 and Comparative Examples 1 and 2. FIG.

Claims (6)

合成石英ガラス中にアルミニウムを5ppm未満含有することを特徴とするアルミニウムドープ石英ガラス。   An aluminum-doped quartz glass characterized in that the synthetic quartz glass contains less than 5 ppm of aluminum. 合成石英ガラス中のCl含有量が5ppm以下、OH基含有量が20ppm以下、かつNa、Mg、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、Auの含有量がそれぞれ0.01ppm以下であることを特徴とする請求項1記載の合成石英ガラス。   The synthetic quartz glass has a Cl content of 5 ppm or less, an OH group content of 20 ppm or less, and the contents of Na, Mg, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, and Au are each 0. The synthetic quartz glass according to claim 1, wherein the content is 0.01 ppm or less. ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、同多孔質シリカ母材を加熱ガラス化する合成石英ガラスの製造工程において、その途中でアルミニウムを合成石英ガラス中に5ppm未満となる量でドープすることを特徴とする請求項1記載のアルミニウムドープ合成石英ガラスの製造方法。   A silicon source material gas, hydrogen gas, and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and a rotatable disposed in the reaction zone. In the production process of synthetic quartz glass in which the silica fine particles are deposited on a base material to produce a porous silica base material, and the porous silica base material is heated to vitrify, aluminum is contained in the synthetic quartz glass in the course of less than 5 ppm. The method for producing aluminum-doped synthetic quartz glass according to claim 1, wherein doping is performed in an amount such that ケイ素源原料ガス、水素ガス及び酸素ガスとともにアルミニウム源原料ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガス及びアルミニウム源原料ガスの火炎加水分解反応によりシリカ微粒子及びアルミナ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材にアルミニウムを含有したシリカ微粒子を堆積させてアルミニウムを含有した多孔質シリカ母材を作製し、同アルミニウム含有多孔質シリカ母材を加熱ガラス化することを特徴とする請求項3記載のアルミニウムドープ合成石英ガラスの製造方法。   The aluminum source gas is supplied from the burner to the reaction zone along with the silicon source gas, hydrogen gas and oxygen gas. In this reaction zone, silica particles and alumina particles are generated by the flame hydrolysis reaction of the silicon source gas and the aluminum source gas. At the same time, a silica fine particle containing aluminum is deposited on a rotatable substrate disposed in the reaction zone to produce a porous silica base material containing aluminum, and the aluminum-containing porous silica base material is heated to glass. The method for producing an aluminum-doped synthetic quartz glass according to claim 3, wherein: ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、これをアルミニウム源化合物を溶解させた溶液に含浸させた後、酸素を含む雰囲気中で加熱乾燥させて、多孔質シリカ母材に含浸させたアルミニウム源化合物を酸化アルミニウムに変化させ、得られたアルミニウムを含む多孔質シリカ母材を加熱ガラス化することを特徴とする請求項3記載のアルミニウムドープ合成石英ガラスの製造方法。   A silicon source material gas, hydrogen gas, and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and a rotatable disposed in the reaction zone. A porous silica base material is prepared by depositing the silica fine particles on a base material, impregnated with a solution in which an aluminum source compound is dissolved, and then heated and dried in an atmosphere containing oxygen to form a porous silica base material. 4. The method for producing an aluminum-doped synthetic quartz glass according to claim 3, wherein the aluminum source compound impregnated in the material is changed to aluminum oxide, and the obtained porous silica base material containing aluminum is heated and vitrified. ケイ素源原料ガス、水素ガス及び酸素ガスをバーナーから反応域に供給し、この反応域においてケイ素源原料ガスの火炎加水分解反応によりシリカ微粒子を生成させるとともに、上記反応域に配置された回転可能な基材に上記シリカ微粒子を堆積させて多孔質シリカ母材を作製し、これをアルミニウム源原料ガスの含まれる雰囲気で加熱ガラス化することを特徴とする請求項3記載のアルミニウムドープ合成石英ガラスの製造方法。

A silicon source material gas, hydrogen gas, and oxygen gas are supplied from a burner to a reaction zone, and in this reaction zone, silica fine particles are generated by a flame hydrolysis reaction of the silicon source material gas, and a rotatable disposed in the reaction zone. 4. The aluminum-doped synthetic quartz glass according to claim 3, wherein the silica fine particles are deposited on a base material to prepare a porous silica base material, and this is heated and vitrified in an atmosphere containing an aluminum source material gas. Production method.

JP2003389068A 2003-11-19 2003-11-19 Aluminum-doped synthetic quartz glass and its manufacturing method Pending JP2005145792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389068A JP2005145792A (en) 2003-11-19 2003-11-19 Aluminum-doped synthetic quartz glass and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389068A JP2005145792A (en) 2003-11-19 2003-11-19 Aluminum-doped synthetic quartz glass and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005145792A true JP2005145792A (en) 2005-06-09

Family

ID=34695925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389068A Pending JP2005145792A (en) 2003-11-19 2003-11-19 Aluminum-doped synthetic quartz glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005145792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025077A1 (en) * 2007-08-23 2009-02-26 Shin-Etsu Quartz Products Co., Ltd. Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP2009154090A (en) * 2007-12-26 2009-07-16 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst, and method of preparing the same
WO2019043845A1 (en) * 2017-08-30 2019-03-07 日本碍子株式会社 Transparent sealing member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025077A1 (en) * 2007-08-23 2009-02-26 Shin-Etsu Quartz Products Co., Ltd. Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP2009051677A (en) * 2007-08-23 2009-03-12 Shinetsu Quartz Prod Co Ltd Chemically resistant silica glass and its production method
JP2009154090A (en) * 2007-12-26 2009-07-16 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst, and method of preparing the same
WO2019043845A1 (en) * 2017-08-30 2019-03-07 日本碍子株式会社 Transparent sealing member
JPWO2019043845A1 (en) * 2017-08-30 2020-08-06 日本碍子株式会社 Transparent sealing member
JP7028879B2 (en) 2017-08-30 2022-03-02 日本碍子株式会社 Transparent sealing member

Similar Documents

Publication Publication Date Title
JP5394734B2 (en) Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
US20110183138A1 (en) Method for producing quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the method
KR20100058525A (en) Fused silica having low oh, od levels and method of making
WO2005059972A2 (en) Synthetic quartz glass for optical member and its production method
JP2003246641A (en) Quartz glass bland for optical member, manufacturing method thereof and application for the same
JP5471478B2 (en) Method for producing synthetic quartz glass for excimer laser
JP6423434B2 (en) Method for producing titanium-doped silica glass used in EUV lithography
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
US9593034B2 (en) Method for producing iron-doped silica glass
JP2005145792A (en) Aluminum-doped synthetic quartz glass and its manufacturing method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
US20020170320A1 (en) Core glass for a preform for an optical fiber preform made from the core glass, and method for making the core glass and an optical fiber
US6915664B2 (en) Method of manufacturing a fluorine-doped silica powder
JP2000191329A (en) Production of optical quartz glass for excimer laser
KR20080097260A (en) Method for controlling oh content in a quartz glass
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP6769893B2 (en) Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method
JPH06263468A (en) Production of glass base material
JP3965552B2 (en) Method for producing synthetic quartz glass
JP3792105B2 (en) Method for producing quartz glass
JP3114936B2 (en) High heat resistant synthetic quartz glass
JP4069381B2 (en) Method for producing doped synthetic quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Effective date: 20080820

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

A131 Notification of reasons for refusal

Effective date: 20081210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090422

Free format text: JAPANESE INTERMEDIATE CODE: A02