JP2005145616A - Distortion absorbing mechanism for lining of high pressure gas storage underground space - Google Patents

Distortion absorbing mechanism for lining of high pressure gas storage underground space Download PDF

Info

Publication number
JP2005145616A
JP2005145616A JP2003383961A JP2003383961A JP2005145616A JP 2005145616 A JP2005145616 A JP 2005145616A JP 2003383961 A JP2003383961 A JP 2003383961A JP 2003383961 A JP2003383961 A JP 2003383961A JP 2005145616 A JP2005145616 A JP 2005145616A
Authority
JP
Japan
Prior art keywords
plug
lining
metal lining
pressure gas
strain absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003383961A
Other languages
Japanese (ja)
Other versions
JP3999192B2 (en
Inventor
Junji Ono
純二 小野
Hiroshi Iwasaki
博 岩崎
Taikan Yamazaki
太寛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003383961A priority Critical patent/JP3999192B2/en
Publication of JP2005145616A publication Critical patent/JP2005145616A/en
Application granted granted Critical
Publication of JP3999192B2 publication Critical patent/JP3999192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress to a minimum the effect on a metal lining of the difference in behavior between a rock stratum and a plug in a structure discontinuity part. <P>SOLUTION: The inside of an underground space 1 formed in the rock stratum 4 is lined with the metal lining 5 provided with resilient buffer material 18 on the outer side. Concrete 7 is inserted in the gap 6 between the metal lining 5 and the rock stratum 4. Further, in a high pressure gas storage underground space where a construction tunnel 2 communicated with the space 1 is sealed with a concrete plug 3, a distortion absorbing part 12 is provided on the metal lining opposing to the structure discontinuity part 10 which is the boundary surface between the rock stratum 4 and the plug 3, the distortion absorbing part having a convex shaped cross section and protruding into the space 1 . In addition, a metallic structural member 14 supporting the structure discontinuity part and having a shape substantially identical to the distortion absorbing part 12 is provided on the back side of the distortion absorbing part 12. Likewise, an elastic distortion absorbing material 16 is provided on the back side of the metallic structural member 14 supporting the structure discontinuity part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、天然ガスや圧縮空気などを、例えば、50〜200気圧の高圧状態で地下の岩盤内に設けた空洞に貯蔵する場合に、空洞のライニングの歪みを吸収する歪み吸収機構に関するものである。   The present invention relates to a strain absorption mechanism that absorbs strain of a lining of a cavity when storing natural gas, compressed air, or the like in a cavity provided in an underground rock at a high pressure of, for example, 50 to 200 atmospheres. is there.

地下の岩盤内に設けた空洞に天然ガスや圧縮空気などの気体を高圧で貯蔵する場合に、この気体を気密に貯蔵するため、外側ライニングを構成する鉄筋コンクリートの内表面に、ゴム系やプラスチック系の非金属製のシートや、薄いステンレススチールシートなどの金属製のシート、或いはメンブレンなどの気密性ライニングを接着剤によって接着したり、溶接する方法が行なわれていた。その際、気密性シート自体の継手部は、金属系の場合は溶接、ゴム系やプラスチック系の場合は溶着する方法が考えられている(例えば、特許文献1。)。
特開2001−233425号公報(第3−4頁、図1)
When gas such as natural gas or compressed air is stored at high pressure in a cavity provided in the underground rock mass, the rubber or plastic system is used on the inner surface of the reinforced concrete that forms the outer lining in order to store this gas in an airtight manner. A non-metal sheet, a metal sheet such as a thin stainless steel sheet, or an airtight lining such as a membrane is bonded with an adhesive or welded. At that time, a method is conceivable in which the joint portion of the airtight sheet itself is welded in the case of a metal system and welded in the case of a rubber system or a plastic system (for example, Patent Document 1).
JP 2001-233425 A (page 3-4, FIG. 1)

従来の気密ライニングは、例えば、LNG貯槽などの場合、液圧と温度影響による比較的小さいライニングの変形を吸収すれば良く、外側ライニングへの定着や気密性ライニング自体の継手部の信頼性が、ある程度、確保される。   In the case of a conventional airtight lining, for example, in the case of an LNG storage tank or the like, it is only necessary to absorb a relatively small deformation of the lining due to the influence of hydraulic pressure and temperature, and the reliability of the joint portion of the airtight lining itself is fixed to the outer lining, It is secured to some extent.

しかし、本発明は非常に高圧状態であるため、ライニングは塑性域での使用となり、貯蔵気体の払い出し、及び受け入れで、日々、貯蔵圧が変化する場合は、内圧の変化、すなわち、繰り返し荷重により外側ライニングの定着部、及び気密性ライニング自体の継手部に応力集中が生じ、このため、同部の疲労による気体の漏洩の畏れがある。   However, since the present invention is in a very high pressure state, the lining is used in a plastic region, and when the storage pressure changes every day due to the discharge and reception of the storage gas, the internal pressure changes, that is, due to repeated load. Stress concentration occurs in the fixing portion of the outer lining and the joint portion of the hermetic lining itself, which may cause gas leakage due to fatigue in the same portion.

一方、図6に示すように、地下空洞1を形成するときに使用した工事用トンネル2の先端部は、工事終了後、コンクリート製のプラグ3によって密閉されるが、岩盤支持部とプラグ部では、同じ圧力を受けた状態での変位に差が生じるため、岩盤4とプラグ3の境界面(以下、構造不連続部という。)においては、岩盤4とプラグ3の挙動の差異により、図7(a)及び(b)に示すように、符号aで示す不連続変位部分に剪断及び開口変位が発生する。このため、金属ライニング5に歪み集中が発生し、50年間の使用を考慮した場合、同部の疲労による気体の漏洩が発生する畏れがライニング一般部に比して非常に高い。   On the other hand, as shown in FIG. 6, the end of the construction tunnel 2 used when forming the underground cavity 1 is sealed with a concrete plug 3 after the construction is completed. Since there is a difference in displacement under the same pressure, the boundary between the rock mass 4 and the plug 3 (hereinafter referred to as a structural discontinuity) is caused by the difference in behavior between the rock mass 4 and the plug 3. As shown in (a) and (b), shearing and opening displacement occur in the discontinuous displacement portion indicated by the symbol a. For this reason, strain concentration occurs in the metal lining 5, and when considering the use for 50 years, the occurrence of gas leakage due to fatigue in the same part is very high compared to the general part of the lining.

本発明は、このような問題を解消するためになされたものであり、その目的とするところは、岩盤とプラグとの境界面、即ち、構造不連続部における岩盤とプラグとの挙動の差異に起因する金属ライニングへの影響を最小限に抑えるようにする金属ライニングの歪み吸収機構を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to determine the interface between the rock mass and the plug, that is, the difference in behavior between the rock mass and the plug at the structural discontinuity. It is an object of the present invention to provide a strain absorption mechanism for a metal lining that minimizes the influence on the resulting metal lining.

上記課題を解決するため、本発明の高圧ガス貯蔵地下空洞のライニングの歪み吸収機構は、岩盤内に形成された空洞部の内側を、外側に弾力性を有する緩衝材を設けた金属ライニングによってライニングすると共に、前記金属ライニングと岩盤の隙間にコンクリートを裏込めし、更に、前記空洞部に連通している工事用トンネルの先端部をコンクリート製のプラグで密封する高圧ガス貯蔵地下空洞において、前記岩盤とプラグの境界面である構造不連続部に対向する金属ライニング部に空洞部内に向かって突出する断面凸形状の歪み吸収部を設け、更に、該歪み吸収部の裏側に前記歪み吸収部とほぼ同形の金属製の構造不連続部支持構造部材を設け、且つ、該構造不連続部支持構造部材の裏側に弾力性を有する歪み吸収材を設けたことを特徴とするものである。   In order to solve the above problems, the strain absorption mechanism of the lining of the high pressure gas storage underground cavity according to the present invention is lined by a metal lining provided with an elastic buffer material on the inside of the cavity formed in the rock. In addition, in the high pressure gas storage underground cavity, concrete is backed into the gap between the metal lining and the rock, and the tip of the construction tunnel communicating with the cavity is sealed with a concrete plug. A strain absorbing portion having a convex cross-section projecting into the cavity portion is provided in the metal lining portion facing the structural discontinuity that is the interface between the plug and the plug, and the strain absorbing portion is substantially the same as the strain absorbing portion on the back side of the strain absorbing portion. A structural discontinuous portion supporting structural member made of the same metal is provided, and a strain absorbing material having elasticity is provided on the back side of the structural discontinuous portion supporting structural member. It is intended to.

また、本発明の前記構造不連続部支持構造部材及び歪み吸収材は、前記構造不連続部支持構造部材及び歪み吸収材を、岩盤とプラグの内側に設けた溝内に嵌合させている。   In the structural discontinuous portion supporting structural member and the strain absorbing material of the present invention, the structural discontinuous portion supporting structural member and the strain absorbing material are fitted in a groove provided inside the rock and the plug.

上記のように、本発明は、高圧ガス貯蔵地下空洞において、岩盤とプラグの境界面である構造不連続部に対向する金属ライニング部に空洞部内に向かって突出する断面凸形状の歪み吸収部を設け、更に、該歪み吸収部の裏側に前記歪み吸収部とほぼ同形の金属製の構造不連続部支持構造部材を設け、且つ、該構造不連続部支持構造部材の裏側に弾力性を有する歪み吸収材を設けたから、岩盤とプラグの境界面、即ち、構造不連続部における岩盤とプラグの挙動の差異が発生した場合には、断面凸形状の金属ライニングの歪み吸収部、ほぼ同形の金属製の構造不連続部支持構造部材及び弾力性を有する歪み吸収材が変形して岩盤とプラグの境界面、即ち、構造不連続部における岩盤とプラグの挙動の差異に起因する金属ライニングへの影響を最小限に抑えることができる。   As described above, in the high-pressure gas storage underground cavity, the present invention provides a strain absorbing portion having a convex cross section that protrudes toward the inside of the cavity in the metal lining that faces the structural discontinuity that is the interface between the rock and the plug. Further, a structural discontinuity support member made of metal substantially the same shape as the strain absorption part is provided on the back side of the strain absorption part, and the elastic strain is provided on the back side of the structural discontinuity part support structure member. Since the absorber is provided, if there is a difference in the behavior of the rock and the plug at the boundary between the rock and the plug, that is, the structural discontinuity, the strain absorbing part of the metal lining with a convex cross section, The structural discontinuity supporting structural member and the elastic strain absorber deformed to influence the influence on the metal lining due to the interface between the rock mass and the plug, that is, the difference in the behavior of the rock mass and the plug at the structural discontinuity. Most It can be suppressed to the limit.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は高圧ガス貯蔵地下空洞の断面図である。図1において、1は、岩盤4内に形成された地下空洞部であり、その内側は、不錆鋼製の金属ライニング5でライニングされている。その上、この金属ライニング5と岩盤4の隙間6には、コンクリート7が裏込めされている。尚、金属ライニング5の外側には、合成樹脂製の緩衝材18が層状に設けられている(図3参照。)。この緩衝材18の設け方としては、吹き付けによる方法、貼り付けによる方法などがある。   FIG. 1 is a cross-sectional view of a high-pressure gas storage underground cavity. In FIG. 1, reference numeral 1 denotes an underground cavity formed in the rock mass 4, and the inside thereof is lined with a metal lining 5 made of non-rust steel. In addition, the gap 7 between the metal lining 5 and the rock mass 4 is backed with concrete 7. In addition, the buffer material 18 made from a synthetic resin is provided in layers outside the metal lining 5 (see FIG. 3). As a method of providing the cushioning material 18, there are a spraying method, a pasting method, and the like.

更に、上記空洞部1に連通している工事用トンネル2の先端部をコンクリート製のプラグ3により密封している。尚、この工事用トンネル2を利用してバルブ8を備えたガス管9を設け、天然ガスなどの高圧ガスを出し入れするようにしている。このガス管9の先端部は、金属ライニング5に固定されている。   Further, the end of the construction tunnel 2 communicating with the cavity 1 is sealed with a concrete plug 3. The construction tunnel 2 is used to provide a gas pipe 9 having a valve 8 so that high-pressure gas such as natural gas can be taken in and out. The tip of the gas pipe 9 is fixed to the metal lining 5.

図3に示すように、上記金属ライニング5は、岩盤4とプラグ3の境界面である構造不連続部10に対向するライニング部分が空洞部1の内方Iに向かって断面凸形状に突出し、歪み吸収部12となっている。また、この歪み吸収部12の背面側には、歪み吸収部12とほぼ同形に形成され、かつ、その両側にフランジ13を備えた金属製の構造不連続部支持構造部材14を設けている。更に、この構造不連続部支持構造部材14の背面側には、空洞部1の内方Iに向かって突出する断面凸形状に形成され、かつ、その両側にフランジ15を備えた弾性体から成る歪み吸収材(ダンパー材)16が充填されている。   As shown in FIG. 3, the metal lining 5 is such that the lining portion facing the structural discontinuity 10 that is the boundary surface between the rock 4 and the plug 3 protrudes in a convex shape in cross section toward the inward I of the cavity 1. The strain absorbing portion 12 is formed. Further, on the back side of the strain absorbing portion 12, a metal structural discontinuous portion supporting structural member 14 that is formed in substantially the same shape as the strain absorbing portion 12 and has flanges 13 on both sides thereof is provided. Further, on the back side of the structural discontinuous portion supporting structural member 14, it is formed of an elastic body that is formed in a convex cross section projecting inward I of the cavity portion 1 and that has flanges 15 on both sides thereof. A strain absorbing material (damper material) 16 is filled.

上記構造不連続部支持構造部材14及び歪み吸収材(ダンパー材)16は、岩盤4とプラグ3のそれぞれの内側に設けた共同溝20内に嵌合されているので、内圧負荷時は摩擦力が期待でき、その両端を岩盤4及びプラグ3に固定する必要がないが、若し、必要であれば、アンカーにて固定することも考えられる。   Since the structural discontinuous portion support structural member 14 and the strain absorbing material (damper material) 16 are fitted in the joint groove 20 provided inside the rock mass 4 and the plug 3, friction force is applied at the time of internal pressure load. It is not necessary to fix the both ends to the rock mass 4 and the plug 3, but if necessary, it may be fixed with an anchor.

その場合には、例えば、金属製のアンカー17によって構造不連続部支持構造部材14及び歪み吸収材16の外側のフランジ13,15を岩盤4に固定し、構造不連続部支持構造部材14及び歪み吸収材16の内側のフランジ13,15をプラグ3に固定する。   In this case, for example, the structural discontinuity support structure member 14 and the outer flanges 13 and 15 of the strain absorbing material 16 are fixed to the rock mass 4 by the metal anchors 17, and the structural discontinuity support structure member 14 and the strain The inner flanges 13 and 15 of the absorbent material 16 are fixed to the plug 3.

尚、符号Oは、空洞部1の外方を示している。また、構造不連続部支持構造部材14の寸法、すなわち、幅A及び高さBは、岩盤4とプラグ3との相対的な変位量に応じて最適な寸法とする。   The symbol O indicates the outside of the cavity 1. In addition, the dimensions of the structural discontinuity support structural member 14, that is, the width A and the height B are set to optimum dimensions according to the relative displacement amount of the rock 4 and the plug 3.

図2に示すように、上記構造不連続部10は、円形であるから金属ライニング5の歪み吸収部12、構造不連続部支持構造部材14及び歪み吸収材16は、それぞれ、正面視でリング状に形成されている。   As shown in FIG. 2, since the structural discontinuous portion 10 is circular, the strain absorbing portion 12, the structural discontinuous portion supporting structural member 14, and the strain absorbing material 16 of the metal lining 5 are each in a ring shape in front view. Is formed.

ここで、金属ライニング、構造不連続部支持構造部材、アンカーの素材としては、例えば、不錆鋼や炭素鋼が好ましい。また、歪み吸収材の素材としては、例えば、ゴムやポリウレタンが好ましい。また、緩衝材の素材としては、例えば、ポリウレタンが好ましい。   Here, as the material for the metal lining, the structural discontinuous portion supporting structural member, and the anchor, for example, non-rust steel or carbon steel is preferable. Moreover, as a raw material of the strain absorbing material, for example, rubber or polyurethane is preferable. Moreover, as a material of the buffer material, for example, polyurethane is preferable.

しかして、図4に示すように、プラグ3が、矢印Eのように、空洞部1の内方I側に変位する場合は、金属ライニング5の歪み吸収部12が二点鎖線で示すように変形してプラグ3の挙動に起因する金属ライニング5の歪みが吸収される。   Therefore, as shown in FIG. 4, when the plug 3 is displaced toward the inner side I of the cavity 1 as indicated by an arrow E, the strain absorbing portion 12 of the metal lining 5 is indicated by a two-dot chain line. The deformation of the metal lining 5 due to the deformation of the plug 3 is absorbed.

一方、図5に示すように、プラグ3が、矢印Fのように、空洞部1の外方O側に変位する場合は、金属ライニング5の歪み吸収部12が二点鎖線で示すように変形してプラグ3の挙動に起因する金属ライニング5の歪みが吸収される。   On the other hand, as shown in FIG. 5, when the plug 3 is displaced to the outer side O of the cavity 1 as indicated by an arrow F, the strain absorbing portion 12 of the metal lining 5 is deformed as indicated by a two-dot chain line. Thus, the distortion of the metal lining 5 due to the behavior of the plug 3 is absorbed.

高圧ガス貯蔵地下空洞の断面図である。It is sectional drawing of a high pressure gas storage underground cavity. 図1において矢印Cで示す部分の部分正面図である。It is a partial front view of the part shown by the arrow C in FIG. 図2のD−D’断面図である。It is D-D 'sectional drawing of FIG. プラグ前進時における歪み吸収部の作用説明図である。It is operation | movement explanatory drawing of the distortion absorption part at the time of plug advance. プラグ後退時における歪み吸収部の作用説明図である。It is operation | movement explanatory drawing of the distortion absorption part at the time of plug retraction. 従来の高圧ガス貯蔵地下空洞の断面図である。It is sectional drawing of the conventional high-pressure gas storage underground cavity. (a),(b)岩盤とプラグとの相対的な挙動を示す説明図である。(A), (b) It is explanatory drawing which shows the relative behavior of a rock mass and a plug.

符号の説明Explanation of symbols

1 空洞部
2 工事用トンネル
3 プラグ
4 岩盤
5 金属ライニング
6 隙間
7 コンクリート
10 構造不連続部
12 歪み吸収部
14 構造不連続部支持構造部材
16 歪み吸収材
DESCRIPTION OF SYMBOLS 1 Cavity part 2 Tunnel for construction 3 Plug 4 Rock bed 5 Metal lining 6 Crevice 7 Concrete 10 Structural discontinuity 12 Strain absorbing part 14 Structural discontinuous part support structural member 16 Strain absorbing material

Claims (2)

岩盤内に形成された空洞部の内側を、外側に弾力性を有する緩衝材を設けた金属ライニングによってライニングすると共に、前記金属ライニングと岩盤の隙間にコンクリートを裏込めし、更に、前記空洞部に連通している工事用トンネルの先端部をコンクリート製のプラグで密封する高圧ガス貯蔵地下空洞において、
前記岩盤とプラグの境界面である構造不連続部に対向する金属ライニング部に空洞部内に向かって突出する断面凸形状の歪み吸収部を設け、更に、該歪み吸収部の裏側に前記歪み吸収部とほぼ同形の金属製の構造不連続部支持構造部材を設け、且つ、該構造不連続部支持構造部材の裏側に弾力性を有する歪み吸収材を設けたことを特徴とする高圧ガス貯蔵地下空洞のライニングの歪み吸収機構。
The inside of the cavity formed in the bedrock is lined with a metal lining provided with a cushioning material having elasticity on the outside, and concrete is backed in the gap between the metal lining and the bedrock, and further, In the high-pressure gas storage underground cavity where the tip of the communicating construction tunnel is sealed with a concrete plug,
The metal lining portion facing the structural discontinuity which is the boundary surface between the rock and the plug is provided with a strain absorbing portion having a convex cross section projecting into the cavity, and further, the strain absorbing portion on the back side of the strain absorbing portion. A high-pressure gas storage underground cavity characterized in that a structural discontinuous part supporting structural member made of a metal having substantially the same shape is provided, and a strain absorbing material having elasticity is provided on the back side of the structural discontinuous part supporting structural member Lining strain absorption mechanism.
前記構造不連続部支持構造部材及び歪み吸収材を、岩盤とプラグの内側に設けた溝内に嵌合させた請求項1記載の高圧ガス貯蔵地下空洞のライニングの歪み吸収機構。
The strain absorbing mechanism for a lining of a high-pressure gas storage underground cavity according to claim 1, wherein the structural discontinuous portion supporting structural member and the strain absorbing material are fitted in a groove provided inside the rock and the plug.
JP2003383961A 2003-11-13 2003-11-13 Strain absorption mechanism of lining of high pressure gas storage underground cavity Expired - Lifetime JP3999192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383961A JP3999192B2 (en) 2003-11-13 2003-11-13 Strain absorption mechanism of lining of high pressure gas storage underground cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383961A JP3999192B2 (en) 2003-11-13 2003-11-13 Strain absorption mechanism of lining of high pressure gas storage underground cavity

Publications (2)

Publication Number Publication Date
JP2005145616A true JP2005145616A (en) 2005-06-09
JP3999192B2 JP3999192B2 (en) 2007-10-31

Family

ID=34692535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383961A Expired - Lifetime JP3999192B2 (en) 2003-11-13 2003-11-13 Strain absorption mechanism of lining of high pressure gas storage underground cavity

Country Status (1)

Country Link
JP (1) JP3999192B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594269A (en) * 2020-05-18 2020-08-28 中铁第一勘察设计院集团有限公司 Underground oil gas tunnel storage tank structure and construction method thereof
CN114458380A (en) * 2022-02-17 2022-05-10 北京中海能大储能技术有限公司 Method for storing energy by utilizing compressed air in underground waste space

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003283B (en) * 2015-08-05 2017-10-27 金陵科技学院 A kind of top-bottom cross tunnel shock-absorbing structure and its construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594269A (en) * 2020-05-18 2020-08-28 中铁第一勘察设计院集团有限公司 Underground oil gas tunnel storage tank structure and construction method thereof
CN114458380A (en) * 2022-02-17 2022-05-10 北京中海能大储能技术有限公司 Method for storing energy by utilizing compressed air in underground waste space

Also Published As

Publication number Publication date
JP3999192B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4281010B2 (en) Tunnel structure
JP4979582B2 (en) Seal system and removable seal system
JP2018194117A (en) Low-temperature liquefied gas storage tank
WO2005080835A1 (en) Seal member for leakage inspection device, seal ring for leakage inspection device, and seal jig for leakage inspection device
JP3999192B2 (en) Strain absorption mechanism of lining of high pressure gas storage underground cavity
JP5199164B2 (en) Connection structure between manhole and rehabilitation pipe and its connection method
US20120247215A1 (en) Separating membrane for pressure sensor
JP2013079543A (en) Cutoff rubber
JP4833867B2 (en) Water stop structure of segment
JP2011169725A (en) Packing backup ring for withstanding high pressure in hydraulic tester
JP2007290774A (en) Device for preventing liquid tank floating roof from swinging
JP6557529B2 (en) Seismic structure at the connection between manhole side wall and pipe
CN201025303Y (en) Self-enhancing flexible sealing cushion
JP6675169B2 (en) Pressure vessel sealed structure
JP2008095304A (en) Bridge girder cut-off means and bridge girder cut-off structure
CN102261472B (en) Tie up self-excitation sealing ring, pad and structure
JP3340338B2 (en) Fluid pressure cylinder with shock absorber
JP2007040492A (en) Connection structure between flexible joint and object side piping
JP7370900B2 (en) Seal structure for concrete structures
JP2008025116A (en) Coupling member and joint
JPS6021275B2 (en) Joint parts for reinforced concrete pipes
JP2742973B2 (en) Joint structure of lining of high-pressure gas storage underground cavity
JP2004270503A (en) Sealing structure of injector attachment
RU49946U1 (en) COMPENSATOR
JP2006336839A (en) Pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070510

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Ref document number: 3999192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140817

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term