JP2005144651A - Penetration detecting device, method and electric discharge machine - Google Patents
Penetration detecting device, method and electric discharge machine Download PDFInfo
- Publication number
- JP2005144651A JP2005144651A JP2003417314A JP2003417314A JP2005144651A JP 2005144651 A JP2005144651 A JP 2005144651A JP 2003417314 A JP2003417314 A JP 2003417314A JP 2003417314 A JP2003417314 A JP 2003417314A JP 2005144651 A JP2005144651 A JP 2005144651A
- Authority
- JP
- Japan
- Prior art keywords
- voltage value
- maximum voltage
- electrode
- penetration
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
本発明は、放電による穴加工における貫通検知装置およびその方法ならびに放電加工機に関する。 The present invention relates to a penetration detection apparatus and method for hole machining by electric discharge, and an electric discharge machine.
放電による穴加工において、特に、ワークが中空形状でその上層のみに穿孔したい場合や、ワークにすでに横穴がありその横穴に向けて縦穴加工して横穴を通り越したくない場合や、ワークが中空形状であり上層面(加工面)に対し斜めに穴加工してワークの下層には加工が不要である場合等では、穴加工が完了した(貫通した)ことを正確に検知する必要がある。 In drilling by electric discharge, especially when the workpiece has a hollow shape and you want to drill only in the upper layer, or when the workpiece already has a horizontal hole and you do not want to drill a vertical hole toward the horizontal hole and pass the horizontal hole, the workpiece has a hollow shape. When a hole is drilled obliquely with respect to the upper layer surface (processed surface) and the lower layer of the workpiece is not required to be processed, it is necessary to accurately detect that the hole processing has been completed (penetrated).
また、ワイヤカット放電加工の場合の開始穴として細穴加工を行う場合にも、作業の効率化もしくは自動化のためには、穴加工が完了した(貫通した)ことを正確に検知する必要がある。 In addition, even when narrow hole machining is performed as a starting hole in the case of wire cut electric discharge machining, it is necessary to accurately detect that drilling has been completed (penetrated) in order to improve efficiency or automation. .
さらに、貫通検知により、電極の余分な下降などの時間を減らすことができるので、大量の放電穴加工作業においては、加工効率を上げるためにも貫通検知は必要である。 Furthermore, the penetration detection can reduce the time such as extra electrode lowering. Therefore, the penetration detection is necessary to increase the machining efficiency in a large number of discharge hole machining operations.
放電穴加工における貫通検知の方法としては、日本特許の特開平04−283022、特開平05−285738、特開平07−164249、特開平09−239625、特開平11−1213616、特開2002−292522等に記載がある。 As methods for detecting penetration in electric discharge hole machining, Japanese Patent Laid-Open Nos. 04-283022, 05-285738, 07-164249, 09-239625, 11-1213616, 2002-292522, etc. There is a description.
日本公開特許の平04−283022では、ワイヤカット放電の放電加工開始穴としての細穴放電加工のおける貫通検知の方法を開示している。これは、電極が穴を貫通した後にワークの下にある接触子と接触することで、電気的に貫通を検知する装置の技術である。この技術は中空形状のワークに対しては適応することが困難である。 Japanese Laid-Open Patent Publication No. 04-283022 discloses a method for detecting penetration in fine hole electric discharge machining as an electric discharge machining start hole for wire cut electric discharge. This is a technology of a device that electrically detects penetration by contacting a contact under the workpiece after the electrode has penetrated the hole. This technique is difficult to adapt to hollow workpieces.
日本公開特許の平05−285738では、放電穴加工における貫通出口側の加工液圧力が、貫通により変化したことを検出して貫通を検知する放電加工装置の技術が開示されている。この技術も中空形状のワークに対しては適応することが困難である。 Japanese Patent Laid-Open No. 05-285738 discloses a technique of an electric discharge machining apparatus that detects the penetration by detecting that the machining fluid pressure on the penetration outlet side in the discharge hole machining is changed by the penetration. This technology is also difficult to adapt to hollow workpieces.
日本公開特許の特開平07−164249では、直接的に放電穴加工の貫通を検知する技術ではないが、電極および、ワークを越えたその下側の通電部材に流れる電流値を検出し、電流値に基づく放電位置データ発生部と位置データから放電加工が異常かどうかを判断する加工状態識別部と、識別部からの出力に基づいて加工条件を制御する加工条件制御部を備えた細穴放電加工装置の技術が開示されており、この構成で放電穴加工の貫通検知することにも応用できる技術と思われるが、貫通検知としての具体的な技術についての記載はない。 Japanese Laid-Open Patent Application No. 07-164249 is not a technique for directly detecting the penetration of electric discharge hole machining, but detects the current value flowing through the electrode and the current-carrying member below the workpiece, Discharge hole data generator, machining state identification unit that determines whether or not electrical discharge machining is abnormal from the position data, and narrow hole electric discharge machining with machining condition control unit that controls machining conditions based on the output from the identification unit The technology of the apparatus is disclosed, and it is considered that this configuration can be applied to the detection of penetration in discharge hole machining. However, there is no description of a specific technology as penetration detection.
日本公開特許の特開平09−239625では、電極とワーク間に流れる短絡電流の発生頻度に基づき、電極による貫通を検出する貫通検出手段を備えた放電加工用電極送り装置の技術が開示されている。この技術は中空形状のワークにも適応できるものと思われるが、電極とワーク間に流れる短絡電流の発生頻度が減少したことを貫通検出のポイントとしているものである。 Japanese Laid-Open Patent Application No. 09-239625 discloses a technique of an electrode machining apparatus for electric discharge machining provided with a penetration detection means for detecting penetration by an electrode based on the frequency of occurrence of a short-circuit current flowing between the electrode and the workpiece. . Although this technique seems to be applicable to hollow workpieces, the point of penetration detection is that the frequency of occurrence of short-circuit current flowing between the electrode and the workpiece is reduced.
日本公開特許の特開平11−1213616では、貫通を電極の先端が穴出口から出て接触子との通電、もしくはフォトセンサー、磁気センサーなどの非接触センサーで検知して貫通部付近に加工液を噴射しての穴加工の高精度な仕上げを得る技術が開示されている。この技術は中空形状のワークに適応するのが困難である。 In Japanese Patent Laid-Open No. 11-1213616, penetration is detected by a non-contact sensor such as a photo sensor or a magnetic sensor by passing the tip of the electrode out of the hole outlet and energizing the contactor, and the machining liquid is placed near the penetration part. A technique for obtaining a high-precision finish of drilling holes is disclosed. This technique is difficult to adapt to hollow workpieces.
日本公開特許の特開2002−292522では、貫通予定部にあらかじめターゲットを設け、電極がターゲットに接触すると抵抗、フォトカプラー等で構成された接触検知手段により電極の貫通を検知する技術が開示されている。この技術は、横穴を有する限定された形状のワークには適応できるが、種々な形状の中空形状ワークに適応するには特別な治具等が必要であり、応用が難しいと思われる。
上述の従来の技術の問題点により、この発明が解決しようとする課題は、電極とワーク間の短絡電流測定以外の方法で、中空形状ワークへの上層のみの穿孔、斜めの細穴穿孔、横穴を既に有するワークへの非貫通縦穴の穿孔等の放電穴加工等にも適応可能な貫通検知の装置、方法および貫通検知装置を備えた細穴放電加工機を提供することにある。 Due to the above-mentioned problems of the prior art, the problem to be solved by the present invention is to drill only the upper layer in a hollow workpiece, oblique narrow hole drilling, horizontal hole by a method other than measuring the short-circuit current between the electrode and the workpiece. It is an object of the present invention to provide an apparatus and method for detecting penetration that can be applied to machining of a discharge hole such as drilling of a non-through vertical hole in a workpiece that already has a through hole, and a thin hole electric discharge machine equipped with the penetration detection apparatus.
本発明者は鋭意検討の結果、電極が垂直方向に下降中であり、最下位置を更新したことを検出する手段と;電極とワーク間の電圧をサンプリングして測定し、デジタル数値化する手段と;サンプリングおよびデジタル数値化する手段を制御する手段と;数値化された電圧を第一の既定回数分得てその内の最大電圧を第一の最大電圧値として第一の記憶装置に記憶する手段と;第一の最大電圧値より低い最大電圧が次のサンプリングで得られれば、その電圧を第二の最大電圧値として第二の記憶装置に記憶する手段と;第一の最大電圧値と第二の最大電圧値を比較する手段と;電極がその最下位置を更新しており、第一の最大電圧値が第二の最大電圧値より既定電圧値以上高くなる事象が第二の既定回数分以上連続して発生すれば、生成した穴が貫通したと判定する手段とからなる貫通検知装置により上記課題が解決されることを見出した。 As a result of intensive studies, the present inventor has means for detecting that the electrode is descending in the vertical direction and has updated the lowest position; means for sampling and measuring the voltage between the electrode and the workpiece and digitizing the voltage Means for controlling means for sampling and digitizing; obtaining a digitized voltage for a first predetermined number of times and storing the maximum voltage therein as a first maximum voltage value in a first storage device; Means; if a maximum voltage lower than the first maximum voltage value is obtained in the next sampling, means for storing the voltage in the second storage device as a second maximum voltage value; Means for comparing the second maximum voltage value; an event in which the electrode updates its lowest position, and an event in which the first maximum voltage value is higher than the second maximum voltage value by a predetermined voltage value or more If it occurs continuously more than the number of times, the generated hole Have found that the above problems can be solved by a through sensing apparatus comprising a through-the means for determining.
さらに、上述の装置の各手段および既定値の具体的なものとして、電極が下降中であり、最下位置を更新したことを検出する手段がZ軸移動サーボモーターと連動するエンコーダからの信号を処理するCPUであり;サンプリングおよびデジタル数値化する手段がA/Dコンバーターであり;サンプリング周期が0.01〜1ミリ秒の範囲であり;サンプリングおよびデジタル数値化する手段を制御する手段、第一の既定回数分の測定電圧最大値を得る手段、第一の記憶装置、第二の記憶装置、第一および第二の最大電圧値を記憶する手段、第一の最大電圧値と第二の最大電圧値を比較する手段、貫通判定する手段が、CPU、I/O、および記憶用メモリを有するマイコン(超小型電子計算機)であリ;第一の既定回数を1〜100回の範囲にすれば上記課題が解決されることを見出した。 Further, as specific means of each means and default value of the above-mentioned device, the means for detecting that the electrode is descending and the lowest position is updated is a signal from the encoder linked to the Z-axis moving servo motor. CPU for processing; means for sampling and digital digitization is an A / D converter; sampling period is in the range of 0.01 to 1 millisecond; means for controlling the means for sampling and digital digitization; Means for obtaining a measurement voltage maximum value for a predetermined number of times, first storage device, second storage device, means for storing first and second maximum voltage values, first maximum voltage value and second maximum The means for comparing voltage values and the means for determining penetration are microcomputers (microelectronic computers) having a CPU, I / O, and memory for storage; the first predetermined number of times is in the range of 1 to 100 times. If the found that the above problems can be solved.
電極が垂直方向に下降中であり、最下位置を更新したことを検出する手段としては、放電加工機は、一般に電極をZ軸方向に上下動するサーボ機構を有しており、サーボ機構のサーボモーターにエンコーダを取り付けることにより、電極を保持するヘッドのZ軸位置情報を単位時間毎にマイコンのCPUへ送り出し、CPUが、ヘッドが下降中(すなわち電極が下降中)であることおよび最下位置を更新したことを判断することで得られる。他の検出手段として、リニアスケールでも良い。 As a means for detecting that the electrode is descending in the vertical direction and the lowest position is updated, the electric discharge machine generally has a servo mechanism that moves the electrode up and down in the Z-axis direction. By attaching an encoder to the servo motor, the Z-axis position information of the head holding the electrode is sent to the CPU of the microcomputer every unit time, and the CPU is in the lowering of the head (that is, the electrode is lowering) and the bottom It is obtained by judging that the position has been updated. As another detection means, a linear scale may be used.
電極とワーク間の電圧をサンプリングして測定し、デジタル数値化する手段ならびにそれらを制御する手段としては、電極およびワークにそれぞれ接続した入力部と測定電圧デジタル出力をマイコンのCPUに出力する出力部を有するA/Dコンバーターにより、マイコンのCPUから測定する電圧のサンプリング周波数、測定時間等を設定し、電圧デジタル数値をマイコンのCPUに取り込むことで得られる。 The means for sampling and measuring the voltage between the electrode and the workpiece and digitizing them, and the means for controlling them are the input unit connected to the electrode and the workpiece, respectively, and the output unit for outputting the measured voltage digital output to the CPU of the microcomputer Is obtained by setting the sampling frequency of the voltage measured from the CPU of the microcomputer, the measurement time, and the like, and taking the digital voltage value into the CPU of the microcomputer.
数値化された電圧を第一の既定回数分得てその内の最大電圧値を第一の記憶装置に記憶し、最大電圧値より低い電圧が次のサンプリングで得られれば、その電圧値を第二の記憶装置に記憶する手段、第一の記憶装置に記憶した電圧値と第二の記憶装置に記憶した電圧値を比較する手段、電極がその最下位置を更新しており、第一の記憶装置に記憶した電圧値が第二の記憶装置に記憶した電圧値より既定電圧値の範囲で高くなる事象が第二の既定回数分以上連続して発生すれば、生成した穴が貫通したと判定する手段としては、CPU、メモリおよびI/O(入出力部)を有するマイコンにより得られ、もちろん、上記A/Dコンバーターの制御のCPUと兼ねることが効率的である。 The digitized voltage is obtained for the first predetermined number of times, the maximum voltage value is stored in the first storage device, and if a voltage lower than the maximum voltage value is obtained by the next sampling, the voltage value is Means for storing in the second storage device, means for comparing the voltage value stored in the first storage device with the voltage value stored in the second storage device, and the electrode updates its lowest position, If the event that the voltage value stored in the storage device is higher than the voltage value stored in the second storage device in the range of the predetermined voltage value continuously occurs for the second predetermined number of times or more, the generated hole has penetrated. As a means for determination, it is obtained by a microcomputer having a CPU, a memory, and an I / O (input / output unit). Of course, it is also efficient to serve as a CPU for controlling the A / D converter.
放電による穴加工において、電極とワーク間の電圧を経時的に測定した典型的なグラフを図5に示した。この電圧の推移を注意深く観察すると、放電現象のため電圧は激しく変化しており、時々ノイズ的な値も見出される。加工の進行と共に最大電圧が少しずつ低下していることが観察された。また、同時に測定したZ軸の下降距離すなわち、加工深さ+電極消耗長さを観察すると、グラフの右軸が下降距離を示しているが、時間の平方根に比例した下降距離が観察された。 FIG. 5 shows a typical graph in which the voltage between the electrode and the workpiece is measured over time in drilling by electric discharge. When this voltage transition is carefully observed, the voltage changes drastically due to the discharge phenomenon, and sometimes a noise value is also found. It was observed that the maximum voltage gradually decreased with the progress of processing. Further, when observing the descending distance of the Z axis measured simultaneously, that is, the machining depth + the electrode consumption length, the right axis of the graph shows the descending distance, but the descending distance proportional to the square root of time was observed.
加工が進行してついに貫通となると、電極とワーク間の電圧は図5のグラフに示したように平均約dボルト分上昇することが判明した。また下降距離についても若干変化が観察された。実際に目視による貫通の瞬間はグラフのPで示す時間であった。 As the machining progressed and finally penetrated, the voltage between the electrode and the workpiece was found to increase by an average of about d volts as shown in the graph of FIG. A slight change was also observed in the descending distance. Actually, the instant of visual penetration was the time indicated by P in the graph.
当初、電極の下降距離の変化を検知することで貫通を検知しようと試みたが、変化が小さいのと、実際の貫通時より若干遅れて変化が発現するため、電圧の変化に注目して貫通を検知することを検討した。 At first, we tried to detect penetration by detecting the change in the descending distance of the electrode. However, since the change appears slightly later than the actual penetration when the change is small, the penetration is focused on the change in voltage. We considered to detect.
先ず、時折発生するインパルス性の異常電圧値の影響を排除するために、貫通と考えられる事象の変化が、ある回数以上連続して起こる場合を貫通と判定することとした。次に、貫通と見なされる事象は、基準電圧以上の放電電圧の上昇が検出されることとした。 First, in order to eliminate the influence of an impulsive abnormal voltage value that occasionally occurs, it is determined that a case where a change in an event considered to be a penetration occurs continuously for a certain number of times is a penetration. Next, an event that is considered to be a penetration was detected as an increase in the discharge voltage that exceeds the reference voltage.
電圧を測定するサンプリング周期は0.01〜1ミリ秒が望ましく、電圧ピーク値検出データ数は1〜100個が望ましく、貫通電圧と基準電圧の差は0.1〜50Vが望ましく、事象の繰り返し回数は1回以上で99回以下が望ましい。 The sampling period for measuring the voltage is desirably 0.01 to 1 millisecond, the number of detected voltage peak values is desirably 1 to 100, the difference between the through voltage and the reference voltage is desirably 0.1 to 50 V, and the repetition of the event The number of times is preferably 1 or more and 99 or less.
多数の実験により、基準電圧を経時的な放電ピーク電圧とし、サンプリング周波数、最大(ピーク)電圧値検出データ数、貫通電圧と基準電圧の差、事象の繰り返し回数を上記のように規定することで、確実な貫通を判定できることを見出した。 By many experiments, the reference voltage is defined as the discharge peak voltage over time, and the sampling frequency, the maximum (peak) voltage value detection data number, the difference between the through voltage and the reference voltage, and the number of repetitions of the event are specified as described above. It was found that reliable penetration can be determined.
本発明により、放電による、中空形状のワークの上層のみの穴加工、斜め穴加工、横穴もしくは斜め穴を有するワークへの非突きぬけ穴加工に対して穴加工終了(貫通)を正確に検知して、加工効率の向上、加工精度の向上、不良率低減、および自動化への適応などの利点がある。 According to the present invention, it is possible to accurately detect the end of drilling (penetration) with respect to non-piercing drilling of a workpiece having only a hollow shape workpiece by an electric discharge, oblique hole machining, horizontal hole or oblique hole machining. There are advantages such as improved machining efficiency, improved machining accuracy, reduced defect rate, and adaptation to automation.
図1に本発明による望ましい放電加工機の概略を示した。放電加工機10は、加工機本体1、貫通検知装置20、電源部2およびサーボ制御部3からなる。加工機本体1には、パイプ電極12を回転させるモーター7、パイプ電極12を保持するチャック9、パイプ電極をZ軸方向に移動させるサーボモーター6、パイプ電極の振れを防止する振れ止め11、ワーク13を固定する治具、ワークテーブルをX軸方向に移動するサーボモーター14、Y軸方向に移動するサーボモーター15などがある。 FIG. 1 shows an outline of a desirable electric discharge machine according to the present invention. The
Z軸方向(パイプ電極)の移動を制御するサーボモーター6には、エンコーダ8が取り付けられており、本体と絶縁されたチャック9を介してパイプ電極12にマイナス、ワーク13にプラスの直流電圧を電源部2から供給し、エンコーダ8からのZ軸位置信号およびギャップ間の電圧に基づき、サーボ制御部3によりZ軸の移動が、いわゆる定常放電状態を維持するように制御されることが望ましい。 An
貫通検知のためには、最初にパイプ電極12とワーク13間(ギャップ間)の電圧をA/Dコンバーター5に取り込み、マイコン4のプログラム制御により、サンプリング周波数、既定のサンプリング個数Nなどを設定して、デジタル数値化電圧を得るのが好ましい。 In order to detect penetration, the voltage between the
次いで、得られた電圧データのN回の内、最大電圧値を第一の最大電圧値V1としてマイコン4の第一のメモリに記憶させる。 Next, of the obtained voltage data N times, the maximum voltage value is stored in the first memory of the
次いで、次のサンプリングで得られた最大電圧値が前の第一の最大電圧値V1より小さい最大電圧値を発生したならば、それを第二の最大電圧値V2としてマイコン4の第二のメモリに記憶させる。 Next, if the maximum voltage value obtained by the next sampling generates a maximum voltage value smaller than the previous first maximum voltage value V1, it is set as the second maximum voltage value V2, and the second memory of the
第一の最大電圧値V1と第二の最大電圧値V2を逐次比較して、第一の最大電圧値V1が第二の最大電圧値V2より既定の電圧差Mより高い事象が連続して既定回数T以上あれば、電極が貫通したと判断する。これらの手順は、図4に工程フロー図として示している。 By sequentially comparing the first maximum voltage value V1 and the second maximum voltage value V2, events in which the first maximum voltage value V1 is higher than the second maximum voltage value V2 by a predetermined voltage difference M are continuously determined. If the number of times is T or more, it is determined that the electrode has penetrated. These procedures are shown as a process flow diagram in FIG.
これら一連の操作と制御は、すべてマイコン4にあらかじめプログラムとして設定して行うことが望ましく、図1では電源部2、サーボ制御部3、マイコン4、A/Dコンバーター5の配置が、容易に理解を得るために分離して表示してあるが、その内の特定の組み合わせもしくはすべてを一つの装置としてまとめても良い。 These series of operations and control are all desirably set in advance in the
図2にマイコン4およびA/Dコンバータ5とからなる貫通検知装置20と外部装置とのブロック図を示し、図3に同じ構成の回路図を示した。マイコン4は、電極12とワーク13間の放電加工パルス電圧制御もスイッチングトランジスタ16を介して行う。 FIG. 2 shows a block diagram of the
電極側およびワーク側に荷電する回路にギャップ間電圧を測定する信号線を接続し、A/Dコンバーターとして、アナログデバイセズ社製のAD7572JN12を使用し、NEC社の32ビット制御用マイコンと、I/OおよびI/Fを介して接続した。NEC社の32ビット制御用マイコンは、クロック1GHz、記憶装置としての256MBのRAM、20GBのHDD、I/OおよびI/F等からなり、マイクロソフト社のOS:WindowsNTを使用し、マイクロソフト社のVisual Basicによりプログラム可能で、A/Dコンバータをユーザーの作成するプログラムにより制御できる。 A signal line for measuring the voltage between the gaps is connected to the circuit charged on the electrode side and the workpiece side, and an AD7572JN12 manufactured by Analog Devices is used as an A / D converter. Connected via O and I / F. NEC's 32-bit control microcomputer consists of a 1 GHz clock, 256 MB of RAM as a storage device, 20 GB HDD, I / O, I / F, etc., using Microsoft's OS: Windows NT, and Microsoft's Visual. It is programmable by Basic and the A / D converter can be controlled by a program created by the user.
全体厚み10mm、肉厚各3mmのSKD11製中空箱状ワーク13の上層のみを、外径1mmの黄銅製パイプ電極12にて、直径1.05mmの穴を図1に示した放電加工機により放電加工した。 Only the upper layer of the SKD11 hollow box-shaped
パイプ電極12内には水を主体とする加工液を5Mpaの水圧で流し、パイプ電極12側をマイナス、ワーク13側をプラスに、直流パルス電圧を電源部2からオープン電圧約120Vで荷電する。Z軸を放電開始まで下降させた。放電開始電圧は約45Vであり、Z軸サーボモーター6に取り付けたライン精機(株)製のCB500LVエンコーダ8からのZ軸位置データとギャップ間放電電流を10±2Aとする、いわゆる定常放電状態をサーボ制御部3のサーボ制御により、放電穴加工の進行と共にZ軸を下降させた。 In the
図4に示す工程ステップに対応させて、サーボ制御からのZ軸最下更新の判定、A/Dコンバータへの放電電圧測定指令、A/Dコンバータから最大(ピーク)電圧の抽出、最大電圧上昇の判定、規定回数到達の判定等を行うプログラムを作成して制御用マイコンを、稼動させた。 Corresponding to the process steps shown in FIG. 4, determination of Z-axis bottom update from servo control, discharge voltage measurement command to A / D converter, extraction of maximum (peak) voltage from A / D converter, maximum voltage rise The control microcomputer was operated by creating a program that made the above-mentioned determination and the determination of reaching the specified number of times.
尚、既定のサンプリング個数である第一の既定回数を10回、サンプリング周期を0.02ミリ秒、すなわち周波数では50KHz、既定の電圧値を5V、第二の既定回数を3回としてプログラムを作成した。 Note that the program is created by setting the first predetermined number of times, which is the predetermined number of samples, to 10 times, the sampling period to 0.02 milliseconds, that is, the frequency is 50 KHz, the predetermined voltage value is 5 V, and the second predetermined number is 3 times. did.
放電開始から貫通検知までの時間は75秒前後であった。貫通検知すると、その出力信号を、放電加工の停止と次の工程作業開始等自動化運転への適応が可能となった。この実施例では、目視による貫通検知が不要となり、作業の効率化に寄与すると共に、マンパワーを減らすことができた。 The time from the start of discharge to penetration detection was around 75 seconds. When penetration was detected, the output signal could be applied to automated operations such as stopping electrical discharge machining and starting the next process operation. In this embodiment, visual penetration detection is not necessary, contributing to work efficiency and reducing manpower.
本発明により、放電穴加工、特に細穴放電加工において、穴加工完了(貫通)を正確に知ることができるので、中空形状のワークの穴加工、横穴を既に有するワークへの穴加工、中空形状のワークへの斜め穴加工等に対する精密加工技術の適応、およびこれらの放電加工の自動化に適応し、放電穴加工作業の効率化に貢献することができる。 According to the present invention, it is possible to accurately know the completion (penetration) of drilling in electric discharge drilling, in particular, fine hole electric discharge machining. Therefore, the drilling of a hollow workpiece, the drilling of a workpiece that already has a horizontal hole, and the hollow shape It is possible to contribute to the efficiency of electric discharge hole machining work by adapting precision machining technology for slanted hole machining to this workpiece and automating these electric discharge machining.
1 放電加工機本体
2 電源
3 サーボ制御部
4 マイコン
5 A/Dコンバータ
6 Z軸サーボモータ
7 電極回転モータ
8 エンコーダ
9 電極取り付けチャック
10 放電加工機
11 電極振れ防止装置
12 パイプ電極
13 中空形状ワーク
14 X軸サーボモータ
15 Y軸サーボモータ
16 スイッチングトランジスタ
20 貫通検知装置DESCRIPTION OF
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003417314A JP2005144651A (en) | 2003-11-12 | 2003-11-12 | Penetration detecting device, method and electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003417314A JP2005144651A (en) | 2003-11-12 | 2003-11-12 | Penetration detecting device, method and electric discharge machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005144651A true JP2005144651A (en) | 2005-06-09 |
Family
ID=34697061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003417314A Pending JP2005144651A (en) | 2003-11-12 | 2003-11-12 | Penetration detecting device, method and electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005144651A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011206896A (en) * | 2010-03-30 | 2011-10-20 | Mitsubishi Electric Corp | Machine and method for fine hole electric discharge machining |
JP5128016B1 (en) * | 2012-02-17 | 2013-01-23 | 三菱電機株式会社 | Electric discharge machine and electric discharge machining method |
WO2014020709A1 (en) * | 2012-07-31 | 2014-02-06 | 株式会社牧野フライス製作所 | Replacement determination device for electrical discharge machining electrode and replacement determination method |
CN110280858A (en) * | 2019-05-24 | 2019-09-27 | 北方工业大学 | Small-hole machine tool penetration detection method and device |
-
2003
- 2003-11-12 JP JP2003417314A patent/JP2005144651A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011206896A (en) * | 2010-03-30 | 2011-10-20 | Mitsubishi Electric Corp | Machine and method for fine hole electric discharge machining |
JP5128016B1 (en) * | 2012-02-17 | 2013-01-23 | 三菱電機株式会社 | Electric discharge machine and electric discharge machining method |
WO2013121586A1 (en) * | 2012-02-17 | 2013-08-22 | 三菱電機株式会社 | Electrical discharge machine and electrical discharge machining method |
CN103370159A (en) * | 2012-02-17 | 2013-10-23 | 三菱电机株式会社 | Electrical discharge machine and electrical discharge machining method |
US9370836B2 (en) | 2012-02-17 | 2016-06-21 | Mitsubishi Electric Corporation | Electric discharge machine and electric discharge machining method |
DE112012005873B4 (en) * | 2012-02-17 | 2016-08-25 | Mitsubishi Electric Corporation | Spark erosion machine and electric spark erosion method |
WO2014020709A1 (en) * | 2012-07-31 | 2014-02-06 | 株式会社牧野フライス製作所 | Replacement determination device for electrical discharge machining electrode and replacement determination method |
CN104507615A (en) * | 2012-07-31 | 2015-04-08 | 株式会社牧野铣床制作所 | Replacement determination device for electrical discharge machining electrode and replacement determination method |
JPWO2014020709A1 (en) * | 2012-07-31 | 2016-07-11 | 株式会社牧野フライス製作所 | Electrode machining electrode replacement determination device and replacement determination method |
CN104507615B (en) * | 2012-07-31 | 2017-04-19 | 株式会社牧野铣床制作所 | Replacement determination device for electrical discharge machining electrode and replacement determination method |
US9776269B2 (en) | 2012-07-31 | 2017-10-03 | Makino Milling Machine Co., Ltd. | Replacement determination device for electrical discharge machining electrode and replacement determination method |
CN110280858A (en) * | 2019-05-24 | 2019-09-27 | 北方工业大学 | Small-hole machine tool penetration detection method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040011768A1 (en) | Electrical discharge machines and methods for performing edm operations | |
EP2158994B1 (en) | Electro Discharge Machining Apparatus and Method | |
KR101990157B1 (en) | Micro-electrical discharged based metrology system | |
JP2008105134A (en) | Machine tool and machining method | |
JP6404968B2 (en) | Wire electric discharge machine | |
JP3996812B2 (en) | Wire contact / non-contact boundary position detection device for wire cut electrical discharge machine | |
US4415791A (en) | Breakthrough detection means for electric discharge machining apparatus | |
JP2005144651A (en) | Penetration detecting device, method and electric discharge machine | |
JP6210591B2 (en) | Machining center, contact detection device, and sensor probe for contact detection | |
JPH0481908A (en) | Positioning method and positioning device | |
CN108340035B (en) | Hole depth determination method, calculation control system and electrode machining device | |
US4366360A (en) | Method of and apparatus for determining relative position of a tool member to a workpiece in a machine tool | |
JP6277857B2 (en) | Cutting apparatus and cutting method | |
JP2011121139A (en) | Device and method for detecting tool failure | |
JPH06170697A (en) | Method and device for supervising overload of drill | |
WO2006078096A1 (en) | Method for automatically measuring electrode attrition rate of electric discharge machine drill | |
JP2642850B2 (en) | Penetration detection method and penetration detection device for machined hole | |
JP4678711B2 (en) | Die-sinker EDM | |
JP3007229B2 (en) | Control method of electric discharge machine | |
JP3335741B2 (en) | Small hole electric discharge machine | |
JP3270416B2 (en) | Processing electrode manufacturing method and processing electrode manufacturing apparatus | |
Natsu et al. | Approach to detect and control gap-width with peak current in pulse ECM | |
JP2005199390A (en) | Cutting device | |
Spieser | Development of an electrochemical micromachining (μECM) machine | |
JP2001113418A (en) | Fine cutting method and device |