JP2005144431A - Functional ceramic particle colloid, producing method of functional ceramic particle colloid, and product produced by using functional ceramic particle colloid - Google Patents

Functional ceramic particle colloid, producing method of functional ceramic particle colloid, and product produced by using functional ceramic particle colloid Download PDF

Info

Publication number
JP2005144431A
JP2005144431A JP2004065813A JP2004065813A JP2005144431A JP 2005144431 A JP2005144431 A JP 2005144431A JP 2004065813 A JP2004065813 A JP 2004065813A JP 2004065813 A JP2004065813 A JP 2004065813A JP 2005144431 A JP2005144431 A JP 2005144431A
Authority
JP
Japan
Prior art keywords
weight
parts
functional ceramic
particle colloid
ceramic particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065813A
Other languages
Japanese (ja)
Inventor
Hoo Choi Kyuu
キュー・ホー・チョイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AQUA CERAMICS CORP
Original Assignee
AQUA CERAMICS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AQUA CERAMICS CORP filed Critical AQUA CERAMICS CORP
Publication of JP2005144431A publication Critical patent/JP2005144431A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Abstract

<P>PROBLEM TO BE SOLVED: To provide functional ceramic particle colloid which is produced by utilizing nano technology in order to give functions to various kinds of products, to provide a producing method of the functional ceramic particle colloid and to provide a product produced by using the functional ceramic particle colloid. <P>SOLUTION: The functional ceramic particle colloid is prepared by processing mineral, particularly, illite, sericite, zeolite, bentonite, titanium dioxide and monazite so as to have particles of 0.5 μm or less and dispersing the processed mineral into a dispersion solution containing water, binder, fixing agent, penetrant and dispersion agent. The product produced by using the particle colloid has various functions such as far-infrared ray radioactivity useful for human bodies, antibacterial property, deodorizing property, negative ion generation, antifouling property and air cleaning ability. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はコロイドに関するものであって、より具体的にはさまざまな製品に機能性を付与するためにナノ技術を利用して製造された機能性セラミックス粒子コロイド、機能性セラミックス粒子コロイドの製造方法、機能性セラミックス粒子コロイドを利用して製造された製品に関するものである。   The present invention relates to a colloid, and more specifically, a functional ceramic particle colloid manufactured using nanotechnology to impart functionality to various products, a method for manufacturing a functional ceramic particle colloid, The present invention relates to products manufactured using functional ceramic particle colloids.

粒子の活用技術で粒子の大きさが微細単位(0.5μm以下)で小さくなると粒子の物性及び性能が粒子大きさが1μm以上である場合とは非常に異なるようになる。これは粒子の表面対質量の割合が増加されることによって単位質量当たり表面積が増加されて粒子の性能が向上され、粒子の融点が低くなるなど物性が変化されて粒子の色まで大きさに応じて変化されるなど大きい粒子の場合とは異なる性質を示すからである。一般的にこのような微細粒子を製造する方法には機械的にグラインディング(grinding)する方法、共浸法、噴霧法、ゾル−ゲル法、電気分解法、逆相マイクロエマルジョン利用法など多様な種類がある。   When the particle size is reduced by a fine unit (0.5 μm or less) using the particle utilization technology, the physical properties and performance of the particle are very different from those when the particle size is 1 μm or more. This is because the surface area per unit mass is increased by increasing the ratio of the surface to mass of the particle, the performance of the particle is improved, the physical properties are changed, such as the melting point of the particle is lowered, and the color of the particle depends on the size This is because they exhibit different properties from those of large particles such as being changed. In general, there are various methods for producing such fine particles, such as mechanical grinding, co-soaking, spraying, sol-gel, electrolysis, and reverse-phase microemulsion utilization. There are types.

一方、このような微細粒子は多様な先端技術分野に応用されているが、一例で粒子形態の素材は触媒、センサー、情報記録媒体(磁性体)、研磨剤(chemical mechanical polishingを含み)、抗菌及び殺菌粒子、医薬用、電磁波遮断用、ディスプレー分野(蛍光体)など広い分野に利用されている。これに従って粒子の大きさを小さく均一に製造するなどのナノ技術に対する研究が活発に進行されている。又、遠赤外線(Far-infrared ray)は波長範囲が約4乃至100μmである電磁気輻射線の一種として、紫外領域で波長が最も長く、分子内に構成された原子間の結合又は分子間結合をストレッチング(stretching)又はシゾリング(scissoring)などの形態に活性化させるエネルギー特性を示すものであるが、一般的にセリサイト、麦飯石、セラミックス、黄土などを含む鉱物質は遠赤外線を放射するもので公知されており、近年このような鉱物質が遠赤外線を放射して健康に有益ないろいろな効果を提供するということを利用して、これらを含む合成繊維、不織布、健康製品(例えばベット、マットレス、枕など)、サウナ、汗蒸幕などが開発されている。   On the other hand, such fine particles are applied to various advanced technology fields. In one example, the material in the form of particles is a catalyst, a sensor, an information recording medium (magnetic material), an abrasive (including chemical mechanical polishing), an antibacterial material. It is used in a wide range of fields such as sterilizing particles, pharmaceuticals, electromagnetic wave shielding, and display fields (phosphors). In accordance with this, research on nanotechnology, such as producing particles uniformly in a small size, has been actively conducted. Far-infrared ray is a type of electromagnetic radiation that has a wavelength range of about 4 to 100 μm. It has the longest wavelength in the ultraviolet region, and bonds between atoms or molecules formed in the molecule. Exhibits energy characteristics that can be activated in a form such as stretching or scissoring. Generally, minerals containing sericite, barleystone, ceramics, loess, etc. emit far infrared rays. In recent years, taking advantage of the fact that such minerals emit far-infrared rays to provide various beneficial effects on health, synthetic fibers, non-woven fabrics and health products containing them (e.g., beds, Mattresses, pillows, saunas, sweat curtains, etc. have been developed.

従って、最近各種機能性の主に健康に関わっている遠赤外線、抗菌、脱臭、消臭機能を有する機能性が付与された製品が遠赤外線を放射する鉱物質にナノ技術を応用して続々と開発されている実情である。例えば石川(Ishikawa)の下記特許文献1には、皮革網状層の皮革繊維の濾水度が700ml以上でありコロイドの含量が1.0重量%以下である皮革を2乃至4価の抗菌性金属塩、抗菌性無機微細粉末及び有機系防腐剤の中のいずれかを有効成分として含有する抗菌性処理液に含浸処理して抗菌性皮革を製造する方法が記載されている。下記特許文献2には、ゼオライトをポリウレタン樹脂に分散処理して抗菌性合成皮革製品を製造する方法が記載されている。下記特許文献3には、ゲルマニウム、麦飯石及び黄土又は玉とからなる微粒子物質を合成樹脂原料と一緒に成型して人造皮革樹脂を製造する方法が記載されている。下記特許文献4には、ポリウレタン樹脂と二酸化チタンとからなるコーティング層が原緞層に表面又は裏面で設置されてなされた抗菌脱臭性合成皮革が記載されている。下記特許文献5には、バイオセラミックス粉末と充填剤を重合度1000以上のPVCに添加し、これを低温の発布剤で発泡させてバイオセラミックス人造皮革を製造する方法が記載されている。下記特許文献6には、ポリウレタン人造皮革にバイオセラミックスを含有させて遠赤外線を放射するポリウレタン人造皮革を製造する方法が記載されている。 Therefore, products with functionalities having far-infrared, antibacterial, deodorizing, and deodorizing functions that are mainly related to health of various functions recently applied nanotechnology to minerals that emit far-infrared rays one after another. It is the actual situation being developed. For example, the following patent document 1 of Ishikawa describes a leather having a freeness of 700 ml or more and a colloidal content of 1.0% by weight or less of leather fibers of a leather mesh layer as a divalent to tetravalent antibacterial metal salt, A method for producing an antibacterial leather by impregnating an antibacterial treatment liquid containing any one of an antibacterial inorganic fine powder and an organic preservative as an active ingredient is described. Patent Document 2 below describes a method for producing an antibacterial synthetic leather product by dispersing zeolite in a polyurethane resin. Patent Document 3 listed below describes a method for producing an artificial leather resin by molding a fine particle substance composed of germanium, barleystone, ocher or jade together with a synthetic resin raw material. Patent Document 4 listed below describes an antibacterial deodorizing synthetic leather in which a coating layer made of a polyurethane resin and titanium dioxide is placed on the base layer on the front surface or the back surface. Patent Document 5 listed below describes a method for producing bioceramic artificial leather by adding bioceramic powder and filler to PVC having a polymerization degree of 1000 or more and foaming it with a low-temperature foaming agent. Patent Document 6 listed below describes a method for producing polyurethane artificial leather that emits far infrared rays by adding bioceramics to polyurethane artificial leather.

しかし、上記のような方法は特定製品にのみ適用されるものであって、繊維、皮革、製紙、ゴム、合成樹脂、フィルムなどいろいろな分野に共通的に応用することができないという問題があった。
従って、このような問題を解決して特定製品に限らなく多様な分野に適用可能な機能性粒子コロイドが望まれていた。
特開平8-27499号公報 韓国特開1999-0064591号公報 韓国特開2000-0026558号公報 韓国特開1999-0070829号公報 韓国特開1992-020010号公報 韓国特開1993-000752号公報
However, the method as described above is applied only to specific products, and there is a problem that it cannot be commonly applied to various fields such as fiber, leather, papermaking, rubber, synthetic resin, and film. .
Accordingly, there has been a demand for a functional particle colloid that can solve such problems and can be applied to various fields as well as specific products.
JP-A-8-27499 Korean Unexamined Patent Publication No. 1999-0064591 Korean Patent Laid-Open No. 2000-0026558 Korean Unexamined Patent Publication No. 1999-0070829 Korean Patent Publication No. 1992-020010 Korean Patent 1993-000752

上記のような問題を解決するため、本発明は遠赤外線放射能、抗菌性、脱臭性、陰イオン発生、防汚性、空気浄化能力など多様な機能性を有する機能性セラミックス粒子コロイドを提供することを目的とする。
さらに本発明は繊維、皮革、製紙、ゴム、合成樹脂、フィルムなどいろいろな分野に共通的に応用することができる機能性粒子コロイドを提供することを目的とする。
さらに本発明は多様な機能性を有する機能性セラミックス粒子コロイドを製造する方法を提供することを目的とする。
さらに本発明は多様な機能性を有する機能性セラミックス粒子コロイドを応用した製品を提供することを目的とする。
In order to solve the above problems, the present invention provides a functional ceramic particle colloid having various functions such as far-infrared radiation, antibacterial properties, deodorizing properties, anion generation, antifouling properties, and air purification capabilities. For the purpose.
A further object of the present invention is to provide a functional particle colloid that can be commonly applied to various fields such as fiber, leather, papermaking, rubber, synthetic resin, and film.
It is another object of the present invention to provide a method for producing functional ceramic particle colloids having various functionalities.
Furthermore, an object of the present invention is to provide a product to which a functional ceramic particle colloid having various functions is applied.

上記のような目的を達成するために、本発明は分散溶液100重量部を基準で機能性セラミックス鉱物粒子70乃至150重量部が配合されることを特徴とする機能性セラミックス粒子コロイドを提供する。   In order to achieve the above object, the present invention provides a functional ceramic particle colloid characterized in that 70 to 150 parts by weight of functional ceramic mineral particles are blended based on 100 parts by weight of the dispersion.

前記分散溶液はバインダー12〜15重量部を基準で分散剤15〜30重量部、固着剤1.5〜2重量部、浸透剤1.5〜3重量部、水15〜50重量部を含むことを特徴とする。前記機能性セラミックス鉱物粒子はイルライト、セリサイト、ゼオライト、ベントナイトで構成される群から選択される一つ以上であることを特徴とする。   The dispersion solution includes 15 to 30 parts by weight of a dispersant, 1.5 to 2 parts by weight of a fixing agent, 1.5 to 3 parts by weight of a penetrating agent, and 15 to 50 parts by weight of water based on 12 to 15 parts by weight of a binder. . The functional ceramic mineral particles may be one or more selected from the group consisting of illite, sericite, zeolite, and bentonite.

前記機能性セラミックス鉱物粒子はイルライト50〜70重量部を基準でセリサイト15〜30重量部、モナザイト15〜20重量部、ゼオライト3〜5重量部、ベントナイト2〜5重量部、二酸化チタン5〜7重量部を含むことを特徴とする。   The functional ceramic mineral particles are 15 to 30 parts by weight of sericite, 15 to 20 parts by weight of monazite, 3 to 5 parts by weight of zeolite, 2 to 5 parts by weight of bentonite, and 5 to 7 parts of titanium dioxide based on 50 to 70 parts by weight of illite. It includes a weight part.

なお、本発明は用意したバインダー12〜15重量部に分散剤15〜30重量部を投入しながら撹拌する第1段階;上記第1段階から得られた組成物に用意した0.5μm以下の機能性セラミックス鉱物粒子を投入しながら撹拌する第2段階;第2段階から得られた組成物に固着剤1.5乃至2重量部と浸透剤1.5乃至3重量部を添加した後撹拌する第3段階;及び第3段階から得られた組成物と水15乃至50重量部を配合する第4段階を含むことを特徴とする機能性セラミックス粒子コロイド製造方法を提供する。
前記第2段階に機能性セラミックス鉱物粒子は上記含まれるバインダー、分散剤、固着剤、浸透剤、及び水の総重量を基準で前記総重量100重量部当たり70乃至150重量部が投入されることを特徴とする。
In the present invention, the first stage of stirring while adding 15 to 30 parts by weight of the dispersant to 12 to 15 parts by weight of the prepared binder; the functionality of 0.5 μm or less prepared for the composition obtained from the first stage. A second stage of stirring while adding ceramic mineral particles; a third stage of stirring after adding 1.5 to 2 parts by weight of a sticking agent and 1.5 to 3 parts by weight of a penetrating agent to the composition obtained from the second stage; and Provided is a method for producing a functional ceramic particle colloid comprising a fourth step of blending a composition obtained from three steps and 15 to 50 parts by weight of water.
In the second stage, the functional ceramic mineral particles are charged in an amount of 70 to 150 parts by weight per 100 parts by weight of the total weight based on the total weight of the binder, dispersant, fixing agent, penetrant, and water contained therein. It is characterized by.

上記第3段階を進行する前に第2段階から得られた組成物に消泡剤を投入した後撹拌して室温で放置する段階をさらに遂行することを特徴とする。
上記第4段階から得られた組成物の貯蔵安定性を高めるために添加剤を処理する段階をさらに含むことを特徴とする。
Before proceeding with the third step, the method further comprises the step of adding an antifoaming agent to the composition obtained from the second step and then stirring and leaving it at room temperature.
The method further includes the step of treating the additive to enhance the storage stability of the composition obtained from the fourth step.

上記第2段階の撹拌は低速から超高速に漸進的に進行されることを特徴とする。   The second stage agitation is characterized by gradually progressing from a low speed to an ultra high speed.

上記機能性セラミックス鉱物粒子はイルライト、セリサイト、ゼオライト、ベントナイトで構成される群から選択される一つ以上であることを特徴とする。   The functional ceramic mineral particles are one or more selected from the group consisting of illite, sericite, zeolite, and bentonite.

前記機能性セラミックス鉱物粒子はイルライト50〜70重量部を基準でセリサイト15〜30重量部、モナザイト15〜20重量部、ゼオライト3〜5重量部、ベントナイト2〜5重量部、二酸化チタン5〜7重量部を含むことを特徴とする。   The functional ceramic mineral particles are 15 to 30 parts by weight of sericite, 15 to 20 parts by weight of monazite, 3 to 5 parts by weight of zeolite, 2 to 5 parts by weight of bentonite, and 5 to 7 parts of titanium dioxide based on 50 to 70 parts by weight of illite. It includes a weight part.

上記製造された機能性セラミックス粒子コロイドをゲルタイブ、クリームタイプ又はケーキタイプを含むいろいろなタイプで処理する段階をさらに含むことを特徴とする。
さらに本発明は前記機能性セラミックス粒子コロイド又は上記製造方法で製造された機能性セラミックス粒子コロイドで処理された製品を提供する。
The method further comprises treating the produced functional ceramic particle colloid with various types including gel type, cream type or cake type.
Furthermore, this invention provides the product processed with the said functional ceramic particle colloid or the functional ceramic particle colloid manufactured by the said manufacturing method.

本発明に係る機能性セラミックス粒子コロイド及び前記コロイドに処理された製品は次のような効果を有する。
先ず、本発明に係る機能性セラミックス粒子コロイド及び前記コロイドで処理された製品は人体に無害であって安全性が非常に高い。
さらに、本発明に係る機能性セラミックス粒子コロイドは繊維、皮革、製紙、ゴム、合成樹脂、フィルムなどいろいろな分野に共通的に応用されることができる。
さらに、本発明に係る機能性セラミックス粒子コロイドで処理された製品は優れた抗菌性、遠赤外線放射能、脱臭、陰イオン発生能力を有する。
さらに、本発明に係る機能性セラミックス粒子コロイドによるといろいろな分野の製品に望む機能性を特別な手続きや装備なく極めて容易に付与することができる。
The functional ceramic particle colloid according to the present invention and the product treated with the colloid have the following effects.
First, the functional ceramic particle colloid according to the present invention and the product treated with the colloid are harmless to the human body and very safe.
Furthermore, the functional ceramic particle colloid according to the present invention can be commonly applied to various fields such as fiber, leather, papermaking, rubber, synthetic resin, and film.
Furthermore, the product treated with the functional ceramic particle colloid according to the present invention has excellent antibacterial properties, far-infrared radiation, deodorization, and anion generation ability.
Furthermore, according to the functional ceramic particle colloid according to the present invention, the desired functionality can be imparted to products in various fields without any special procedures or equipment.

以下、本発明を詳細に説明する。
本発明はさまざまな製品に機能性を付与するためにナノ技術を利用して製造された機能性セラミックス粒子コロイド、前記機能性セラミックス粒子コロイドの製造方法、前記機能性セラミックス粒子コロイドを利用して製造された製品について開示するが、本発明の機能性セラミックス粒子コロイドは機能性セラミックス鉱物粒子としてイルライト、セリサイト、ゼオライト、ベントナイト、二酸化チタン、モナザイトなどを0.5μm以下の大きさを有するように加工して水、バインダー、固着剤、浸透剤、分散剤を含む分散溶液に分散させたことを特徴とする。
Hereinafter, the present invention will be described in detail.
The present invention relates to a functional ceramic particle colloid manufactured using nanotechnology to impart functionality to various products, a method for manufacturing the functional ceramic particle colloid, and a manufacturing method using the functional ceramic particle colloid. The functional ceramic particle colloid of the present invention is processed into functional ceramic mineral particles such as illite, sericite, zeolite, bentonite, titanium dioxide, and monazite to have a size of 0.5 μm or less. And dispersed in a dispersion solution containing water, a binder, a fixing agent, a penetrating agent, and a dispersing agent.

ここで機能性セラミックス鉱物粒子と分散溶液は分散溶液100重量部を基準で機能性セラミックス鉱物粒子70乃至150重量部が配合されることが好ましいが、前記含量比より小さくなると機能性が落ちるのみではなく機能性セラミックス粒子コロイドで処理された製品の触感が低下され、前記含量比より大きくなると機能性セラミックスコロイドの付着力が落ちることになるからである。   Here, it is preferable that the functional ceramic mineral particles and the dispersion solution are mixed with 70 to 150 parts by weight of the functional ceramic mineral particles based on 100 parts by weight of the dispersion solution. This is because the feel of the product treated with the functional ceramic particle colloid is reduced, and when the content ratio is larger than the above-mentioned content ratio, the adhesive force of the functional ceramic colloid is reduced.

前記機能性セラミックス鉱物粒子は0.5μm以下の大きさを有するように加工された遠赤外線放射能、抗菌性、脱臭性、陰イオン発生、防汚性、空気浄化能力などを有する鉱物粒子を意味するもので自然界に存在する多様な鉱物粒子であることができる。このような機能性セラミック鉱物粒子として本発明ではイルライト、セリサイト、ゼオライト、ベントナイトで構成された群から一つ以上を選択して使用するのが好ましく、より好ましくはイルライトとセリサイトとモナザイトとゼオライトとベントナイトと二酸化チタンを一定割合で配合した機能性セラミックス鉱物粒子を使用することである。   The functional ceramic mineral particles mean mineral particles processed to have a size of 0.5 μm or less and having far-infrared radiation, antibacterial properties, deodorizing properties, anion generation, antifouling properties, air purification capabilities, and the like. It can be a variety of mineral particles that exist in nature. In the present invention, it is preferable to use at least one selected from the group consisting of illite, sericite, zeolite, and bentonite, and more preferably illite, sericite, monazite, and zeolite. And functional ceramic mineral particles containing bentonite and titanium dioxide in a certain ratio.

前記イルライトは単斜晶系に属する微細な雲母族鉱物として、自体含水機能で捕集効果が大きくて直射日光を防止して活性度が高く、遠赤外線を85〜95%以上を放射するのみでなく吸着力も優れていて脱臭能力が優れている。且つ、水中に多量の溶存酸素を生成して水分子を活性化させ強力な陰イオンを発散させて体感温度を+/- 2〜3℃程度調整する効果があり、抗菌、静菌作用も優れているので、本発明の機能性セラミックス鉱物粒子としてイルライトのみを使用することができる。   The illite is a fine mica group mineral belonging to the monoclinic system, it has a high water collection function, has a high trapping effect, has high activity by preventing direct sunlight, and only radiates far infrared rays of 85-95% or more. Adsorption power is also excellent and deodorizing ability is excellent. In addition, it produces a large amount of dissolved oxygen in the water, activates water molecules and emits strong anions, and adjusts the sensation temperature to about +/- 2 to 3 ° C, with excellent antibacterial and bacteriostatic effects Therefore, only illite can be used as the functional ceramic mineral particles of the present invention.

前記セリサイトは単斜晶系鉱物として白色又は灰白色に真珠のようなつやがあるペトマタイトから産出された岩石として、東医宝鑑(韓国の朝鮮時代に書かれた漢方医書)には風症、下痢、女の人の白帯下、難産と及唱の治療、消化器官の出血などの特効薬として使われている。遠赤外線の放射と熱伝導効果が優れていて、抗菌、脱臭、防音、吸音効果があって本発明の機能性セラミックス鉱物粒子としてセリサイトのみを使用することもできる。   The sericite is a monoclinic mineral that is produced from petmatite with white or grayish white pearly luster. It is used as a magic bullet for the treatment of dystocia and advocacy, gastrointestinal bleeding, etc. It has excellent far-infrared radiation and heat conduction effects, and has antibacterial, deodorizing, soundproofing and sound absorption effects, and it is possible to use only sericite as the functional ceramic mineral particles of the present invention.

前記ゼオライトは比重が2.2のアルカリ及びアルカリ土類金属の珪酸アルミニウム水化物である鉱物の総称として沸石とも言う。微生物の繁殖による着生汚染、悪臭防止及び吸湿性能が卓越して本発明の機能性セラミックス鉱物粒子としてゼオライトのみを使用することもできる。   Zeolite is also referred to as zeolite as a general term for minerals of alkali and alkaline earth metal aluminum silicates having a specific gravity of 2.2. It is possible to use only zeolite as the functional ceramic mineral particles of the present invention because of excellent contamination due to the growth of microorganisms, prevention of malodors and moisture absorption.

前記ベントナイトは真珠や納のようなつやを有し、緻密な組織を有し水を吸着して膨潤して陽イオン交換性が明らかなので場合によっては本発明の機能性セラミックス粒子としてベントナイトのみを使用することもできる。   The bentonite has a pearl or pearly luster, has a dense structure, adsorbs water and swells, and its cation exchange is obvious, so in some cases, only bentonite is used as the functional ceramic particles of the present invention. You can also

上述したようにイルライト、セリサイト、ゼオライト、ベントナイトはそれぞれ本発明の機能性セラミックス粒子として機能することができるが、比重が類似範囲内にありすべて多様な機能性を有するので前記鉱物粒子らを配合して使用すれば各鉱物粒子が有する機能性の上昇及び補完作用ができて、達成しようとする機能性を考慮して適宜選択して任意の割合で配合して使用することができる。   As described above, illite, sericite, zeolite, and bentonite can function as the functional ceramic particles of the present invention, respectively, but the specific gravity is within the similar range and all have various functions, so the mineral particles are incorporated. If used, the functionality of each mineral particle can be increased and complemented, and can be appropriately selected in consideration of the functionality to be achieved and used in an optional ratio.

さらに、本発明では機能性セラミックス鉱物粒子としてイルライトとセリサイトとモナザイトとゼオライトとベントナイトと二酸化チタンを一定割合で配合したものを使用することができるが、イルライト50〜70重量部を基準でセリサイト15〜30重量部、モナザイト15〜20重量部、ゼオライト3〜5重量部、ベントナイト2〜5重量部、二酸化チタン5〜7重量部を含むことが好ましい。前記鉱物粒子の配合比は各鉱物が有する機能性を考慮したことで各機能性の上昇及び補完作用を根拠で決まったこととして前記含量から少しの加減は可能である。   Furthermore, in the present invention, functional ceramic mineral particles containing illite, sericite, monazite, zeolite, bentonite, and titanium dioxide can be used at a certain ratio, but sericite is based on 50 to 70 parts by weight of illite. It preferably contains 15 to 30 parts by weight, 15 to 20 parts by weight of monazite, 3 to 5 parts by weight of zeolite, 2 to 5 parts by weight of bentonite, and 5 to 7 parts by weight of titanium dioxide. The blending ratio of the mineral particles can be slightly adjusted from the content, assuming that the functionality of each mineral is taken into account and that the increase in functionality and supplementary action are determined on the basis.

ここでモナザイトは単斜晶系に属する鉱物としてセリウム族稀土類元素のりん酸塩鉱物として多量の陰イオンを放出していて少量を添加しても優れた陰イオン放出効果を発揮する。しかし硬度(5〜5.5)と比重(4.6〜5.4)が非常に高い鉱物なので加工が難しくてよく使用しなかったが、本発明ではナノ粉末化過程を経ながら非常に優れた性能を有した稀少原料に変わることが見付けられ、非常に優れた陰イオン放出機能を達成することができて本発明の機能性セラミックス鉱物粒子として使用するようになったが、その含量はイルライト50〜70重量部を基準で15乃至20重量部を使用するのが好ましい。場合によっては2〜3重量部の加減も可能である。   Here, monazite releases a large amount of anion as a phosphate mineral of a cerium group rare earth element as a mineral belonging to the monoclinic system, and exhibits an excellent anion releasing effect even if a small amount is added. However, since it is a mineral with extremely high hardness (5 to 5.5) and specific gravity (4.6 to 5.4), it was difficult to process and was not used well, but in the present invention it was a rare one that had very good performance through the nano-powdering process It was found that the raw material was changed to a raw material, and it was able to achieve a very excellent anion release function and was used as the functional ceramic mineral particle of the present invention, but the content thereof was 50 to 70 parts by weight of illite. It is preferred to use 15 to 20 parts by weight on a standard basis. In some cases, it is possible to adjust 2 to 3 parts by weight.

又、二酸化チタンは普通酸化チタン(IV)を意味し、天然ではブルカイト、鋭錐石(ana
tase)、板チタン石(brookite)、イルメナイト(チタン鉄石)などの鉱物として存在する。構造が異なる三つの変種が知られているが、高温で安定的な型をルチル型、低温で安定的な型を鋭錐型、中間温度で安定的な型をブルカイト型であると言う。光触媒の二酸化チタンは光(390nm領域の紫外線)を受ければ反応を起こして表面に強い酸化作用が発生することによって殺菌、脱臭、防汚(汚れ防止)などの機能を発揮する。すなわち、光が酸化チタン面に吸収されれば電子(e−)と正孔(h+)という二つの性質が生じ一般的な物質ではこの二つの性質が再結合するが、二酸化チタンの場合には少しの間その状態が維持されることによって正孔は触媒表面にある吸着水を酸化し、酸化力が高いヒドロキシラジカルを生成するが、このヒドロキシラジカルが有機物と反応することによってあらわれる機能である。且つ、空気中の酸素を還元させて過酸化物を形成するようになるので強い酸化力を有するようになって抗菌作用が非常に強力である。このような機能により二酸化チタンは本発明の機能性セラミックス鉱物粒子として使用するが、その含量はイルライト50〜70重量部を基準で5〜7重量部が使用されるのが好ましい。一方、本発明で前記機能性セラミックス鉱物粒子を分散させるため使用する分散溶液はバインダー12〜15重量部を基準で分散剤15〜30重量部、固着剤1.5〜2重量部、浸透剤1.5〜3重量部、水15〜50重量部を含むことが好ましい。
Titanium dioxide usually means titanium oxide (IV), and naturally brookite, anatite (ana
tase), brookite, ilmenite (titanium iron) and other minerals. Three variants with different structures are known, but a high temperature stable type is rutile, a low temperature stable type is a sharp cone type, and an intermediate temperature stable type is a brookite type. Titanium dioxide, a photocatalyst, reacts when exposed to light (ultraviolet light in the 390 nm region) and produces a strong oxidizing action on the surface, thereby exhibiting functions such as sterilization, deodorization, and antifouling (stain prevention). That is, if light is absorbed by the titanium oxide surface, two properties of electrons (e−) and holes (h +) are generated, and these two properties recombine in a general substance, but in the case of titanium dioxide, By maintaining the state for a while, the holes oxidize the adsorbed water on the catalyst surface and generate hydroxy radicals with high oxidizing power. This is a function that appears when these hydroxy radicals react with organic substances. Moreover, since oxygen in the air is reduced to form a peroxide, it has a strong oxidizing power and has a very strong antibacterial action. Due to such a function, titanium dioxide is used as the functional ceramic mineral particles of the present invention, and the content thereof is preferably 5 to 7 parts by weight based on 50 to 70 parts by weight of illite. On the other hand, the dispersion solution used to disperse the functional ceramic mineral particles in the present invention is 15 to 30 parts by weight of a dispersant, 1.5 to 2 parts by weight of a fixing agent, and 1.5 to 3 parts of a penetrant based on 12 to 15 parts by weight of a binder. It is preferable to contain 15 to 50 parts by weight of water and 15 to 50 parts by weight of water.

ここで、本発明の分散溶液に含まれる前記バインダーでは無機フィラー(filler)水分散剤兼用バインダーが好ましいが、本発明では特に非イオン性であり、 pH(1%水溶液)が7.0±1.0であり、比重(25℃)は1.05±0.05であり、冷水に容易に溶解され、陰イオン性、非イオン性、陽イオン性物質と併用使用が可能な物性を有することが好ましい。前記バインダーは毒性がほとんどなくて乳化分散力が優れているので機能性セラミックス粒子コロイドに安全性を付与して、例えば繊維に機能性を付与するため本発明の機能性セラミックス粒子コロイドを処理する場合、前記機能性セラミックス粒子コロイドを繊維に接着させる働きをして、加工時熱によってほとんど蒸発する。本発明に使用された前記バインダーとして常用化されているものはEMULOMFR(一信化学製)と、DSM-238(東洋シリコーン製)などがある。   Here, the binder contained in the dispersion solution of the present invention is preferably an inorganic filler (filler) water dispersant combined binder, but in the present invention is particularly nonionic, and pH (1% aqueous solution) is 7.0 ± 1.0, The specific gravity (25 ° C.) is 1.05 ± 0.05, preferably dissolved in cold water, and has physical properties that can be used in combination with anionic, nonionic, and cationic substances. Since the binder has almost no toxicity and excellent emulsifying and dispersing power, it provides safety to the functional ceramic particle colloid, for example, when treating the functional ceramic particle colloid of the present invention to impart functionality to the fiber. The functional ceramic particle colloid functions to adhere to the fiber and is almost evaporated by heat during processing. Commonly used binders used in the present invention include EMULOMFR (manufactured by Isshin Chemical) and DSM-238 (manufactured by Toyo Silicone).

又、本発明の分散溶液に含まれる前記分散剤では界面活性剤を使用するが、特に本発明で好ましいことは乳化、分散及び浸透効果が優れており酸、アルカリ溶液でも極めて安定であり、酸、アルカリが共存する水溶液でも優れた界面性をあらわして、均一液状として非イオン性であり、pH(1%水溶液)が7.0±1.0であり、比重(25℃)は1.05±0.05であって、冷水に容易に溶解され、陰イオン性、非イオン性物質と併用使用が可能な物性を有するものである。本発明の分散溶液に含まれる分散剤の含量は上述した含量から5重量部程度は加減しても分散溶液の性能に影響を与えない。本発明に使用された前記分散剤として常用化されているものはBALON-C(一信化学製)などがある。   In addition, a surfactant is used in the dispersant contained in the dispersion solution of the present invention. Particularly preferable in the present invention is that the emulsifying, dispersing and penetrating effects are excellent, and the acid and alkaline solution are extremely stable. In addition, an aqueous solution coexisting with alkali exhibits excellent interfacial properties, is nonionic as a uniform liquid, has a pH (1% aqueous solution) of 7.0 ± 1.0, and a specific gravity (25 ° C.) of 1.05 ± 0.05, It is easily dissolved in cold water and has physical properties that can be used in combination with anionic and nonionic substances. Even if the content of the dispersant contained in the dispersion solution of the present invention is adjusted by about 5 parts by weight from the above-mentioned content, the performance of the dispersion solution is not affected. Examples of commonly used dispersants used in the present invention include BALON-C (manufactured by Isshin Chemical).

又、本発明の分散溶液に含まれる前記固着剤はシランカップリング剤として前記バインダーと性能を合わせようとすると数多い実験を経なければならなく、室温ではバインダーのように安定であるが、熱が加えられると(70〜120℃)硬化しながら強く固着され周りの粒子を引っ張る性質がある。一方、固着剤は独立的に機能しなく前記バインダーと一緒に反応するので 固着剤の含量はバインダーの含量に応じて決められる上述の含量のとおり含まれることが好ましい。特に本発明で好ましいことは均一液状として陽イオン性であり、pH(1%水溶液で)が7.0±1.0であり、比重(25℃)は1.05±0.05であって、冷水に容易に溶解され、陰イオン性、非イオン性物質との相溶性は優れているが、他の物質と併用使用する場合効能が低下される物性を有するものである。前記固着剤は機能性セラミックス粒子コロイドを処理したすべての繊維に洗濯堅牢度、水堅牢度、汗堅牢度及び海水堅牢度などを向上させ、特に綿などのセルロース系繊維に卓越する。本発明に使用された前記固着剤として常用化されているものはMONOREX-NRD(一信化学製)などがある。   In addition, the fixing agent contained in the dispersion solution of the present invention has to undergo many experiments when trying to combine the performance with the binder as a silane coupling agent, and is stable like a binder at room temperature, When added (70 to 120 ° C.), it is strongly fixed while being cured and pulls surrounding particles. On the other hand, since the fixing agent does not function independently and reacts with the binder, the content of the fixing agent is preferably included as described above, which is determined according to the content of the binder. Particularly preferred in the present invention is a uniform liquid and cationic, pH (in 1% aqueous solution) is 7.0 ± 1.0, specific gravity (25 ° C.) is 1.05 ± 0.05, easily dissolved in cold water, It has excellent compatibility with anionic and nonionic substances, but has physical properties that reduce efficacy when used in combination with other substances. The above-mentioned fixing agent improves washing fastness, water fastness, sweat fastness, seawater fastness and the like on all the fibers treated with the functional ceramic particle colloid, and is particularly excellent in cellulosic fibers such as cotton. Examples of commonly used fixing agents used in the present invention include MONOREX-NRD (manufactured by Isshin Chemical).

又、本発明の分散溶液に含まれる前記浸透剤は一種の界面活性剤として機能性セラミックス粒子コロイドの浸透を容易にするためのもので、特に湿潤浸透性が強いという特徴がある。特に本発明で好ましいことは均一液状として陰イオン性であり、pH(1%水溶液)が7.0±1.0であり、比重(25℃)は1.05±0.05であって、冷水に容易に溶解され、陰イオン性、非イオン性物質と併用使用することができ、酸性及びアルカリ性でも安定な効力を発揮し、軽水でも安定で起泡性である物性を有するものである。本発明に使用された前記浸透剤として常用化されているものはDUREX- CONC(一信化学製)などがある。    In addition, the penetrant contained in the dispersion solution of the present invention is a kind of surfactant for facilitating the penetration of the functional ceramic particle colloid, and is particularly characterized by high wet permeability. What is particularly preferred in the present invention is a uniform liquid anion and a pH (1% aqueous solution) of 7.0 ± 1.0, and a specific gravity (25 ° C.) of 1.05 ± 0.05. It can be used in combination with ionic and nonionic substances, exhibits a stable effect even in acidic and alkaline conditions, and has physical properties that are stable and foamable even in light water. Examples of conventional penetrants used in the present invention include DUREX-CONC (manufactured by Isshin Chemical).

次に本発明の機能性セラミックス粒子コロイドの製造方法について説明する。先ず、用意したバインダー12〜15重量部に分散剤15〜30重量部を投入しながら撹拌する第1段階、その第1段階から得られた組成物に用意した0.5μm以下の機能性セラミックス鉱物粒子を投入しながら撹拌する第2段階、第2段階から得られた組成物に固着剤1.5乃至2重量部と浸透剤1.5乃至3重量部を添加した後撹拌する第3段階、第3段階から得られた組成物と水15乃至50重量部を配合する第4段階を経て製造される。場合によっては前記第3段階を進行する前に第2段階から得られた組成物に消泡剤を投入した後撹拌して室温で放置する段階をさらに遂行することもでき、第4段階から得られた組成物の貯蔵安全性を高めるために添加剤を処理する段階をさらに含むこともできる。   Next, the manufacturing method of the functional ceramic particle colloid of this invention is demonstrated. First, the first stage of stirring while adding 15 to 30 parts by weight of the dispersant to 12 to 15 parts by weight of the prepared binder, and the functional ceramic mineral particles of 0.5 μm or less prepared for the composition obtained from the first stage 2nd stage of stirring while charging, and 3rd stage and 3rd stage of stirring after adding 1.5 to 2 parts by weight of a sticking agent and 1.5 to 3 parts by weight of a penetrant to the composition obtained from the second stage It is manufactured through a fourth step of blending the obtained composition with 15 to 50 parts by weight of water. In some cases, the step of adding an antifoaming agent to the composition obtained from the second step before proceeding to the third step and then stirring and allowing to stand at room temperature can be further performed. The method may further comprise treating the additive to increase the storage safety of the resulting composition.

より具体的に本発明の機能性セラミックス粒子コロイドの製造方法を説明すれば、先ず、第1段階は用意したバインダーに分散剤を徐々に投入しながら低速(800rpm未満)で十分に(1時間乃至1時間30分)撹拌するが、前記バインダーと分散剤はバインダー12〜15重量部を基準で分散剤を15〜30重量部で配合することが好ましい。   More specifically, the method for producing the functional ceramic particle colloid of the present invention will be described. First, in the first stage, the dispersing agent is gradually added to the prepared binder and sufficiently at a low speed (less than 800 rpm) (from 1 hour to 1 hour and 30 minutes), the binder and the dispersant are preferably blended in an amount of 15 to 30 parts by weight based on 12 to 15 parts by weight of the binder.

又、第2段階は第1段階から得られた組成物に用意した0.5μm以下の機能性セラミックス鉱物粒子を徐々に投入しながら低速(800rpm)から超高速(12000rpm)に漸進的に進行しながら撹拌するが、ここで撹拌速度に応じる撹拌段階をより具体的について説明すれば、先ず低速(800rpm)で1時間撹拌した後室温で30分以上放置し、次に3000rpmで30分以下で撹拌した後30分以上放置し、最後に12000rpmで30分以下で撹拌した後30分以上放置しながら撹拌する。上記セラミックス鉱物粒子は低速で撹拌する間全部投入される。   In the second stage, the functional ceramic mineral particles of 0.5 μm or less prepared in the composition obtained from the first stage are gradually added while gradually progressing from low speed (800 rpm) to super high speed (12000 rpm). To stir, the stirring step according to the stirring speed will be described more specifically. First, the stirring is performed at a low speed (800 rpm) for 1 hour, then left at room temperature for 30 minutes or more, and then stirred at 3000 rpm for 30 minutes or less. Then, leave it for 30 minutes or more, and finally stir at 12000 rpm for 30 minutes or less, then stir for 30 minutes or more. All the ceramic mineral particles are charged while stirring at low speed.

一方、本発明で使用された機能性セラミックス鉱物粒子はナノ技術を適用してその大きさが0.5μm以下である鉱物粒子を加工して使用しなければならないが、本発明では上記機能性セラミックス鉱物粒子を用意するため先ずイルライト、セリサイト、モナザイト、ゼオライト、ベントナイト、二酸化チタンなどの機能性原料鉱物をそれぞれ粒度325メッシュ、含水率5%未満で12時間間加工した。その後ナノ粉砕機(ウルトマイゾ(湿式)、サイクロン+分給、ゼトミルなど)を使用して少なくとも24時間以上加工したが、特にウルトマイゾを使用する場合はタンク内の速度が3マッハ乃至7マッハで衝突させて粉砕した。このような加工を通じて0.5μm以下の機能性セラミックス鉱物粒子が用意された。上述した方法以外にも、上記機能性セラミックス鉱物粒子が0.5μm以下の大きさを有するように加工することかできるならどんな公知のナノ技術を使っても構わない。   On the other hand, the functional ceramic mineral particles used in the present invention must be processed using mineral particles having a size of 0.5 μm or less by applying nanotechnology. In order to prepare the particles, functional raw materials such as illite, sericite, monazite, zeolite, bentonite, and titanium dioxide were first processed for 12 hours at a particle size of 325 mesh and a water content of less than 5%. After that, it was processed for at least 24 hours using a nano-pulverizer (Ultimo (wet), cyclone + dispensing, zetmill, etc.). Especially when using Ultimo, the tank speed was collided at 3 to 7 Mach. And crushed. Functional ceramic mineral particles of 0.5 μm or less were prepared through such processing. In addition to the method described above, any known nanotechnology may be used as long as the functional ceramic mineral particles can be processed to have a size of 0.5 μm or less.

又、第3段階は第2段階から得られた組成物に固着剤1.5乃至2重量部と浸透剤1.5乃至3重量部を添加した後超高速(rpm12000)で撹拌する作業を45分から1時間程度施行する。ここで投入される固着剤と浸透剤の含量はバインダー12〜15重量部を基準にしたものである。
又、第4段階は第3段階から得られた組成物と水15乃至50重量部を配合するが、1800rpm以下で30分以上撹拌する。場合によっては6時間程度の熟成時間を与えることができる。ここで水の含量は完成された機能性セラミックス粒子コロイドの用途によって決められることであり、前記水の含量もバインダー12〜15重量部を基準にしたものである。
In the third stage, 1.5 to 2 parts by weight of a sticking agent and 1.5 to 3 parts by weight of a penetrant are added to the composition obtained from the second stage, and then the work of stirring at ultra high speed (rpm 12000) is performed for about 45 minutes to 1 hour. Enforce. The contents of the sticking agent and penetrant added here are based on 12 to 15 parts by weight of the binder.
In the fourth stage, the composition obtained from the third stage is mixed with 15 to 50 parts by weight of water, and stirred at 1800 rpm or less for 30 minutes or more. In some cases, an aging time of about 6 hours can be given. Here, the water content is determined by the use of the completed functional ceramic particle colloid, and the water content is also based on 12 to 15 parts by weight of the binder.

場合によっては第3段階を進行する前に第2段階から得られた組成物に公知の方法で適正量の消泡剤を投入し低速(rpm800以下)で30分以下で撹拌して6時間以上室温で放置することができる。この段階は第2段階で泡と空気が吸入された場合前記吸入された泡と空気を除去するためのことで、機能性セラミックス粒子コロイドの品質の完成度を向上させる。
又、第4段階から得られた組成物、すなわち完成された機能性セラミックス粒子コロイドの貯蔵安全性を高めるために添加剤(好ましくは公知された構成の沈降防止剤、安定剤)を適正量で投入し48時間以上室温で放置することができる。この段階は後処理の段階として機能性セラミックス粒子コロイドの貯蔵安全性を向上するためのことであるが、場合によっては略しても機能性セラミックス粒子コロイドの物性に影響を与えない。
なお、前記製造された機能性セラミックス粒子コロイドをゲルタイブ、クリームタイプ又はケーキタイブを含むいろいろなタイプで処理する段階をさらに含むことができるが、上記は機能性セラミックス粒子コロイドの体積、重さ、貯蔵性などを考慮して決めることができる。
In some cases, before proceeding to the third stage, an appropriate amount of antifoaming agent is added to the composition obtained from the second stage by a known method and stirred at a low speed (rpm 800 or less) for 30 minutes or less for 6 hours or more. Can be left at room temperature. In this step, when bubbles and air are inhaled in the second step, the inhaled bubbles and air are removed, thereby improving the quality of the functional ceramic particle colloid.
In addition, in order to enhance the storage safety of the composition obtained from the fourth stage, that is, the finished functional ceramic particle colloid, additives (preferably anti-settling agents and stabilizers having a known constitution) are added in an appropriate amount. It can be left at room temperature for 48 hours or more. This step is for improving the storage safety of the functional ceramic particle colloid as a post-treatment step, but in some cases it does not affect the physical properties of the functional ceramic particle colloid.
In addition, the functional ceramic particle colloid thus manufactured may further include a step of treating with various types including a gel type, a cream type, or a cake type, which includes the volume, weight, and storage property of the functional ceramic particle colloid. It can be decided in consideration of

上記のような本発明の機能性セラミックス粒子コロイドを製造するための各段階は3種類型のミキサーが使用されるが、第1段階は上下に低速のプロペラの二つあるタイプのフリーミキサー(ウォンガン商事製)が使用されるのが好ましく、第2段階と第3段階は速度を変更させることができるアダブタ装着の高速分散機(ウォンガン商事製)が使用されるのが好ましく、第4段階は超音波乳化機(テグァン超音波製)が取り付けられたフリーミキサー(ウォンガン商事製)が使用されるのが好ましい。   In each stage for producing the functional ceramic particle colloid of the present invention as described above, three types of mixers are used, but the first stage is a type of free mixer with two lower and lower propellers (Wongan). It is preferable to use a high-speed disperser (made by Wongan Corporation) that can change the speed in the second and third stages. It is preferable to use a free mixer (manufactured by Wongan Shoji) equipped with a sonic emulsifier (manufactured by Teguan Ultrasonic).

このように製造された機能性セラミックス粒子コロイドは繊維、皮革、製紙、合成樹脂、ゴム、建築材料などの多様な分野に応用されることができるが、より具体的に説明すると本発明の機能性セラミックス粒子コロイドを処理しようとする製品の製造工程に使用される加工溶液1リットル当たり本発明の機能性セラミックス粒子コロイド2〜50gを投入して使用することができる。   The functional ceramic particle colloid produced in this way can be applied to various fields such as fiber, leather, papermaking, synthetic resin, rubber, and building materials. More specifically, the functionality of the present invention will be described. 2 to 50 g of the functional ceramic particle colloid of the present invention can be charged and used per liter of the processing solution used in the manufacturing process of the product to be treated with the ceramic particle colloid.

例えば本発明の機能性セラミックス粒子コロイドを繊維に処理して機能性繊維を得ようとする時、一般的な繊維の製造工程(製糸→紡績→前加工→後加工)中に使用される加工溶液、例えば染色溶液1リットル当たり本発明の機能性セラミックス粒子コロイドを投入して既存の加工工程、すなわち染色工程のとおり進行すると共に本発明の機能性セラミックス粒子コロイドの処理工程も遂行されるので、本発明の機能性セラミックス粒子コロイドを処理するための特別な設備や手続きを要しなく、既存の工程に併合して使用することができる。従って、本発明の機能性セラミックス粒子コロイドを利用して製品を製造するのは非常に簡単且つ便利なことが分かる。   For example, when the functional ceramic particle colloid of the present invention is processed into a fiber to obtain a functional fiber, a processing solution used during a general fiber manufacturing process (spinning → spinning → pre-processing → post-processing) For example, the functional ceramic particle colloid of the present invention is charged per liter of the dyeing solution and proceeds according to the existing processing step, that is, the dyeing step, and the processing step of the functional ceramic particle colloid of the present invention is also performed. It does not require special equipment or procedures for processing the functional ceramic particle colloid of the invention, and can be used in combination with existing processes. Accordingly, it can be seen that it is very simple and convenient to produce a product using the functional ceramic particle colloid of the present invention.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these Examples at all.

<実施例1> 機能性セラミックス粒子コロイドの製造
合成例1
先ず、上下に低速のプロペラが二つあるタイプのフリーミキサー(ウォンガン商事製)を用意する。前記装置に用意したEMULOM-FR(一信化学製)13重量部を投入し、BALON-C(一信化学製)20重量部を徐々に投入しながら超低速から800rpmまで1時間30分間撹拌する第1段階を進行する。その後アダブタ装着の高速分散機(ウォンガン商事製)に第1段階から得られた組成物を投入した後、800rpmで用意した0.5μm以下のイルライト66.5重量部を徐々に投入しながら1時間撹拌した後室温で30分間放置し、放置された組成物を3000rpmで25分間撹拌した後30分間さらに放置して、最後に12000rpmで20分間撹拌した後40分間放置して第2段階を進行する。第2段階から得られた組成物にMONOREX-NRD(一信化学製)1.5重量部、DUREX-CONC(一信化学製)2重量部を添加した後12000rpmで50分間撹拌して第3段階を進行する。
次に超音波乳化機(テグァン超音波製)が取り付けられたフリーミキサー(ウォンガン商事製)に第3段階から得られた組成物を投入した後、水30重量部を徐々に投入しながら1800rpmで30分間撹拌する第4段階を進行して、機能性セラミックス粒子コロイド1を得た。ここで含有される構成成分の含量はバインダー13重量部を基準にしたものである。
合成例2
第2段階でイルライトの代わりにイルライト、セリサイト、モナザイト、ゼオライト、ベントナイト、二酸化チタンをそれぞれ5:2:1.5:0.3:0.2:0.5の重量比で配合された配合物を使用することを除外すると合成例1と同一の方法で第1段階乃至第4段階を進行して機能性セラミックス粒子コロイド2を得た。
実験例1
機能性セラミックス粒子コロイド1及び2の安全性及び公害性試験及び結果。
1.ねずみを利用した急性経口毒性 : LD50 = 6、510 mg/kg
2.微生物による変異原性 : 陰性
3.皮膚刺激性(日本産業皮膚衛生協会による皮膚貼付試験) : 準陰性(2B)
4.メダカによる急性魚毒性(JISK-0102): TLm=41ppm/24hr
5.化学的酸素要求量(JISK-0102) : COD = 37ppm
6.活性汚泥による微生物分解性:クルロロミト(chloro meter)を利用して機能性セラミックス粒子1及び2の各濃度での生物学的酸素要求量(BOD/5日)を測定してその結果を表1に示す。
機能性セラミックス粒子コロイド1及び2に対する安全性及び公害性試験の結果は本発明の機能性セラミックス粒子コロイドが人体に無害であり、微生物に対して殺菌作用があることを示す。
<Example 1> Production of functional ceramic particle colloid
Synthesis example 1
First, prepare a free mixer (manufactured by Wongan Shoji) with two low-speed propellers on the top and bottom. Add 13 parts by weight of EMULOM-FR (Ichishin Chemical Co., Ltd.) prepared in the above equipment, and stir 1 hour and 30 minutes from ultra-low speed to 800 rpm while gradually adding 20 parts by weight of BALON-C (Ichishin Chemical Co., Ltd.). Go through the first stage. Then, after putting the composition obtained from the first stage into a high-speed disperser (made by Wongan Shoji Co., Ltd.) equipped with Adabuta, stirred for 1 hour while gradually adding 66.5 parts by weight of illite 0.5 μm or less prepared at 800 rpm Leave at room temperature for 30 minutes, stir the left composition at 3000 rpm for 25 minutes, then leave it for another 30 minutes, finally stir at 12000 rpm for 20 minutes, then leave for 40 minutes to proceed to the second stage. After adding 1.5 parts by weight of MONOREX-NRD (manufactured by Isshin Chemical) and 2 parts by weight of DUREX-CONC (manufactured by Isshin Chemical) to the composition obtained from the second stage, the mixture was stirred for 50 minutes at 12000 rpm and the third stage was proceed.
Next, after putting the composition obtained from the third stage into a free mixer (manufactured by Wongan Shoji Co., Ltd.) equipped with an ultrasonic emulsification machine (manufactured by Teguan Ultrasonic), gradually added 30 parts by weight of water at 1800 rpm. The fourth stage of stirring for 30 minutes proceeded to obtain functional ceramic particle colloid 1. The content of the constituents contained here is based on 13 parts by weight of the binder.
Synthesis example 2
Excluding the use of a blend of illite, sericite, monazite, zeolite, bentonite and titanium dioxide in a weight ratio of 5: 2: 1.5: 0.3: 0.2: 0.5 instead of illite in the second stage. Functional ceramic particle colloid 2 was obtained by proceeding through the first to fourth steps in the same manner as in Synthesis Example 1.
Experimental example 1
Safety and pollution test and results of functional ceramic particle colloids 1 and 2.
1. Acute oral toxicity using rats: LD50 = 6, 510 mg / kg
2. Microbial mutagenicity: Negative
3.Skin irritation (Skin application test by Japan Industrial Skin Hygiene Association): Near negative (2B)
4.Acute fish toxicity by medaka (JISK-0102): TLm = 41ppm / 24hr
5.Chemical oxygen demand (JISK-0102): COD = 37ppm
6.Degradation of microorganisms by activated sludge: Measure the biological oxygen demand (BOD / 5 days) at each concentration of functional ceramic particles 1 and 2 using a chloro meter and display the results. Shown in 1.
The results of safety and pollution tests on the functional ceramic particle colloids 1 and 2 indicate that the functional ceramic particle colloid of the present invention is harmless to the human body and has a bactericidal action against microorganisms.

<実施例2>
機能性セラミックス粒子コロイドを処理した機能性繊維の製造。
合成例1
綿織物の製造工程中染色溶液1リットル当たり実施例1で製造された機能性セラミックス粒子コロイド1を30g投入してペディング処理法(加工条件:室温、乾燥条件: 3kg/cm2
ンググル(mangle)を1dip=1nip pick up 80%で通過後105℃で3分、150℃で3分)で処理して機能性繊維1を得た。
合成例2
綿織物ではなくポリエステル/綿(65/35)混紡織物であること及び機能性セラミックス粒子コロイド2を使用したことを除外すると合成例1と同一の製造方法で機能性繊維2を得た。
比較例1
実施例2の合成例1及び2で機能性セラミックス粒子コロイド1及び2を使用しなくて通常的な製造工程を通じて普通繊維1及び2を得た。
実験例2
実施例2から得られた機能性繊維1及び2有する機能性の効果を測定するため次のように実験した。
1.抗菌効果実験
(1) 試験方法: KS K 0693-2000
(2) 使用菌株 :Staphylococcus aureus ATCC 6538
Klebsiella pneumoniae ATCC 4352
上記のような方法で実施例2から得られた機能性繊維1及び2と比較例から製造された普通繊維1及び2に対して抗菌性を試験して表2にその結果を示す。
2.遠赤外線放射能実験
機能性繊維1及び2の遠赤外線放射能を37℃で試し、FT-IRスペックトロミトを利用したブラックボディー対備測定の結果を表3に示す。
3.脱臭効果実験
(1)試験方法 : KFIA-FI-1004 (2)試験ガス名 :アンモニア
(3)ガス濃度測定 :ガス検地管
上記のような方法で実施例2から得られた機能性繊維1及び2と比較例から製造された普通繊維1及び2に対して脱臭効果を実験してその結果を表4に示す。
4.陰イオン放出能力実験
(1)試験方法 : KFIA-FI-1042
(2)機能性繊維1及び2の大きさ : 200×300(mm)
(3)電荷粒子の測定装置を利用して室内温度21℃、湿度52%、大気中の陰イオンの数102/cc条件で試験し、測定対象物、すなわち機能性繊維1及び2から放出される陰イオンを測定してその結果を表5に単位体積当たりのイオンの数で示す。
以上の実験結果らから本発明の機能性セラミックス粒子コロイドを処理した製品が抗菌性、遠赤外線放射能力、脱臭、陰イオン発生能力に優れた効果を有することが分かる。
本発明は上述した特定の好ましい実施例に限定されなく、請求の範囲に請求する本発明の要旨を外れることがなく、当該発明が属する技術分野で通常の知識を持つ者なら誰でも多様な変形実施が可能なのは勿論であり、このような変更は請求範囲記載の範囲内にある。
<Example 2>
Production of functional fibers treated with functional ceramic particle colloids.
Synthesis example 1
30 grams of functional ceramic particle colloid 1 produced in Example 1 per 1 liter of dyeing solution during the manufacturing process of cotton fabric was added to the pedding process (processing conditions: room temperature, drying conditions: 3 kg / cm2 mangle 1 dip) = 1 nip pick up 80% and then processed at 105 ° C. for 3 minutes and 150 ° C. for 3 minutes to obtain functional fiber 1.
Synthesis example 2
A functional fiber 2 was obtained by the same production method as in Synthesis Example 1 except that it was not a cotton fabric but a polyester / cotton (65/35) blended fabric and that the functional ceramic particle colloid 2 was used.
Comparative Example 1
In the synthesis examples 1 and 2 of Example 2, the ordinary ceramic fibers 1 and 2 were obtained through a normal production process without using the functional ceramic particle colloids 1 and 2.
Experimental example 2
In order to measure the effect of the functionality possessed by the functional fibers 1 and 2 obtained from Example 2, the following experiment was conducted.
1. Antibacterial effect experiment
(1) Test method: KS K 0693-2000
(2) Strains used: Staphylococcus aureus ATCC 6538
Klebsiella pneumoniae ATCC 4352
Antibacterial properties were tested on the functional fibers 1 and 2 obtained from Example 2 and the normal fibers 1 and 2 produced from the comparative example by the method as described above, and the results are shown in Table 2.
2. Far-infrared radioactivity experiment Table 3 shows the results of the measurement of the black body using FT-IR spectromit after testing the far-infrared radioactivity of functional fibers 1 and 2 at 37 ° C.
3. Deodorization effect experiment
(1) Test method: KFIA-FI-1004 (2) Test gas name: Ammonia
(3) Gas concentration measurement: Gas calibration tube The deodorizing effect was tested on the functional fibers 1 and 2 obtained from Example 2 and the normal fibers 1 and 2 produced from the comparative example by the method as described above. The results are shown in Table 4.
4. Anion release ability experiment
(1) Test method: KFIA-FI-1042
(2) Size of functional fibers 1 and 2: 200 x 300 (mm)
(3) Using a charged particle measuring device, tested under conditions of indoor temperature 21 ° C, humidity 52%, number of anions in the atmosphere 102 / cc, released from the measurement object, that is, functional fibers 1 and 2. The results are shown in Table 5 in terms of the number of ions per unit volume.
From the above experimental results, it can be seen that the product treated with the functional ceramic particle colloid of the present invention has excellent antibacterial properties, far-infrared radiation ability, deodorization, and anion generation ability.
The present invention is not limited to the specific preferred embodiments described above, and does not depart from the gist of the present invention claimed in the scope of claims, and various modifications can be made by anyone having ordinary knowledge in the technical field to which the invention belongs. Of course, implementations are possible and such modifications are within the scope of the claims.

Claims (13)

分散溶液100重量部を基準で機能性セラミックス鉱物粒子70乃至150重量部が配合されることを特徴とする機能性セラミックス粒子コロイド。 A functional ceramic particle colloid comprising 70 to 150 parts by weight of functional ceramic mineral particles based on 100 parts by weight of the dispersion solution. 前記分散溶液はバインダー12〜15重量部を基準で分散剤15〜30重量部、固着剤1.5〜2重量部、浸透剤1.5〜3重量部、水15〜50重量部を含むことを特徴とする請求項1記載の機能性セラミックス粒子コロイド。 The dispersion solution includes 15 to 30 parts by weight of a dispersant, 1.5 to 2 parts by weight of a fixing agent, 1.5 to 3 parts by weight of a penetrating agent, and 15 to 50 parts by weight of water based on 12 to 15 parts by weight of a binder. The functional ceramic particle colloid according to claim 1. 前記機能性セラミックス鉱物粒子はイルライト、セリサイト、ゼオライト、ベントナイトで構成される群から選択される一つ以上であることを特徴とする請求項1記載の機能性セラミックス粒子コロイド。 The functional ceramic particle colloid according to claim 1, wherein the functional ceramic mineral particle is at least one selected from the group consisting of illite, sericite, zeolite, and bentonite. 前記機能性セラミックス鉱物粒子はイルライト50〜70重量部を基準でセリサイト15〜30重量部、モナザイト15〜20重量部、ゼオライト3〜5重量部、ベントナイト2〜5重量部、二酸化チタン5〜7重量部を含むことを特徴とする請求項1記載の機能性セラミックス粒子コロイド。 The functional ceramic mineral particles are 15 to 30 parts by weight of sericite, 15 to 20 parts by weight of monazite, 3 to 5 parts by weight of zeolite, 2 to 5 parts by weight of bentonite, and 5 to 7 parts of titanium dioxide based on 50 to 70 parts by weight of illite. The functional ceramic particle colloid according to claim 1, further comprising parts by weight. 用意したバインダー12〜15重量部に分散剤15〜30重量部を投入しながら撹拌する第1段階;
前記第1段階から得られた組成物に用意した0.5μm以下の機能性セラミックス鉱物粒子を投入しながら撹拌する第2段階;
第2段階から得られた組成物に固着剤1.5乃至2重量部と浸透剤1.5乃至3重量部を添加した後撹拌する第3段階;
第3段階から得られた組成物と水15乃至50重量部を配合する第4段階を含むことを特徴とする機能性セラミックス粒子コロイドの製造方法。
First stage of stirring while adding 15 to 30 parts by weight of the dispersant to 12 to 15 parts by weight of the prepared binder;
A second stage of stirring while adding functional ceramic mineral particles of 0.5 μm or less prepared in the composition obtained from the first stage;
A third stage in which 1.5 to 2 parts by weight of a sticking agent and 1.5 to 3 parts by weight of a penetrant are added to the composition obtained from the second stage and then stirred;
A method for producing a functional ceramic particle colloid comprising the fourth step of blending the composition obtained from the third step and 15 to 50 parts by weight of water.
前記第2段階で機能性セラミックス鉱物粒子は上記含まれるバインダー、分散剤、固着剤、浸透剤、及び水の総重量を基準で前記総重量100重量部当たり70乃至150重量部が投入されることを特徴とする請求項5記載の機能性セラミックス粒子コロイドの製造方法。 In the second stage, the functional ceramic mineral particles are charged in an amount of 70 to 150 parts by weight per 100 parts by weight of the total weight based on the total weight of the binder, dispersant, fixing agent, penetrant, and water contained therein. 6. The method for producing a functional ceramic particle colloid according to claim 5, wherein: 第3段階を進行する前に第2段階から得られた組成物に消泡剤を投入した後撹拌して室温で放置する段階をさらに遂行することを特徴とする請求項5記載の機能性セラミックス粒子コロイドの製造方法。 6. The functional ceramic according to claim 5, further comprising the step of adding an antifoaming agent to the composition obtained from the second stage before proceeding to the third stage and then stirring and leaving at room temperature. A method for producing a particle colloid. 第4段階から得られた組成物の貯蔵安全性を高めるため添加剤を処理する段階をさらに含むことを特徴とする請求項5記載の機能性セラミックス粒子コロイドの製造方法。 6. The method for producing a functional ceramic particle colloid according to claim 5, further comprising a step of treating the additive to enhance the storage safety of the composition obtained from the fourth step. 第2段階の撹拌は低速から超高速に漸進的に進行されることを特徴とする請求項5記載の機能性セラミックス粒子コロイドの製造方法。 6. The method for producing a functional ceramic particle colloid according to claim 5, wherein the second stage agitation is gradually progressed from a low speed to an ultrahigh speed. 前記機能性セラミックス鉱物粒子はイルライト、セリサイト、ゼオライト、ベントナイトで構成される群から選択される一つ以上であることを特徴とする請求項5記載の機能性セラミックス粒子コロイドの製造方法。 6. The method for producing a functional ceramic particle colloid according to claim 5, wherein the functional ceramic mineral particle is at least one selected from the group consisting of illite, sericite, zeolite, and bentonite. 前記機能性セラミックス鉱物粒子はイルライト50〜70重量部を基準でセリサイト15〜30重量部、モナザイト15〜20重量部、ゼオライト3〜5重量部、ベントイト2〜5重量部、二酸化チタン5〜7重量部を含むことを特徴とする請求項5記載の機能性セラミックス粒子コロイドの製造方法。 The functional ceramic mineral particles are 15 to 30 parts by weight of sericite, 15 to 20 parts by weight of monazite, 3 to 5 parts by weight of zeolite, 2 to 5 parts by weight of bentonite, and 5 to 7 parts of titanium dioxide based on 50 to 70 parts by weight of illite. 6. The method for producing a functional ceramic particle colloid according to claim 5, further comprising parts by weight. 前記製造された機能性粒子コロイドをゲルタイブ、クリームタイプ又はケーキタイプを含むいろいろなタイプで処理する段階をさらに含むことを特徴とする請求項5乃至11のいずれか1項記載の機能性セラミックス粒子コロイドの製造方法。 12. The functional ceramic particle colloid according to any one of claims 5 to 11, further comprising treating the produced functional particle colloid with various types including gel type, cream type or cake type. Manufacturing method. 請求項1乃至4のいずれか1項記載の機能性粒子コロイド又は請求項5乃至12のいずれか1項記載の製造方法で製造された機能性セラミックス粒子コロイドで処理された製品。
A product treated with the functional particle colloid according to any one of claims 1 to 4 or the functional ceramic particle colloid produced by the production method according to any one of claims 5 to 12.
JP2004065813A 2003-11-17 2004-03-09 Functional ceramic particle colloid, producing method of functional ceramic particle colloid, and product produced by using functional ceramic particle colloid Pending JP2005144431A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030081193A KR100460539B1 (en) 2003-11-17 2003-11-17 Functional ceramic particle colloid, Method for manufacturing thereof, and Article manufactured thereby

Publications (1)

Publication Number Publication Date
JP2005144431A true JP2005144431A (en) 2005-06-09

Family

ID=34698364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065813A Pending JP2005144431A (en) 2003-11-17 2004-03-09 Functional ceramic particle colloid, producing method of functional ceramic particle colloid, and product produced by using functional ceramic particle colloid

Country Status (2)

Country Link
JP (1) JP2005144431A (en)
KR (1) KR100460539B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231502A (en) * 2006-02-27 2007-09-13 Hanchang Paper Co Ltd Method for producing material paper of high quality white paperboard, which has functionality, and cigarette box material paper using the same
WO2011007794A1 (en) * 2009-07-17 2011-01-20 Rapas株式会社 Zeolite and sericite-containing composition for medical or medical assisting uses
EP2508478A1 (en) 2011-03-17 2012-10-10 Paltentaler Minerals GmbH & Co KG Photocatalytically active natural zeolite in alkaline building material systems
CN107029803A (en) * 2017-05-03 2017-08-11 保定茂森环保科技有限公司 A kind of production method for the efficient photocatalyst of carbon atom nano titanium oxide that adulterates
JP2018125037A (en) * 2013-04-28 2018-08-09 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Touch panel and liquid crystal display
CN111691180A (en) * 2020-06-04 2020-09-22 深圳市康和盛世实业有限公司 Far infrared temperature control color changing antibacterial non-woven fabric and preparation process and mask thereof
CN115490425A (en) * 2022-09-28 2022-12-20 广东粤港澳大湾区国家纳米科技创新研究院 Smooth-surface antibacterial enamel and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915172B1 (en) * 2008-04-30 2009-09-03 이은경 functional composite for monovalence strengthening.
KR102150030B1 (en) * 2019-07-02 2020-09-01 임보라 Ceramic Coated Antibacterial Fabric, and Method for Manufacturing the Same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231502A (en) * 2006-02-27 2007-09-13 Hanchang Paper Co Ltd Method for producing material paper of high quality white paperboard, which has functionality, and cigarette box material paper using the same
WO2011007794A1 (en) * 2009-07-17 2011-01-20 Rapas株式会社 Zeolite and sericite-containing composition for medical or medical assisting uses
JP5759894B2 (en) * 2009-07-17 2015-08-05 Rapas株式会社 Medical or medical auxiliary composition comprising zeolite and sericite
JP2015143242A (en) * 2009-07-17 2015-08-06 Rapas株式会社 Zeolite and sericite-containing composition for medical or medical assisting uses
EP2508478A1 (en) 2011-03-17 2012-10-10 Paltentaler Minerals GmbH & Co KG Photocatalytically active natural zeolite in alkaline building material systems
JP2018125037A (en) * 2013-04-28 2018-08-09 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Touch panel and liquid crystal display
CN107029803A (en) * 2017-05-03 2017-08-11 保定茂森环保科技有限公司 A kind of production method for the efficient photocatalyst of carbon atom nano titanium oxide that adulterates
CN111691180A (en) * 2020-06-04 2020-09-22 深圳市康和盛世实业有限公司 Far infrared temperature control color changing antibacterial non-woven fabric and preparation process and mask thereof
CN115490425A (en) * 2022-09-28 2022-12-20 广东粤港澳大湾区国家纳米科技创新研究院 Smooth-surface antibacterial enamel and preparation method thereof

Also Published As

Publication number Publication date
KR100460539B1 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP6793117B2 (en) Porous devices, kits, and methods for debridement
EP2480499B1 (en) Biocidal colloidal dispersions of silica particles with silver ions adsorbed thereon
Zhang et al. Ionic silver-infused peroxidase-like metal–organic frameworks as versatile “antibiotic” for enhanced bacterial elimination
CN108610817A (en) Nana intelligent health powdery paints
CN1923294A (en) Composition with antibiotic, deodorant and air purifying function and its preparing process and use
Qian et al. A pH-responsive CaO2@ ZIF-67 system endows a scaffold with chemodynamic therapy properties
KR20130064946A (en) Functional fabric and manufacture method thereof
KR101969960B1 (en) Nature friendly mud paint and the manufacturing method thereof
JP2005144431A (en) Functional ceramic particle colloid, producing method of functional ceramic particle colloid, and product produced by using functional ceramic particle colloid
CN106489937A (en) A kind of antibacterial and the fiber processed with the antibacterial
JP2014161730A (en) Preparation for adsorption, decomposition, blocking, and deodorization of harmful substance, and manufacturing method thereof
CN110003660A (en) A kind of Terahertz material silica gel composite and preparation method thereof
Rivero et al. Sol-gel technology for antimicrobial textiles
CN101942274B (en) Anion environmental friendly paint and production method thereof
CN109574507A (en) A kind of nano-level sphere bioactivity glass and preparation method thereof
CN109249655A (en) Windproof water repellent type wool fabric
KR100961896B1 (en) Harmless composition for binding wall paper based on water soluble acryl resin
KR100964580B1 (en) Method for preparation of harmless composition for binding wall paper based on water soluble acryl resin
KR20110124457A (en) Composition of cosmetics using functional ceramic particle colloid
KR20080018291A (en) Paint composition using terra alba and the manufacturing method thereof
CN108976848A (en) Nano rare earth zeolite coating
KR20120112968A (en) Method for preparing polyurethane film comprising apatite with high antibacterial function
CN116234949A (en) Hollow body of tobermorite impregnated with functional component
KR20090114497A (en) Bamboo activated carbon paint
KR20150059898A (en) Preparation method of antibiotic chitosan-Ag nanoparticles and manufacturing method of antibiotic paper using the nanoparticles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080620