JP2005144362A - Hydrogen separator - Google Patents

Hydrogen separator Download PDF

Info

Publication number
JP2005144362A
JP2005144362A JP2003387008A JP2003387008A JP2005144362A JP 2005144362 A JP2005144362 A JP 2005144362A JP 2003387008 A JP2003387008 A JP 2003387008A JP 2003387008 A JP2003387008 A JP 2003387008A JP 2005144362 A JP2005144362 A JP 2005144362A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separator
porous body
separator according
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003387008A
Other languages
Japanese (ja)
Inventor
Katsuya Kobayashi
克也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003387008A priority Critical patent/JP2005144362A/en
Publication of JP2005144362A publication Critical patent/JP2005144362A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the flow in the through-holes formed to a porous body turns into a laminar flow and boundary layers are formed on the surfaces of metal plating layers to lower hydrogen permeability. <P>SOLUTION: The porous body 12 is constituted so as to be divided into a plurality of porous bodies in the gas flow directions of the through-holes 13 and stepped parts 14 are formed between the joining surfaces of the respective through-holes of the adjacent porous bodies. Since the stepped parts are formed between the through-holes of the respective joining parts of a plurality of of the porous bodies, turbulence is caused at the time of the flow of gas through the stepped parts to prevent the formation of the boundary layers. Accordingly, the concentration of the hydrogen mixed gas flowing through the through-holes becomes uniform to increase a hydrogen permeation rate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水素分離能を有する金属を使用して水素混合ガスから水素を拡散分離する水素分離器に関する。   The present invention relates to a hydrogen separator that diffuses and separates hydrogen from a hydrogen mixed gas using a metal having hydrogen separation ability.

従来の水素分離器として特許文献1に示したようなものが知られている。この水素分離器は、多数の貫通孔を有する多孔質基体の表面にPdなどの水素分離能を有する金属を化学めっきにより被覆した構成を有している。   A conventional hydrogen separator as shown in Patent Document 1 is known. This hydrogen separator has a configuration in which a surface of a porous substrate having a large number of through-holes is coated with a metal having hydrogen separation ability such as Pd by chemical plating.

例えば炭化水素系燃料から改質して生成した水素混合ガスをこの水素分離器に通過させることにより、基体表面の金属めっき層に水素が吸収され、他のガス成分と分離される。
特開平8−38863公報
For example, by passing a hydrogen mixed gas generated by reforming from a hydrocarbon-based fuel through this hydrogen separator, hydrogen is absorbed by the metal plating layer on the substrate surface and separated from other gas components.
JP-A-8-38863

従来の水素分離器では、多孔質基体に形成された貫通孔が直円筒状の壁面形状をしていた。このためガス供給時の貫通孔内の流れが層流になり、金属めっき層の表面に境界層が形成されて大きな濃度勾配が生じる。これは水素分圧が低下することを意味しており、この結果として水素透過性が低下する。   In the conventional hydrogen separator, the through hole formed in the porous substrate has a right cylindrical wall shape. For this reason, the flow in the through-hole at the time of gas supply becomes a laminar flow, a boundary layer is formed on the surface of the metal plating layer, and a large concentration gradient is generated. This means that the hydrogen partial pressure decreases, and as a result, the hydrogen permeability decreases.

本発明では、多孔質体に形成した貫通孔の表面に水素分離能を有する金属を被覆した水素分離器を構成する。ただし前記多孔質体は貫通孔のガス流れ方向に複数個に分割構成し、隣接する多孔質体の各々の貫通孔の接合面間に段差を形成する。   In this invention, the hydrogen separator which coat | covered the metal which has hydrogen separation ability on the surface of the through-hole formed in the porous body is comprised. However, the porous body is divided into a plurality of parts in the gas flow direction of the through holes, and a step is formed between the joint surfaces of the through holes of the adjacent porous bodies.

本発明によれば、複数の多孔質体の各々の接合部で貫通孔間に段差を形成したことから、この段差部をガスが流れる際に乱れが発生し、境界層が形成されることがなくなる。このため、貫通孔内を流れる水素混合ガスの濃度が均一になり、水素透過速度が向上する。   According to the present invention, since the step is formed between the through holes at each joint portion of the plurality of porous bodies, turbulence occurs when the gas flows through the step portion, and a boundary layer is formed. Disappear. For this reason, the concentration of the hydrogen mixed gas flowing in the through hole becomes uniform, and the hydrogen permeation rate is improved.

本発明では複数の多孔質体をガス流れ方向に接合する構成としたことから、多孔質体の組み合わせかたや断面形状の設定次第で段差部を含めて複雑な形状を有する貫通孔を容易に形成することができる。   In the present invention, since a plurality of porous bodies are joined in the gas flow direction, through holes having a complicated shape including a stepped portion are easily formed depending on the combination of the porous bodies and the setting of the cross-sectional shape. be able to.

以下、本発明のいくつかの実施形態につき図面に基づいて説明する。各実施形態につき同一の部分は同一の符号を付して示すこととする。
(第1の実施形態)
図1―1〜図2−4は第1の実施形態を示している。図1に示したように、この実施形態の水素分離器11は、軸方向(ガス流れ方向)に連結された3個の円筒状の多孔質体12からなっている。各多孔質体12はアルミナ、シリカ等のセラミクス材から形成されている。各多孔質体12は、それぞれ両端面間を貫通する多数の貫通孔13を有している。各貫通孔13はガス流れ方向に平行な直円筒面状に形成されている。
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. The same parts are denoted by the same reference numerals in each embodiment.
(First embodiment)
1-1 to 2-4 show the first embodiment. As shown in FIG. 1, the hydrogen separator 11 of this embodiment is composed of three cylindrical porous bodies 12 connected in the axial direction (gas flow direction). Each porous body 12 is formed from a ceramic material such as alumina or silica. Each porous body 12 has a large number of through holes 13 penetrating between both end faces. Each through-hole 13 is formed in a right cylindrical surface parallel to the gas flow direction.

前記各多孔質体12は、それぞれ同一の断面および外径形状をしているが、ただし図1−2に示したように隣接する1対の多孔質体12を互いに中心線周りに所定の角度ずらし、各々の貫通孔13の開口断面が部分的に重複するように接合することで当該接合部分にて隣接する貫通孔13の間に段差14(図2−2参照)を形成するようにしてある。   Each of the porous bodies 12 has the same cross section and outer diameter, but as shown in FIG. 1-2, a pair of adjacent porous bodies 12 are arranged at a predetermined angle around the center line. By shifting and joining so that the opening cross section of each through-hole 13 may overlap partially, the level | step difference 14 (refer FIG. 2-2) is formed between the adjacent through-holes 13 in the said junction part. is there.

図2−2〜図2−4はこの水素分離器11の製造手順を示している。まず3個の焼成前の多孔質体12を前述したように隣接するもの同士で貫通孔13の位置がずれるように角度を設定して軸方向に配列する(図2−2)。次いで両端から圧力をかけた状態で焼成して相互に接合する(図2−3)。次いで接合した各多孔質体12の端面および貫通孔13の内面にPd、V、Nb、Ta等の水素分離能を有する金属を化学めっきして水素分離膜15を形成する(図2−4)。段差14の部分はめっき加工がしにくいので、水素分離膜15は接合前に予め多孔質体12に形成しておくようにしてもよい。   FIGS. 2-2 to 2-4 show the manufacturing procedure of the hydrogen separator 11. First, as described above, the three porous bodies 12 before firing are arranged in the axial direction with an angle set so that the positions of the through holes 13 are shifted between adjacent porous bodies 12 (FIG. 2-2). Next, they are baked and joined together with pressure applied from both ends (FIGS. 2-3). Next, a metal having hydrogen separation ability such as Pd, V, Nb, and Ta is chemically plated on the end face of each joined porous body 12 and the inner surface of the through hole 13 to form a hydrogen separation membrane 15 (FIG. 2-4). . Since the step 14 is difficult to be plated, the hydrogen separation membrane 15 may be formed on the porous body 12 in advance before bonding.

このようにして形成した水素分離器11の貫通孔13に水素を含む混合ガスを通過させることにより、前記貫通孔13の段差14の部分で流れに乱れが生じることから、濃度勾配による分圧低下を抑えて水素透過係数を高められる。
(第2の実施形態)
図3および図3−1〜図3−4は第2の実施形態を示している。第1の実施形態と異なる部分につき説明すると、この実施形態では図示したように貫通孔13をガス流れ方向に次第に内径が変化するテーパ状に形成した点にある。
By passing the mixed gas containing hydrogen through the through-hole 13 of the hydrogen separator 11 formed in this way, the flow is disturbed at the step 14 of the through-hole 13, so that the partial pressure is reduced due to the concentration gradient. The hydrogen permeability coefficient can be increased by suppressing
(Second Embodiment)
FIG. 3 and FIGS. 3-1 to 3-4 show a second embodiment. The difference from the first embodiment will be described. In this embodiment, as shown in the figure, the through hole 13 is formed in a tapered shape whose inner diameter gradually changes in the gas flow direction.

貫通孔13がテーパ形状であるので、この実施形態では互いに隣接する多孔質体12をそれぞれの貫通孔13の断面上の位置が一致するように接合し、当該接合面における隣接する貫通孔13の内径差により段差14を形成するようにしている。   Since the through holes 13 are tapered, in this embodiment, the porous bodies 12 adjacent to each other are joined so that the positions on the cross sections of the respective through holes 13 coincide with each other, and the adjacent through holes 13 on the joint surfaces are joined. The step 14 is formed by the difference in inner diameter.

この水素分離器11の製造手順は第1の実施形態と同様である。図3−2〜図3−4はそれぞれ図2−2〜図2−4の工程に対応している。   The manufacturing procedure of the hydrogen separator 11 is the same as that of the first embodiment. FIGS. 3-2 to 3-4 correspond to the steps of FIGS. 2-2 to 2-4, respectively.

この実施形態によれば貫通孔13がテーパ状をしているので該貫通孔13を水素混合ガスが流れるとき、段差14のみならず貫通孔13の途中部分にてもその内径変化によって乱れが生じるので、水素濃度の均一化がより促進される。   According to this embodiment, since the through-hole 13 is tapered, when the hydrogen mixed gas flows through the through-hole 13, not only the step 14 but also the middle portion of the through-hole 13 is disturbed by the change in inner diameter. Therefore, the uniform hydrogen concentration is further promoted.

また、この実施形態では、ガス流れ方向を図の左から右への流れとするとき、貫通孔13が下流側に向かって次第に拡径する設定としてある。これは水素分離器の下流域ほど水素透過量が減少する傾向があることから、多孔質体12の壁厚を薄くできる一方で貫通孔13の内径を増大して水素分離膜15の表面積を大きくすることができ、これにより水素濃度が低い状態でも所要の水素透過量を確保することが可能になることによる。ただし前記と逆方向にガスを流す場合でも乱流化による効果は期待することができる。
(第3の実施形態)
図4に第3の実施形態を示す。これは図示したように3個の多孔質体12の各々に断面上同一の位置に貫通孔13を形成し、ただし下流側のものほどその内径が大きくなるように設定したものである。各貫通孔13の内径が変化する接合部分が段差14となる。
Further, in this embodiment, when the gas flow direction is a flow from the left to the right in the drawing, the through hole 13 is set to gradually expand in diameter toward the downstream side. This is because the hydrogen permeation amount tends to decrease in the downstream region of the hydrogen separator, so that the wall thickness of the porous body 12 can be reduced while the inner diameter of the through-hole 13 is increased to increase the surface area of the hydrogen separation membrane 15. This makes it possible to secure a required hydrogen permeation amount even in a low hydrogen concentration state. However, the effect of turbulence can be expected even when gas is flowed in the opposite direction.
(Third embodiment)
FIG. 4 shows a third embodiment. As shown in the figure, the through holes 13 are formed at the same position in the cross section in each of the three porous bodies 12, but the inner diameter is set to be larger toward the downstream side. A joint portion where the inner diameter of each through-hole 13 changes becomes a step 14.

この実施形態によれば、下流側の多孔質体12ほどその貫通孔13の内径が大となるように設定したことにより前記第2の実施形態と同様の作用および効果が得られる。
(第4の実施形態)
図5−1〜図5−4に第4の実施形態を示す。この水素分離器11は、各多孔質体12を、多孔質体12と同一の材質で同一の外径に形成した筒状部材16を介して互いの端面間に所定の間隔が空くように接合してある。
According to this embodiment, the same functions and effects as those of the second embodiment can be obtained by setting the inner diameter of the through hole 13 to be larger in the porous body 12 on the downstream side.
(Fourth embodiment)
A fourth embodiment is shown in FIGS. In this hydrogen separator 11, each porous body 12 is joined via a cylindrical member 16 formed of the same material as that of the porous body 12 and having the same outer diameter so that a predetermined interval is provided between the end faces. It is.

この水素分離器11の製造手順は第1の実施形態と同様である。図5−2〜図5−4はそれぞれ図2−2〜図2−4の工程に対応している。水素分離膜15は筒状部材16の内面にも形成してある。   The manufacturing procedure of the hydrogen separator 11 is the same as that of the first embodiment. FIGS. 5-2 to 5-4 correspond to the steps of FIGS. 2-2 to 2-4, respectively. The hydrogen separation membrane 15 is also formed on the inner surface of the cylindrical member 16.

この実施形態によれば、各多孔質体12の貫通孔13と筒状部材16との間で急激に通路断面積が変化するため、大きなガスの乱れが生じて水素透過係数が増大する。   According to this embodiment, since the passage cross-sectional area changes abruptly between the through hole 13 and the cylindrical member 16 of each porous body 12, a large gas turbulence occurs and the hydrogen permeation coefficient increases.

この実施形態では筒状部材16の内面にも水素分離膜15を形成してあるためそれだけ水素処理量を増やすことができる。ただし、筒状部材16をガス透過性の低い材質、例えば高密度セラミクスで形成し、その内面への水素透過膜15の被覆を行わないようにしてもよく、これにより成膜工程を省いてコストの低減を図ることができる。
(第5の実施形態)
図6−1〜図6−3に第5の実施形態を示す。これは各多孔質体12の接合端面に予めPdを被覆すると共に、さらにNi、Cu、AgなどPdよりも高強度の金属膜17を被覆してある。この多孔質体12を熱間圧着することにより、Pdよりも高強度の金属膜が形成され、各多孔質体12間の接着強度がより向上する。
(第6の実施形態)
図7―1〜図7−3は第6の実施形態を示す。これは、各多孔質体12の端面に、予め該端面と同一断面形状を有しかつガス透過性の低い材質、例えば高密度セラミクスからなる部材18を焼結、接着等により被着したものである。水素透過膜15は前記皮膜18を挟んで各多孔質体12を接合した後に形成する。
In this embodiment, since the hydrogen separation membrane 15 is also formed on the inner surface of the cylindrical member 16, the amount of hydrogen treatment can be increased accordingly. However, the cylindrical member 16 may be formed of a material having low gas permeability, for example, high-density ceramics, and the inner surface of the cylindrical member 16 may not be covered with the hydrogen permeable film 15. Can be reduced.
(Fifth embodiment)
FIGS. 6-1 to 6-3 show a fifth embodiment. This is because Pd is previously coated on the joining end face of each porous body 12, and further a metal film 17 having a higher strength than Pd, such as Ni, Cu, and Ag. By hot pressing the porous body 12, a metal film having a higher strength than Pd is formed, and the adhesive strength between the porous bodies 12 is further improved.
(Sixth embodiment)
FIGS. 7-1 to 7-3 show a sixth embodiment. This is a material in which a material 18 having the same cross-sectional shape as the end surface and having a low gas permeability, for example, a member 18 made of high-density ceramic is applied to the end surface of each porous body 12 by sintering, bonding, or the like. is there. The hydrogen permeable membrane 15 is formed after the porous bodies 12 are joined with the membrane 18 interposed therebetween.

複数の多孔質体12を接合した後に水素分離膜15をめっき加工する場合、段差14の部分は直角の隅部となるので、めっき加工がし難くめっき不良が生じやすい。この実施形態では、その段差部分だけをガス透過性の低い被膜18を形成し、めっき加工前に被膜18を接合してシール性を確保している。なお被膜18と該皮膜18を形成する多孔質体12端面とは互いに同一断面形状にしてあるので両者間に段差を生じることはない。したがってこの実施形態によれば、段差14の付近に仮にめっき不良が生じたとしても、当該不良部分からガスが漏洩する不都合を防止することができる。   When the hydrogen separation membrane 15 is plated after joining the plurality of porous bodies 12, the step 14 is a right-angled corner, so that the plating process is difficult and plating defects are likely to occur. In this embodiment, a coating film 18 having a low gas permeability is formed only on the step portion, and the coating film 18 is joined before the plating process to ensure the sealing performance. Since the coating 18 and the end face of the porous body 12 forming the coating 18 have the same cross-sectional shape, there is no step between them. Therefore, according to this embodiment, even if a plating failure occurs in the vicinity of the step 14, it is possible to prevent the inconvenience of gas leakage from the defective portion.

なお、前記構成において多孔質体12の接合個数や断面形状は各実施形態に示したものに限られるものではなく種々の選択が可能である。   In addition, in the said structure, the joining number and cross-sectional shape of the porous body 12 are not restricted to what was shown to each embodiment, A various selection is possible.

本発明の第1の実施形態の外観斜視図。1 is an external perspective view of a first embodiment of the present invention. 第1の実施形態の隣接する多孔質体の位置関係を示す説明図。Explanatory drawing which shows the positional relationship of the adjacent porous body of 1st Embodiment. 第1の実施形態の多孔質体の縦断面図。The longitudinal cross-sectional view of the porous body of 1st Embodiment. 第1の実施形態の製造工程を示す第1の縦断面図。The 1st longitudinal cross-sectional view which shows the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を示す第2の縦断面図。The 2nd longitudinal cross-sectional view which shows the manufacturing process of 1st Embodiment. 第1の実施形態の製造工程を示す第3の縦断面図。The 3rd longitudinal cross-sectional view which shows the manufacturing process of 1st Embodiment. 本発明の第2の実施形態の縦断面図。The longitudinal cross-sectional view of the 2nd Embodiment of this invention. 第2の実施形態の多孔質体の縦断面図。The longitudinal cross-sectional view of the porous body of 2nd Embodiment. 第2の実施形態の製造工程を示す第1の縦断面図。The 1st longitudinal cross-sectional view which shows the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を示す第2の縦断面図。The 2nd longitudinal cross-sectional view which shows the manufacturing process of 2nd Embodiment. 第2の実施形態の製造工程を示す第3の縦断面図。The 3rd longitudinal cross-sectional view which shows the manufacturing process of 2nd Embodiment. 本発明の第3の実施形態の縦断面図。The longitudinal cross-sectional view of the 3rd Embodiment of this invention. 本発明の第4の実施形態の縦断面図。The longitudinal cross-sectional view of the 4th Embodiment of this invention. 第4の実施形態の製造工程を示す第1の縦断面図。The 1st longitudinal cross-sectional view which shows the manufacturing process of 4th Embodiment. 第4の実施形態の製造工程を示す第2の縦断面図。The 2nd longitudinal cross-sectional view which shows the manufacturing process of 4th Embodiment. 第4の実施形態の製造工程を示す第3の縦断面図。The 3rd longitudinal cross-sectional view which shows the manufacturing process of 4th Embodiment. 本発明の第5の実施形態の製造工程を示す第1の縦断面図。The 1st longitudinal cross-sectional view which shows the manufacturing process of the 5th Embodiment of this invention. 第5の実施形態の製造工程を示す第2の縦断面図。The 2nd longitudinal cross-sectional view which shows the manufacturing process of 5th Embodiment. 第5の実施形態の製造工程を示す第3の縦断面図。The 3rd longitudinal cross-sectional view which shows the manufacturing process of 5th Embodiment. メッキ不良が生じる部分を縦断面で示した説明図。Explanatory drawing which showed the part which plating defect produces in the longitudinal cross-section. 本発明の第6の実施形態の製造工程を示す第1の縦断面図。The 1st longitudinal cross-sectional view which shows the manufacturing process of the 6th Embodiment of this invention. 第6の実施形態の製造工程を示す第2の縦断面図。The 2nd longitudinal cross-sectional view which shows the manufacturing process of 6th Embodiment.

符号の説明Explanation of symbols

11 水素分離器
12 多孔質体
13 貫通孔
14 段差
15 水素分離膜
16 筒状部材
17 高強度金属膜
18 部材
DESCRIPTION OF SYMBOLS 11 Hydrogen separator 12 Porous body 13 Through-hole 14 Step 15 Hydrogen separation membrane 16 Cylindrical member 17 High-strength metal membrane 18 Member

Claims (12)

多孔質体に形成した貫通孔の表面に水素分離能を有する金属からなる水素分離膜を被覆した水素分離器において、
前記多孔質体を貫通孔のガス流れ方向に複数個に分割した構成とすると共に、隣接する多孔質体の各々の貫通孔の接合面間に段差を形成したことを特徴とする水素分離器。
In the hydrogen separator in which the surface of the through hole formed in the porous body is coated with a hydrogen separation membrane made of a metal having hydrogen separation ability,
A hydrogen separator having a structure in which the porous body is divided into a plurality of through holes in the gas flow direction, and a step is formed between the joint surfaces of the through holes of adjacent porous bodies.
前記複数個の多孔質体は、各々同一の断面形状を有し、隣接する多孔質体を各々の貫通孔の開口部がその断面上部分的に重複するように偏らして接合してなる請求項1に記載の水素分離器。   The plurality of porous bodies each have the same cross-sectional shape, and are formed by joining adjacent porous bodies so that the openings of the through holes partially overlap each other on the cross section. Item 2. The hydrogen separator according to Item 1. 前記貫通孔は、ガス流れ方向に次第に内径が変化するテーパ状に形成した請求項1に記載の水素分離器。   The hydrogen separator according to claim 1, wherein the through hole is formed in a tapered shape whose inner diameter gradually changes in a gas flow direction. 前記貫通孔は、ガス流れ方向に次第に内径が増大するように設定した請求項3に記載の水素分離器。   The hydrogen separator according to claim 3, wherein the through hole is set so that an inner diameter gradually increases in a gas flow direction. 前記貫通孔は、複数の多孔質体の各々について断面上同一位置に直円筒面状に形成し、かつ隣接する多孔質体同士でその内径が異なるように設定した請求項1に記載の水素分離器。   2. The hydrogen separation according to claim 1, wherein the through hole is formed in a right cylindrical surface at the same position in cross section for each of a plurality of porous bodies, and the inner diameters of adjacent porous bodies are set to be different. vessel. 前記貫通孔は、下流側の多孔質体ほど内径が大となるように設定した請求項5に記載の水素分離器。   The hydrogen separator according to claim 5, wherein the through hole is set so that the inner diameter of the porous body on the downstream side becomes larger. 前記多孔質体は、その端面に被覆した水素分離膜の上に、該水素分離膜よりも高強度の金属膜を形成してある請求項1から請求項6に記載の水素分離器。   The hydrogen separator according to any one of claims 1 to 6, wherein the porous body has a metal membrane having a strength higher than that of the hydrogen separation membrane formed on a hydrogen separation membrane coated on an end surface thereof. 前記多孔質体は、その端面に該端面と同一断面形状を有しかつガス透過性の低い材質からなる部材を形成した請求項1から請求項6に記載の水素分離器。   7. The hydrogen separator according to claim 1, wherein a member made of a material having the same cross-sectional shape as the end surface and having low gas permeability is formed on the end surface of the porous body. 前記多孔質体は、筒状部材を介して互いの端面間に所定の間隔が空くように接合されている請求項1に記載の水素分離器。   2. The hydrogen separator according to claim 1, wherein the porous body is joined via a cylindrical member so that a predetermined interval is provided between the end faces. 前記筒状部材は、ガス透過性の低い材質で形成されている請求項9に記載の水素分離器。   The hydrogen separator according to claim 9, wherein the cylindrical member is formed of a material having low gas permeability. 前記筒状部材は、その内面に水素分離膜が被覆されている請求項9に記載の水素分離器。   The hydrogen separator according to claim 9, wherein the cylindrical member has an inner surface covered with a hydrogen separation membrane. 前記多孔質体と筒状部材とは、同一外径を有する円筒状に形成されている請求項9から請求項11に記載の水素分離器。   The hydrogen separator according to any one of claims 9 to 11, wherein the porous body and the cylindrical member are formed in a cylindrical shape having the same outer diameter.
JP2003387008A 2003-11-17 2003-11-17 Hydrogen separator Pending JP2005144362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387008A JP2005144362A (en) 2003-11-17 2003-11-17 Hydrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387008A JP2005144362A (en) 2003-11-17 2003-11-17 Hydrogen separator

Publications (1)

Publication Number Publication Date
JP2005144362A true JP2005144362A (en) 2005-06-09

Family

ID=34694529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387008A Pending JP2005144362A (en) 2003-11-17 2003-11-17 Hydrogen separator

Country Status (1)

Country Link
JP (1) JP2005144362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159081A (en) * 2004-12-07 2006-06-22 Nissan Motor Co Ltd Hydrogen separation membrane device
JP2011526237A (en) * 2008-07-01 2011-10-06 リンデ アクチエンゲゼルシヤフト Hydrogen production method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159081A (en) * 2004-12-07 2006-06-22 Nissan Motor Co Ltd Hydrogen separation membrane device
JP4543907B2 (en) * 2004-12-07 2010-09-15 日産自動車株式会社 Hydrogen separation membrane device
JP2011526237A (en) * 2008-07-01 2011-10-06 リンデ アクチエンゲゼルシヤフト Hydrogen production method and apparatus

Similar Documents

Publication Publication Date Title
JP5012239B2 (en) Joining method and joined body
US6913736B2 (en) Metal gas separation membrane module design
TWI689038B (en) Brazed joint and semiconductor processing chamber component having the same
US20040060867A1 (en) Membrane support devices and methods of manufacturing
JP2014147975A (en) Method of controlling flow of brazing material during brazing, and brazed parts
JP2019173978A (en) Loop type heat pipe and manufacturing method for the same
WO2010119334A1 (en) Hydrogen purifier module and method for forming the same
JP2005144362A (en) Hydrogen separator
KR20110106455A (en) A plate heat exchanger
JP4944656B2 (en) Membrane support for hydrogen separation and module for hydrogen separation using this support
JP2008121550A (en) Connecting structure of exhaust system member and insertion member
CN202986233U (en) Compound mask plate
JP2008200607A (en) Disc filter
JP2007292401A (en) Refrigerant condenser with liquid receiver
JP4429318B2 (en) Hydrogen gas separator having a composite structure for separating hydrogen with high efficiency, and method for producing and using the same
US6095406A (en) Process for the production of a honeycomb body from two differently constructed kinds of sheet metal layers
JP6938960B2 (en) Micro flow path heat exchanger
JP2004074086A (en) Filter assembly
JP2004290900A (en) Hydrogen separation membrane, production method therefor, hydrogen separation unit using the membrane, and membrane reactor
JP2007117843A (en) Fluid-permeable thin film structure body and its manufacturing method
JP7114964B2 (en) Laminate, method for producing laminate, microchannel heat exchanger, and method for producing microchannel heat exchanger
JP2007245100A (en) Membrane module
JP2008104990A (en) Metal carrier and manufacturing method of metal carrier
JP2005282961A (en) Plate type heat exchanger
CN103862744A (en) Compound mask plate