JP2005143177A - Actuator utilizing ehd phenomenon - Google Patents

Actuator utilizing ehd phenomenon Download PDF

Info

Publication number
JP2005143177A
JP2005143177A JP2003375596A JP2003375596A JP2005143177A JP 2005143177 A JP2005143177 A JP 2005143177A JP 2003375596 A JP2003375596 A JP 2003375596A JP 2003375596 A JP2003375596 A JP 2003375596A JP 2005143177 A JP2005143177 A JP 2005143177A
Authority
JP
Japan
Prior art keywords
electrode
voltage
actuator
applied voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003375596A
Other languages
Japanese (ja)
Other versions
JP4531375B2 (en
Inventor
Kazuyuki Mitsui
和幸 三井
Akihiro Komiyama
晃浩 小宮山
Sumitaka Terasaka
澄孝 寺阪
Shinichi Kuroda
真一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2003375596A priority Critical patent/JP4531375B2/en
Publication of JP2005143177A publication Critical patent/JP2005143177A/en
Application granted granted Critical
Publication of JP4531375B2 publication Critical patent/JP4531375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight actuator capable of high speed driving by utilizing EHD phenomenon. <P>SOLUTION: Electric response gas is generated by dripping electric response fluid into a housing 20 and volatilizing the fluid and then the electric response gas is interposed between an annular electrode 30 and a rotary electrode 40. Subsequently, a voltage is applied between both electrodes 30 and 40 from a voltage applying section 50 to generate a nonuniform electric field between both electrodes 30 and 40. The rotary electrode 40 is rotated through reaction based on dynamic movement, i.e. EHD phenomenon of the electric response gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、いわゆるEHD現象(Electro Hydro Dynamics Phenomenon)を利用したアクチュエータに関するものである。ここでEHD現象とは、キシレン、クロロホルム、シリコンオイル、機械油等のある種の電気絶縁性流体(電気応答流体)に電極を挿入し、これに高電圧を印加すると、電極間で電気応答流体の拡散、攪拌などの力学的現象が発生する現象のことをいう。   The present invention relates to an actuator using a so-called EHD phenomenon (Electro Hydro Dynamics Phenomenon). Here, the EHD phenomenon means that when an electrode is inserted into some kind of electrically insulating fluid (electrically responsive fluid) such as xylene, chloroform, silicon oil, and machine oil, and a high voltage is applied thereto, the electrically responsive fluid is generated between the electrodes. This is a phenomenon in which mechanical phenomena such as diffusion and stirring occur.

近年、医療や福祉などの人間と共存する環境での使用を目的とした小型機器や生体用機器などの研究が精力的に行なわれている。これらの機器を駆動するアクチュエータとして、最近、軽量で小型かつ柔軟性を有するといった、いわば人に優しいアクチュエータが要求されている。こうした要求に応え得るものとして、いわゆるEHD現象を利用したアクチュエータが注目されている(例えば、非特許文献1参照)。この非特許文献1では、第1の電極と、この第1の電極に対し相対移動可能にされた第2の電極とを、液体としての電気応答流体に浸漬させたアクチュエータを開示している。   In recent years, research on small devices and biomedical devices intended for use in an environment where humans coexist, such as medical care and welfare, has been vigorously conducted. As actuators for driving these devices, recently, actuators that are friendly to humans, such as light weight, small size, and flexibility, have been required. An actuator that utilizes the so-called EHD phenomenon has attracted attention as a means that can meet such a demand (see, for example, Non-Patent Document 1). This Non-Patent Document 1 discloses an actuator in which a first electrode and a second electrode that is movable relative to the first electrode are immersed in an electrically responsive fluid as a liquid.

小宮山晃浩、寺阪澄孝、稲田慎、三井和幸、黒田真一、阿部洋、新妻淳子、齋藤剛:「EHD現象を用いたアクチュエータの開発」、日本ロボット学会第21回学術講演会(2003)Akihiro Komiyama, Sumitaka Terasaka, Shin Inada, Kazuyuki Mitsui, Shinichi Kuroda, Hiroshi Abe, Atsuko Niizuma, Go Saito: “Development of Actuators Using EHD Phenomenon”, 21st Annual Conference of the Robotics Society of Japan (2003)

従来のEHD現象を利用したアクチュエータで使用される電気応答流体は、いずれも液体である。液体の場合、回転時の抵抗が大きいため、十分な回転数が得られないという問題があった。また、液体の量が多くなることによりアクチュエータの重量が重くなるという問題があった。
本発明は、このようなEHD現象を利用したアクチュエータにおいて、軽量で、高速駆動が可能なアクチュエータを提供することを目的とする。
Any of the electrically responsive fluids used in the actuator utilizing the conventional EHD phenomenon is a liquid. In the case of a liquid, since the resistance during rotation is large, there is a problem that a sufficient number of rotations cannot be obtained. In addition, there is a problem that the weight of the actuator increases due to an increase in the amount of liquid.
An object of the present invention is to provide an actuator that utilizes the EHD phenomenon and is lightweight and capable of high-speed driving.

上記目的達成のため、本出願の発明者らは、ある種の絶縁性気体で発生するEHD現象を利用してアクチュエータを構成することを考えた。図1に示すように、容器11に電気応答流体12を注入し、この電気応答流体12が揮発することにより発生した電気応答気体13で容器内が満たされるような環境を整えた。ここでの電気応答流体12は、出願人が先に出願した特願2002−227741に記載のようなエーテル結合を持ちハロゲン元素を含む放電処理がなされた電気応答液体等であり、従って電気応答気体13は、これらの液体としての電気応答流体12が揮発して気化したものである。また、電気応答気体13は、フッ素又は硫黄等を成分とし、高い電気陰性度を有するのが好ましい。これらの液体は、常温・常圧で高い揮発性を有するので、容器11も常温、常圧の中に載置すればよい。   In order to achieve the above object, the inventors of the present application considered to construct an actuator using the EHD phenomenon generated in a certain kind of insulating gas. As shown in FIG. 1, an electrical response fluid 12 was injected into the container 11, and an environment was prepared in which the interior of the container was filled with an electrical response gas 13 generated by volatilization of the electrical response fluid 12. The electrically responsive fluid 12 here is an electrically responsive liquid or the like which has an ether bond and has been subjected to a discharge treatment containing a halogen element as described in Japanese Patent Application No. 2002-227741 filed earlier by the applicant. Reference numeral 13 denotes a gas obtained by volatilizing the electric response fluid 12 as the liquid. Moreover, it is preferable that the electrical response gas 13 has fluorine or sulfur as a component and has a high electronegativity. Since these liquids have high volatility at normal temperature and normal pressure, the container 11 may be placed in normal temperature and normal pressure.

そして、電気応答気体13中に線状電極14、電気応答流体12中に平板電極15を配置し、この線状電極14と平板電極15との間に高電圧(数[kV]以上)を印加すると、両電極間に不平等電界(異なる形状又は異なる材質の電極が対向配置されて電圧を印加されたことにより生じる、電極間の位置によって強度が異なる電界をいう)が生じ、線状電極14から平板電極15に向けて電気応答気体13の活発な気流16が生じる。この気流16は、電気応答流体12の液面を凹ませるほどの活発な流動である。この発生原理は十分に解明されていないが、イオンドラッグが一因ではないかと考えられている。すなわち、陽極付近の気体分子が正電荷に帯電し、陽極に引き寄せられ、それに伴い電極間に流動が生じるものと考えられている。また、気流16は、気体の性質の違いや不平等電界の作り方によって、その大きさや向きが異なると考えられる。なお、容器11中の気体は、例えば空気等であっても、ある程度はEHD現象を生じさせることはできる。しかし、空気等の場合、電極14及び15間の絶縁性が十分でなく、十分な強さの気流16が得られない。従って、電気応答気体13は、所望の強さの気流16が得られるような物質の中から選択される。   A linear electrode 14 is arranged in the electric response gas 13 and a plate electrode 15 is arranged in the electric response fluid 12, and a high voltage (several [kV] or more) is applied between the linear electrode 14 and the plate electrode 15. As a result, an unequal electric field (referred to as an electric field having different intensities depending on the position between the electrodes, which is generated when electrodes having different shapes or different materials are arranged to face each other) is applied between the electrodes. An active air flow 16 of the electric response gas 13 is generated from the flat plate electrode 15 toward the flat electrode 15. The air flow 16 is such an active flow that the liquid level of the electrical response fluid 12 is recessed. Although the generation principle has not been fully elucidated, it is thought that ionic drag may be a cause. That is, it is considered that gas molecules in the vicinity of the anode are charged with a positive charge and attracted to the anode, thereby causing a flow between the electrodes. Moreover, it is thought that the magnitude | size and direction of the airflow 16 differ with the difference in the property of gas, or how to make an unequal electric field. Even if the gas in the container 11 is air, for example, the EHD phenomenon can be caused to some extent. However, in the case of air or the like, the insulation between the electrodes 14 and 15 is not sufficient, and a sufficiently strong air flow 16 cannot be obtained. Therefore, the electric response gas 13 is selected from materials that can obtain an air flow 16 having a desired strength.

本発明は、このような電気応答気体のEHD現象に基づく力学的運動を利用したアクチュエータを提供するものである。すなわち、本発明に係るEHD現象を利用したアクチュエータは、第1の電極と、前記第1の電極との間に不平等電界を発生させ、前記第1の電極に対し相対移動するように構成された第2の電極と、前記第1及び第2の電極を内部に収容する容器と、この容器の内部に収容される電気応答気体と、前記第1及び第2の電極の間に電圧を印加する電圧印加手段とを備えたことを特徴とする。   The present invention provides an actuator using such a mechanical motion based on the EHD phenomenon of an electrically responsive gas. That is, the actuator using the EHD phenomenon according to the present invention is configured to generate an unequal electric field between the first electrode and the first electrode, and to move relative to the first electrode. A voltage is applied between the second electrode, a container that houses the first and second electrodes, an electrically responsive gas housed in the container, and the first and second electrodes And a voltage applying means.

本発明によれば、電気応答気体が第1の電極と第2の電極との間に供給され、電気応答気体の力学的運動により前記第2の電極が前記第1の電極に対し相対移動する。このため、アクチュエータの重量は軽量であり、相対移動する電極に対する抵抗が少なく、高速駆動が可能である。   According to the present invention, the electrically responsive gas is supplied between the first electrode and the second electrode, and the second electrode moves relative to the first electrode by the mechanical movement of the electrically responsive gas. . For this reason, the weight of the actuator is light, the resistance to the relatively moving electrode is small, and high-speed driving is possible.

次に、本発明の実施の形態を、図面を参照して詳細に説明する。
ここでは、アクチュエータとして、第1の電極に対し第2の電極が回転駆動する回転型アクチュエータを例にとって説明する。
図2に平面図(a)、側面断面図(b)により示すように、この回転型アクチュエータは、ハウジング20と、環状電極30と、回転電極40と、電圧印加部50と、電気応答流体供給部60とを備えている。ハウジング20は、EHD現象を発生させる電気応答気体を閉じ込め、環状電極30と回転電極40との間にこの電気応答気体を供給するためのものである。ここでは、ハウジング20はアクリルを材料として形成され、その大きさは、直径100[mm]、高さ60[mm]とする。
環状電極30は、例えばアルミニウム等を材料としてハウジング20の内壁側面20bに設けられている。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
Here, as an actuator, a rotary actuator in which the second electrode is rotationally driven with respect to the first electrode will be described as an example.
As shown in a plan view (a) and a side sectional view (b) in FIG. 2, the rotary actuator includes a housing 20, an annular electrode 30, a rotary electrode 40, a voltage applying unit 50, and an electric response fluid supply. Part 60. The housing 20 is for confining an electrically responsive gas that generates an EHD phenomenon and supplying the electrically responsive gas between the annular electrode 30 and the rotating electrode 40. Here, the housing 20 is formed using acrylic as a material, and the size thereof is 100 [mm] in diameter and 60 [mm] in height.
The annular electrode 30 is provided on the inner wall side surface 20b of the housing 20 using, for example, aluminum or the like as a material.

一方、回転電極40は、ハウジング20の上蓋20uの、環状電極30の中心位置付近を貫通する回転軸41を備えており、この回転軸41が、ベアリング21により回転自在に上蓋20uに保持されている。ここでは、回転軸41の長さ及び軸径は、それぞれ50[mm]、φ3[mm]とする。また、ベアリング21の直径は、φ3[mm]とする。この回転軸41には、アーム部42が水平方向に延びるように取り付けられ、更にこのアーム部42の先端には、アーム部42と直角をなすブーム部43が延設されている。ここでは、アーム部42、ブーム部43は、ステンレスを材料として形成され、その長さは、それぞれ10[mm]、20[mm]であるとする。   On the other hand, the rotating electrode 40 includes a rotating shaft 41 penetrating through the vicinity of the center position of the annular electrode 30 of the upper lid 20 u of the housing 20. The rotating shaft 41 is rotatably held by the upper lid 20 u by the bearing 21. Yes. Here, the length and shaft diameter of the rotating shaft 41 are 50 [mm] and φ3 [mm], respectively. The diameter of the bearing 21 is φ3 [mm]. An arm portion 42 is attached to the rotating shaft 41 so as to extend in the horizontal direction, and a boom portion 43 that extends at a right angle to the arm portion 42 is extended at the tip of the arm portion 42. Here, it is assumed that the arm part 42 and the boom part 43 are made of stainless steel, and their lengths are 10 [mm] and 20 [mm], respectively.

電圧印加部50は、この環状電極30と回転電極40との間に直流電圧を印加するものであり、電圧発生部51で発生した電圧が、接続線52及び53により両電極30及び40に供給される。電圧発生部51から発生される電圧の大きさは、制御部54により制御される。   The voltage application unit 50 applies a DC voltage between the annular electrode 30 and the rotating electrode 40, and the voltage generated by the voltage generation unit 51 is supplied to both electrodes 30 and 40 by connection lines 52 and 53. Is done. The magnitude of the voltage generated from the voltage generator 51 is controlled by the controller 54.

また、電気応答流体供給部60は、上述のような電気応答流体をハウジング20内に滴下するためのものである。滴下された電気応答流体は揮発し、電気応答気体としてハウジング20内の電極30及び40の間に提供される。本実施の形態では、ベアリング21の隙間等から電気応答気体が僅かずつではあるが漏出するため、定量の電気応答流体を一定時間ごとに滴下するものとする。   The electrical response fluid supply unit 60 is for dropping the electrical response fluid as described above into the housing 20. The dropped electrically responsive fluid volatilizes and is provided between the electrodes 30 and 40 in the housing 20 as an electrically responsive gas. In the present embodiment, since the electrical response gas leaks from the gaps of the bearing 21 and the like little by little, it is assumed that a predetermined amount of electrical response fluid is dropped at regular intervals.

このような構成において、電気応答流体50から滴下された電気応答流体が揮発し、電圧印加部50より電極30及び40に電圧が印加されると、回転電極40から環状電極30に向けて電気応答気体の活発な気流Aが生じ、その反作用で回転電極40がこの気流Aとは反対の方向(矢印B方向)に回転する。この回転力を外部動力として取り出すことにより、回転型アクチュエータを構成することができる。
このような気流Aは、ハウジング20内の気体がどのようなものであっても多少は生じ、例えば空気でもある程度の気流は発生する。しかし、空気等では電極30及び40の間の電圧が10[kV]程度となると放電が発生し始め、しかも実用に供するのに十分な回転速度及びトルクが得られない。従って、十分な回転速度及びトルクを得るためには、適当な電気応答気体を選択すると共に、その濃度を適切な状態に保つことが必要である。
In such a configuration, when the electrical response fluid dropped from the electrical response fluid 50 is volatilized and a voltage is applied to the electrodes 30 and 40 from the voltage application unit 50, an electrical response is generated from the rotating electrode 40 toward the annular electrode 30. An active gas flow A is generated, and the reaction causes the rotating electrode 40 to rotate in a direction opposite to the air flow A (in the direction of arrow B). By taking out this rotational force as external power, a rotary actuator can be configured.
Such an air flow A is generated somewhat regardless of the gas in the housing 20, for example, a certain amount of air flow is generated even with air. However, in the case of air or the like, when the voltage between the electrodes 30 and 40 reaches about 10 [kV], discharge starts to occur, and sufficient rotation speed and torque for practical use cannot be obtained. Therefore, in order to obtain a sufficient rotational speed and torque, it is necessary to select an appropriate electric response gas and keep its concentration in an appropriate state.

上述のように構成した回転型アクチュエータにおいて、常温・常圧に保たれたハウジング20内に電気応答流体を滴下して揮発させた後、電圧印加部50による印加電圧を徐々に変化させた。そして、そのときの回転電極40の回転数の変化(無負荷時)及び電極30及び40の間の電流値の変化を測定した。その結果を図3のグラフに示す。回転電極40を接地し、環状電極30側に、電圧印加部50から0〜24[kV]又は0〜−24[kV]を印加した。同図(a)は、印加電圧を0〜24[kV]の正の電圧とした場合のグラフであり、同図(b)は印加電圧を0〜−24[kV]の負の電圧とした場合のグラフである。なお、回転数は、回転軸41に取り付けられた反射板(図示せず)と光学式回転計を用いて測定した。     In the rotary actuator configured as described above, the electric response fluid was dropped and volatilized in the housing 20 maintained at normal temperature and normal pressure, and then the voltage applied by the voltage application unit 50 was gradually changed. And the change of the rotation speed of the rotating electrode 40 at that time (no load) and the change of the current value between the electrodes 30 and 40 were measured. The result is shown in the graph of FIG. The rotating electrode 40 was grounded, and 0 to 24 [kV] or 0 to −24 [kV] was applied from the voltage applying unit 50 to the annular electrode 30 side. The figure (a) is a graph when the applied voltage is a positive voltage of 0 to 24 [kV], and the figure (b) is a negative voltage of 0 to -24 [kV]. It is a graph of the case. The rotational speed was measured using a reflector (not shown) attached to the rotary shaft 41 and an optical tachometer.

図3(a)に示すように、印加電圧を正の電圧とした場合には、印加電圧が6[kV]付近になったところから回転電極40の回転が始まると共に電流も流れ始めた。印加電圧の上昇に伴って、回転速度、電流共に増加した。しかし、回転数は印加電圧が18[kV]を超えた辺りから増加率(グラフの傾き)が小さくなり始め、20[kV]以上となると殆ど増加しなくなった。印加電圧が最大24[kV]となったときの回転数は4100[rpm]であった。一方、電流値は、印加電圧が20[kV]以上となっても増加率は低下せずむしろ増加し、印加電圧が24[kV]のときの電流値は約200[μA]であった。   As shown in FIG. 3A, when the applied voltage was a positive voltage, the rotating electrode 40 started rotating and the current began to flow when the applied voltage became around 6 [kV]. As the applied voltage increased, both the rotation speed and current increased. However, the increase rate (gradient of the graph) started to decrease when the applied voltage exceeded 18 [kV], and the rotation number hardly increased when the applied voltage exceeded 20 [kV]. The rotation speed when the applied voltage reached 24 [kV] at maximum was 4100 [rpm]. On the other hand, the increase in the current value did not decrease even when the applied voltage was 20 [kV] or higher, but rather increased, and the current value when the applied voltage was 24 [kV] was about 200 [μA].

図3(b)に示すように、印加電圧を負の電圧とした場合には、印加電圧が−8[kV]付近になったところから回転電極40の回転が始まると共に電流も流れ始めた。印加電圧の上昇に伴って、回転速度、電流共に増加した。印加電圧が正の場合と同様、回転数は印加電圧が−18[kV]を超えた辺りから増加率(グラフの傾き)が小さくなり始めたが、−20[kV]以上での増加率の低下の度合は、正の印加電圧の場合ほど顕著ではなく、回転数は上昇を続けた。印加電圧が最大−24[kV]となったときの回転数は5100[rpm]で、正の印加電圧の場合よりも大きくなった。一方、電流値は、印加電圧が−20[kV]以上となっても増加率は殆ど低下せず、電流値は上昇を続けた。印加電圧が−24[kV]のときの電流値は約200[μA]であった。   As shown in FIG. 3B, when the applied voltage was a negative voltage, the rotating electrode 40 started rotating and the current began to flow when the applied voltage became around −8 [kV]. As the applied voltage increased, both the rotation speed and current increased. As in the case where the applied voltage is positive, the rate of increase in the rotation speed (gradient of the graph) started to decrease when the applied voltage exceeded −18 [kV]. The degree of decrease was not as pronounced as in the case of a positive applied voltage, and the rotational speed continued to increase. The number of rotations when the applied voltage reached a maximum of −24 [kV] was 5100 [rpm], which was larger than in the case of the positive applied voltage. On the other hand, the increase rate of the current value hardly decreased even when the applied voltage became −20 [kV] or more, and the current value continued to increase. The current value when the applied voltage was −24 [kV] was about 200 [μA].

また、上述のように構成した回転型アクチュエータにおいて、常温・常圧に保たれたハウジング20内に電気応答流体を滴下して揮発させた後、電圧印加部50による印加電圧を徐々に変化させた。そして、そのときの回転電極40の最大のトルクの変化(最大負荷時)、及び電極30及び40間の電流値の変化を測定した。その結果を図4のグラフに示す。
電圧印加部50からの印加電圧は、回転電極40を接地し、環状電極30に印加する電圧を0〜24[kV]及び0〜−24[kV]の間で変化させた。同4(a)は、印加電圧を0〜24[kV]の正の電圧とした場合のグラフであり、図4(b)は印加電圧を0〜−24[kV]の負の電圧とした場合のグラフである。
Further, in the rotary actuator configured as described above, after the electric response fluid is dropped and volatilized in the housing 20 maintained at room temperature and normal pressure, the voltage applied by the voltage application unit 50 is gradually changed. . Then, the maximum torque change (at the maximum load) of the rotating electrode 40 and the current value change between the electrodes 30 and 40 were measured. The result is shown in the graph of FIG.
The voltage applied from the voltage application unit 50 was such that the rotating electrode 40 was grounded, and the voltage applied to the annular electrode 30 was changed between 0 to 24 [kV] and 0 to −24 [kV]. FIG. 4 (a) is a graph when the applied voltage is a positive voltage of 0 to 24 [kV], and FIG. 4 (b) is a negative voltage of 0 to −24 [kV]. It is a graph of the case.

図4(a)に示すように、印加電圧を正の電圧とした場合には、印加電圧が8[kV]付近になったところから回転電極40がトルクを発生し始めると共に電流も流れ始めた。印加電圧の上昇に伴って、トルク、電流共に増加した。しかし、トルクは印加電圧が20[kV]付近となった後は増加率(グラフの傾き)がほぼゼロとなった。印加電圧が最大24[kV]となったときのトルクは0.3[μNm]であった。一方、電流値は、印加電圧が20[kV]以上となっても増加率は低下せず、印加電圧が24[kV]のときの電流値は約140[μA]であった。
また、図4(b)に示すように、印加電圧を負の電圧とした場合には、印加電圧が−9[kV]付近になったところから回転電極40がトルクを発生し始めると共に電流も流れ始めた。印加電圧の上昇に伴って、トルク、電流共に増加した。印加電圧が正の場合と異なり、トルクは印加電圧が−20[kV]を超えても増加率(グラフの傾き)は小さくならず、トルクは上昇を続けた。電流値は、印加電圧が−20[kV]を超えても増加率は低下せず、上昇を続けた。印加電圧が最大−24[kV]となったときのトルクは0.5[μNm]で、正の印加電圧の場合よりも僅かに大きくなった。一方、電流値は、印加電圧が−24[kV]のとき約150[μA]であった。
As shown in FIG. 4A, when the applied voltage is a positive voltage, the rotating electrode 40 starts to generate torque and the current starts to flow when the applied voltage is in the vicinity of 8 [kV]. . As the applied voltage increased, both torque and current increased. However, the increase rate (gradient of the graph) of the torque became almost zero after the applied voltage became around 20 [kV]. The torque when the applied voltage reached a maximum of 24 [kV] was 0.3 [μNm]. On the other hand, the increase rate of the current value did not decrease even when the applied voltage was 20 [kV] or more, and the current value when the applied voltage was 24 [kV] was about 140 [μA].
Further, as shown in FIG. 4B, when the applied voltage is a negative voltage, the rotating electrode 40 starts generating torque and the current is also generated when the applied voltage is in the vicinity of −9 [kV]. Began to flow. As the applied voltage increased, both torque and current increased. Unlike the case where the applied voltage was positive, the increase rate (gradient of the graph) did not decrease even when the applied voltage exceeded −20 [kV], and the torque continued to increase. Even when the applied voltage exceeded −20 [kV], the increase rate did not decrease and the current value continued to increase. The torque when the applied voltage reached a maximum of −24 [kV] was 0.5 [μNm], which was slightly larger than in the case of the positive applied voltage. On the other hand, the current value was about 150 [μA] when the applied voltage was −24 [kV].

図5に、図3及び4の印加電圧24[kV]時のデータを用いて、図2の回転型アクチュエータのトルクと回転数との関係(図5(a))、及びトルクと電流との関係(図5(b))を表した。図5(a)、(b)とも、各グラフにおいて両端の値のみしか測定していないが、いずれも、グラフは右下がりとなっている。これは、図2の回転型アクチュエータは、トルクが上がると回転数が下がるという特性、及びトルクが上がると電極30及び40間の電流が下がる、とという特性を有することを示している。前者の特性は、一般の電磁モータでも同様であるが、後者の特性は、一般の電磁モータとは異なっている。
一般の電磁モータでは、負荷が増加すると電流は増加し、さらに過負荷状態が継続すると発熱を起こし、モータが破壊される虞がある。このため、これを回避するモータ制御が必要となる。これに対し、図2の回転型アクチュエータでは、負荷が増加すると電流が減少する特性を有しているので、過負荷状態が生じても特別な制御が不要となる。この点は、駆動システムを設計する場合に大きな利点となると考えられる。
また、図2の回転型アクチュエータは、ハウジング20内の気体のEHD現象を利用するため、液体のEHD現象を利用した従来のアクチュエータに比べ、アクチュエータの設置方向や位置を比較的自由に選択することができる。
なお、ハウジング20内の気体を空気のみとした場合には、図3のように回転数は増加せず、しかも印加電圧が10[kV]付近になると放電が始まり、電流値は急激に増加し、アクチュエータとして機能しなくなってしまった。図6及び図7は、その様子を示すグラフである。図6(a)及び図7(a)は、それぞれ印加電圧を正とした場合における回転数及び電流を示しており、図6(b)及び図7(b)は印加電圧を負とした場合における回転数及び電流を示している。
FIG. 5 shows the relationship between the torque and the rotational speed of the rotary actuator shown in FIG. 2 (FIG. 5A) and the torque and current using the data at the applied voltage 24 [kV] shown in FIGS. The relationship (FIG. 5B) was expressed. 5 (a) and 5 (b), only the values at both ends are measured in each graph, but in both graphs, the graph is descending to the right. This indicates that the rotary actuator of FIG. 2 has a characteristic that the number of rotations decreases when the torque increases, and a characteristic that the current between the electrodes 30 and 40 decreases when the torque increases. The former characteristic is the same as that of a general electromagnetic motor, but the latter characteristic is different from that of a general electromagnetic motor.
In a general electromagnetic motor, the current increases when the load increases, and further, when the overload state continues, heat is generated and the motor may be destroyed. For this reason, motor control to avoid this is necessary. On the other hand, the rotary actuator of FIG. 2 has a characteristic that the current decreases as the load increases, so that no special control is required even if an overload condition occurs. This point is considered to be a great advantage when designing a drive system.
Further, since the rotary actuator shown in FIG. 2 uses the gas EHD phenomenon in the housing 20, the installation direction and position of the actuator can be selected relatively freely as compared with the conventional actuator using the liquid EHD phenomenon. Can do.
When the gas in the housing 20 is only air, the rotational speed does not increase as shown in FIG. 3, and discharge starts when the applied voltage reaches around 10 [kV], and the current value increases rapidly. I stopped working as an actuator. 6 and 7 are graphs showing the state. 6 (a) and 7 (a) show the rotation speed and current when the applied voltage is positive, respectively, and FIGS. 6 (b) and 7 (b) show the case where the applied voltage is negative. The rotation speed and current at are shown.

以上、発明の実施の形態について説明したが、本発明はこれらに限定されるものではない。例えば、回転型アクチュエータの回転電極40の形状を、図8に示すような形状としてもよい。この図8に示す回転型アクチュエータでは、回転電極40が、回転軸41に接続されたアーム部44及び45と、アーム部44及び45の先端に取り付けられた羽根電極46を備えている。
また、図9に示すように、環状電極30に代えて、ハウジング20の内壁側面20bから突出するように多数の線状電極31を設けると共に、回転電極40のアーム部47の先端に平板電極48を設けるようにしてもよい。このような構成とすると、線状電極31から平板電極48に向かう気流が発生し、この気流の反作用により回転電極40が回転する。
また、上記の実施の形態では、第1の電極としての環状電極30に対し第2の電極としての回転電極が回転するものであったが、第2の電極は相対移動するものであればよく、回転に限らず、平行移動等を行なうものであってもよい。
As mentioned above, although embodiment of invention was described, this invention is not limited to these. For example, the shape of the rotary electrode 40 of the rotary actuator may be a shape as shown in FIG. In the rotary actuator shown in FIG. 8, the rotary electrode 40 includes arm portions 44 and 45 connected to the rotary shaft 41, and a blade electrode 46 attached to the tips of the arm portions 44 and 45.
Further, as shown in FIG. 9, a large number of linear electrodes 31 are provided so as to protrude from the inner wall side surface 20 b of the housing 20 instead of the annular electrode 30, and a flat plate electrode 48 is provided at the tip of the arm portion 47 of the rotating electrode 40. May be provided. With such a configuration, an air flow from the linear electrode 31 toward the flat plate electrode 48 is generated, and the rotating electrode 40 is rotated by the reaction of the air flow.
In the above-described embodiment, the rotating electrode as the second electrode rotates with respect to the annular electrode 30 as the first electrode. However, the second electrode may be anything that moves relative to the annular electrode 30. In addition to rotation, parallel movement or the like may be performed.

気体によるEHD現象を説明する原理図である。It is a principle figure explaining the EHD phenomenon by gas. 本発明の実施の形態に係る回転型アクチュエータを示す。1 shows a rotary actuator according to an embodiment of the present invention. 図2に示す回転型アクチュエータの印加電圧と回転電極40の回転数(無負荷時)及び電極30及び40の間の電流値との関係を示す。The relationship between the applied voltage of the rotary actuator shown in FIG. 2, the number of rotations of the rotating electrode 40 (at the time of no load), and the current value between the electrodes 30 and 40 is shown. 図2に示す回転型アクチュエータの印加電圧と回転電極40の最大トルク(最大負荷時)及び電極30及び40の間の電流値との関係を示す。The relationship between the applied voltage of the rotary actuator shown in FIG. 2, the maximum torque (at the maximum load) of the rotating electrode 40, and the current value between the electrodes 30 and 40 is shown. 図2に示す回転型アクチュエータのトルクと回転数の関係、トルクと電流の関係を示す。The relationship between the torque and rotation speed of the rotary actuator shown in FIG. 2 and the relationship between torque and current are shown. 図2に示す回転型アクチュエータにおいて、ハウジング20内の気体を空気のみとした場合における回転電極40の回転数の変化を示す。In the rotary actuator shown in FIG. 2, the change in the number of rotations of the rotary electrode 40 when the gas in the housing 20 is only air is shown. 図2に示す回転型アクチュエータにおいて、ハウジング20内の気体を空気のみとした場合における電流値の変化を示す。In the rotary actuator shown in FIG. 2, a change in the current value when the gas in the housing 20 is only air is shown. 本発明の実施の形態に係る回転型アクチュエータの変形例を示す。The modification of the rotary actuator which concerns on embodiment of this invention is shown. 本発明の実施の形態に係る回転型アクチュエータの変形例を示す。The modification of the rotary actuator which concerns on embodiment of this invention is shown.

符号の説明Explanation of symbols

11・・・容器、 12・・・電気応答流体、 13・・・電気応答気体、 14・・・線状電極、 15・・・平板電極、 14・・・線状電極、 15・・・平板電極、 16・・・気流、 20・・・ハウジング、 21・・・ベアリング、 30・・・環状電極、 31・・・線状電極、 40・・・回転電極、 41・・・回転軸、 42・・・アーム部、 43・・・ブーム部、 44、45、47・・・アーム部、 46・・・羽根電極、 48・・・開いた電極、 50・・・電圧印加部、 51・・・電圧発生部、 52、53・・・接続線、 54・・・制御部、 60・・・電気応答流体供給部。 DESCRIPTION OF SYMBOLS 11 ... Container, 12 ... Electrical response fluid, 13 ... Electrical response gas, 14 ... Linear electrode, 15 ... Flat plate electrode, 14 ... Linear electrode, 15 ... Flat plate Electrode 16 ... Airflow 20 ... Housing 21 ... Bearing 30 ... Ring electrode 31 ... Linear electrode 40 ... Rotating electrode 41 ... Rotating shaft 42 ... Arm part, 43 ... Boom part, 44, 45, 47 ... Arm part, 46 ... Blade electrode, 48 ... Open electrode, 50 ... Voltage application part, 51 ...・ Voltage generator, 52, 53... Connection line, 54... Controller, 60.

Claims (4)

第1の電極と、
前記第1の電極との間に不平等電界を発生させ、前記第1の電極に対し相対移動するように構成された第2の電極と、
前記第1及び第2の電極を内部に収容する容器と、
この容器の内部に収容される電気応答気体と、
前記第1及び第2の電極の間に電圧を印加する電圧印加手段と
を備えたことを特徴とする、EHD現象を利用したアクチュエータ。
A first electrode;
A second electrode configured to generate an unequal electric field between the first electrode and move relative to the first electrode;
A container that houses the first and second electrodes;
An electrically responsive gas contained within the container;
An actuator using an EHD phenomenon, comprising: voltage applying means for applying a voltage between the first and second electrodes.
前記電気応答気体は、揮発性及び絶縁性を有する電気応答流体を揮発させることで生じるものである、請求項1記載のEHD現象を利用したアクチュエータ。   The actuator using the EHD phenomenon according to claim 1, wherein the electric response gas is generated by volatilizing an electric response fluid having volatility and insulation. 前記第1の電極は、環状電極であり、
前記第2の電極は、前記環状電極の中心位置付近を回転軸として回転するように構成された線状電極である
ことを特徴とする請求項1又は2記載のEHD現象を利用したアクチュエータ。
The first electrode is an annular electrode;
3. The actuator using the EHD phenomenon according to claim 1, wherein the second electrode is a linear electrode configured to rotate around a central position of the annular electrode as a rotation axis.
前記電気応答気体は、フッ素及び硫黄の少なくとも一方を含む請求項1記載のEHD現象を利用したアクチュエータ。   The actuator using the EHD phenomenon according to claim 1, wherein the electrically responsive gas includes at least one of fluorine and sulfur.
JP2003375596A 2003-11-05 2003-11-05 Actuator using EHD phenomenon Expired - Fee Related JP4531375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375596A JP4531375B2 (en) 2003-11-05 2003-11-05 Actuator using EHD phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375596A JP4531375B2 (en) 2003-11-05 2003-11-05 Actuator using EHD phenomenon

Publications (2)

Publication Number Publication Date
JP2005143177A true JP2005143177A (en) 2005-06-02
JP4531375B2 JP4531375B2 (en) 2010-08-25

Family

ID=34686925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375596A Expired - Fee Related JP4531375B2 (en) 2003-11-05 2003-11-05 Actuator using EHD phenomenon

Country Status (1)

Country Link
JP (1) JP4531375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121288A (en) * 2007-11-13 2009-06-04 Kazuyuki Mitsui Rotary pump using ehd phenomenon and cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146075A (en) * 1996-09-12 1998-05-29 Shin Gijutsu Manag:Kk Controllable transduction of electric energy into mechanical energy with micromotor using decandioic acid dibuthyl and energy transduction and controllable transduction of energy using electro-sensitive medium
JP2000220610A (en) * 1999-02-02 2000-08-08 Shingijutsu Management:Kk Fluidity control method for fluid, fluidity control device and bristled valve mechanism
JP2000245180A (en) * 1999-02-24 2000-09-08 Shingijutsu Management:Kk Thin micromotor
JP2002021814A (en) * 2000-07-10 2002-01-23 Fujikura Kasei Co Ltd Actuator
JP2002081400A (en) * 2000-09-06 2002-03-22 Kanazawa Inst Of Technology Liquid jet generation method by ehd pumping and liquid jet generation device by ehd pumping
JP2003284316A (en) * 2002-03-25 2003-10-03 Ryoichi Hanaoka Electrohydrodynamic pump
JP2004068898A (en) * 2002-08-05 2004-03-04 Kazuyuki Mitsui Electrically-response fluid and fluid device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146075A (en) * 1996-09-12 1998-05-29 Shin Gijutsu Manag:Kk Controllable transduction of electric energy into mechanical energy with micromotor using decandioic acid dibuthyl and energy transduction and controllable transduction of energy using electro-sensitive medium
JP2000220610A (en) * 1999-02-02 2000-08-08 Shingijutsu Management:Kk Fluidity control method for fluid, fluidity control device and bristled valve mechanism
JP2000245180A (en) * 1999-02-24 2000-09-08 Shingijutsu Management:Kk Thin micromotor
JP2002021814A (en) * 2000-07-10 2002-01-23 Fujikura Kasei Co Ltd Actuator
JP2002081400A (en) * 2000-09-06 2002-03-22 Kanazawa Inst Of Technology Liquid jet generation method by ehd pumping and liquid jet generation device by ehd pumping
JP2003284316A (en) * 2002-03-25 2003-10-03 Ryoichi Hanaoka Electrohydrodynamic pump
JP2004068898A (en) * 2002-08-05 2004-03-04 Kazuyuki Mitsui Electrically-response fluid and fluid device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121288A (en) * 2007-11-13 2009-06-04 Kazuyuki Mitsui Rotary pump using ehd phenomenon and cooling device

Also Published As

Publication number Publication date
JP4531375B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP0867622B1 (en) Micromotors, linear motors, micropumps, methods of using the same, microactuators, methods of controlling flow properties of fluids, and apparatuses for controlling flow properties of fluids
Otsubo et al. Dielectric fluid motors
Zhang et al. Self‐fueled biomimetic liquid metal mollusk
Handschuh-Wang et al. Electric actuation of liquid metal droplets in acidified aqueous electrolyte
Wang et al. Liquid metal motor
Cole et al. Liquid metals as soft electromechanical actuators
JP4531375B2 (en) Actuator using EHD phenomenon
US9228676B2 (en) Electroosmotic movable device
JP2018510608A (en) Friction generator
JP2018530301A (en) Energy conversion system and method
JP2007114196A (en) Magnetohydrodynamic (mhd) actuator/sensor
JP2011242542A (en) Liquid lens and method of controlling the same
CN108189077A (en) The automatic drive device of liquid metal driving
JP2004096893A (en) Drive device
JP2006525779A (en) Small motor for optical equipment by electrowetting method
EP0695025B1 (en) Actuator
JP2006067719A (en) Conductive polymer actuator and drive method therefor
JPH10146075A (en) Controllable transduction of electric energy into mechanical energy with micromotor using decandioic acid dibuthyl and energy transduction and controllable transduction of energy using electro-sensitive medium
JP3179035B2 (en) Electro-sensitive working medium and method of using the same
Sun et al. Electrostatically driven rotor on conductive liquid ring bearings
JP4096425B2 (en) Electrorheological element
JP2011206680A (en) Apparatus for plasma-melting asbestos
KR20220039320A (en) Actuator and Active Plate having the same
EP0787792A1 (en) Electro-sensitive movable fluids, methods of using the same and motors for the electro-sensitive movable fluids
JP3041928U (en) Micro motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees