JP2005142594A - Method and apparatus for controlling film thickness - Google Patents

Method and apparatus for controlling film thickness Download PDF

Info

Publication number
JP2005142594A
JP2005142594A JP2005034166A JP2005034166A JP2005142594A JP 2005142594 A JP2005142594 A JP 2005142594A JP 2005034166 A JP2005034166 A JP 2005034166A JP 2005034166 A JP2005034166 A JP 2005034166A JP 2005142594 A JP2005142594 A JP 2005142594A
Authority
JP
Japan
Prior art keywords
film
grinding
polishing
film thickness
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034166A
Other languages
Japanese (ja)
Inventor
Naoaki Kogure
直明 小榑
Hiroaki Inoue
裕章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005034166A priority Critical patent/JP2005142594A/en
Publication of JP2005142594A publication Critical patent/JP2005142594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for controlling film thickness capable of sufficiently reducing the amount of dishing and improving the flatness of film in deposition provided on a substrate surface. <P>SOLUTION: A film having a predetermined thickness distribution is formed on the surface of a semiconductor wafer 100 by alternately repeating a film formation process and grinding and polishing process one or more times with respect to the surface of the semiconductor wafer 100. Its apparatus for controlling film thickness is configured by including a susceptor 30 for holding the semiconductor wafer 100; a bath 10 for both film deposition liquid and grinding and polishing liquid in which the semiconductor wafer 100 held by the susceptor 30 is immersed to provide film deposition, grinding, and polishing; and a grinding and polishing pad 20 for grinding and polishing the surface of the semiconductor wafer 100 held by the susceptor 30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体ウエハなどの基材上に膜を形成する際の膜厚調整方法及び装置に関するものである。   The present invention relates to a film thickness adjusting method and apparatus for forming a film on a substrate such as a semiconductor wafer.

従来、半導体ウエハ表面に気相又は液相を介して所望の金属を堆積することによって、該表面を金属膜で被覆することが行なわれている。特に半導体デバイスの配線を形成するためには、半導体ウエハ表面に予め微細な窪み(代表幅0.18μm以下、最大深さ1μm程度)を設け、該窪みの内部に金属を隙間なく充填することが必要とされる。しかも何れの場合も成膜後の金属表面は十分な平坦度(代表値として平均膜厚の2%以内の凹凸)に仕上げることが求められている。   Conventionally, a desired metal is deposited on the surface of a semiconductor wafer via a gas phase or a liquid phase to coat the surface with a metal film. In particular, in order to form the wiring of a semiconductor device, a fine recess (representative width 0.18 μm or less, maximum depth of about 1 μm) is provided in advance on the surface of the semiconductor wafer, and the interior of the recess is filled with no gap. Needed. Moreover, in any case, it is required that the metal surface after film formation be finished with sufficient flatness (represented by irregularities within 2% of the average film thickness).

そのため成膜後は基板をCMP(化学機械研摩)装置に装着して、膜表面を化学的,機械的研摩し、所定の要求仕様を満足する表面仕上げ状況にすることを常としている。   Therefore, after film formation, the substrate is usually mounted on a CMP (Chemical Mechanical Polishing) apparatus, and the surface of the film is chemically and mechanically polished to obtain a surface finish condition that satisfies a predetermined required specification.

ところが、半導体ウエハ表面の絶縁膜内に配線用等の金属を成膜した後に、該絶縁層表面をCMP操作等によって平坦化した場合、図4に示すように、金属210部の表面211はその周囲の絶縁膜220の表面221よりも余分に削り取られる現象(ディッシング)が起こる不具合が不可避的に生じていた。   However, when a metal for wiring or the like is formed in the insulating film on the surface of the semiconductor wafer and then the surface of the insulating layer is flattened by a CMP operation or the like, as shown in FIG. The problem that the phenomenon (dishing) which is scraped off more than the surface 221 of the surrounding insulating film 220 inevitably occurred.

このディッシングの原因としては、(1)金属210と絶縁膜220との硬度が異なること、及び(2)金属210と絶縁膜220との研削・研摩液に対する腐食速度が異なること、の2点が考えられる。   There are two reasons for this dishing: (1) the hardness of the metal 210 and the insulating film 220 is different, and (2) the corrosion rate of the metal 210 and the insulating film 220 with respect to the grinding / polishing liquid is different. Conceivable.

そしてこれら原因(1),(2)を回避するために従来、CMPによる研削・研摩時の摺動速度や面圧を低減したり、研削・研摩液に腐食防止剤を混入することが行なわれてきたが、完全な効果を得ることは困難であり、且つ研削・研摩速度低下によってスループットの向上が阻害されるという不都合を生じるという難点もあった。   In order to avoid these causes (1) and (2), conventionally, the sliding speed and surface pressure during grinding and polishing by CMP have been reduced, and a corrosion inhibitor has been mixed into the grinding and polishing liquid. However, it is difficult to obtain a complete effect, and there is also a problem in that the improvement in throughput is hindered due to a decrease in the grinding / polishing speed.

本発明は上述の点に鑑みてなされたものでありその目的は、ディッシング量を十分小さくすることができて基材表面に設けた成膜の平坦度を向上させることができる膜厚調整方法及び装置を提供することにある。   The present invention has been made in view of the above points, and its purpose is to provide a film thickness adjusting method capable of sufficiently reducing the dishing amount and improving the flatness of the film provided on the substrate surface, and To provide an apparatus.

本願請求項1に記載の発明は、基材表面に所定の厚さ分布を持つ膜を形成する膜厚調整方法において、前記膜厚調整方法は、電解メッキにより基材表面の成膜を行う成膜工程と、前記電解メッキ後の基材を電解加工して膜の研削・研摩を行う電解加工工程とからなることを特徴とする膜厚調整方法にある。The invention according to claim 1 of the present application is a film thickness adjusting method for forming a film having a predetermined thickness distribution on a substrate surface, wherein the film thickness adjusting method is a method for forming a film on a substrate surface by electrolytic plating. The film thickness adjusting method is characterized by comprising a film process and an electrolytic processing process of grinding and polishing the film by electrolytically processing the substrate after the electrolytic plating.
本願請求項2に記載の発明は、前記電解加工工程においては、この電解加工と組み合わせて機械的研削・研摩加工も行うことを特徴とする請求項1に記載の膜厚調整方法にある。The invention according to claim 2 of the present application resides in the film thickness adjusting method according to claim 1, wherein in the electrolytic processing step, mechanical grinding / polishing is also performed in combination with the electrolytic processing.
本願請求項3に記載の発明は、前記成膜工程及び前記電解加工工程は、同一の槽内で行うことを特徴とする請求項1又は2記載の膜厚調整方法にある。Invention of Claim 3 of this application exists in the film thickness adjustment method of Claim 1 or 2 characterized by performing the said film-forming process and the said electrolytic processing process in the same tank.
本願請求項4に記載の発明は、前記電解加工後の基材を再度前記成膜工程又は前記電解加工工程に戻すことを特徴とする請求項1に記載の膜厚調整方法にある。The invention according to claim 4 of the present application is the film thickness adjusting method according to claim 1, wherein the substrate after the electrolytic processing is returned to the film forming step or the electrolytic processing step again.
本願請求項5に記載の発明は、前記成膜工程及び前記電解加工工程は、別々の槽内で行うことを特徴とする請求項1又は2記載の膜厚調整方法にある。The invention according to claim 5 is the film thickness adjusting method according to claim 1 or 2, wherein the film forming step and the electrolytic processing step are performed in separate tanks.
本願請求項6に記載の発明は、前記電解加工後の基材に対して前記成膜工程と前記電解加工工程とを交互に1回以上繰り返すことを特徴とする請求項1記載の膜厚調整方法にある。Invention of Claim 6 of this application repeats the said film-forming process and the said electrolytic processing process 1 time or more alternately with respect to the base material after the said electrolytic processing, The film thickness adjustment of Claim 1 characterized by the above-mentioned Is in the way.
本願請求項7に記載の発明は、基材表面に所定の厚さ分布を持つ膜を形成する膜厚調整方法において、前記膜厚調整方法は、電解メッキにより基材表面の成膜を行う成膜工程と、前記電解メッキ後の基材を電解加工して膜の研削・研摩を行う電解加工工程と、前記電解加工後の基材を再度成膜工程に戻すか否かを判定する工程からなることを特徴とする膜厚調整方法にある。The invention according to claim 7 of the present application is a film thickness adjusting method for forming a film having a predetermined thickness distribution on the substrate surface, wherein the film thickness adjusting method is a method for forming a film on the substrate surface by electrolytic plating. From a film process, an electrolytic processing process of electrolytically processing the base material after electrolytic plating and grinding / polishing the film, and a step of determining whether to return the base material after electrolytic processing back to the film forming process The film thickness adjusting method is characterized by the following.
本願請求項8に記載の発明は、基材表面に所定の厚さ分布を持つ膜を形成する膜厚調整装置において、前記膜厚調整装置は、基材を電解メッキするための成膜液供給手段及び電解メッキ用電源と、電解メッキ後の基材に電解加工を行うために前記電解メッキ用電源の電圧の極性を切り替える切換器とを有することを特徴とする膜厚調整装置にある。The invention according to claim 8 of the present application is a film thickness adjusting apparatus for forming a film having a predetermined thickness distribution on the surface of the substrate, wherein the film thickness adjusting apparatus supplies a film forming solution for electrolytically plating the substrate. And a switch for switching the polarity of the voltage of the power supply for electrolytic plating in order to perform electrolytic processing on the substrate after electrolytic plating.
本願請求項9に記載の発明は、基材表面に所定の厚さ分布を持つ膜を形成する膜厚調整装置において、前記膜厚調整装置は、基材を電解メッキするための成膜液供給手段及び電解メッキ用電源と、基材に前記電解メッキ及び電解加工を行うための槽とを有することを特徴とする膜厚調整装置にある。The invention according to claim 9 of the present application is a film thickness adjusting apparatus for forming a film having a predetermined thickness distribution on the surface of a substrate, wherein the film thickness adjusting apparatus supplies a film forming solution for electrolytic plating of the substrate. The film thickness adjusting apparatus includes means and a power source for electrolytic plating, and a tank for performing electrolytic plating and electrolytic processing on the base material.
本願請求項10に記載の発明は、基材表面に所定の厚さ分布を持つ膜を形成する膜厚調整装置において、前記膜厚調整装置は、基材を電解メッキするための槽及び成膜液供給手段及び電解メッキ用電源と、電解メッキ後の基材に電解加工を行うための槽とを有することを特徴とする膜厚調整装置にある。The invention according to claim 10 of the present application is a film thickness adjusting apparatus for forming a film having a predetermined thickness distribution on the surface of the substrate, wherein the film thickness adjusting apparatus includes a tank and a film formation for electrolytic plating of the substrate. The film thickness adjusting apparatus includes a liquid supply unit, a power source for electrolytic plating, and a tank for performing electrolytic processing on a substrate after electrolytic plating.
本願請求項11に記載の発明は、前記電解加工後の基材の表面を測定し、この基材に再度電解メッキを行うか否かを決定する膜厚計を有することを特徴とする請求項8又は9又は10記載の膜厚調整装置にある。The invention described in claim 11 of the present application has a film thickness meter for measuring the surface of the substrate after the electrolytic processing and determining whether or not to perform electrolytic plating again on the substrate. 8 or 9 or 10 in the film thickness adjusting device.
本願請求項12に記載の発明は、前記電解加工と組み合わせて機械的研削・研摩加工を行うことを特徴とする請求項8又は9又は10記載の膜厚調整装置にある。The invention according to claim 12 of the present application is the film thickness adjusting apparatus according to claim 8, 9 or 10, wherein mechanical grinding / polishing is performed in combination with the electrolytic processing.
本願請求項13に記載の発明は、前記膜厚計は、前記測定した基材表面のディッシング量を測定することを特徴とする請求項11記載の膜厚調整装置にある。The invention according to claim 13 of the present application is the film thickness adjusting apparatus according to claim 11, wherein the film thickness meter measures the dishing amount of the measured substrate surface.

本発明によれば、電解メッキによる成膜と電解加工による研削・研摩とを交互に繰り返すようにしたので、ディッシング量を所望の十分小さなものにすることができて基材表面に設けた成膜の平坦度を向上させることができるという優れた効果を有する。本発明は特に半導体ウエハの金属配線部分の形成に用いて好適である。 According to the present invention, film formation by electrolytic plating and grinding / polishing by electrolytic processing are alternately repeated, so that the amount of dishing can be made sufficiently small and the film provided on the substrate surface It has an excellent effect that the flatness of the film can be improved. The present invention is particularly suitable for use in forming a metal wiring portion of a semiconductor wafer.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は膜厚調整装置の一構成例を示す全体概略構成図である。なおこの構成例では説明の都合上、研削・研摩工程として主として機械的研削・研摩を用いて説明しているが、本発明は以下で説明するように、研削・研摩工程として少なくとも電解加工を用いるものである。同図に示すようにこの装置は、成膜液槽と研削・研摩液槽を兼用する槽10と、槽10内に設置される研削・研摩台20と、槽10内に出入り自在に設置されるサセプタ30と、槽10内に成膜液を供給する成膜液供給手段40と、槽10内に研削・研摩液を供給する研削・研摩液供給手段50と、膜厚計60と、電解メッキ用電気回路70とを具備して構成されている。以下各構成部材について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall schematic configuration diagram showing one configuration example of a film thickness adjusting device. In this configuration example, for the sake of explanation, mechanical grinding / polishing is mainly used as the grinding / polishing process. However, the present invention uses at least electrolytic processing as the grinding / polishing process as described below. Is. As shown in the figure, this apparatus is installed in a tank 10 that serves both as a film forming liquid tank and a grinding / polishing liquid tank, a grinding / polishing table 20 installed in the tank 10, and a tank 10 that is freely accessible. Susceptor 30, film forming solution supplying means 40 for supplying a film forming solution into the tank 10, grinding / polishing solution supplying means 50 for supplying a grinding / polishing solution into the tank 10, a film thickness meter 60, electrolysis And an electric circuit for plating 70. Each component will be described below.

研削・研摩台20はその表面に機械的研削・研摩面21を具備し、且つ回転軸23によって回転駆動可能に構成されている。   The grinding / polishing table 20 has a mechanical grinding / polishing surface 21 on its surface and is configured to be rotationally driven by a rotating shaft 23.

サセプタ30はその下面に半導体ウエハ100を保持するものであり、その回転軸31は上下左右に移動可能で、且つ回転駆動可能に構成されている。   The susceptor 30 holds the semiconductor wafer 100 on its lower surface, and its rotation shaft 31 is configured to be movable up and down and to the left and right and to be rotatable.

成膜液供給手段40は成膜液溜41と温調器43と液質モニタ・調整装置45とを具備し、また研削・研摩液供給手段50は研削・研摩液溜51と温調器53と液質モニタ・調整装置55とを具備し、両者は4つのバルブ47,49,57,59を介して1本の配管80に接続されている。配管80にはポンプ83とフィルタ85が取り付けられている。   The film formation liquid supply means 40 includes a film formation liquid reservoir 41, a temperature controller 43, and a liquid quality monitor / adjustment device 45, and the grinding / polishing liquid supply means 50 includes a grinding / polishing liquid reservoir 51 and a temperature controller 53. And a liquid quality monitor / adjustment device 55, both of which are connected to one pipe 80 via four valves 47, 49, 57, 59. A pump 83 and a filter 85 are attached to the pipe 80.

膜厚計60は上下左右前後に移動可能に構成されており、その先端が膜厚測定部61となっている。   The film thickness meter 60 is configured to be movable up and down, left and right, and back and forth, and the tip thereof is a film thickness measuring unit 61.

電解メッキ用電気回路70は電源71を具備し、半導体ウエハ100をカソード、対極73をアノードにするように結線されている。75は対極73と半導体ウエハ100に供給する電圧の極性を切り換える切換器である。   The electroplating electric circuit 70 includes a power source 71 and is connected so that the semiconductor wafer 100 serves as a cathode and the counter electrode 73 serves as an anode. A switch 75 switches the polarity of the voltage supplied to the counter electrode 73 and the semiconductor wafer 100.

次にこの装置の動作を、図1,図2,図3を用いて説明すると、まず図1に示すように、成膜しようとする面を下にした半導体ウエハ100をサセプタ30の下面に取り付け(ステップ1)、図1の実線で示す位置までサセプタ30を下降する。なお半導体ウエハ100の成膜しようとする面には、図3(a)に示すように絶縁層103の表面にその幅が500Å〜1μmの微細な多数の配線形成用の微細な窪み(穴や溝)105が設けられている。   Next, the operation of this apparatus will be described with reference to FIGS. 1, 2, and 3. First, as shown in FIG. 1, a semiconductor wafer 100 with a surface to be deposited is placed on the lower surface of the susceptor 30. (Step 1), the susceptor 30 is lowered to the position indicated by the solid line in FIG. Note that the surface of the semiconductor wafer 100 to be formed is formed on the surface of the insulating layer 103 as shown in FIG. 3A with a number of fine recesses (holes and holes) having a width of 500 to 1 μm. Groove) 105 is provided.

次にポンプ83を駆動してバルブ47,49を開き、槽10内に成膜液を流入して満たし(ステップ2)、成膜を実行する(ステップ3)。即ちこの実施形態では電解メッキ用電気回路70をオンすることで半導体ウエハ100表面に電解メッキ(この実施形態では銅又は銅を主成分とする銅合金及び/又はニッケル合金のメッキ)を施す。成膜中は膜厚分布均一化等の目的のため、必要に応じてサセプタ30を回転することで半導体ウエハ100を回転できる。 Next, the pump 83 is driven, the valves 47 and 49 are opened, the film forming solution is introduced into the tank 10 to fill it (Step 2), and film formation is executed (Step 3). That to facilities electroplating a semiconductor wafer 100 surface by turning on the electrolytic plating electric circuit 70 (of copper alloy and / or nickel alloy composed mainly of copper or copper in this embodiment) in this embodiment. For the purpose of such film in the film thickness distribution uniform, it rotates the semiconductor wafer 100 by rotating the susceptor 30 as needed.

半導体ウエハ100表面への成膜完了後、成膜液を成膜液溜41に戻し、バルブ47,49を閉じてバルブ57,59を開き、ポンプ83によって研削・研摩液溜51から研削・研摩液を槽10に満たす(ステップ4)。   After the film formation on the surface of the semiconductor wafer 100 is completed, the film forming liquid is returned to the film forming liquid reservoir 41, the valves 47 and 49 are closed and the valves 57 and 59 are opened, and the grinding and polishing liquid reservoir 51 is ground and polished by the pump 83. The tank 10 is filled with the liquid (Step 4).

そしてサセプタ60を下降させて機械的研削・研摩面21に当接させ、研削・研摩台20とサセプタ30を同時に別々の回転速度で回転し、更に両者を必要に応じて往復運動させ、これによって半導体ウエハ100の表面を均一に研削・研摩する(ステップ5)。   Then, the susceptor 60 is lowered and brought into contact with the mechanical grinding / polishing surface 21, the grinding / polishing table 20 and the susceptor 30 are simultaneously rotated at different rotational speeds, and both are reciprocated as necessary. The surface of the semiconductor wafer 100 is uniformly ground and polished (step 5).

このとき図3(b)に示すように、微細な窪み105に埋め込んだ配線用の金属部101の表面101aにディッシングが生じる。   At this time, as shown in FIG. 3B, dishing occurs on the surface 101 a of the wiring metal part 101 embedded in the fine depression 105.

次にサセプタ30を上昇させて研削・研摩液から引上げ、膜厚計60の膜厚測定部61を半導体ウエハ100の金属部101の表面101aに当て、横方向に走査することによってディッシング量を測定する(ステップ6)。   Next, the susceptor 30 is raised and pulled up from the grinding / polishing liquid, the film thickness measuring unit 61 of the film thickness meter 60 is applied to the surface 101a of the metal part 101 of the semiconductor wafer 100, and the dishing amount is measured by scanning in the lateral direction. (Step 6).

そしてステップ7において測定したディッシング量が予め設定した許容値以下の場合であれば、これによってその操作を終了するが、測定したディッシング量が許容値よりも削り過ぎの場合はステップ2に戻って再びメッキ膜の形成工程とそれに続く研削・研摩工程とを行なう。その際測定したディッシング量の値によって次に行なう再成膜工程での成膜量を決め、また研削・研摩量も調整する。   If the dishing amount measured in step 7 is less than or equal to the preset allowable value, the operation is ended. If the measured dishing amount is excessively cut from the allowable value, the process returns to step 2 and again. A plating film forming process and a subsequent grinding / polishing process are performed. The amount of film formation in the next re-deposition process is determined according to the measured dishing amount, and the grinding / polishing amount is also adjusted.

つまり図3(c)に示すように、金属部101上に所定量の成膜を行なった後に、再び研削・研摩工程によって図3(d)に示すようにその表面を研削・研摩してディッシング量が小さくなるように調整する。   That is, as shown in FIG. 3C, after a predetermined amount of film is formed on the metal part 101, the surface is ground and polished again by the grinding and polishing process as shown in FIG. Adjust so that the amount is small.

一方ステップ7において測定したディッシング量が負、即ち図3(e)に示すように金属部101の表面101aがその周囲よりも突出している場合は、ステップ4に戻って再び研削・研摩工程を実施する。その際にも測定したディッシング量の値によって研削・研摩量を調整する。   On the other hand, when the dishing amount measured in step 7 is negative, that is, as shown in FIG. 3E, the surface 101a of the metal part 101 protrudes from the periphery, the process returns to step 4 and the grinding / polishing process is performed again. To do. At that time, the grinding / polishing amount is adjusted according to the measured dishing amount.

即ち本発明は、ディッシング量が許容値に入らない場合は、再度成膜工程や研削・研摩工程に戻ることを繰り返し、これによって最終的にディッシング量を許容値内におさめるようにしているのである。   That is, according to the present invention, when the dishing amount does not fall within the allowable value, the process returns to the film forming process and the grinding / polishing process again, so that the dishing amount finally falls within the allowable value. .

そして上記構成例においては、研削・研摩方法として機械的研削・研摩加工を用いたが、本発明では電解加工を用いる。またこの電解加工に、それ以外の例えば、単なる化学加工,機械的研削・研摩加工の内の1つ又はそれらを複数組み合わせたものが使用できる。 In the above configuration example , mechanical grinding / polishing is used as the grinding / polishing method, but electrolytic machining is used in the present invention. Also in this electrolytic processing, the other example, just chemical machining, one of the machine械的grinding and polishing process or those they combine multiple use.

化学加工は通常行なわれるように、主として硝酸,塩酸,硫酸,フッ酸等の溶液を用い、金属を表面から溶出することによって所望の膜厚まで削るものであって、研削速度は酸の種類、濃度、温度、供給流量等によって調整する。   As usual, chemical processing uses a solution of nitric acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, etc., and the metal is eluted from the surface to cut to the desired film thickness. Adjust by concentration, temperature, supply flow rate, etc.

電解加工では、主に研削液として酸溶液中で、基材を陽極,対極を陰極(電解メッキの場合の逆極性)となるように結線して基材側からの電気化学的溶出を起こすことによって研削・研摩を行なう。即ち図1に示す装置で言えば、切換器75を切り換えることによって行なう。   In electrochemical machining, the base material is connected to the anode and the counter electrode is set to the cathode (reverse polarity in the case of electrolytic plating), mainly in an acid solution as a grinding fluid, causing electrochemical elution from the base material side. Grind and polish with In other words, in the apparatus shown in FIG.

何れの加工の場合も必要に応じて基材を回転することができる。   In any case, the substrate can be rotated as necessary.

機械的研削・研摩加工の場合、加工液は砥粒を懸濁した酸,アルカリ,又は中性の水溶液とし、サセプタ30と研削・研摩台20とを所望の面圧で互いに押し付け、一方又は両方を相対的に回転及び並進運動させることによって研削・研摩台20との相対滑り量を基材(半導体ウエハ100)面内で均一になるようにしている。   In the case of mechanical grinding / polishing, the working fluid is an acid, alkali, or neutral aqueous solution in which abrasive grains are suspended, and the susceptor 30 and the grinding / polishing table 20 are pressed against each other at a desired surface pressure, either or both. Is relatively rotated and translated so that the relative slip amount with respect to the grinding / polishing table 20 is made uniform within the surface of the substrate (semiconductor wafer 100).

以上のように化学的・電気化学的・機械的研削・研摩操作を単独又は組み合わせることによって任意の研削・研摩状況を実現できる。   As described above, an arbitrary grinding / polishing situation can be realized by combining chemical, electrochemical, mechanical grinding and polishing operations individually or in combination.

また図1の構成例では一例として、成膜と研削・研摩を同一の槽10内で実施しているが、成膜と研削・研摩を別々の槽内で行なっても良いし、研削・研摩のうち化学・電気化学的加工と機械的研削・研摩加工とを別の槽内で行なっても良い。 In the configuration example of FIG. 1, film formation and grinding / polishing are performed in the same tank 10 as an example. However, film formation, grinding and polishing may be performed in separate tanks, or grinding / polishing. Of these, chemical / electrochemical processing and mechanical grinding / polishing may be performed in separate tanks.

ところで実際の基材と成膜すべき金属材料の組合せは一般的には種々のものが考えられるので、研削・研摩方法もその組合せに応じて種々のやり方を選択して行なう必要がある。   By the way, since various combinations of the actual base material and the metal material to be formed are generally considered, it is necessary to select various methods for the grinding / polishing method according to the combination.

一般的な特徴として、化学・電気化学的加工によれば、加工速度が遅い反面、被加工面の損傷は少なく、いわゆる加工変質層は生じない。一方機械的加工によると加工速度が速い反面、被加工面に擦過痕を生じたり、砥粒による機械的損傷や一部の成膜金属の脱落を生じ易く、大なり小なり加工変質層の発生を招く。   As a general feature, according to chemical / electrochemical processing, the processing speed is slow, but damage to the surface to be processed is small, and so-called work-affected layers do not occur. On the other hand, mechanical processing has a high processing speed, but scratches are formed on the surface to be processed, and mechanical damage due to abrasive grains and loss of some deposited metal are likely to occur. Invite.

また図2のステップ6でディッシング量測定を行なう場合、図1に示す接触式の膜厚計60以外の機構の膜厚計を用いても良く、更に表面形状検査に際して基材を装置から取り外して別の装置に移動してこれを行なうこともできる。該表面形状検査は目視によって行なっても良い。   When measuring the dishing amount in step 6 of FIG. 2, a film thickness meter of a mechanism other than the contact-type film thickness meter 60 shown in FIG. 1 may be used, and the substrate is removed from the apparatus for surface shape inspection. You can do this by moving to another device. The surface shape inspection may be performed visually.

また一般に成膜液、研削・研摩液はそれぞれの膜材料の種類及び成膜・加工方法によって複数のものを用いる必要が考えられる。その場合、図1に示す成膜液溜41及び研削・研摩液溜51はその数が増加することになる。   Generally, it is considered necessary to use a plurality of film forming liquids and grinding / polishing liquids depending on the types of film materials and film forming / processing methods. In that case, the number of the film formation liquid reservoir 41 and the grinding / polishing liquid reservoir 51 shown in FIG. 1 increases.

更に図1に示す膜厚調整装置では、全ての成膜・加工を単一の槽10で行なっているが、夫々の工程を複数の槽で分担して実施する場合もある。その場合、槽の数は当然のことながら図1に示す場合よりも増加する。   Further, in the film thickness adjusting apparatus shown in FIG. 1, all film formation / processing is performed in a single tank 10, but each process may be shared by a plurality of tanks. In that case, the number of tanks naturally increases from the case shown in FIG.

膜厚調整装置の一構成例を示す全体概略構成図である。It is a whole schematic block diagram which shows the example of 1 structure of a film thickness adjusting apparatus. 膜厚調整装置の動作の一例を示す動作フロー図である。It is an operation | movement flowchart which shows an example of operation | movement of a film thickness adjusting apparatus. 半導体ウエハ100表面の成膜・充填状態を示す要部拡大断面図である。3 is an enlarged cross-sectional view of a main part showing a film formation / filling state on the surface of a semiconductor wafer 100. FIG. 半導体ウエハ100表面の成膜・充填状態を示す要部拡大断面図である。3 is an enlarged cross-sectional view of a main part showing a film formation / filling state on the surface of a semiconductor wafer 100. FIG.

符号の説明Explanation of symbols

10 槽(成膜液槽と研削・研摩液槽を兼用)
20 研削・研摩台
30 サセプタ
40 成膜液供給手段
50 研削・研摩液供給手段
60 膜厚計
100 半導体ウエハ(基材)
105 微細な窪み
10 tanks (combined with film forming liquid tank and grinding / polishing liquid tank)
20 Grinding / polishing table 30 Susceptor 40 Film forming solution supply means 50 Grinding / polishing solution supplying means 60 Film thickness meter 100 Semiconductor wafer (base material)
105 Fine depression

Claims (7)

基材表面に対して、膜の形成工程と研削・研摩工程とを交互に1回以上の複数回繰り返すことによって、該基材表面に所定の厚さ分布を持つ膜を形成することを特徴とする膜厚調整方法。   A film having a predetermined thickness distribution is formed on the surface of the base material by alternately repeating the film forming process and the grinding / polishing process one or more times on the surface of the base material. To adjust the film thickness. 前記基材表面には予めその幅が500Å〜1μmの微細な窪みが加工されており、前記膜の形成工程によって該微細な窪み内部に膜材料の充填が行なわれることを特徴とする請求項1記載膜厚調整方法。   2. A fine recess having a width of 500 to 1 [mu] m is processed in advance on the surface of the base material, and a film material is filled in the fine recess by the film forming step. Described film thickness adjustment method. 前記膜の形成は、電解メッキ又は無電解メッキによって行なうことを特徴とする請求項1又は2記載の膜厚調整方法。   3. The film thickness adjusting method according to claim 1, wherein the film is formed by electrolytic plating or electroless plating. 前記基材は半導体ウエハであり、且つ前記膜材料は銅又は銅を主成分とする銅合金及び/又はニッケル合金であることを特徴とする請求項1又は2又は3記載の膜厚調整方法。   4. The film thickness adjusting method according to claim 1, wherein the base material is a semiconductor wafer, and the film material is copper or a copper alloy and / or a nickel alloy containing copper as a main component. 前記膜の研削・研摩は、化学加工、電解加工、機械的研削・研摩加工、又はそれらの任意の2つ又はそれら全てを組み合わせた方法によって行なうことを特徴とする請求項1又は2又は3又は4記載の膜厚調整方法。   The film grinding / polishing is performed by chemical processing, electrolytic processing, mechanical grinding / polishing, or a combination of any two or all of them. 4. The film thickness adjusting method according to 4. 少なくとも、基材を保持するサセプタと、
サセプタに保持した基材を浸漬して成膜する成膜液槽と、
サセプタに保持した基材を浸漬して内部に設置した研削・研摩台に基材表面を当接することによって該表面を研削・研摩する研削・研摩液槽とを具備することを特徴とする膜厚調整装置。
At least a susceptor holding the substrate;
A film forming solution tank for immersing the substrate held in the susceptor to form a film;
A film thickness comprising: a grinding / polishing liquid tank for grinding / polishing the surface of the substrate by abutting the surface of the substrate against a grinding / polishing table installed inside by immersing the substrate held in the susceptor Adjustment device.
前記成膜液槽及び研削・研摩液槽は、同一の槽内に成膜液供給手段と、研削・研摩液供給手段とを取り付けることによって構成されていることを特徴とする請求項6記載の膜厚調整装置。   7. The film forming liquid tank and the grinding / polishing liquid tank are configured by attaching a film forming liquid supply means and a grinding / polishing liquid supply means in the same tank. Film thickness adjustment device.
JP2005034166A 2005-02-10 2005-02-10 Method and apparatus for controlling film thickness Pending JP2005142594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034166A JP2005142594A (en) 2005-02-10 2005-02-10 Method and apparatus for controlling film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034166A JP2005142594A (en) 2005-02-10 2005-02-10 Method and apparatus for controlling film thickness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27360097A Division JPH1197396A (en) 1997-09-19 1997-09-19 Method and apparatus for controlling film width

Publications (1)

Publication Number Publication Date
JP2005142594A true JP2005142594A (en) 2005-06-02

Family

ID=34698257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034166A Pending JP2005142594A (en) 2005-02-10 2005-02-10 Method and apparatus for controlling film thickness

Country Status (1)

Country Link
JP (1) JP2005142594A (en)

Similar Documents

Publication Publication Date Title
US7449098B1 (en) Method for planar electroplating
US6739951B2 (en) Method and apparatus for electrochemical-mechanical planarization
US6299741B1 (en) Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
US20070051638A1 (en) Electropolishing liquid, electropolishing method, and method for fabricating semiconductor device
WO1999026758A1 (en) Electrochemical-control of abrasive polishing and machining rates
US7686935B2 (en) Pad-assisted electropolishing
Suni et al. Cu planarization for ULSI processing by electrochemical methods: a review
KR20060013686A (en) Polishing composition and method for polishing a conductive material
EP1560949B1 (en) Integrated plating and planarization process and apparatus therefor
JP3453352B2 (en) Polishing apparatus and polishing method
US7361582B2 (en) Method of forming a damascene structure with integrated planar dielectric layers
US20060144711A1 (en) Electrochemical machining device and electrochemical machining method
JP2007050506A (en) Apparatus for electrochemical machining
US20070181441A1 (en) Method and apparatus for electropolishing
US20040259365A1 (en) Polishing method polishing system and method for fabricating semiconductor device
JP2007051374A (en) Electroprocessing method and substrate treatment method
JP2005142594A (en) Method and apparatus for controlling film thickness
US20040197541A1 (en) Selective electroless deposition and interconnects made therefrom
US6875322B1 (en) Electrochemical assisted CMP
JP6797409B2 (en) Catalyst surface standard etching method and its equipment
JPH1197396A (en) Method and apparatus for controlling film width
US7247557B2 (en) Method and composition to minimize dishing
Jeong et al. Mechanical effects of polishing pad in copper electrochemical mechanical deposition for planarization
Pancharatnam et al. Process Co-Optimization of CVD and CMP for Tungsten Metallization
Sun et al. Effect of potassium persulfate on chemical mechanical planarization of Cu/Ni microstructures for MEMS

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050309

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080620

Free format text: JAPANESE INTERMEDIATE CODE: A523

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902