JP2005140643A - Method and detector for detecting toc - Google Patents

Method and detector for detecting toc Download PDF

Info

Publication number
JP2005140643A
JP2005140643A JP2003377507A JP2003377507A JP2005140643A JP 2005140643 A JP2005140643 A JP 2005140643A JP 2003377507 A JP2003377507 A JP 2003377507A JP 2003377507 A JP2003377507 A JP 2003377507A JP 2005140643 A JP2005140643 A JP 2005140643A
Authority
JP
Japan
Prior art keywords
toc
sample water
absorbent
ethanol amine
coulometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377507A
Other languages
Japanese (ja)
Inventor
Daiji Okuda
大二 奥田
Kenji Iharada
健志 居原田
Yozo Morita
洋造 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003377507A priority Critical patent/JP2005140643A/en
Publication of JP2005140643A publication Critical patent/JP2005140643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TOC measuring method and instrument of high sensitivity hardly affected by temperature fluctuation. <P>SOLUTION: CO<SB>2</SB>in sample water generated in an oxidation reaction part 6 is absorbed into ethanol amine filled in a chamber 14 via a gas permeable film 12 in a CO<SB>2</SB>migration part 8. After a set time lapses, a valve 18 is switched to a drain side to block flow-in of the sample water into the CO<SB>2</SB>migration part 8. A potential set for electrolyzing only a reaction product of the CO<SB>2</SB>and the ethanol amine is imparted to a working electrode of an electrode 11 for coulometry to conduct the coulometry for the ethanol amine. A CO<SB>2</SB>amount accumulated in the ethanol amine is measured as a molar quantity. Since the CO<SB>2</SB>molar quantity corresponds to a molar quantity of the TOC, a TOC concentration is found easily, and the TOC concentration is determined based on a flow rate of the sample water flowing within the set time and the measured TOC molar quantity. The ethanol amine is reproduced because the CO<SB>2</SB>accumulated in the ethanol amine is discharged by the execution of the coulometry. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、環境水、水道水、純水又は超純水の汚染の程度を測る手段として利用されるTOC(全有機体炭素)測定方法及び装置に関する。   The present invention relates to a TOC (total organic carbon) measurement method and apparatus used as a means for measuring the degree of contamination of environmental water, tap water, pure water or ultrapure water.

TOCを測定する方法の一つに、例えば、試料液にペルオキソ二硫酸カリウムを添加し加熱して有機物をCO2に変換し、その試料液からガス透過膜を介して脱イオンされた水にCO2を移行させ、脱イオン水の電気伝導度の変化からCO2量を定量し、TOC値を求める方法がある(特許文献1参照。)。 One method for measuring TOC is, for example, adding potassium peroxodisulfate to a sample solution and heating to convert the organic matter to CO 2, and then converting the sample solution into CO deionized water through a gas permeable membrane. 2 is shifted to, to quantify the amount of CO 2 from a change in the electrical conductivity of the deionized water, there is a method of determining the TOC value (see Patent Document 1.).

その具体的な例としては、例えば、有機化合物を含む試料を酸化し、試料の酸化前の電気伝導度と酸化後の電気伝導度との差分を、少なくとも2個の電極を有する電気伝導度測定セルを酸化前の位置と酸化後の位置に配置し、両電気伝導度測定セルの位置間の試料の電気伝導度の差分として出力する差伝導度計を用いて検出することにより、有機化合物の酸化分解によって生じた電気伝導度増加量を測定し、この電気伝導度増加量から試料中のTOC量を定量する方法が挙げられる(特許文献2参照。)。
特許第2510368号公報 特開2001−281189号公報
As a specific example, for example, a sample containing an organic compound is oxidized, and the difference between the electrical conductivity before oxidation and the electrical conductivity after oxidation of the sample is measured for electrical conductivity having at least two electrodes. By placing the cell in the pre-oxidation position and the post-oxidation position and detecting it using a differential conductivity meter that outputs the difference in the electrical conductivity of the sample between the positions of both conductivity measuring cells, There is a method of measuring the amount of increase in electrical conductivity caused by oxidative decomposition and quantifying the amount of TOC in the sample from the amount of increase in electrical conductivity (see Patent Document 2).
Japanese Patent No. 2510368 JP 2001-281189 A

有機物から変換され生成したCO2を試料水から脱イオン水に移行させてTOC値を測定する場合、試料水と脱イオン水のCO2濃度が等しくなると平衡状態となってしまい、生成したCO2の一部が電気伝導度測定に利用されず、TOC測定の最高感度が制限されるという問題がある。
また、電気伝導度は温度依存性が大きいために、微量なTOC値を測定する場合の定量下限値が制約される。
さらに、電気伝導度測定は原理的にCO2を直接測定するものではないので、標準液を用いてスパン校正を行なう必要がある上、極低濃度の標準液を生成することが困難である。
In the case of measuring the TOC value by transferring CO 2 produced by conversion from organic substances from sample water to deionized water, if the CO 2 concentrations of the sample water and deionized water are equal, an equilibrium state occurs, and the produced CO 2 There is a problem that a part of is not used for electrical conductivity measurement and the maximum sensitivity of TOC measurement is limited.
Moreover, since electrical conductivity has large temperature dependence, the lower limit of quantification in the case of measuring a trace amount TOC value is restricted.
Furthermore, since the electrical conductivity measurement does not directly measure CO 2 in principle, it is necessary to perform span calibration using a standard solution, and it is difficult to produce a standard solution having a very low concentration.

そこで本発明は、高感度で温度変動の影響が少ないTOC測定方法及び装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a TOC measurement method and apparatus that are highly sensitive and less affected by temperature fluctuations.

本発明の測定方法は、有機物を酸化分解してCO2に変換し、生成したCO2をCO2吸収剤に移行させた後、CO2吸収剤が吸収したCO2量をクーロメトリー法により定量することでTOC測定を行なうことを特徴とするTOC測定方法である。
CO2吸収剤としてはアミン類の溶液を用いることができる。
Measuring method of the present invention, the organic matter oxidative decomposition to convert the CO 2, after which the resulting CO 2 and transferred to the CO 2 absorbent, the CO 2 absorbing agent is quantified by absorbed CO 2 amount coulometric method Thus, the TOC measurement method is characterized in that TOC measurement is performed.
A solution of amines can be used as the CO 2 absorbent.

クーロメトリー(電量分析)について説明する。
本発明に用いるクーロメトリーは定電位クーロメトリーである。定電位クーロメトリーに用いる装置は、定電位電解用の装置にクーロメーター(電量計)を取り付けたものである。装置の電極は、酸化用の電極と作用電極とを備え、作用電極の電位をポテンシオスタットにより制御する。
クーロメトリー電解では、電解中に濃度と電流値が時間に対して対数的に減少し、最後には指示電解質に起因する残余電流となる。検出の限界は残余電流のレベルにもよるが、2ミリ当量から0.5ミリ当量である。
作用電極の電位は、定量したい成分のみが電気分解されるような電位に設定する。
Coulometry (coulometric analysis) will be described.
Coulometry used in the present invention is constant potential coulometry. The apparatus used for constant potential coulometry is a constant potential electrolysis apparatus with a coulometer (coulometer) attached. The electrode of the device includes an electrode for oxidation and a working electrode, and the potential of the working electrode is controlled by a potentiostat.
In coulometric electrolysis, the concentration and current value logarithmically decrease with time during electrolysis, and finally a residual current resulting from the indicator electrolyte. The limit of detection is 2 milliequivalent to 0.5 milliequivalent although it depends on the residual current level.
The potential of the working electrode is set to such a potential that only the component to be quantified is electrolyzed.

本発明の測定装置は、試料水中の有機物を酸化分解してCO2に変換する酸化反応部と、前記酸化反応部から導かれた試料水をガス透過膜を介してCO2吸収剤と接触させ、試料水中のCO2を前記CO2吸収剤に移行させるCO2移行部と、前記CO2移行部のCO2吸収剤側に設けられたクーロメトリー用の電極を備え、クーロメトリー法によりCO2を定量するCO2定量部と、を備えたものである。 The measuring apparatus of the present invention comprises an oxidation reaction part that oxidizes and decomposes organic matter in sample water to convert it into CO 2 , and a sample water introduced from the oxidation reaction part is brought into contact with a CO 2 absorbent through a gas permeable membrane. comprises a CO 2 transition to shift the CO 2 in the sample water in the CO 2 absorber, an electrode for coulometry provided in CO 2 absorbent side of the CO 2 transition portion, quantified CO 2 by coulometry method A CO 2 quantification unit.

試料中の有機物を酸化分解してCO2に変換しCO2吸収剤に吸収させてTOC測定を行なうようにしたので、発生したCO2を全て測定に利用することができる。また、クーロメトリーは温度依存性が小さいこととあいまって、高感度測定ができる。
また、クーロメトリーは原理的にスパン校正が不要となり、したがって、標準溶液の調整・保存・評定などを省略することができる。
Since the organic matter in the sample is absorbed in the oxidative decomposition to convert the CO 2 CO 2 absorbent has to perform the TOC measurement can utilize generated CO 2 for all measurements. In addition, coulometry, combined with its low temperature dependence, enables highly sensitive measurements.
In addition, coulometry does not require span calibration in principle, and therefore adjustment, storage, and evaluation of standard solutions can be omitted.

本発明によるTOC測定装置は、図1に示されるように、試料水のpHを酸性に調整するpH調整部2と、酸性化された試料水中のIC(無機体炭素)を除去するIC除去部4と、ICが除去された後の試料水中の有機物を酸化分解してCO2に変換する酸化反応部6と、酸化反応部6で生成したCO2をCO2吸収剤に移行させるCO2移行部8と、CO2吸収剤に吸収されたCO2量をクーロメトリー法により定量するクーロメトリー回路部10とを備えている。 As shown in FIG. 1, the TOC measuring apparatus according to the present invention includes a pH adjusting unit 2 that adjusts the pH of sample water to acid, and an IC removing unit that removes IC (inorganic carbon) in the acidified sample water. 4, and the oxidation reaction unit 6 for converting the water sample of organics after IC is removed by oxidative decomposition to CO 2, CO 2 proceeds to shift the CO 2 produced by the oxidation reaction unit 6 in the CO 2 absorbent a part 8, and a coulometric circuit section 10 for quantifying the coulometric method absorbed CO 2 amounts to CO 2 absorbent.

[実施例]
以下に一実施例を図2を参照して詳細に説明する。
装置の構成として、試料水の流れに沿って上流側(図の左側)から、pH調整部2、IC除去部4、酸化反応部6、CO2移行部8及びクーロメトリー回路部10が配置されている。
pH調整部2は、例えば、採取した試料水にpH調整剤として一定割合の無機酸、例えばリン酸を添加することで試料水のpHを酸性に調整する。
IC除去部4はpH調整部2の出口流路に接続され、ガス透過膜を介して試料水と蒸留水が接触している。その蒸留水中で空気バブリングすることで試料水中のICを空気に移行させ、試料水中のICを除去する。空気に移行したCO2はCO2アブソーバ5により吸着除去される。CO2アブソーバ5にはエタノールアミンなどのアミン溶液を収容しておく。
酸化反応部6はIC除去部4の出口流路に接続されており、IC除去部4と酸化反応部6の流路中において、試料水中の有機物の酸化を促進させる酸化剤としてペルオキソ二硫酸カリウムが試料水に添加される。酸化反応部6はUVランプ7の周りに試料水が流れるチューブが巻かれた構造をしており、試料水に紫外線を照射することで溶存酸素と有機物とを反応させ、有機物をCO2に変換する。
[Example]
Hereinafter, an embodiment will be described in detail with reference to FIG.
As a configuration of the apparatus, a pH adjustment unit 2, an IC removal unit 4, an oxidation reaction unit 6, a CO 2 transfer unit 8 and a coulometry circuit unit 10 are arranged from the upstream side (the left side in the figure) along the flow of the sample water. Yes.
For example, the pH adjuster 2 adjusts the pH of the sample water to be acidic by adding a certain proportion of an inorganic acid, for example, phosphoric acid, as a pH adjuster to the collected sample water.
The IC removing unit 4 is connected to the outlet channel of the pH adjusting unit 2, and the sample water and distilled water are in contact with each other through the gas permeable membrane. By bubbling air in the distilled water, the IC in the sample water is transferred to air, and the IC in the sample water is removed. The CO 2 transferred to the air is adsorbed and removed by the CO 2 absorber 5. The CO 2 absorber 5 contains an amine solution such as ethanolamine.
The oxidation reaction unit 6 is connected to the outlet channel of the IC removal unit 4, and potassium peroxodisulfate is used as an oxidizing agent for promoting the oxidation of organic substances in the sample water in the channel of the IC removal unit 4 and the oxidation reaction unit 6. Is added to the sample water. The oxidation reaction unit 6 has a structure in which a tube through which sample water flows is wound around a UV lamp 7, and by reacting dissolved oxygen and organic matter by irradiating the sample water with ultraviolet rays, the organic matter is converted into CO 2 . To do.

CO2移行部8は、試料水用のチャンバー16とCO2吸収剤用のチャンバー14とから構成されており、これらは破線で示されたガス透過膜12で仕切られている。ガス透過膜12の材質は限定されないが、例えば連続気孔を有するポリ四フッ化エチレンなどの有機樹脂膜である。CO2吸収剤用のチャンバー14はCO2吸収剤としてのエタノールアミン溶液で満たされている。エタノールアミン溶液の濃度は例えば5%が適当である。
CO2移行部8では、酸化反応部6で生成したCO2がガス透過膜12を介してCO2吸収剤に吸収される。このCO2移行部8では、試料水用のチャンバー16に流入した試料水中のCO2のみがガス透過膜12を透過してチャンバー14側に移り、チャンバー14に満たされているエタノールアミン溶液に吸収される。CO2が除去された試料水は外部に排出される。エタノールアミンはCO2吸収力が強く、迅速にCO2の移行を行なうことができる。
酸化反応部6とCO2移行部8との間の流路上にはバルブ18が設けられており、試料水のCO2移行部8への流入を任意に断続できるようになっている。
The CO 2 transfer section 8 is composed of a sample water chamber 16 and a CO 2 absorbent chamber 14, which are partitioned by a gas permeable membrane 12 indicated by a broken line. Although the material of the gas permeable film 12 is not limited, for example, it is an organic resin film such as polytetrafluoroethylene having continuous pores. Chamber 14 for CO 2 absorber is filled with ethanolamine solution as a CO 2 absorbent. The concentration of the ethanolamine solution is, for example, 5%.
In the CO 2 transfer unit 8, CO 2 generated in the oxidation reaction unit 6 is absorbed by the CO 2 absorbent through the gas permeable membrane 12. In the CO 2 transfer section 8, only CO 2 in the sample water flowing into the sample water chamber 16 permeates the gas permeable membrane 12 and moves to the chamber 14 side, and is absorbed by the ethanolamine solution filled in the chamber 14. Is done. The sample water from which CO 2 has been removed is discharged to the outside. Ethanolamine has a strong CO 2 absorption capacity and can quickly shift CO 2 .
A valve 18 is provided on the flow path between the oxidation reaction unit 6 and the CO 2 transfer unit 8 so that the flow of sample water into the CO 2 transfer unit 8 can be arbitrarily interrupted.

CO2吸収剤用のチャンバー14には、クーロメトリー回路10に接続されたクーロメトリー用の電極11が設けられており、その作用電極(図示略)に電位を与えることで、チャンバー14内のエタノールアミンのクーロメトリーを行なうことができるようになっている。作用電極はポテンシオスタットに接続されており、電位を任意に調節できるようになっている。 The CO 2 absorbent chamber 14 is provided with a coulometric electrode 11 connected to the coulometric circuit 10. By applying a potential to the working electrode (not shown), the ethanolamine in the chamber 14 is supplied. Coulometry can be performed. The working electrode is connected to a potentiostat so that the potential can be adjusted arbitrarily.

以下に同実施例の動作を説明する。
このTOC測定装置に供給された試料水は、pH調整部2で例えばリン酸などのpH調整剤を添加されてpHが酸性になるように調整され、続いてIC除去部4でICを除去された後、酸化剤を添加され、酸化反応部6に導入される。酸化反応部6では試料水はUVランプ7により紫外線を照射されることで有機物が酸化分解してCO2に変換される。
The operation of this embodiment will be described below.
The sample water supplied to the TOC measuring device is adjusted so that the pH becomes acidic by adding a pH adjusting agent such as phosphoric acid in the pH adjusting unit 2, and then the IC is removed by the IC removing unit 4. After that, an oxidizing agent is added and introduced into the oxidation reaction unit 6. In the oxidation reaction unit 6, the sample water is irradiated with ultraviolet rays from a UV lamp 7, whereby organic substances are oxidized and decomposed and converted to CO 2 .

酸化反応部6で生成したCO2を含む試料水はCO2移行部8のチャンバー16に一定時間導入される。この導入時間は予めオペレータにより設定されている。その設定された時間の間に、試料水中のCO2がガス透過膜12を透過してチャンバー14のエタノールアミンに吸収されて蓄積する。 Sample water containing CO 2 generated in the oxidation reaction unit 6 is introduced into the chamber 16 of the CO 2 transfer unit 8 for a certain period of time. This introduction time is set in advance by the operator. During the set time, CO 2 in the sample water permeates the gas permeable membrane 12 and is absorbed and accumulated in the ethanolamine in the chamber 14.

設定した時間の経過後は、バルブ18を排水側に切り換えてCO2移行部8への試料水の流入を遮断する。そしてクーロメトリー用の電極11の作用電極にCO2とエタノールアミンの反応生成物のみを電気分解するために設定された電位を与えてエタノールアミンのクーロメトリーを行なう。エタノールアミンに蓄積されたCO2量はモル量として測定される。このCO2のモル量はTOCのモル量と対応しているので、簡単にTOC濃度を求めることができ、TOC濃度は、設定時間内に流れる試料水の流量と測定されたTOCモル量から決定される。クーロメトリーを行なうことでエタノールアミンに蓄積されていたCO2が排出されるので、エタノールアミンは再生される。
以上で1サイクルの測定が終了し、次サイクルの測定を開始する。
After the set time elapses, the valve 18 is switched to the drain side to block the sample water from flowing into the CO 2 transition section 8. Then, coulometry of ethanolamine is performed by applying a potential set to electrolyze only the reaction product of CO 2 and ethanolamine to the working electrode of the electrode 11 for coulometry. The amount of CO 2 accumulated in ethanolamine is measured as a molar amount. Since the molar amount of CO 2 corresponds to the molar amount of TOC, the TOC concentration can be easily determined. The TOC concentration is determined from the flow rate of the sample water flowing within the set time and the measured TOC molar amount. Is done. Since CO 2 accumulated in ethanolamine is discharged by performing coulometry, ethanolamine is regenerated.
Thus, the measurement for one cycle is completed, and the measurement for the next cycle is started.

この実施例によれば、エタノールアミンにCO2を蓄積させるので、設定した測定1サイクルの試料水流量(測定時間)を増加させることでCO2の定量誤差を小さくすることができ、測定の感度を高めることができる。
CO2移行部8において、ガス透過膜12を介して試料水とCO2吸収剤とが接しているので、効率的にCO2をCO2吸収剤に移行させることができ、CO2移行部8の容積を小さくすることができる。
According to this embodiment, since CO 2 is accumulated in ethanolamine, the quantitative error of CO 2 can be reduced by increasing the sample water flow rate (measurement time) for one set measurement cycle, and the sensitivity of measurement. Can be increased.
In CO 2 transition 8, since through the gas permeable membrane 12 and the sample water and CO 2 absorbent is in contact, can be efficiently shifting the CO 2 in the CO 2 absorbent, CO 2 transition 8 The volume of can be reduced.

この実施例の他の測定方法としては、CO2移行部8に試料水を流しながらエタノールアミンの入ったチャンバー14のクーロメトリーを行ない、電流値を積分することでCO2量を定量する方法が挙げられる。そして、予め設定した時間経過後は、CO2移行部8への試料水の流入を遮断して、そのままクーロメトリーを続けると、エタノールアミンに吸収されていたCO2が全て取り除かれ、電流値がほぼゼロに近い一定値となる。電流値がほぼゼロに近い一定値となるまでの電流値を積分することで、設定時間内に流れた試料水中に含まれていたCO2量を定量することができる。電流値がゼロに近い一定値となればエタノールアミンに吸収されていたCO2が全て取り除かれているので、エタノールアミンが再生したことになる。 As another measurement method of this embodiment, there is a method in which the amount of CO 2 is quantified by performing coulometry of the chamber 14 containing ethanolamine while flowing sample water through the CO 2 transition section 8 and integrating the current value. It is done. Then, after the preset time has elapsed, if the sample water is blocked from flowing into the CO 2 transition section 8 and the coulometry is continued as it is, all of the CO 2 absorbed by the ethanolamine is removed, and the current value is almost equal. It becomes a constant value close to zero. By integrating the current value until the current value becomes a constant value close to almost zero, the amount of CO 2 contained in the sample water that has flowed within the set time can be quantified. If the current value becomes a constant value close to zero, all the CO 2 absorbed by ethanolamine has been removed, and ethanolamine has been regenerated.

バルブ18の取付け位置は、pH調整部2の上流側やpH調整部2とIC除去部4の間など、特に限定されない。
有機物の酸化方法としては、紫外線照射によるもの以外の公知の酸化方法を単独又は組み合わせて用いてもよい。
IC除去部4のIC除去方法としては、ガス透過膜を用いてICをIC吸収剤に吸収させる方法を用いることもできる。
The mounting position of the valve 18 is not particularly limited, such as upstream of the pH adjusting unit 2 or between the pH adjusting unit 2 and the IC removing unit 4.
As an organic oxidation method, known oxidation methods other than those by ultraviolet irradiation may be used alone or in combination.
As an IC removal method of the IC removal unit 4, a method in which an IC is absorbed by an IC absorbent using a gas permeable film can also be used.

本発明の構成を概略的に示す流路図である。It is a channel figure showing the composition of the present invention roughly. 一実施例の構成を示す流路図である。It is a flow chart which shows the composition of one example.

符号の説明Explanation of symbols

2 pH調整部
4 IC除去部
5 CO2アブソーバ
6 酸化反応部
7 UVランプ
8 CO2移行部
10 クーロメトリー回路部
11 クーロメトリー電極
12 ガス透過膜
14 CO2吸収剤用チャンバー
16 試料水用チャンバー
18 開閉バルブ
2 pH adjustment unit 4 IC removal unit 5 CO 2 absorber 6 Oxidation reaction unit 7 UV lamp 8 CO 2 transition unit 10 Coulometry circuit unit 11 Coulometry electrode 12 Gas permeable membrane 14 CO 2 absorbent chamber 16 Sample water chamber 18 Open / close valve

Claims (3)

試料水中の有機物を酸化分解してCO2に変換し、生成したCO2をCO2吸収剤に移行させた後、CO2吸収剤が吸収したCO2量をクーロメトリー法により定量することでTOC測定を行なうことを特徴とするTOCの測定方法。 The organics water sample oxidative decomposition to convert the CO 2, after which the resulting CO 2 and transferred to the CO 2 absorbent, TOC measured by quantifying the coulometric method the amount of CO 2 CO 2 absorbent has absorbed A method for measuring TOC, wherein: 前記CO2吸収剤はアミン類の溶液である請求項1に記載のTOC測定方法。 The TOC measurement method according to claim 1, wherein the CO 2 absorbent is a solution of amines. 試料水中の有機物を酸化分解してCO2に変換する酸化反応部と、
前記酸化反応部から導かれた試料水をガス透過膜を介してCO2吸収剤と接触させ、試料水中のCO2を前記CO2吸収剤に移行させるCO2移行部と、
前記CO2移行部のCO2吸収剤側に設けられたクーロメトリー用の電極を備え、クーロメトリー法によりCO2を定量するCO2定量部と、を備えたTOC測定装置。
An oxidation reaction part that oxidatively decomposes organic matter in the sample water to convert it into CO 2 ;
A sample water led from the oxidation reaction part is brought into contact with a CO 2 absorbent through a gas permeable membrane, and a CO 2 transfer part for transferring CO 2 in the sample water to the CO 2 absorbent;
A TOC measuring apparatus comprising a coulometric electrode provided on the CO 2 absorbent side of the CO 2 transfer part, and a CO 2 quantifying part for quantifying CO 2 by a coulometric method.
JP2003377507A 2003-11-06 2003-11-06 Method and detector for detecting toc Pending JP2005140643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377507A JP2005140643A (en) 2003-11-06 2003-11-06 Method and detector for detecting toc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377507A JP2005140643A (en) 2003-11-06 2003-11-06 Method and detector for detecting toc

Publications (1)

Publication Number Publication Date
JP2005140643A true JP2005140643A (en) 2005-06-02

Family

ID=34688201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377507A Pending JP2005140643A (en) 2003-11-06 2003-11-06 Method and detector for detecting toc

Country Status (1)

Country Link
JP (1) JP2005140643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204583A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Calibration method of liquid leakage detection sensor, and liquid leakage detection sensor
CN106370776A (en) * 2016-08-29 2017-02-01 西北工业大学 Method used for detecting absorbing capacity of carbon dioxide absorbed from ethanolamine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204583A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Calibration method of liquid leakage detection sensor, and liquid leakage detection sensor
CN106370776A (en) * 2016-08-29 2017-02-01 西北工业大学 Method used for detecting absorbing capacity of carbon dioxide absorbed from ethanolamine
CN106370776B (en) * 2016-08-29 2018-10-23 西北工业大学 A method of the uptake for detecting ethanol amine absorbing carbon dioxide

Similar Documents

Publication Publication Date Title
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
JP2510368B2 (en) Method and apparatus for determining carbon dissolved in water
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
JP4112360B2 (en) Pulse flow total organic carbon analyzer
US6228325B1 (en) Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same
JP5080601B2 (en) Apparatus for measuring hydrogen sulfide concentration in gas flow and method for determining sulfide ion
JP3169831B2 (en) Water anion detector
JP2010216977A (en) Apparatus for measurement of total organic carbon
CN102564823A (en) Device and method for continuously determining total organic carbon (TOC) concentration of sea water and high-salinity waste water
JP2007017317A (en) Gas sensor, gas concentration measuring instrument using it and method of measuring concentration of nitrogen oxide
JP2005140643A (en) Method and detector for detecting toc
US3003932A (en) Apparatus for the galvanic analysis of hydrogen
JP2009047431A (en) Gas concentration detector and gas concentration detecting method
JPH11101761A (en) Total carbonic acid concentration measuring apparatus, ultrapure-water preparation apparatus provided with the same and preparation of ultrapure water
JP2005274386A (en) Hydrogen peroxide analyzer, and hydrogen peroxide analytical method
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
CN111373250B (en) Method for determining concentration of free chlorine in tower by using chlorine as active alkali
CN109682860A (en) Organic carbon analysis device and working method thereof
CN206540820U (en) A kind of chromium method UVCOD all-in-one on-line computing models
JP3924618B2 (en) Highly sensitive measurement method of weakly basic ions by ion exclusion separation-UV absorbance enhancement system
KR100490453B1 (en) Electrochemical determination and measuring devices and measuring electrode of organic contaminant by using micro-structured electrodes
JP2002107353A (en) Water quality analyzer
JP2005214649A (en) Toc measuring instrument
JP2002122566A (en) Ultratrace oxygen analyzer in inert gas
JP2013208566A (en) Breakthrough detection method and operation method of ion exchange device