JP2007017317A - Gas sensor, gas concentration measuring instrument using it and method of measuring concentration of nitrogen oxide - Google Patents

Gas sensor, gas concentration measuring instrument using it and method of measuring concentration of nitrogen oxide Download PDF

Info

Publication number
JP2007017317A
JP2007017317A JP2005199756A JP2005199756A JP2007017317A JP 2007017317 A JP2007017317 A JP 2007017317A JP 2005199756 A JP2005199756 A JP 2005199756A JP 2005199756 A JP2005199756 A JP 2005199756A JP 2007017317 A JP2007017317 A JP 2007017317A
Authority
JP
Japan
Prior art keywords
electrode
working electrode
potential
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005199756A
Other languages
Japanese (ja)
Other versions
JP4184364B2 (en
Inventor
Hitoshi Nakamura
仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komyo Rikagaku Kogyo KK
Original Assignee
Komyo Rikagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komyo Rikagaku Kogyo KK filed Critical Komyo Rikagaku Kogyo KK
Priority to JP2005199756A priority Critical patent/JP4184364B2/en
Publication of JP2007017317A publication Critical patent/JP2007017317A/en
Application granted granted Critical
Publication of JP4184364B2 publication Critical patent/JP4184364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor capable of measuring the accurate concentration of nitrogen oxide without being affected by an interference gas. <P>SOLUTION: In the gas sensor 1, a counter electrode 5, a comparing electrode 6 and the acting electrode 7 mainly comprising carbon and arranged on a filter film 4b are immersed in an electrolyte 12, a sample gas is brought into contact with the filter film 4b provided to the back position of the acting electrode 7 to permeate the nitrogen oxide contained in the sample gas in the thickness direction of the filter film 4b, the potential of the acting electrode 7 to the comparing electrode 6 is set to the potential causing the oxidation reaction of nitrogen monoxide due to the acting electrode 7 or the potential causing the reducing reaction of nitrogen dioxide. Since the effect of the interference gas is small when the oxidation or reduction current flowing to the acting electrode is measured, the concentration of the nitrogen monoxide gas can be calculated from the oxidation current and the concentration of nitrogen dioxide can be calculated from the reduction current. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は定電位電解式ガスセンサと、それを用いて一酸化窒素や二酸化窒素ガス等の窒素酸化物の濃度を測定する装置及び方法に関するものであり、特に燃焼器具の排ガスあるいは自動車排ガス等の燃焼排ガス中に高濃度で存在する一酸化炭素と水素の干渉影響を実質的に受けずに、また、共存するSO2やH2Sの干渉影響を受けずに、更には、これらのガスに曝されることによる感度が変化せず、窒素酸化物の濃度のみを選択的、安定に測定することができる装置及び方法に関する。 The present invention relates to a constant potential electrolytic gas sensor and an apparatus and method for measuring the concentration of nitrogen oxides such as nitrogen monoxide and nitrogen dioxide gas using the same, and more particularly, combustion of exhaust gas from combustion equipment or automobile exhaust gas. Without being substantially affected by the interference of carbon monoxide and hydrogen present in the exhaust gas at a high concentration, without being affected by the interference of coexisting SO 2 and H 2 S, and further exposed to these gases. The present invention relates to an apparatus and method capable of selectively and stably measuring only the concentration of nitrogen oxides without changing the sensitivity due to being applied.

燃焼排ガス中に含まれる窒素酸化物ガス濃度は、燃焼状態の管理、あるいは大気汚染防止の観点から測定の必要があり、従来化学発光法あるいは赤外線式の分析計で測定されている。しかし、これらの分析計は大型で高価であるため、簡易に測定できる小型で安価な測定器が望まれている。   The nitrogen oxide gas concentration contained in the combustion exhaust gas needs to be measured from the viewpoint of controlling the combustion state or preventing air pollution, and is conventionally measured by a chemiluminescence method or an infrared analyzer. However, since these analyzers are large and expensive, a small and inexpensive measuring device that can be easily measured is desired.

このような簡易測定器に用いられるセンサとしては、電解電流を利用した定電位電解式センサや平衡電位を利用した固体電解質センサ、吸着反応を利用した半導体式センサなどが知られている。   As a sensor used in such a simple measuring instrument, a constant potential electrolytic sensor utilizing an electrolytic current, a solid electrolyte sensor utilizing an equilibrium potential, a semiconductor sensor utilizing an adsorption reaction, and the like are known.

これらの中で、定電位電解式センサはガス濃度に比例した信号が得られる、比較的選択性に優れる、消費電力が小さい等の特徴があり、一酸化炭素(CO)や硫化水素(H2S)を対象として普及している。そして、一酸化窒素(NO)や二酸化窒素(NO2)に対しても、電極材料として金を用い、それぞれ適当な電位に設定することで、測定できることが知られている。 Among these, the potentiostatic sensor has characteristics such as a signal proportional to the gas concentration, relatively excellent selectivity, and low power consumption. Carbon monoxide (CO) and hydrogen sulfide (H 2) It is popular for S). It is also known that measurement can be performed for nitric oxide (NO) and nitrogen dioxide (NO 2 ) by using gold as an electrode material and setting each electrode to an appropriate potential.

これまでの窒素酸化物センサでは、作用電極として金が用いられていた。これは、共存する一酸化炭素の干渉・影響を抑制するためである。実際、作用電極として使用すると一酸化炭素の感度は一酸化窒素あるいは二酸化窒素の感度の1/1000程度となるため、通常の空気中での測定に際しては、実質的に影響を無視することが可能であった。   Conventional nitrogen oxide sensors have used gold as the working electrode. This is to suppress interference and influence of coexisting carbon monoxide. In fact, when used as a working electrode, the sensitivity of carbon monoxide is about 1/1000 of that of nitric oxide or nitrogen dioxide, so the effect can be virtually ignored when measuring in normal air. Met.

しかし燃焼排ガス中の窒素酸化物ガス濃度を測定しようとした場合は、条件によっては一酸化炭素の濃度が10vol%にも達する場合があり、従来の作用電極を用いたガスセンサでは、窒素酸化物濃度換算で約100ppm相当の出力を示してしまうため、正確な測定ができなかった。実際、高濃度の一酸化炭素が発生する条件は不完全燃焼状態であり、その際の窒素酸化物濃度は低いため、特に問題である。   However, when trying to measure the nitrogen oxide gas concentration in the combustion exhaust gas, depending on the conditions, the concentration of carbon monoxide may reach as much as 10 vol%. Since an output equivalent to about 100 ppm was shown in terms of conversion, accurate measurement could not be performed. In fact, the condition for generating a high concentration of carbon monoxide is an incomplete combustion state, and the nitrogen oxide concentration at that time is low, which is a particular problem.

また、軽油あるいは重油を燃料とした燃焼装置の排ガスの場合は、排ガス中に二酸化硫黄(SO2)や硫化水素(H2S)が含まれるが、従来のように金を作用電極に用いたセンサではこれらの干渉や影響が大きく、さらにはこれらのガスに曝されると窒素酸化物に対する感度が変化してしまうという問題があったため、除去剤などを用いて干渉ガスを除去してから測定する必要があった。
A NEW ELECTROCHEMICAL ANALYZER FOR NITRIC OXIDE AND NITROGEN DIOXIDE, J.M.Sedlak and K.F.Blurton, Talanta, 1976, 23, 811-814 特開2005−83956 特開2001−289816
In addition, in the case of exhaust gas from a combustion apparatus using light oil or heavy oil as fuel, sulfur dioxide (SO 2 ) or hydrogen sulfide (H 2 S) is contained in the exhaust gas, but gold was used for the working electrode as in the past. Sensors have a large amount of interference and influence, and the sensitivity to nitrogen oxides changes when exposed to these gases, so measurement is performed after removing the interference gas using a remover. There was a need to do.
A NEW ELECTROCHEMICAL ANALYZER FOR NITRIC OXIDE AND NITROGEN DIOXIDE, JMSedlak and KFBlurton, Talanta, 1976, 23, 811-814 JP-A-2005-83956 JP 2001-289816 A

本発明は、高濃度のガスあるいは、共存下で窒素酸化物濃度を選択的にかつ安定に測定できるガスセンサと測定装置を提供することにある。   It is an object of the present invention to provide a gas sensor and a measurement device that can selectively and stably measure a nitrogen oxide concentration in the presence of a high concentration gas or in the presence of a high concentration gas.

上記課題を解決するため、本発明のうちの第一のセンサは、容器本体に収容された電解液と、表面が前記電解液と接触し、前記電解液が浸透可能な作用電極と、前記作用電極の裏面と接触し、気体が浸透可能なフィルタ膜と、前記電解液とそれぞれ接触する対極と比較電極とを有し、前記フィルタ膜に接触した試料ガス中に含まれる測定対象ガスが前記フィルタ膜を透過し、前記作用電極によって化学反応が生じ、前記作用電極に電流が流れるように構成されたガスセンサであって、前記作用電極は炭素を主成分とされたガスセンサである。
また、前記第一のセンサは、前記電解液が酸性であるガスセンサである。
また、前記第一のセンサを有する本発明の第一の測定装置は、前記作用電極に接続された電流計と、前記比較電極に対する前記作用電極の電位を、一酸化窒素を前記作用電極で酸化反応させる電位に設定する回路と、前記電流計の測定値から求められた一酸化窒素濃度を表示する表示装置とを有するガス濃度測定装置である。
In order to solve the above problems, a first sensor of the present invention includes an electrolytic solution housed in a container body, a working electrode whose surface is in contact with the electrolytic solution, and into which the electrolytic solution can penetrate, and the working A measurement target gas included in a sample gas in contact with the filter membrane has a filter membrane that is in contact with the back surface of the electrode and allows gas to permeate, a counter electrode that is in contact with the electrolyte solution, and a reference electrode, respectively. A gas sensor configured to pass through a membrane, cause a chemical reaction by the working electrode, and cause a current to flow through the working electrode, wherein the working electrode is a gas sensor mainly composed of carbon.
The first sensor is a gas sensor in which the electrolytic solution is acidic.
The first measuring device of the present invention having the first sensor includes an ammeter connected to the working electrode, and the potential of the working electrode with respect to the comparison electrode. Nitric oxide is oxidized by the working electrode. It is a gas concentration measuring device having a circuit for setting a potential to be reacted and a display device for displaying the nitric oxide concentration obtained from the measured value of the ammeter.

また、本発明の第一の測定装置は、前記比較電極に対する前記作用電極の電位は+100mV以上+600mV以下の電位に設定されるガス濃度測定装置である。
また、本発明の第二の測定装置は、第一のセンサと、前記作用電極に接続された電流計と、前記比較電極に対する前記作用電極の電位を、二酸化窒素を前記作用電極で還元反応させる電位に設定する回路と、前記電流計の測定値から求められた二酸化窒素濃度を表示する表示装置とを有するガス濃度測定装置である。
また、本発明の前記第二の測定装置は、前記比較電極に対する前記作用電極の電位は−500mV以上−100mV以下の電位に設定されるガス濃度測定装置である。
The first measuring device of the present invention is a gas concentration measuring device in which the potential of the working electrode with respect to the reference electrode is set to a potential of +100 mV or more and +600 mV or less.
Further, the second measuring apparatus of the present invention causes the working potential of the working electrode with respect to the first electrode, an ammeter connected to the working electrode, and the comparison electrode to cause nitrogen dioxide to undergo a reduction reaction at the working electrode. It is a gas concentration measuring device having a circuit for setting a potential and a display device for displaying the nitrogen dioxide concentration obtained from the measured value of the ammeter.
The second measuring apparatus of the present invention is a gas concentration measuring apparatus in which the potential of the working electrode with respect to the reference electrode is set to a potential of −500 mV to −100 mV.

また、本発明の第三のセンサは、容器本体に収容された電解液と、表面が前記電解液と接触し、それぞれ前記電解液が浸透可能な第一、第二の作用電極と、前記第一、第二の作用電極の裏面と接触し、気体が浸透可能なフィルタ膜と、前記電解液と接触する対極と比較電極とを有し、前記フィルタ膜に接触した試料ガス中に含まれる測定対象ガスが前記フィルタ膜を透過し、前記第一、第二の作用電極によって化学反応が生じ、前記第一、第二の作用電極にそれぞれ電流が流れるように構成されたガスセンサであって、前記第一、第二の作用電極は炭素を主成分とされたガスセンサである。
また、本発明の第三のセンサは、前記電解液は酸性であるガスセンサである。
本発明の第三の測定装置は、前記第三のセンサと、前記第一、第二の作用電極にそれぞれ接続された第一、第二の電流計と、前記比較電極に対する前記第一の作用電極の電位を、前記第一の作用電極で一酸化窒素を酸化反応させる電位に設定し、前記比較電極に対する前記第二の作用電極の電位を、前記第二の作用電極で二酸化窒素を還元反応させる電位に設定する回路と、前記第一の電流計の測定値から求められた一酸化窒素濃度と、前記第二の電流計の測定値から求められた二酸化窒素濃度を表示する表示装置とを有するガス濃度測定装置である。
The third sensor of the present invention includes an electrolyte contained in a container body, first and second working electrodes whose surfaces are in contact with the electrolyte and are capable of penetrating the electrolyte, and the first Measurements included in the sample gas in contact with the filter membrane, having a filter membrane in contact with the back surface of the first and second working electrodes and allowing gas to permeate, a counter electrode in contact with the electrolytic solution, and a reference electrode A gas sensor configured such that a target gas permeates the filter membrane, a chemical reaction is generated by the first and second working electrodes, and currents flow through the first and second working electrodes, respectively. The first and second working electrodes are gas sensors mainly composed of carbon.
The third sensor of the present invention is a gas sensor in which the electrolyte is acidic.
The third measuring device of the present invention includes the third sensor, the first and second ammeters respectively connected to the first and second working electrodes, and the first action on the comparison electrode. The potential of the electrode is set to a potential at which nitric oxide is oxidized by the first working electrode, the potential of the second working electrode with respect to the comparison electrode is reduced, and the nitrogen dioxide is reduced by the second working electrode. A circuit for setting the potential to be applied, a nitric oxide concentration obtained from the measurement value of the first ammeter, and a display device for displaying the nitrogen dioxide concentration obtained from the measurement value of the second ammeter. It is a gas concentration measuring device.

また、本発明の第三の測定装置は、前記比較電極に対する前記第一の作用電極の電位を+100mV以上+600mV以下の電位に設定し、前記比較電極に対する前記第二の作用電極の電位を−500mV以上−100mV以下の電位に設定するガス濃度測定装置である。
また、本発明の第三の測定装置は、前記第二の電流計の測定値によって前記第一の電流計の測定値を補正し、一酸化窒素濃度を求めるガス濃度測定装置である。
In the third measuring apparatus of the present invention, the potential of the first working electrode with respect to the comparison electrode is set to a potential of +100 mV or more and +600 mV or less, and the potential of the second working electrode with respect to the comparison electrode is −500 mV. This is a gas concentration measuring device set to a potential of −100 mV or less.
The third measuring device of the present invention is a gas concentration measuring device for correcting the measured value of the first ammeter with the measured value of the second ammeter to obtain the nitric oxide concentration.

また、本発明の第一の測定方法は、対極と、比較電極と、炭素を主成分とし、フィルタ膜上に配置された作用電極とを電解液に接触させ、試料ガスを前記作用電極裏面位置の前記フィルタ膜に接触させ、前記試料ガス中に含まれる一酸化窒素を前記フィルタ膜の厚み方向に透過させ、前記対極の電位を制御し、前記比較電極に対する前記作用電極の電位を前記作用電極で一酸化窒素の酸化反応が生じる電位に設定し、前記作用電極に流れる酸化電流を測定し、前記酸化電流から前記一酸化窒素の濃度を求める窒素酸化物濃度の測定方法である。
また、前記第一の測定方法は、前記比較電極に対する前記作用電極の電位を+100mV以上+600mV以下の電位にする窒素酸化物濃度の測定方法である。
Further, the first measuring method of the present invention comprises contacting a counter electrode, a comparative electrode, and a working electrode mainly composed of carbon and disposed on a filter membrane with an electrolyte solution, and supplying a sample gas to the working electrode back surface position. The nitric oxide contained in the sample gas is transmitted in the thickness direction of the filter membrane, the potential of the counter electrode is controlled, and the potential of the working electrode with respect to the comparison electrode is set to the working electrode. And measuring the oxidation current flowing through the working electrode, and determining the concentration of nitrogen monoxide from the oxidation current.
The first measuring method is a measuring method of the nitrogen oxide concentration in which the potential of the working electrode with respect to the reference electrode is set to a potential of +100 mV or more and +600 mV or less.

また、本発明の第二の測定方法は、対極と、比較電極と、炭素を主成分とし、フィルタ膜上に配置された作用電極とを電解液に接触させ、試料ガスを前記作用電極裏面位置の前記フィルタ膜に接触させ、前記試料ガス中に含まれる二酸化窒素を前記フィルタ膜の厚み方向に透過させ、前記対極の電位を制御し、前記比較電極に対する前記作用電極の電位を前記作用電極で二酸化窒素の還元反応が生じる電位に設定し、前記作用電極に流れる酸化電流を測定し、前記酸化電流から前記二酸化窒素の濃度を求める窒素酸化物濃度の測定方法である。
前記第二の測定方法は、前記比較電極に対する前記作用電極の電位を−500mV以上−100mV以下の電位にする窒素酸化物濃度の測定方法である。
Further, the second measuring method of the present invention is such that the counter electrode, the reference electrode, and the working electrode mainly composed of carbon and disposed on the filter membrane are brought into contact with the electrolytic solution, and the sample gas is placed on the back surface position of the working electrode. The nitrogen gas contained in the sample gas is transmitted in the thickness direction of the filter film, the potential of the counter electrode is controlled, and the potential of the working electrode with respect to the comparison electrode is adjusted by the working electrode. This is a method for measuring the nitrogen oxide concentration by setting the potential at which a reduction reaction of nitrogen dioxide occurs, measuring the oxidation current flowing through the working electrode, and determining the concentration of the nitrogen dioxide from the oxidation current.
The second measuring method is a measuring method of the nitrogen oxide concentration in which the potential of the working electrode with respect to the reference electrode is set to a potential of −500 mV to −100 mV.

また、本発明の第三の測定方法は、対極と、比較電極と、それぞれ炭素を主成分とし、フィルタ膜上に配置された第一、第二の作用電極とを電解液に接触させ、前記対極の電位を制御して、前記比較電極に対する前記第一の作用電極の電位を、前記第一の作用電極で一酸化窒素の酸化反応が生じる電位に設定し、前記比較電極に対する前記第二の作用電極の電位を、前記第二の作用電極で二酸化窒素の還元反応が生じる電位に設定し、試料ガスを前記フィルタ膜に接触させ、前記試料ガス中に含まれる一酸化窒素と二酸化窒素を前記フィルタ膜の厚み方向に透過させ、前記第一の作用電極に流れる酸化電流と、前記第二の作用電極に流れる還元電流とから前記試料中の一酸化窒素の濃度と二酸化窒素の濃度を求める窒素酸化物濃度の測定方法である。
前記第三の測定方法は、前記比較電極に対する前記第一の作用電極の電位を+100mV以上+600mV以下の電位に設定し、前記比較電極に対する前記第二の作用電極の電位を−500mV以上−100mV以下の電位に設定する窒素酸化物濃度の測定方法である。
また、前記第三の測定方法は、前記還元電流の測定値を用いて前記一酸化窒素濃度を補正する窒素酸化物濃度の測定方法である。
Further, the third measurement method of the present invention is to bring the counter electrode, the reference electrode, and the first and second working electrodes, each of which is mainly composed of carbon and disposed on the filter membrane, into contact with the electrolytic solution, By controlling the potential of the counter electrode, the potential of the first working electrode with respect to the reference electrode is set to a potential at which oxidation reaction of nitric oxide occurs at the first working electrode, and the second potential with respect to the reference electrode is set. The potential of the working electrode is set to a potential at which a reduction reaction of nitrogen dioxide occurs at the second working electrode, the sample gas is brought into contact with the filter membrane, and the nitrogen monoxide and nitrogen dioxide contained in the sample gas are Nitrogen that is transmitted in the thickness direction of the filter membrane and determines the concentration of nitrogen monoxide and the concentration of nitrogen dioxide in the sample from the oxidation current flowing through the first working electrode and the reduction current flowing through the second working electrode Measuring method of oxide concentration A.
In the third measurement method, the potential of the first working electrode with respect to the comparison electrode is set to a potential of +100 mV or more and +600 mV or less, and the potential of the second working electrode with respect to the comparison electrode is set to −500 mV or more and −100 mV or less. It is the measuring method of the nitrogen oxide concentration set to the electric potential.
The third measurement method is a nitrogen oxide concentration measurement method in which the nitrogen monoxide concentration is corrected using the measurement value of the reduction current.

本発明は上記のように構成されており、電解液に酸素が供給され、各電極に所定の電圧が印加されると、作用電極、又は第一、第二の作用電極で酸化反応又は還元反応が生じ、作用電極に酸化電流又は還元電流が流れる。
予め作用電極に流れる酸化又は還元電流の値と、一酸化窒素の濃度と二酸化窒素の濃度を対応付けておくと、実際の測定対象ガスを測定したときに、酸化電流値を一酸化窒素濃度に変換でき、還元電流を二酸化窒素濃度に変換することができる。還元電流の値から酸化電流の値を補正することもできる。
作用電極は炭素を主成分とし、厚み方向を測定対象物ガスが透過可能な厚みの電極である。作用電極が炭素で構成されている場合、実験によると、一酸化窒素や二酸化窒素の酸化又は還元反応の反応率は高く、水素、硫化水素、一酸化炭素等の干渉ガスの反応率は低いことが分かっており、その結果、干渉ガスが存在しても、一酸化窒素や二酸化窒素の酸化又は還元反応により、大きな電流値が得られるため、実質的に干渉ガスの反応電流の影響を無視できる。
電流は、電流を直接測定してもよいし、抵抗に流れる電圧を測定し、電流に換算してもよい。
フィルタ膜に気体が透過する性質が求められ、一般に多孔質膜が用いられる。
The present invention is configured as described above. When oxygen is supplied to the electrolyte and a predetermined voltage is applied to each electrode, an oxidation reaction or a reduction reaction is performed at the working electrode or the first and second working electrodes. And an oxidation current or a reduction current flows through the working electrode.
If the value of the oxidation or reduction current flowing through the working electrode is previously associated with the concentration of nitric oxide and the concentration of nitrogen dioxide, when the actual measurement target gas is measured, the oxidation current value is converted to the nitric oxide concentration. The reduction current can be converted to a nitrogen dioxide concentration. The oxidation current value can also be corrected from the reduction current value.
The working electrode is an electrode having carbon as a main component and having a thickness that allows measurement object gas to pass through in the thickness direction. When the working electrode is made of carbon, according to experiments, the reaction rate of oxidation or reduction reaction of nitrogen monoxide and nitrogen dioxide is high, and the reaction rate of interference gases such as hydrogen, hydrogen sulfide, and carbon monoxide is low. As a result, even if an interference gas is present, a large current value can be obtained by the oxidation or reduction reaction of nitric oxide or nitrogen dioxide, so that the influence of the reaction current of the interference gas can be substantially ignored. .
The current may be directly measured, or may be converted into a current by measuring a voltage flowing through a resistor.
A property of allowing gas to permeate the filter membrane is required, and a porous membrane is generally used.

一酸化炭素、水素、硫化水素、二酸化硫黄等の干渉ガスの影響を受けない窒素酸化物のガスセンサと、それを使用した測定装置、及び測定方法が得られる。
作用電極が1個の場合、作用電極の電位を変えると、一酸化窒素濃度と二酸化窒素濃度の両方を求めることができる。
A nitrogen oxide gas sensor that is not affected by interference gases such as carbon monoxide, hydrogen, hydrogen sulfide, and sulfur dioxide, and a measuring device and a measuring method using the same are obtained.
In the case of one working electrode, both the nitric oxide concentration and the nitrogen dioxide concentration can be determined by changing the potential of the working electrode.

他方、対極と比較電極を共通にして第一、第二の作用電極を設け、同じ電解液に接触させると、第一、第二の作用電極を異なる電位に設定できるので、一方では酸化反応、他方では還元反応を生じさせることができる。   On the other hand, when the first and second working electrodes are provided in common with the counter electrode and the reference electrode and brought into contact with the same electrolyte solution, the first and second working electrodes can be set to different potentials. On the other hand, a reduction reaction can occur.

そして、第一、第二の作用電極に流れる酸化電流と還元電流を測定すると、還元電流から求めた二酸化窒素濃度を使用して、酸化電流の測定値を補正し、二酸化窒素の影響を除去して正確な一酸化窒素濃度を求めることができる。   When the oxidation current and the reduction current flowing through the first and second working electrodes are measured, the measured value of the oxidation current is corrected using the nitrogen dioxide concentration obtained from the reduction current, and the influence of nitrogen dioxide is removed. Accurate nitric oxide concentration.

図1の符号1は本発明の第一例のガスセンサであり、両端部にそれぞれ開口部を有する筒状の容器本体3を有している。   Reference numeral 1 in FIG. 1 denotes a gas sensor according to a first example of the present invention, which has a cylindrical container body 3 having openings at both ends.

各開口部は、ガス透過性を有する多孔質のフィルタ膜4a、4bによってそれぞれ塞がれており、一方の開口に位置するフィルタ膜4aには、その容器本体3の内部側の表面に対極(C.E.)5と比較電極(R.E.)6とが密着して配置されており、他方の開口に位置するフィルタ膜4bには、同様に、容器本体3の内部側の表面に作用電極(W.E.)7が密着して配置されている。   Each opening is closed by gas permeable porous filter membranes 4a and 4b, respectively. The filter membrane 4a located at one opening has a counter electrode (on the inner surface of the container body 3). CE) 5 and the reference electrode (RE) 6 are arranged in close contact with each other, and the filter film 4b located in the other opening is similarly provided with a working electrode (WE) 7 on the inner surface of the container body 3. Are closely arranged.

比較電極6と対極5は耐腐食性の膜状の電極、例えば膜状の白金(白金黒を含む。)電極で構成されている。フィルタ膜4a上に粉末を直接圧着するか、あるいは真空蒸着、スパッタリング、イオンプレーティングの各法、または無電解めっき法によってフィルタ膜4a上に形成することができる。白金ではなく、他の貴金属を用いることもできる。   The comparison electrode 6 and the counter electrode 5 are made of a corrosion-resistant film-like electrode, for example, a film-like platinum (including platinum black) electrode. The powder can be directly pressed on the filter film 4a, or can be formed on the filter film 4a by vacuum deposition, sputtering, ion plating, or electroless plating. Other noble metals can be used instead of platinum.

作用電極7は炭素を主成分とする膜状の電極であり、例えば黒鉛の粉末を、フィルタ膜4b上にそのまま圧着して形成したり、四フッ化エチレン樹脂の粉末等、適当なバインダによって結合し、フィルタ膜4b上に塗布して形成することができる。また、真空蒸着、スパッタリング、イオンプレーティング等の方法でも形成でき、また、無電解めっきの方法でも形成することができる。黒鉛の代わりにカーボンブラックと呼ばれる炭素の微粉末を使用することもできる。   The working electrode 7 is a film-like electrode containing carbon as a main component. For example, a graphite powder is directly pressed on the filter film 4b, or bonded with an appropriate binder such as a powder of tetrafluoroethylene resin. It can be formed by applying on the filter film 4b. Moreover, it can also form by methods, such as vacuum evaporation, sputtering, and ion plating, and can also form by the method of electroless plating. Instead of graphite, carbon fine powder called carbon black may be used.

白金又は白金黒の電極の場合、白金又は白金黒の粉末を単独で、又は、4フッ化エチレン樹脂粉末等のバインダーと混合し、適当な溶剤に分散させ、多孔質フィルタ膜4aを濾紙として用い、減圧濾過によって直接多孔質フィルタ膜4a上に付着させ(又は減圧濾過によって得たフィルムを多孔質フィルタ膜4a上に転写し)、圧着して電極を形成することができる。   In the case of platinum or platinum black electrodes, platinum or platinum black powder is used alone or mixed with a binder such as tetrafluoroethylene resin powder and dispersed in an appropriate solvent, and the porous filter membrane 4a is used as filter paper. The electrode can be formed by adhering directly onto the porous filter membrane 4a by vacuum filtration (or transferring the film obtained by vacuum filtration onto the porous filter membrane 4a) and pressing it.

黒鉛等の炭素を主成分とする電極の場合も同様であり、黒鉛等の炭素粉末を単独で、又は、4フッ化エチレン樹脂粉末等のバインダーと混合し、適当な溶剤に分散させ、多孔質フィルタ膜4bを濾紙として用い、減圧濾過によって直接多孔質フィルタ膜4b上に付着させ(又は減圧濾過によって得たフィルムを多孔質フィルタ膜4b上に転写し)、圧着して電極を形成することができる。   The same applies to an electrode mainly composed of carbon such as graphite. Carbon powder such as graphite alone or mixed with a binder such as tetrafluoroethylene resin powder is dispersed in an appropriate solvent, and porous. Using the filter membrane 4b as filter paper, the electrode can be formed by adhering directly on the porous filter membrane 4b by vacuum filtration (or transferring the film obtained by vacuum filtration onto the porous filter membrane 4b) and pressing it. it can.

後述するように、作用電極7とフィルタ膜4bとの界面で酸化又は還元反応を発生させるために、フィルタ膜4bには通気性が必要であり、作用電極7には、厚み方向に水が浸透する性質が必要となる。このような性質から、フィルタ膜4a、4bは、例えば四フッ化エチレン樹脂(PTFE)のフィルムを用いることができる。   As will be described later, in order to generate an oxidation or reduction reaction at the interface between the working electrode 7 and the filter membrane 4b, the filter membrane 4b needs to be breathable, and water penetrates into the working electrode 7 in the thickness direction. The nature to do is necessary. Because of these properties, for example, a film of tetrafluoroethylene resin (PTFE) can be used as the filter films 4a and 4b.

電解液は、硫酸、リン酸等の酸水溶液、即ち、酸性水溶液を用いることができる。硝酸や塩酸も酸性水溶液であり、用いることができるが、揮発性があるので望ましくない。
他方、塩基性の電解液は空気中の二酸化炭素と反応してしまうため、望ましくない。
As the electrolytic solution, an aqueous acid solution such as sulfuric acid or phosphoric acid, that is, an acidic aqueous solution can be used. Nitric acid and hydrochloric acid are also acidic aqueous solutions and can be used, but are not desirable because they are volatile.
On the other hand, a basic electrolyte is not desirable because it reacts with carbon dioxide in the air.

塩化リチウムや塩化カルシウム等の中性塩水溶液の場合は、後述するように、二酸化窒素の測定には使用できるが、一酸化窒素に対しては反応によって発生する電流が小さいため、測定には不向きである。   In the case of an aqueous solution of neutral salt such as lithium chloride or calcium chloride, it can be used for measurement of nitrogen dioxide as described later, but it is not suitable for measurement because the current generated by the reaction is small for nitric oxide. It is.

次に、フィルタ膜4a、4bと容器本体3の端部との間、又は各電極5〜7と容器本体3の端部の間には、リング状のゴムから成るパッキン8a、8bが配置されている。   Next, packings 8 a and 8 b made of ring-shaped rubber are disposed between the filter membranes 4 a and 4 b and the end of the container body 3 or between the electrodes 5 to 7 and the end of the container body 3. ing.

フィルタ膜4a、4bの反対側の面にもリング状のゴムから成るパッキン9a、9bが配置されており、それらの表面には側板10a、10bが押し当てられ、各側板10a、10bは、圧力が印加された状態で、ねじ17によって容器本体3にねじ止め固定さてれいる。   Packing 9a, 9b made of ring-shaped rubber is also disposed on the opposite surface of the filter membranes 4a, 4b, and the side plates 10a, 10b are pressed against the surfaces, and the side plates 10a, 10b Is applied to the container body 3 with screws 17.

容器本体3の内部には、予め電解液12が封入されている。電極5〜7が形成されたフィルタ膜4a、4bは容器本体3に押しつけられており、電解液12は外部に漏れ出さないようになっている。   An electrolytic solution 12 is sealed in the container body 3 in advance. The filter films 4a and 4b on which the electrodes 5 to 7 are formed are pressed against the container body 3 so that the electrolyte solution 12 does not leak out.

対極5と比較電極6とが配置されたフィルタ膜4aを押圧する側板10aには、厚み方向を貫通する空気穴15が形成されている。   An air hole 15 penetrating in the thickness direction is formed in the side plate 10a that presses the filter film 4a on which the counter electrode 5 and the comparison electrode 6 are arranged.

フィルタ膜4aの一部は、対極5と比較電極6が形成されれおらず、電解液12に接触しており、電解液12と接触した部分の裏面が、空気穴15の底部に露出されている。   Part of the filter membrane 4 a is not formed with the counter electrode 5 and the comparison electrode 6, and is in contact with the electrolytic solution 12, and the back surface of the portion in contact with the electrolytic solution 12 is exposed at the bottom of the air hole 15. Yes.

空気穴15の開口から入った酸素を含んだ空気はフィルタ膜4aに接触すると、フィルタ膜4aの厚み方向に透過し、電解液12に溶け込むことができる。逆に、後述する反応により、対極5で生成された酸素は、フィルタ膜4aの厚み方向を透過し、空気穴15から放出される。   When the oxygen-containing air that has entered through the opening of the air hole 15 comes into contact with the filter membrane 4 a, it can permeate in the thickness direction of the filter membrane 4 a and dissolve in the electrolyte solution 12. Conversely, oxygen generated by the counter electrode 5 through the reaction described later passes through the thickness direction of the filter film 4 a and is released from the air holes 15.

作用電極7が配置されたフィルタ膜4bを押圧する側板10bには、凹部が形成されており、フィルタ膜4bには、この凹部の開口が押し当てられ、凹部内にフィルタ膜4bが露出するように構成され、凹部とフィルタ膜4bとによって形成される一定体積の空間により、貯留部18が構成されている。   A recess is formed in the side plate 10b that presses the filter film 4b on which the working electrode 7 is disposed. The opening of the recess is pressed against the filter film 4b so that the filter film 4b is exposed in the recess. The storage part 18 is comprised by the space of the fixed volume formed by the recessed part and the filter film | membrane 4b.

その側板10bには、外周から貯留部18まで貫通する二本の通気孔13、14が形成されており、一方の通気孔13を吸気側とし、他方の通気孔14を排気側として測定対象の窒素酸化物を含む試料ガスを貯留部18に供給すると、試料ガス中の窒素酸化物ガスがフィルタ膜4bを透過し、作用電極7とフィルタ膜4bの界面に到達すると、各電極5〜7の電位により、窒素酸化物ガスが、作用電極7とフィルタ膜4bの界面で、酸化反応又は還元反応を起こす。   The side plate 10b is formed with two vent holes 13 and 14 penetrating from the outer periphery to the storage portion 18, and one of the vent holes 13 is an intake side and the other vent hole 14 is an exhaust side. When the sample gas containing nitrogen oxide is supplied to the reservoir 18, the nitrogen oxide gas in the sample gas passes through the filter film 4b and reaches the interface between the working electrode 7 and the filter film 4b. Depending on the potential, the nitrogen oxide gas causes an oxidation reaction or a reduction reaction at the interface between the working electrode 7 and the filter film 4b.

図3の符号20は、上記ガスセンサ1を用いた窒素酸化物ガスの測定装置であり、上記ガスセンサ1と、演算増幅器24と、基準電圧源26と、電流計27とを有している。   Reference numeral 20 in FIG. 3 is a nitrogen oxide gas measuring device using the gas sensor 1, and includes the gas sensor 1, an operational amplifier 24, a reference voltage source 26, and an ammeter 27.

上記ガスセンサ1の作用電極7、対極5、比較電極6にはそれぞれリードが接続されており、そのリードにより、作用電極7は一定電位(ここでは接地電位)に接続され、対極5は、演算増幅器24の出力端子に接続され、比較電極6は演算増幅器24の反転入力端子に接続されている。作用電極7は、接地電位ではなく、制御可能な電圧源に接続することもできる。
演算増幅器24の非反転入力端子には基準電圧源26の出力端子が接続されている。
Leads are connected to the working electrode 7, the counter electrode 5, and the comparison electrode 6 of the gas sensor 1, and the working electrode 7 is connected to a constant potential (here, ground potential) by the lead, and the counter electrode 5 is an operational amplifier. The comparison electrode 6 is connected to the inverting input terminal of the operational amplifier 24. The working electrode 7 can also be connected to a controllable voltage source instead of the ground potential.
The output terminal of the reference voltage source 26 is connected to the non-inverting input terminal of the operational amplifier 24.

上記ガスセンサ1では、比較電極6の電位は対極5の電位によって制御可能であり、比較電極6の電位は対極5の電位が低下すると低下し、上昇すると上昇する。   In the gas sensor 1, the potential of the comparison electrode 6 can be controlled by the potential of the counter electrode 5, and the potential of the comparison electrode 6 decreases when the potential of the counter electrode 5 decreases and increases when it increases.

従って、上記ガスセンサ1と演算増幅器24の接続では負帰還回路が構成されるたため、演算増幅器24の動作により、比較電極5が基準電圧源26の出力電圧Vaと等しくなるように、対極5の電位が制御される。
作用電極7の電位は接地電位であるから、電解液12の電位に対する作用電極7の電位は、−Vaになる。
Therefore, since the negative feedback circuit is configured by connecting the gas sensor 1 and the operational amplifier 24, the potential of the counter electrode 5 is set so that the comparison electrode 5 becomes equal to the output voltage Va of the reference voltage source 26 by the operation of the operational amplifier 24. Is controlled.
Since the potential of the working electrode 7 is the ground potential, the potential of the working electrode 7 with respect to the potential of the electrolytic solution 12 is −Va.

対極5と演算増幅器24の出力端子の間には電流計27が挿入されている。演算増幅器24の入力電流は無視できる程小さいため、電流計27に流れる電流は、対極5と作用電極7の間に流れる電流に等しい。   An ammeter 27 is inserted between the counter electrode 5 and the output terminal of the operational amplifier 24. Since the input current of the operational amplifier 24 is negligibly small, the current flowing through the ammeter 27 is equal to the current flowing between the counter electrode 5 and the working electrode 7.

窒素酸化物として一酸化窒素の濃度を測定する場合は、比較電極6に対する作用電極7の電位を、一酸化窒素を酸化できる電位に設定し、二酸化窒素の濃度を測定する場合は、作用電極7の電位を二酸化窒素を還元できる電位に設定する。   When measuring the concentration of nitric oxide as nitrogen oxide, the potential of the working electrode 7 with respect to the comparison electrode 6 is set to a potential capable of oxidizing nitric oxide, and when measuring the concentration of nitrogen dioxide, the working electrode 7 Is set to a potential at which nitrogen dioxide can be reduced.

フィルタ膜4aの表面に接触している空気は、フィルタ膜4aを厚み方向に浸透し、比較電極6の裏面と接触し、下記酸化還元反応の平衡電位と等しくなる。
2(空気) + 4H+ + 4e- ⇔ 2H2
この平衡電位は標準水素電極(NHE)を基準に測定した場合、実測値として約1.05Vとなる。
The air in contact with the surface of the filter membrane 4a penetrates the filter membrane 4a in the thickness direction, contacts the back surface of the comparison electrode 6, and becomes equal to the equilibrium potential of the following oxidation-reduction reaction.
O 2 (air) + 4H + + 4e ⇔ 2H 2 O
This equilibrium potential is about 1.05 V as an actual measurement value when measured with reference to a standard hydrogen electrode (NHE).

一酸化窒素の場合は、比較電極6の電位に対する作用電極7の電位を+100mV〜+600mVの間の電位(Va=−100mV〜−600mV)にするので、作用電極7の標準水素電極に対する電位は、その電位に1.05Vを加算した、+1.15V〜+1.65Vとなる。   In the case of nitric oxide, the potential of the working electrode 7 with respect to the potential of the reference electrode 6 is set to a potential between +100 mV and +600 mV (Va = −100 mV to −600 mV). It becomes + 1.15V- + 1.65V which added 1.05V to the electric potential.

先ず、一酸化窒素の場合を説明すると、作用電極7では、下記(1a)の酸化反応が生じる。
NO + 2H2O → NO3 - + 4H+ +3e- ……(1a)
対極5では、空気中に含まれる酸素により、下記(1b)の還元反応が生じる。
3/4O2 + 3H- + 3e- → 3/2H2O ……(1b)
First, the case of nitric oxide will be described. In the working electrode 7, the following oxidation reaction (1a) occurs.
NO + 2H 2 O → NO 3 - + 4H + + 3e - ...... (1a)
At the counter electrode 5, the following reduction reaction (1b) occurs due to oxygen contained in the air.
3 / 4O 2 + 3H + 3e → 3 / 2H 2 O (1b)

上記(1a)、(1b)式によって発生する一酸化窒素の酸化電流は、演算増幅器24の出力端子に流入する方向に流れる。
そして、酸化電流は一酸化窒素の濃度に依存するため、貯留部18に存在する気体中の一酸化窒素の濃度、即ち、貯留部18に供給される試料ガス中の一酸化窒素の濃度を知ることができる。
The oxidation current of nitric oxide generated by the above equations (1a) and (1b) flows in the direction of flowing into the output terminal of the operational amplifier 24.
Since the oxidation current depends on the concentration of nitric oxide, the concentration of nitric oxide in the gas existing in the reservoir 18, that is, the concentration of nitric oxide in the sample gas supplied to the reservoir 18 is known. be able to.

電流計27には表示装置41が接続されており、電流計27が測定した電流値は、不図示の回路によって一酸化窒素濃度に換算され、表示装置41によって一酸化窒素濃度として表示される。   A display device 41 is connected to the ammeter 27, and a current value measured by the ammeter 27 is converted into a nitric oxide concentration by a circuit (not shown) and displayed as a nitric oxide concentration by the display device 41.

ただし、試料ガス中に二酸化窒素が含まれていた場合、作用電極7が一酸化窒素の酸化反応が生じる電位であると、二酸化窒素も下記反応式(2a)に従って作用電極7で酸化され、酸化電流が流れる。
NO2 + H2O → NO3 - + 2H+ +e- ……(2a)
対極5では、下記反応式(2b)に示すように、空気中に含まれる酸素の還元反応が生じる。
1/4O2 + H- + e- → 1/2H2O ……(2b)
However, when nitrogen dioxide is contained in the sample gas, if the working electrode 7 has a potential at which the oxidation reaction of nitric oxide occurs, the nitrogen dioxide is also oxidized at the working electrode 7 according to the following reaction formula (2a), and oxidized. Current flows.
NO 2 + H 2 O → NO 3 + 2H + + e (2a)
At the counter electrode 5, as shown in the following reaction formula (2b), a reduction reaction of oxygen contained in the air occurs.
1/4 O 2 + H + e → 1/2 H 2 O (2b)

従って、実際には、電流計27に流れる測定電流Iaの値は、(1a)、(1b)式による一酸化窒素の酸化電流INOに、(2a)、(2b)式による二酸化窒素の酸化電流INO2が加算された値(Ia=INO+INO2)になるが、二酸化窒素では、一分子当たりの電子発生数が一酸化窒素の1/3であり、また、作用電極7で生じる酸化反応の反応率も低いから、二酸化窒素の酸化により流れる酸化電流INO2の大きさは、同じ濃度の一酸化窒素の場合に流れる酸化電流INOの値の1/4〜1/5程度になる。 Therefore, in practice, the value of the measured current Ia flowing through the ammeter 27 is determined by the oxidation current I NO of nitrogen monoxide according to the expressions (1a) and (1b), and the oxidation of nitrogen dioxide according to the expressions (2a) and (2b). Although current I NO2 is added value (Ia = I NO + I NO2 ), the nitrogen dioxide, is 1/3 the number of electrons generated per molecule of nitric oxide, also occurs at the working electrode 7 oxide Since the reaction rate of the reaction is also low, the magnitude of the oxidation current I NO2 that flows due to the oxidation of nitrogen dioxide is about 1/4 to 1/5 of the value of the oxidation current I NO that flows in the case of the same concentration of nitric oxide. .

次に、二酸化窒素の濃度を測定する場合は、作用電極7の電位を、作用電極7で二酸化窒素の還元反応が生じる電位にする。
具体的には、比較電極6の電位に対して作用電極7の電位を、−100mV〜−500mV(Va=+100mV〜+500mV)の間の電位にする。この場合、作用電極7の標準水素電極に対する電位は、1.05Vを加算した、+0.55V〜+0.95Vとなる。
Next, when measuring the concentration of nitrogen dioxide, the potential of the working electrode 7 is set to a potential at which the reduction reaction of nitrogen dioxide occurs at the working electrode 7.
Specifically, the potential of the working electrode 7 is set to a potential between −100 mV to −500 mV (Va = + 100 mV to +500 mV) with respect to the potential of the comparison electrode 6. In this case, the potential of the working electrode 7 with respect to the standard hydrogen electrode is + 0.55V to + 0.95V obtained by adding 1.05V.

この電位では、二酸化窒素は下記(3)式によって作用電極7で還元され、電流計27には、その還元電位が流れる
NO2 + 2H+ +2e- → NO +H2O ……(3a)
このとき、対極5では、下記(3b)式に示す水の酸化反応が起こる。
2O → 2H+ +2e- + 1/2O2 ……(3b)
生成された酸素は、空気穴15や貯留部18に放出される。
At this potential, nitrogen dioxide is reduced at the working electrode 7 according to the following equation (3), and the reduction potential flows to the ammeter 27: NO 2 + 2H + + 2e → NO + H 2 O (3a)
At this time, the water oxidation reaction shown in the following formula (3b) occurs at the counter electrode 5.
H 2 O → 2H + + 2e + 1 / 2O 2 (3b)
The generated oxygen is released to the air holes 15 and the storage unit 18.

(3a)、(3b)式によって流れる二酸化窒素の還元電流は、二酸化窒素の濃度に依存するため、還元電流値を二酸化窒素の濃度に変換することができる。   Since the reduction current of nitrogen dioxide flowing according to equations (3a) and (3b) depends on the concentration of nitrogen dioxide, the reduction current value can be converted into the concentration of nitrogen dioxide.

電流計27に接続された表示装置41は、二酸化窒素濃度も表示可能に構成されており、電流計27の測定値から二酸化窒素濃度を求め、表示装置41によってその濃度が表示される。   The display device 41 connected to the ammeter 27 is configured to be able to display the nitrogen dioxide concentration. The nitrogen dioxide concentration is obtained from the measured value of the ammeter 27 and the concentration is displayed on the display device 41.

比較電極6の電位に対する作用電極7の電位が−100mV〜−500mVの範囲では、一酸化窒素は酸化も還元もされないため、二酸化窒素の還元電流だけが発生し、一酸化窒素の影響はない。還元電流は、演算増幅器24から流出する方向である。   When the potential of the working electrode 7 with respect to the potential of the comparative electrode 6 is in the range of −100 mV to −500 mV, nitric oxide is neither oxidized nor reduced, so only the reduction current of nitrogen dioxide is generated and there is no influence of nitric oxide. The reduction current is a direction that flows out from the operational amplifier 24.

燃焼排ガス中には窒素酸化物以外に一酸化炭素が高濃度で含まれている場合があり、従来のように、金を作用電極材料とした定電位電解式ガスセンサでは、一酸化炭素により、窒素酸化物濃度に換算して100ppm近い大きさの電流が流れてしまう。   Combustion exhaust gas may contain high concentrations of carbon monoxide in addition to nitrogen oxides. In the conventional potentiostatic gas sensor using gold as a working electrode material, carbon monoxide A current close to 100 ppm flows in terms of oxide concentration.

通常、窒素酸化物の濃度が高くなる完全燃焼に近い状態ではこれらの一酸化炭素の濃度は比較的低いが、窒素酸化物濃度が低い不完全燃焼状態では逆に一酸化炭素の濃度は高くなる。
従って、窒素酸化物濃度が低いと正確に測定できないことになる。
Normally, the concentration of carbon monoxide is relatively low in a state close to complete combustion where the concentration of nitrogen oxide is high, but the concentration of carbon monoxide is high in the incomplete combustion state where the concentration of nitrogen oxide is low. .
Therefore, if the nitrogen oxide concentration is low, it cannot be measured accurately.

それに対し、黒鉛を作用電極とした本発明のガスセンサでは、黒鉛の一酸化炭素に対する反応活性が非常に小さいために、一酸化炭素がほとんど反応せず、10%の一酸化炭素の干渉影響は1ppm以下となり無視できるレベルとなるため、正確な窒素酸化物の濃度測定が可能となる。   In contrast, in the gas sensor of the present invention using graphite as a working electrode, the reaction activity of graphite against carbon monoxide is very small, so that carbon monoxide hardly reacts, and the interference effect of 10% carbon monoxide is 1 ppm. Since this is a negligible level below, accurate nitrogen oxide concentration measurement is possible.

さらに、軽油あるいは重油等の硫黄S分を含んだ燃料を使用している燃焼排ガス、例えばディーゼルエンジンの排ガス等では、Sに起因した成分である硫化水素や二酸化硫黄が含まれる。   Furthermore, combustion exhaust gas using a fuel containing sulfur S such as light oil or heavy oil, for example, exhaust gas of a diesel engine, contains hydrogen sulfide and sulfur dioxide which are components due to S.

これらの硫黄化合物は、一酸化炭素や水素(H2)程高濃度では存在せず、せいぜい100ppm程度ではあるが、金をを作用電極材料とした定電位電解式ガスセンサでは、窒素酸化物濃度に換算して200ppmを超える濃度に相当する干渉影響を与えるという問題があった。 These sulfur compounds do not exist at concentrations as high as carbon monoxide or hydrogen (H 2 ), and at most about 100 ppm, but in a potentiostatic gas sensor using gold as a working electrode material, the concentration of nitrogen oxides There was a problem of giving an interference effect corresponding to a concentration exceeding 200 ppm in terms of conversion.

さらには、金を作用電極材料とした定電位電解式ガスセンサの場合、H2Sに短時間(1〜2分間)曝されただけで、窒素酸化物に対する出力が20%〜30%増大する現象が見られる。 Phenomenon Further, if the controlled potential electrolysis type gas sensor in which the gold working electrode material, was only briefly exposed (1-2 min) in H 2 S, the output to nitrogen oxides is increased 20% to 30% Is seen.

この現象は1日程度放置すると回復するが、H2S共存下では正確な窒素酸化物の濃度測定が困難であることを示している。これらの問題点に対し、対策として、除去剤で、H2SやSO2を除去してから測定する方法が考えられるが、特定のガスのみを除去できる除去剤の選定の問題、さらには除去剤の寿命に伴う保守の問題があった。 This phenomenon recovers when left for about a day, but it is difficult to accurately measure the concentration of nitrogen oxides in the presence of H 2 S. As a countermeasure against these problems, a method of measuring after removing H 2 S and SO 2 with a remover can be considered. However, there is a problem of selecting a remover that can remove only a specific gas, and further removal. There was a maintenance problem with the life of the agent.

これに対し黒鉛を作用電極とした定電位電解式ガスセンサでは、100ppmのH2SとSO2の干渉影響は窒素酸化物濃度に換算していずれも20ppm以下であり、また、H2Sに曝されても窒素酸化物に対する感度は全く変化しないため、正確な窒素酸化物濃度の測定が可能となる。 On the other hand, in a potentiostatic gas sensor using graphite as a working electrode, the interference effect between 100 ppm of H 2 S and SO 2 is 20 ppm or less in terms of nitrogen oxide concentration, and is exposed to H 2 S. However, since the sensitivity to nitrogen oxides does not change at all, it is possible to accurately measure the nitrogen oxide concentration.

下記表1は、従来技術のように金を作用電極として用いたガスセンサと、作用電極7に黒鉛を用いた上記本発明のガスセンサ1との比較である。測定条件は、この二種類のガスセンサを一酸化窒素を測定するときの条件に設定(作用電極7の電位=400mV)し、表に示した化合物、濃度の試験ガスを測定し、電流値を一酸化窒素に換算して表中に示した。本発明のセンサ1の方が干渉ガスの影響が小さい。   Table 1 below is a comparison between a gas sensor using gold as a working electrode as in the prior art and the gas sensor 1 of the present invention using graphite as the working electrode 7. Measurement conditions were set to the conditions for measuring these two types of gas sensors (potential of working electrode 7 = 400 mV), the test gas having the compounds and concentrations shown in the table were measured, and the current value was It is shown in the table in terms of nitric oxide. The influence of the interference gas is smaller in the sensor 1 of the present invention.

Figure 2007017317
Figure 2007017317

下記表2は、金を用いた従来技術のセンサと黒鉛を用いた本発明のセンサとを一酸化窒素の測定条件(作用電極7の電位=400mV)に設定し、先ず、500ppmの一酸化窒素を供給して電流を測定し、次に、100ppmのH2Sを2分間供給した後、再度同じ濃度500ppmの一酸化窒素を供給して電流を測定したときの、H2S供給の前に対する後の測定値の誤差(増加分)の大きさを示す。本発明のセンサ1の誤差は圧倒的に小さい。 Table 2 below shows that the prior art sensor using gold and the sensor of the present invention using graphite were set to the measurement conditions of nitric oxide (potential of the working electrode 7 = 400 mV). And then supplying 100 ppm of H 2 S for 2 minutes, and again supplying nitrogen monoxide with the same concentration of 500 ppm and measuring the current, compared to before H 2 S supply Indicates the magnitude of the error (increase) in the later measured value. The error of the sensor 1 of the present invention is extremely small.

Figure 2007017317
Figure 2007017317

なお、一酸化窒素の測定条件では、NO2も出力を示すため、NO2の干渉影響を受けることになるが、二酸化窒素の測定条件では一酸化窒素の干渉を受けずに二酸化窒素の濃度を測定できるので、一酸化窒素の測定条件で求めた電流値を、二酸化窒素濃度の測定条件で求めた電流値を用いて補正すれば、正確な一酸化窒素の濃度を知ることができる。 In addition, under the measurement condition of nitric oxide, NO 2 also shows output, so it is affected by interference of NO 2 , but under the measurement condition of nitrogen dioxide, the concentration of nitrogen dioxide is not affected by the interference of nitric oxide. Therefore, if the current value obtained under the measurement condition of nitric oxide is corrected using the current value obtained under the measurement condition of nitrogen dioxide concentration, the accurate concentration of nitric oxide can be known.

例えば、二酸化窒素濃度の測定条件下の測定電流から二酸化窒素の濃度ANO2を求め、一酸化窒素の測定条件下の測定電流から得られた窒素酸化物の濃度Aから、二酸化窒素の濃度ANO2を二酸化窒素の影響係数(=1/4〜1/5)倍した値を差し引くと、一酸化窒素の濃度ANOが得られる。 For example, determine the concentration A NO2 nitrogen dioxide from the measured current measured under conditions of nitrogen dioxide concentration, the concentration A of the nitrogen oxides obtained from measured current measurement conditions of nitric oxide, the concentration of nitrogen dioxide A NO2 the subtracting influence coefficient (= 1/4 to 1/5) times the value of the nitrogen dioxide, the concentration a NO of nitrogen monoxide is obtained.

従って、上記測定装置20の基準電圧源26内に二種類の電圧源を用意し、先ず、比較電極6の電位を二酸化窒素の還元反応が生じる電位にして二酸化窒素の濃度を測定し、次に、基準電圧源26の出力電圧を一酸化窒素の酸化反応が生じる電位に変更し、一酸化窒素と二酸化窒素の合計の窒素酸化物濃度を測定し、窒素酸化物濃度から二酸化窒素濃度を除く補正をして、正確な一酸化窒素の濃度を求めることができる。基準電圧源を二種類用意して切り替えてもよい。   Accordingly, two types of voltage sources are prepared in the reference voltage source 26 of the measuring device 20, and first, the concentration of the nitrogen dioxide is measured by setting the potential of the comparison electrode 6 to a potential at which the reduction reaction of nitrogen dioxide occurs. The output voltage of the reference voltage source 26 is changed to a potential at which oxidation reaction of nitric oxide occurs, and the total nitrogen oxide concentration of nitrogen monoxide and nitrogen dioxide is measured, and the nitrogen dioxide concentration is corrected from the nitrogen oxide concentration. Thus, an accurate concentration of nitric oxide can be obtained. Two types of reference voltage sources may be prepared and switched.

表示装置41には、一酸化窒素濃度と二酸化窒素濃度の両方を表示可能に構成しておき、測定結果を表示することができる。
但し、比較電極6の電位を変化させて一酸化窒素と二酸化窒素を測定する場合、測定電流が安定するまでに時間がかかる。
The display device 41 can be configured to display both the nitric oxide concentration and the nitrogen dioxide concentration, and the measurement result can be displayed.
However, when measuring nitric oxide and nitrogen dioxide by changing the potential of the reference electrode 6, it takes time until the measurement current becomes stable.

図2の符号は、本発明の第二例のガスセンサであり、上記のように基準電圧を切り替えなくても上記補正を行うことができる。   The code | symbol of FIG. 2 is the gas sensor of the 2nd example of this invention, and it can perform the said correction | amendment, without switching a reference voltage as mentioned above.

上記第一例のガスセンサ1と同じ部材には、同じ符号を付して説明を省略すると、第二例のガスセンサ2は、フィルタ膜4b表面に、第一、第二の作用電極71、72が密着して配置されている。第一、第二の作用電極71、72は、第一例のガスセンサ1の作用電極7が二個に分割されたのと同じである。 If the same reference numerals are given to the same members as those of the gas sensor 1 of the first example and the description thereof is omitted, the gas sensor 2 of the second example has the first and second working electrodes 7 1 , 7 on the surface of the filter film 4b. 2 are closely arranged. The first and second working electrodes 7 1 and 7 2 are the same as the working electrode 7 of the gas sensor 1 of the first example divided into two.

第一、第二の作用電極71、72は炭素を主成分とし、電解液が浸透可能な膜状の電極である。フィルタ膜4a、4bや対極6等、第一例のガスセンサ1と同じ部材は同じ材料である。
第一、第二の作用電極71、72は互いに絶縁されており、第一、第二の作用電極71、72、対極5、比較電極6には、それぞれリードが接続されている。
The first and second working electrodes 7 1 and 7 2 are film-like electrodes that contain carbon as a main component and are capable of penetrating an electrolytic solution. The same members as the gas sensor 1 of the first example such as the filter films 4a and 4b and the counter electrode 6 are the same material.
The first and second working electrodes 7 1 and 7 2 are insulated from each other, and leads are connected to the first and second working electrodes 7 1 and 7 2 , the counter electrode 5, and the comparison electrode 6, respectively. .

図4の符号30は、第二例のガスセンサ2を用いた測定回路を示しており、該測定回路30は、このガスセンサ2と、主演算増幅器33と、第一、第二の副演算増幅器31、32を有している。   4 indicates a measurement circuit using the gas sensor 2 of the second example. The measurement circuit 30 includes the gas sensor 2, a main operational amplifier 33, and first and second sub operational amplifiers 31. , 32.

比較電極6は、主演算増幅器31の反転入力端子に接続され、対極5は主演算増幅器31の出力端子に接続されている。
主演算増幅器31の非反転入力端子は主基準電圧源36に接続されており、基準電圧源36が出力する主基準電圧V1が入力されている。
The comparison electrode 6 is connected to the inverting input terminal of the main operational amplifier 31, and the counter electrode 5 is connected to the output terminal of the main operational amplifier 31.
The non-inverting input terminal of the main operational amplifier 31 is connected to the main reference voltage source 36, the main reference voltages V 1 to a reference voltage source 36 is output is input.

このような接続により、主演算増幅器33とガスセンサ2を含む負帰還回路が構成されており、主演算増幅器33が動作すると、比較電極6が、主基準電圧V1と同じ電位になるように対極5の電位が制御される。 With such a connection, a negative feedback circuit including the main operational amplifier 33 and the gas sensor 2 is configured. When the main operational amplifier 33 operates, the counter electrode 6 has the same potential as the main reference voltage V 1. The potential of 5 is controlled.

第一、第二の作用電極71、72は第一、第二の副演算増幅器31、32の反転入力端子に接続されている。第一、第二の副演算増幅器31、32の出力端子は、それぞれ自分自身の反転入力端子に接続され、負帰還回路が構成されており、その結果、第一、第二の作用電極71、72の電位は非反転入力端子の電位と等しくなるように制御される。
第一、第二の副演算増幅器31、32の非反転入力端子は一定電位に接続される。
The first and second working electrodes 7 1 and 7 2 are connected to the inverting input terminals of the first and second sub operational amplifiers 31 and 32. The output terminals of the first and second sub-operational amplifiers 31 and 32 are connected to their own inverting input terminals to form a negative feedback circuit. As a result, the first and second working electrodes 7 1 , 7 second potential is controlled to be equal to the potential of the non-inverting input terminal.
The non-inverting input terminals of the first and second sub operational amplifiers 31 and 32 are connected to a constant potential.

ここでは、第一の副演算増幅器31の非反転入力端子は副基準電圧源37に接続されており、副基準電圧源37が出力する副基準電圧V2が入力されており、第二の副演算増幅器32の非反転入力端子は接地電位に接続されている(第二の副演算増幅器31の非反転入力端子も制御可能な電圧源に接続することもできる。)。 Here, the non-inverting input terminal of the first auxiliary operational amplifier 31 is connected to the secondary reference voltage source 37, the secondary reference voltage V 2 sub reference voltage source 37 outputs is input, the second sub The non-inverting input terminal of the operational amplifier 32 is connected to the ground potential (the non-inverting input terminal of the second sub operational amplifier 31 can also be connected to a controllable voltage source).

比較電極6の電位が主基準電圧V1であるから、比較電極6に対する第一の作用電極71の電位E1はV2−V1 となり、比較電極6に対する第二の作用電極72の電位E2は−V1となる。 Since the potential of the comparison electrode 6 is the main reference voltage V 1 , the potential E 1 of the first working electrode 7 1 with respect to the comparison electrode 6 becomes V 2 −V 1 , and the second working electrode 7 2 with respect to the comparison electrode 6 has The potential E 2 is −V 1 .

従って、第一の作用電極71で一酸化窒素の酸化反応が生じ、第二の作用電極72で二酸化窒素の還元反応を生じさせるためには、
1= V2−V1 =+100mV〜+600mV
2= −V1 = −100mV〜−500mV
にすればよい。
Accordingly, the oxidation reaction of nitrogen monoxide produced in the first working electrode 71, in order to cause the reduction reaction of nitrogen dioxide in the second working electrode 7 2,
E 1 = V 2 -V 1 = + 100mV~ + 600mV
E 2 = −V 1 = −100 mV to −500 mV
You can do it.

第一、第二の副演算増幅器31、32の出力端子と反転入力端子の間には、第一、第二の電流計38、39がそれぞれ挿入されており、第一、第二の副演算増幅器31、32が動作し、第一、第二の作用電極71、72に流れる酸化電流と還元電流を、第一、第二の作用電極71、72によってそれぞれ測定できるように構成されている。 First and second ammeters 38 and 39 are inserted between the output terminals and the inverting input terminals of the first and second sub operational amplifiers 31 and 32, respectively. amplifier 31 operates, first, the second working electrode 7 1, 7 oxidation current and reduction current flowing through the 2, first, configured to be respectively measured by the second working electrode 7 1, 7 2 Has been.

第一、第二の作用電極71、72では、それぞれ上記(1a)、(2a)式で表される酸化反応と還元反応がそれぞれ進行し、第一、第二の電流計38、39によって、酸化電流と還元電流が測定される。 In the first and second working electrodes 7 1 and 7 2 , the oxidation reaction and the reduction reaction represented by the above formulas (1a) and (2a) respectively proceed, and the first and second ammeters 38 and 39 respectively. Thus, the oxidation current and the reduction current are measured.

上記第二例のガスセンサ2を用いた測定装置30では、電圧の切り換えが無いので、一酸化窒素の濃度と二酸化窒素の濃度を連続して測定することができる。また、ガスセンサが安定するまで測定を待つ必要が無いので、窒素酸化物の濃度の急変にも対応することができる。   In the measuring device 30 using the gas sensor 2 of the second example, since the voltage is not switched, the concentration of nitric oxide and the concentration of nitrogen dioxide can be measured continuously. Further, since it is not necessary to wait for the measurement until the gas sensor is stabilized, it is possible to cope with a sudden change in the concentration of nitrogen oxides.

また、第二の作用電極72に流れる還元電流の測定値を用い、還元電流の値と同時に第一の作用電極71に流れる酸化電流の値を補正し、正確な一酸化窒素の濃度を求めることもできる。 Further, using the measured values of the reduction current flowing through the second working electrode 7 2, the value of the oxidation current flowing in value as the first working electrode 71 at the same time the reduction current corrected, the concentration of the exact nitric oxide You can ask for it.

第一、第二の電流計38、39は、表示装置42に接続されており、第一、第二の電流計38、39で測定された酸化電流の値と還元電流の値は、一酸化窒素濃度(補正された濃度、又は補正されない濃度)と二酸化窒素濃度にそれぞれ換算され、表示装置42によって表示される。   The first and second ammeters 38 and 39 are connected to the display device 42, and the oxidation current value and the reduction current value measured by the first and second ammeters 38 and 39 are expressed as monoxide. Nitrogen concentration (corrected concentration or non-corrected concentration) and nitrogen dioxide concentration are respectively converted and displayed on the display device 42.

次に、炭素を主成分とする作用電極を用いた本発明の電解液12と測定対象ガスの関係について説明する。
先ず、一酸化窒素の場合について説明する。下記表3は酸性の電解液12と中性の電解液12を用い、一酸化窒素ガスを測定対象にしたときの、本発明のガスセンサの測定値の比較結果である。
Next, the relationship between the electrolyte solution 12 of the present invention using a working electrode containing carbon as a main component and the measurement target gas will be described.
First, the case of nitric oxide will be described. Table 3 below shows the comparison results of the measured values of the gas sensor of the present invention when the acidic electrolytic solution 12 and the neutral electrolytic solution 12 were used and nitrogen monoxide gas was the measurement target.

比較電極と対極には白金電極を使用した。酸性の電解液12としては4.25mol/Lの硫酸水溶液を使用し、中性の電解液としては7.4mol/Lの塩化リチウム水溶液を使用した。比較電極6に対する作用電極7の電位は+400mVに設定し、一酸化窒素の酸化反応による酸化電流を測定した結果である。   A platinum electrode was used as a reference electrode and a counter electrode. A 4.25 mol / L aqueous sulfuric acid solution was used as the acidic electrolytic solution 12, and a 7.4 mol / L lithium chloride aqueous solution was used as the neutral electrolytic solution. The potential of the working electrode 7 with respect to the comparative electrode 6 is set to +400 mV, and the oxidation current due to the oxidation reaction of nitric oxide is measured.

Figure 2007017317
Figure 2007017317

500ppmの一酸化窒素ガスを流すと、硫酸水溶液の場合は99.5μAの酸化電流が得られ、塩化リチウム水溶液の場合は6.5μAの酸化電流が得られた。得られる酸化電流が大きい程測定精度は高くなるので、酸性の電解液の方が好ましい。
他方、一酸化炭素などの干渉ガスを流した場合の測定値は小さい方が精度が高いので、やはり、酸性の電解液の方が好ましい。
When 500 ppm of nitric oxide gas was flowed, an oxidation current of 99.5 μA was obtained in the case of an aqueous sulfuric acid solution, and an oxidation current of 6.5 μA was obtained in the case of an aqueous lithium chloride solution. Since the measurement accuracy increases as the oxidation current obtained increases, an acidic electrolytic solution is preferred.
On the other hand, the smaller the measured value in the case of flowing an interference gas such as carbon monoxide, the higher the accuracy. Therefore, the acidic electrolytic solution is still preferable.

以上の結果から、一酸化窒素の測定には、酸性の電解液が適していることが分かる。   From the above results, it can be seen that an acidic electrolytic solution is suitable for measuring nitric oxide.

次に、二酸化窒素の場合について説明する。下記表4は、二酸化窒素ガスを測定対象にしたときの、本発明のガスセンサの測定値の比較結果である。
上記と同様に、比較電極と対極には白金電極を使用し、酸性の電解液12としては4.25mol/Lの硫酸水溶液を使用し、中性の電解液としては7.4mol/Lの塩化リチウム水溶液を使用した。
Next, the case of nitrogen dioxide will be described. Table 4 below shows the comparison results of the measured values of the gas sensor of the present invention when nitrogen dioxide gas is the measurement target.
Similarly to the above, a platinum electrode is used for the reference electrode and the counter electrode, a 4.25 mol / L sulfuric acid aqueous solution is used as the acidic electrolyte solution 12, and a 7.4 mol / L chloride is used as the neutral electrolyte solution. An aqueous lithium solution was used.

比較電極6に対する作用電極7の電位は−300mVに設定し、一酸化窒素の酸化反応による酸化電流を測定した結果である。   The potential of the working electrode 7 with respect to the comparative electrode 6 is set to −300 mV, and the oxidation current due to the oxidation reaction of nitric oxide is measured.

Figure 2007017317
Figure 2007017317

500ppmの二酸化窒素ガスを流した場合、中性の電解液の出力電流は酸性の電解液の出力電流の約1/2であるが、CO等の干渉ガスの干渉影響は小さいため、中性の電解液も用いることができる。   When 500 ppm of nitrogen dioxide gas is flowed, the output current of the neutral electrolyte is about ½ of the output current of the acidic electrolyte, but the interference effect of interference gases such as CO is small. An electrolytic solution can also be used.

なお、電流計27、38、39で測定された電流値を、一酸化窒素や二酸化窒素の濃度に換算して表示装置41、42に表示する際、必要に応じて温度補償等の補正を加えてもよい。   When the current values measured by the ammeters 27, 38, 39 are converted into the concentration of nitrogen monoxide or nitrogen dioxide and displayed on the display devices 41, 42, corrections such as temperature compensation are added as necessary. May be.

本発明の第一例のガスセンサFirst example gas sensor of the present invention 本発明の第二例のガスセンサSecond example gas sensor of the present invention 本発明の第一例のガスセンサを用いた測定回路Measuring circuit using the gas sensor of the first example of the present invention 本発明の第二例のガスセンサを用いた測定回路Measuring circuit using the gas sensor of the second example of the present invention

符号の説明Explanation of symbols

1、2……ガスセンサ
3……容器本体
12……電解液
7……作用電極
1……第一の作用電極
2……第二の作用電極
8b……フィルタ膜
5……対極
6……比較電極
41、42……表示装置
20、30……測定装置
1, 2 ... Gas sensor 3 ... Container body 12 ... Electrolyte 7 ... Working electrode 7 1 ... First working electrode 7 2 ... Second working electrode 8b ... Filter membrane 5 ... Counter electrode 6 ... ... Comparative electrodes 41, 42 ... Display devices 20, 30 ... Measuring devices

Claims (9)

容器本体に収容された電解液と、
表面が前記電解液と接触し、前記電解液が浸透可能な作用電極と、
前記作用電極の裏面と接触し、気体が浸透可能なフィルタ膜と、
前記電解液とそれぞれ接触する対極と比較電極とを有し、
前記フィルタ膜に接触した試料ガス中に含まれる測定対象ガスが前記フィルタ膜を透過し、前記作用電極によって化学反応が生じ、前記作用電極に電流が流れるように構成されたガスセンサであって、
前記作用電極は炭素を主成分とされたガスセンサ。
An electrolyte contained in the container body;
A working electrode whose surface is in contact with the electrolyte solution and is capable of penetrating the electrolyte solution;
A filter membrane that is in contact with the back surface of the working electrode and is permeable to gas;
A counter electrode in contact with the electrolyte and a reference electrode,
A gas sensor configured such that a gas to be measured contained in a sample gas in contact with the filter membrane passes through the filter membrane, a chemical reaction occurs by the working electrode, and a current flows through the working electrode;
The working electrode is a gas sensor whose main component is carbon.
請求項1記載のガスセンサと、
前記作用電極に接続された電流計と、
前記比較電極に対する前記作用電極の電位を、一酸化窒素を前記作用電極で酸化反応させる電位に設定する回路と、
前記電流計の測定値から求められた一酸化窒素濃度を表示する表示装置とを有するガス濃度測定装置。
A gas sensor according to claim 1;
An ammeter connected to the working electrode;
A circuit for setting the potential of the working electrode with respect to the comparison electrode to a potential at which nitric oxide is oxidized at the working electrode;
A gas concentration measuring device comprising: a display device that displays the nitric oxide concentration obtained from the measured value of the ammeter.
請求項1又は請求項2のいずれか1項記載のガスセンサと、
前記作用電極に接続された電流計と、
前記比較電極に対する前記作用電極の電位を、二酸化窒素を前記作用電極で還元反応させる電位に設定する回路と、
前記電流計の測定値から求められた二酸化窒素濃度を表示する表示装置とを有するガス濃度測定装置。
The gas sensor according to claim 1 or 2,
An ammeter connected to the working electrode;
A circuit for setting the potential of the working electrode with respect to the comparison electrode to a potential at which nitrogen dioxide is reduced by the working electrode;
A gas concentration measuring device comprising: a display device for displaying a nitrogen dioxide concentration obtained from a measured value of the ammeter.
容器本体に収容された電解液と、
表面が前記電解液と接触し、それぞれ前記電解液が浸透可能な第一、第二の作用電極と、
前記第一、第二の作用電極の裏面と接触し、気体が浸透可能なフィルタ膜と、
前記電解液と接触する対極と比較電極とを有し、
前記フィルタ膜に接触した試料ガス中に含まれる測定対象ガスが前記フィルタ膜を透過し、前記第一、第二の作用電極によって化学反応が生じ、前記第一、第二の作用電極にそれぞれ電流が流れるように構成されたガスセンサであって、
前記第一、第二の作用電極は炭素を主成分とされたガスセンサ。
An electrolyte contained in the container body;
First and second working electrodes whose surfaces are in contact with the electrolyte solution and are capable of penetrating the electrolyte solution,
A filter membrane that is in contact with the back surface of the first and second working electrodes and allows gas to permeate;
A counter electrode in contact with the electrolyte and a reference electrode;
The gas to be measured contained in the sample gas in contact with the filter membrane permeates the filter membrane, a chemical reaction is generated by the first and second working electrodes, and currents flow through the first and second working electrodes, respectively. A gas sensor configured to flow through,
The first and second working electrodes are gas sensors whose main component is carbon.
請求項4記載のガスセンサと、
前記第一、第二の作用電極にそれぞれ接続された第一、第二の電流計と、
前記比較電極に対する前記第一の作用電極の電位を、前記第一の作用電極で一酸化窒素を酸化反応させる電位に設定し、
前記比較電極に対する前記第二の作用電極の電位を、前記第二の作用電極で二酸化窒素を還元反応させる電位に設定する回路と、
前記第一の電流計の測定値から求められた一酸化窒素濃度と、前記第二の電流計の測定値から求められた二酸化窒素濃度を表示する表示装置とを有するガス濃度測定装置。
A gas sensor according to claim 4;
First and second ammeters respectively connected to the first and second working electrodes;
The potential of the first working electrode with respect to the comparison electrode is set to a potential at which nitric oxide is oxidized at the first working electrode,
A circuit for setting the potential of the second working electrode with respect to the comparison electrode to a potential at which nitrogen dioxide is reduced by the second working electrode;
A gas concentration measuring device having a nitric oxide concentration obtained from a measured value of the first ammeter and a display device for displaying the nitrogen dioxide concentration obtained from the measured value of the second ammeter.
対極と、比較電極と、炭素を主成分とし、フィルタ膜上に配置された作用電極とを電解液に接触させ、試料ガスを前記作用電極裏面位置の前記フィルタ膜に接触させ、前記試料ガス中に含まれる一酸化窒素を前記フィルタ膜の厚み方向に透過させ、
前記対極の電位を制御し、前記比較電極に対する前記作用電極の電位を前記作用電極で一酸化窒素の酸化反応が生じる電位に設定し、
前記作用電極に流れる酸化電流を測定し、前記酸化電流から前記一酸化窒素の濃度を求める窒素酸化物濃度の測定方法。
A counter electrode, a reference electrode, and a working electrode mainly composed of carbon and disposed on the filter membrane are brought into contact with the electrolytic solution, and a sample gas is brought into contact with the filter membrane at the back surface position of the working electrode. Nitric oxide contained in the filter membrane is transmitted in the thickness direction of the filter membrane,
Controlling the potential of the counter electrode, and setting the potential of the working electrode with respect to the comparison electrode to a potential at which an oxidation reaction of nitric oxide occurs at the working electrode;
A method for measuring a nitrogen oxide concentration, wherein an oxidation current flowing through the working electrode is measured and a concentration of the nitric oxide is obtained from the oxidation current.
対極と、比較電極と、炭素を主成分とし、フィルタ膜上に配置された作用電極とを電解液に接触させ、試料ガスを前記作用電極裏面位置の前記フィルタ膜に接触させ、前記試料ガス中に含まれる二酸化窒素を前記フィルタ膜の厚み方向に透過させ、
前記対極の電位を制御し、前記比較電極に対する前記作用電極の電位を前記作用電極で二酸化窒素の還元反応が生じる電位に設定し、
前記作用電極に流れる酸化電流を測定し、前記酸化電流から前記二酸化窒素の濃度を求める窒素酸化物濃度の測定方法。
A counter electrode, a reference electrode, and a working electrode mainly composed of carbon and disposed on the filter membrane are brought into contact with the electrolytic solution, and a sample gas is brought into contact with the filter membrane at the back surface position of the working electrode. Nitrogen dioxide contained in the filter membrane in the thickness direction of the filter membrane,
Controlling the potential of the counter electrode, and setting the potential of the working electrode with respect to the reference electrode to a potential at which a reduction reaction of nitrogen dioxide occurs at the working electrode;
A method for measuring a nitrogen oxide concentration by measuring an oxidation current flowing through the working electrode and obtaining a concentration of the nitrogen dioxide from the oxidation current.
対極と、比較電極と、それぞれ炭素を主成分とし、フィルタ膜上に配置された第一、第二の作用電極とを電解液に接触させ、
前記対極の電位を制御して、前記比較電極に対する前記第一の作用電極の電位を、前記第一の作用電極で一酸化窒素の酸化反応が生じる電位に設定し、前記比較電極に対する前記第二の作用電極の電位を、前記第二の作用電極で二酸化窒素の還元反応が生じる電位に設定し、
試料ガスを前記フィルタ膜に接触させ、前記試料ガス中に含まれる一酸化窒素と二酸化窒素を前記フィルタ膜の厚み方向に透過させ、
前記第一の作用電極に流れる酸化電流と、前記第二の作用電極に流れる還元電流とから前記試料中の一酸化窒素の濃度と二酸化窒素の濃度を求める窒素酸化物濃度の測定方法。
The counter electrode, the reference electrode, and the first and second working electrodes, each having carbon as a main component and disposed on the filter membrane, are brought into contact with the electrolytic solution,
By controlling the potential of the counter electrode, the potential of the first working electrode with respect to the comparison electrode is set to a potential at which oxidation reaction of nitric oxide occurs at the first working electrode, and the second with respect to the comparison electrode The potential of the working electrode is set to a potential at which the reduction reaction of nitrogen dioxide occurs at the second working electrode,
A sample gas is brought into contact with the filter membrane, and nitrogen monoxide and nitrogen dioxide contained in the sample gas are transmitted in the thickness direction of the filter membrane,
A method for measuring a nitrogen oxide concentration, wherein a concentration of nitrogen monoxide and a concentration of nitrogen dioxide in the sample are determined from an oxidation current flowing through the first working electrode and a reduction current flowing through the second working electrode.
前記還元電流の測定値を用いて前記一酸化窒素濃度を補正する請求項8記載の窒素酸化物濃度の測定方法。   The method for measuring a nitrogen oxide concentration according to claim 8, wherein the nitrogen monoxide concentration is corrected using a measured value of the reduction current.
JP2005199756A 2005-07-08 2005-07-08 Measuring method of nitrogen oxide concentration Active JP4184364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199756A JP4184364B2 (en) 2005-07-08 2005-07-08 Measuring method of nitrogen oxide concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199756A JP4184364B2 (en) 2005-07-08 2005-07-08 Measuring method of nitrogen oxide concentration

Publications (2)

Publication Number Publication Date
JP2007017317A true JP2007017317A (en) 2007-01-25
JP4184364B2 JP4184364B2 (en) 2008-11-19

Family

ID=37754604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199756A Active JP4184364B2 (en) 2005-07-08 2005-07-08 Measuring method of nitrogen oxide concentration

Country Status (1)

Country Link
JP (1) JP4184364B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864381B1 (en) 2007-04-05 2008-10-21 한국과학기술원 NOX Sensor And for Calculating Method Of Total NOX Concentration Using it
WO2010038989A3 (en) * 2008-09-30 2010-07-15 일진소재산업(주) Nitrogen-oxide gas sensor
WO2010038990A3 (en) * 2008-09-30 2010-07-15 일진소재산업(주) Nitrogen-oxide gas sensor
WO2010038987A3 (en) * 2008-09-30 2010-07-15 일진소재산업(주) Nitrogen-oxide gas sensor with long signal stability
JP2012529056A (en) * 2009-06-05 2012-11-15 アリゾナ・ボード・オブ・リージェンツ・アクティング・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティ Integrated photoelectrochemical sensor for nitric oxide in gaseous samples
JP2016045028A (en) * 2014-08-21 2016-04-04 理研計器株式会社 Gas detector having sensitivity recovery function
KR102169914B1 (en) * 2020-03-25 2020-10-26 (주)센코 Electrochemical nitrogen oxides gas sensor
JP7474682B2 (en) 2020-11-18 2024-04-25 理研計器株式会社 Potential electrolysis gas sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864381B1 (en) 2007-04-05 2008-10-21 한국과학기술원 NOX Sensor And for Calculating Method Of Total NOX Concentration Using it
WO2010038989A3 (en) * 2008-09-30 2010-07-15 일진소재산업(주) Nitrogen-oxide gas sensor
WO2010038990A3 (en) * 2008-09-30 2010-07-15 일진소재산업(주) Nitrogen-oxide gas sensor
WO2010038987A3 (en) * 2008-09-30 2010-07-15 일진소재산업(주) Nitrogen-oxide gas sensor with long signal stability
US8399883B2 (en) 2008-09-30 2013-03-19 Iljin Copper Foil Co., Ltd. Nitrogen-oxide gas sensor with long signal stability
JP2012529056A (en) * 2009-06-05 2012-11-15 アリゾナ・ボード・オブ・リージェンツ・アクティング・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティ Integrated photoelectrochemical sensor for nitric oxide in gaseous samples
US9581561B2 (en) 2009-06-05 2017-02-28 Arizona Board Of Regents For And On Behalf Of Arizona State University Integrated optoelectrochemical sensor for nitrogen oxides in gaseous samples
JP2016045028A (en) * 2014-08-21 2016-04-04 理研計器株式会社 Gas detector having sensitivity recovery function
KR102169914B1 (en) * 2020-03-25 2020-10-26 (주)센코 Electrochemical nitrogen oxides gas sensor
JP7474682B2 (en) 2020-11-18 2024-04-25 理研計器株式会社 Potential electrolysis gas sensor

Also Published As

Publication number Publication date
JP4184364B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP2648337B2 (en) Acid gas sensor
JP4184364B2 (en) Measuring method of nitrogen oxide concentration
Wang et al. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification
JPS61500566A (en) Electrochemical detection of carbon monoxide
Yan et al. A solid polymer electrolyte-bases electrochemical carbon monoxide sensor
GB2164156A (en) Electrochemical gas sensor
US3855096A (en) Electrochemical cells
EP1593962A1 (en) Electrochemical oxygen sensor
US4166775A (en) Electrochemical gas monitoring method
US4057478A (en) Electrochemical gas monitor
US5256273A (en) Micro fuel-cell oxygen gas sensor
CN108291890B (en) Pulse potential gas sensor
US3003932A (en) Apparatus for the galvanic analysis of hydrogen
US4859305A (en) Electrochemical cell
US4960497A (en) Apparatus and method for minimizing the effect of an electrolyte&#39;s dissolved oxygen content in low range oxygen analyzers
US4692220A (en) Electrochemical determination of formaldehyde
US4797180A (en) Method for the detection of noxious gases
Guth et al. Gas sensors
JP4308223B2 (en) Gas sensor for ammonia, ammonia detection method
US6176989B1 (en) Electrochemical gas sensor
JP3307827B2 (en) Potentiometric electrolytic ammonia gas detector
JPS6236554A (en) Electrochemical type acid gas detector
WO2021259328A1 (en) Circuit of electrochemical sensor, and method and device
JPH04305Y2 (en)
Gilbert et al. Voltametric, Amperometric, and Other Electrochemical Analyzers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250