JP2005140510A - Displacement measurement method of long-distance target, and displacement measuring apparatus of the long-distance target - Google Patents

Displacement measurement method of long-distance target, and displacement measuring apparatus of the long-distance target Download PDF

Info

Publication number
JP2005140510A
JP2005140510A JP2003374030A JP2003374030A JP2005140510A JP 2005140510 A JP2005140510 A JP 2005140510A JP 2003374030 A JP2003374030 A JP 2003374030A JP 2003374030 A JP2003374030 A JP 2003374030A JP 2005140510 A JP2005140510 A JP 2005140510A
Authority
JP
Japan
Prior art keywords
displacement
measurement point
measurement
azimuth angle
displacement measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003374030A
Other languages
Japanese (ja)
Other versions
JP4281056B2 (en
Inventor
Akira Kuwata
昭 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyonaka Kenkyusho Co Ltd
Original Assignee
Toyonaka Kenkyusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyonaka Kenkyusho Co Ltd filed Critical Toyonaka Kenkyusho Co Ltd
Priority to JP2003374030A priority Critical patent/JP4281056B2/en
Publication of JP2005140510A publication Critical patent/JP2005140510A/en
Application granted granted Critical
Publication of JP4281056B2 publication Critical patent/JP4281056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the position and the amount of displacement of an arbitrary number of measurement points which is to be displaced at a long distance, precisely and speedily with high resolution and in real time. <P>SOLUTION: A corner cube prism is arranged at a measurement point to be displaced. The measurement point is set to a position giving view of the measurement point to be displaced. Laser beams are projected from the measurement point to the measurement region to be displaced including the corner cube prism. The measurement region to be displaced is scanned to the left and the right, and vertically by the laser beams. One portion of the laser beams, emitted from the measurement point, is projected to a PSD. Retroreflection laser beams, reflected by the corner cube prism at the scanning process, are received by a photosensor element for detecting the position detection point of the measurement point to be displaced. The azimuth angle data of the measurement point to be displaced are detected from the light receiving position of laser beams that the PSD received at the position detection point. The amount of displacement at the measurement point to be displaced is computed, based on the azimuth angle data, and the displacement of the measurement point to be displaced is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、高層ビルの経年変化による傾き測定、堤防の歪み測定、地盤の変位測定、トンネルの断面変形測定、橋梁の振動測定など、各種の対象物の変位を、レーザー光とコーナーキューブプリズムとPSD(Position Sensitive Detecter=半導体位置検出素子)を用いて、その変位測定対象物から相当距離離れた測定地点から検出し測定するための変位測定方法と、その変位測定方法で変位を測定するための遠距離対象物の変位測定装置に関するものである。 This invention can measure the displacement of various objects such as tilt measurement due to aging of high-rise buildings, levee strain measurement, ground displacement measurement, tunnel cross-section deformation measurement, bridge vibration measurement, laser beam and corner cube prism. A displacement measurement method for detecting and measuring from a measurement point that is a considerable distance away from the displacement measurement object using a PSD (Position Sensitive Detecter), and a displacement measurement method for measuring displacement The present invention relates to a displacement measuring apparatus for a long-distance object.

従来、対象物の特定点(被測定点)の位置を、対象物に非接触状態で検出する装置として、対象物の被測定点に反射体(例えばコーナーキューブプリズム)を装着し、その反射体に向けて半導体レーザー光を照射し、その反射体からの反射レーザー光を集光レンズにより光位置検出素子上の1点に集光し、その光位置検出素子からの出力を位置信号処理回路で処理して反射体の方位角、即ち被測定点の方位角を検出する装置が提案されている。(例えば、特許文献1参照) Conventionally, as a device for detecting the position of a specific point (measurement point) of an object in a non-contact state with the object, a reflector (for example, a corner cube prism) is attached to the measurement point of the object, and the reflector The semiconductor laser light is irradiated toward the light, and the reflected laser light from the reflector is condensed at one point on the optical position detection element by the condenser lens, and the output from the optical position detection element is output by the position signal processing circuit. There has been proposed an apparatus that detects the azimuth of a reflector, that is, the azimuth of a point to be measured. (For example, see Patent Document 1)

しかし、上記のような従来の位置検出装置では、対象物の或る1点毎の位置を追従検知して検出し測定するものであって、対象物に対し位置検出装置を一旦設置し調整した状態で、その対象物における複数の被測定点の変位を一度に測定して各被測定点の相対的位置関係を高速且つ高分解能で測定することはできない。また対象物が土木・建築の構造物である場合には、対象物から10m〜1Km離れた測定地点から被測定点の位置や変位量を測定できることが必要で、その測定精度は、100m先の対象物に対して誤差1mm、1Km先の対象物に対して誤差10mm程度の高い精度が求められ、また100m先の対象物に対して0.1mm、1Km先の対象物に対して1mm程度の高い分解能が求められ、さらに橋梁の振動測定などの場合はリアルタイムの高速測定が必要となるが、従来の測定方法・装置では、このような高い精度・分解能とリアルタイムの速さをもって多数の被測定点の位置や変位量を一度に測定することはできない。
特開平6−221853号公報
However, in the conventional position detection apparatus as described above, the position of a certain point of the object is detected and measured by following, and the position detection apparatus is once installed and adjusted with respect to the object. In this state, it is impossible to measure the displacement of a plurality of measured points on the object at a time and measure the relative positional relationship between the measured points at high speed and with high resolution. When the object is a civil engineering / architecture structure, it is necessary to be able to measure the position and displacement of the measurement point from a measurement point 10 m to 1 km away from the object, and the measurement accuracy is 100 m ahead. High accuracy of about 1mm is required for objects that are 1mm ahead of the object, and 0.1mm for objects that are 100m away, and 1mm that is about 1mm ahead of objects that are 100m away. Real-time high-speed measurement is required for bridge vibration measurement, etc., but conventional measurement methods / equipment have many points to be measured with such high accuracy / resolution and real-time speed. The position and amount of displacement cannot be measured at once.
Japanese Patent Laid-Open No. 6-221853

この発明は、上記のような従来の位置検出・測定装置における未解決の問題点と実用上の要求に応えるものであり、遠距離にある所与の変位測定対象物に対し測定装置を一旦設置し調整した状態で、その変位測定対象物の1点のみならず複数点の位置・変位量を一度に高速で測定して各点の相対的変位をも即座に測定可能とし、また10m〜1Km先の遠距離にある変位測定対象物の位置・変位量を高分解能、高精度、高速リアルタイムで測定できるようにするものである。 The present invention meets the above-mentioned unsolved problems and practical requirements of the conventional position detection / measurement device as described above, and once installs the measurement device for a given displacement measurement object at a long distance. In the adjusted state, not only one point of the displacement measurement object but also the position / displacement amount of multiple points can be measured at a high speed at once, and the relative displacement of each point can be measured immediately. The position / displacement amount of a displacement measurement object at a long distance can be measured with high resolution, high accuracy, and high speed in real time.

上記の課題に応じて目的を達するために、この発明では次のような手段を用いる。即ち、
変位測定対象物に任意の数の被変位測定点を設定し、その被変位測定点にコーナーキューブプリズムを配設し、その変位測定対象物から相当距離離れて前記被変位測定点の全てを見通せる位置に測定地点を設定し、その測定地点から前記コーナーキューブプリズムの全てを含む被変位測定領域に向けてレーザー光を投射し且つそのレーザー光で前記被変位測定領域を左右および上下に走査すると共に、前記被変位測定領域に向けたレーザー光の幾らかを方位角度測定用PSDにも同時に投射し、前記レーザー光の走査過程において前記コーナーキューブプリズムで反射して前記測定地点のレーザー光投射原点に戻った再帰反射レーザー光を光センサー素子(例えばフォト・ダイオード)で受光して前記被変位測定点にあるコーナーキューブプリズムの位置を感知する時点を検知すると共に、その位置感知時点において前記方位角度測定用PSDの受光面で受光したレーザー光の受光位置から前記被変位測定点の方位角度データ(即ち被変位測定点の位置データ)を検知し、その方位角度データを基に前記被変位測定点の変位量を演算して被変位測定点の変位を測定する。なお、被変位測定点の方位角度は、被変位測定点を射た投射レーザー光のレーザー光投射原点からの投射角度である。
In order to achieve the object according to the above problems, the present invention uses the following means. That is,
An arbitrary number of displacement measurement points are set on the displacement measurement object, and a corner cube prism is provided at the displacement measurement object, so that all of the displacement measurement points can be seen at a considerable distance from the displacement measurement object. A measurement point is set at a position, laser light is projected from the measurement point toward a displacement measurement region including all of the corner cube prisms, and the displacement measurement region is scanned left and right and up and down with the laser light. , And simultaneously projecting some of the laser beam toward the displacement measurement region onto the azimuth angle measurement PSD, and reflecting it by the corner cube prism in the scanning process of the laser beam to the laser beam projection origin of the measurement point The returned retroreflective laser beam is received by an optical sensor element (for example, a photo diode), and the corner cube plate at the displacement measurement point is received. Azimuth angle data of the displacement measurement point (that is, the displacement measurement point) from the light receiving position of the laser beam received by the light receiving surface of the azimuth angle measurement PSD at the time of sensing the position. Position data), and the amount of displacement at the displacement measurement point is calculated based on the azimuth angle data to measure the displacement of the displacement measurement point. The azimuth angle of the displacement measurement point is a projection angle from the laser light projection origin of the projection laser light that radiates the displacement measurement point.

また測定の際の分解能を高めるために、変位測定対象物に任意の数の被変位測定点を設定し、その被変位測定点にコーナーキューブプリズムを配設し、その変位測定対象物から相当距離離れて前記被変位測定点を見通せる位置に測定地点を設定し、その測定地点から前記コーナーキューブプリズムを含む被変位測定領域に向けてレーザー光を投射し且つそのレーザー光で前記被変位測定領域を左右および上下に走査すると共に、前記被変位測定領域に向けたレーザー光の幾らかを方位角度測定用PSDにも同時に投射し、前記レーザー光の走査過程において前記コーナーキューブブプリズムで反射して前記測定地点のレーザー光投射原点に戻った再帰反射レーザー光を光センサー素子で受光して前記被変位測定点にあるコーナーキューブプリズムの位置を感知する時点を検知すると共に、前記レーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長させた状態で、前記位置感知時点において前記方位角度測定用PSDの受光面で受光したレーザー光の受光位置から前記被変位測定点の方位角度データを検知し、その方位角度データを基に前記被変位測定点の変位量を演算して被変位測定点の変位を測定する。 In addition, in order to increase the resolution at the time of measurement, an arbitrary number of displacement measurement points are set on the displacement measurement object, and a corner cube prism is arranged at the displacement measurement object, and a considerable distance from the displacement measurement object. A measurement point is set at a position where the displacement measurement point can be seen away, and a laser beam is projected from the measurement point toward the displacement measurement region including the corner cube prism, and the displacement measurement region is defined by the laser beam. In addition to scanning left and right and up and down, simultaneously project some laser light toward the displacement measurement region onto the azimuth angle measurement PSD, and reflect it on the corner cube prism in the laser light scanning process. The retroreflective laser beam that has returned to the laser beam projection origin at the measurement point is received by the optical sensor element, and the corner cube sample at the displacement measurement point is received. The azimuth angle at the position sensing time point in a state where the laser light path length (M) from the laser light projection origin to the light receiving surface of the azimuth angle measurement PSD is extended. Measures the displacement by detecting the azimuth angle data of the displacement measurement point from the light receiving position of the laser beam received by the light receiving surface of the measurement PSD, and calculates the displacement amount of the displacement measurement point based on the azimuth angle data. Measure the displacement of the point.

また、設定した測定地点と変位測定対象物の間の距離(N)が未知数の場合、既知の距離dを隔てた二つの位置に測定地点(A1,A2)を設定し、その各測定地点(A1,A2)から上述の被変位測定領域に向けてそれぞれレーザー光を投射し且つその各レーザー光で被変位測定領域を左右および上下に走査すると共に、前記被変位測定領域に向けたそれぞれのレーザー光の幾らかを同時に各測定地点(A1,A2)の方位角度測定用PSDにもそれぞれ投射し、前記各レーザー光の走査過程で同一の被変位測定点に位置する同一のコーナーキューブプリズムで反射して各測定地点(A1,A2)のレーザー光投射原点にそれぞれ戻った再帰反射レーザー光を各測定地点(A1,A2)の光センサー素子でそれぞれ受光してその被変位測定点にあるコーナーキューブプリズムの位置感知時点をそれぞれ検知すると共に、その各位置感知時点において二つの測定地点(A1,A2)の方位角度測定用PSDの受光面でそれぞれ受光したレーザー光の受光位置から前記被変位測定点の方位角度データをそれぞれ検知し、二つの測定地点(A1,A2)の方位角度測定用PSDで検知した被変位測定点の方位角度データと前記既知の距離dを基に前記被変位測定点の変位量を演算して被変位測定点の変位を測定する。 When the distance (N) between the set measurement point and the displacement measurement object is unknown, the measurement points (A1, A2) are set at two positions separated by a known distance d, and each measurement point ( A1 and A2) respectively project laser beams toward the above-mentioned displacement measurement region, and scan the displacement measurement region left and right and up and down with each laser beam, and each laser directed to the displacement measurement region Some of the light is simultaneously projected onto the azimuth angle measurement PSD at each measurement point (A1, A2) and reflected by the same corner cube prism located at the same displacement measurement point in the scanning process of each laser beam. Then, the retroreflective laser beam returned to the laser beam projection origin at each measurement point (A1, A2) is received by the optical sensor element at each measurement point (A1, A2), and the corner cube at the displacement measurement point. The The position measurement point is detected from the light receiving position of the laser beam received at the light receiving surface of the azimuth angle measuring PSD at the two measurement points (A1, A2) at each position detection time point. Azimuth angle data is detected, and the displacement measurement point of the displacement measurement point is detected based on the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD of the two measurement points (A1, A2) and the known distance d. The displacement amount is calculated to measure the displacement of the displacement measurement point.

さらにまた、測定に用いるコーナーキューブプリズムの反射面に非対称成形歪みが残存する場合に、その非対称成形歪みによる測定誤差を除くために、レーザー光で上述の被変位測定領域を走査する過程において、光センサー素子によって検知したコーナーキューブプリズムの位置感知時点毎に方位角度測定用PSDが検知したそのコーナーキューブプリズムの反射面各部の方位角度データを集積してそのコーナーキューブプリズムの反射領域面データを生成し、その反射領域面データを基にそのコーナーキューブプリズムの反射面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基にその被変位測定点の変位量を演算して被変位測定点の変位を測定する。 Furthermore, when asymmetrical molding distortion remains on the reflecting surface of the corner cube prism used for measurement, in order to eliminate the measurement error due to the asymmetrical molding distortion, in the process of scanning the above-mentioned displacement measurement area with laser light, The azimuth angle data of each part of the reflection surface of the corner cube prism detected by the PSD for measuring the azimuth angle is accumulated at each time the position of the corner cube prism detected by the sensor element is detected, and the reflection area surface data of the corner cube prism is generated. Based on the reflection area surface data, the center position of the reflection surface of the corner cube prism is calculated to generate the azimuth angle data of the displacement measurement point where the corner cube prism is located, and the azimuth angle data of the displacement measurement point Based on the above, calculate the displacement at the displacement measurement point and measure the displacement at the displacement measurement point. To.

次にこの発明に係る遠距離対象物の変位測定方法を実行するための遠距離対象物の変位測定装置として、レーザー発光器と、測定地点に設置され前記レーザー発光器から発したレーザー光を受けてそのレーザー光を前記測定地点から相当距離離れた被変位測定点のコーナーキューブプリズムを含む被変位測定領域に向けて投射するミラーと、そのミラーを左右および上下に往復回動させてミラーから投射するレーザー光でもって前記被変位測定領域を走査するスキャン駆動装置と、その走査過程において前記コーナーキューブプリズムで反射し前記ミラーのレーザー光投射原点に戻った再帰反射レーザー光を受光して被変位測定点にあるコーナーキューブプリズムの位置を感知した時点を検知する光センサー素子と、前記ミラーから前記被変位測定領域に向けて投射したレーザー光の幾らかを同時に受光し且つ前記光センサー素子で検知した位置感知時点で受光したレーザー光の受光位置から前記被変位測定点の方位角度データを検知する方位角度測定用PSDと、その方位角度測定用PSDで検知した被変位測定点の方位角度データを基にその被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータを主要部として備える変位測定装置を構成する。 Next, as a long-distance object displacement measuring apparatus for carrying out the long-distance object displacement measuring method according to the present invention, a laser emitter and laser light emitted from the laser emitter installed at a measurement point are received. The laser beam is projected toward the displacement measurement area including the corner cube prism at the displacement measurement point that is a considerable distance away from the measurement point, and the mirror is projected from the mirror by reciprocating left and right and up and down. And a scan driving device that scans the displacement measurement region with a laser beam that receives the retroreflective laser beam reflected by the corner cube prism and returned to the laser beam projection origin of the mirror during the scanning process. An optical sensor element for detecting a point of time when the position of the corner cube prism at the point is detected; and An azimuth angle that simultaneously receives some of the laser light projected toward the measurement region and detects the azimuth angle data of the measurement point to be displaced from the light receiving position of the laser light received at the position sensing time detected by the photosensor element. Displacement measuring apparatus comprising as main components a measurement PSD and a computer equipped with a calculation program for calculating the displacement amount of the displacement measurement point based on the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD Configure.

また測定の際のレーザー光投射角度(被変位測定点の方位角度)の分解能を高めるために、上述のミラーと角度測定用PSDの間に角度倍率切換器を介在させて、その角度倍率切換器によって必要に応じて前記ミラーのレーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長させる。 Further, in order to increase the resolution of the laser beam projection angle (azimuth angle of the measurement point to be displaced) at the time of measurement, an angle magnification switch is interposed between the mirror and the angle measurement PSD, and the angle magnification switch If necessary, the laser light path length (M) from the laser light projection origin of the mirror to the light receiving surface of the azimuth angle measuring PSD is extended.

そして変位測定装置を合理的にコンパクトに構成するために、上記ミラーをハーフミラーとして構成する。即ち、レーザー発光器と、測定地点に設置され前記レーザー発光器から発したレーザー光を受けてそのレーザー光を前記測定地点から相当距離離れた被変位測定点のコーナーキューブプリズムを含む被変位測定領域に向けて投射する第一のハーフミラーと、第一のハーフミラーを左右および上下に往復回動させ第一のハーフミラーから投射するレーザー光でもって前記被変位測定領域を走査するスキャン駆動装置と、その走査過程において前記コーナーキューブプリズムで反射し前記第一のハーフミラーのレーザー光投射原点に戻った再帰反射レーザー光を受光して前記被変位測定点にあるコーナーキューブプリズムの位置を感知する時点を検知する光センサー素子と、第一のミラーから前記被変位測定領域に向けて投射したレーザー光の幾らかを変向反射する第二のハーフミラーと、前記第二のミラーで反射したレーザー光を受光し且つ前記光センサー素子で検知した位置感知時点で受光したレーザー光の受光位置から前記被変位測定点の方位角度データを検知する方位角度測定用PSDと、前記第二のミラーと前記方位角度測定用PSDの間に置かれて前記第一のミラーのレーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長する角度倍率切換器と、前記方位角度測定用PSDで検知した被変位測定点の方位角度データを基にその被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータを主要部として備える変位測定装置を構成する。   And in order to comprise a displacement measuring apparatus reasonably compactly, the said mirror is comprised as a half mirror. That is, a displacement measurement area including a laser emitter and a corner cube prism of a displacement measurement point that is installed at a measurement point and receives laser light emitted from the laser emitter and is separated from the measurement point by a considerable distance. A first half mirror that projects toward the screen, a scan drive device that scans the displacement measurement region with laser light that is projected from the first half mirror by reciprocatingly rotating the first half mirror left and right and up and down In the scanning process, when the retroreflective laser beam reflected by the corner cube prism and returned to the laser beam projection origin of the first half mirror is received to detect the position of the corner cube prism at the displacement measurement point An optical sensor element for detecting the amount of laser light projected from the first mirror toward the displacement measurement region. A second half mirror that redirects and reflects the laser beam, and the displacement measurement from the light receiving position of the laser light received at the position sensing time point that is received by the laser beam reflected by the second mirror and detected by the optical sensor element An azimuth angle measurement PSD for detecting azimuth angle data of a point, and the azimuth angle measurement PSD from the laser light projection origin of the first mirror placed between the second mirror and the azimuth angle measurement PSD Based on the angle magnification switch that extends the laser optical path length (M) to the light receiving surface and the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD, the displacement amount of the displacement measurement point is calculated. A displacement measuring device is provided that includes as a main part a computer on which an arithmetic program is mounted.

さらにまた、変位測定装置に用いるコーナーキューブプリズムの反射面に非対称成形歪みが残存する場合に、その非対称成形歪みによる測定誤差を除くために、レーザー光の走査過程において上述の光センサー素子によってコーナーキューブプリズムの反射位置を感知する時点毎に方位角度測定用PSDで検知したそのコーナーキューブプリズムの反射面各部の方位角度データを蓄積してそのコーナーキューブプリズムの反射領域面データを生成し、そのコーナーキューブプリズム反射領域面データを基にそのコーナーキューブプリズムの反射領域面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基にその被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータを装備した変位測定装置を構成する。 Furthermore, when asymmetrical molding distortion remains on the reflecting surface of the corner cube prism used in the displacement measuring device, the above-mentioned optical sensor element is used in the laser beam scanning process to eliminate the measurement error due to the asymmetrical molding distortion. Every time the reflection position of the prism is sensed, azimuth angle data of each part of the reflection surface of the corner cube prism detected by the azimuth angle measurement PSD is accumulated to generate reflection area surface data of the corner cube prism, and the corner cube Based on the prism reflection area surface data, the center position of the reflection area surface of the corner cube prism is calculated to generate the azimuth angle data of the displacement measurement point where the corner cube prism is located, and the azimuth angle data of the displacement measurement point Based on the above, a calculation program that calculates the displacement of the displacement measurement point Constituting a displacement measuring device equipped with a computer with a gram.

この発明に係る遠距離対象物の変位測定方法ならびに変位測定装置によれば、変位測定対象物に対し変位測定装置を一旦設置し調整した状態で、変位測定対象物の1点のみならず複数点の被変位測定点の位置や変位量および各被変位測定点の間の相対的位置や変位量を一度に迅速に測定することが可能となる。また、PSDは分解能が非常に高く且つ測定が非常に速いことから、さらに加えて、角度倍率切換器を用いて、レーザー光路長M延長しレーザー光の投射角度を増幅した状態で各被変位測定点の方位角度を直接検知するので、左右・上下スキャン駆動装置などの動作に起因する誤差の影響を受けることなく、高分解能で正確に各被変位測定点の変位測定結果を得ることができ、10m〜1Kmの遠距離にある変位測定対象物の変位量を高分解能、高精度、リアルタイムの高速でもって測定することができる。さらに、レーザー光で被変位測定領域を走査する過程において、光センサー素子によって検知されるコーナーキューブプリズムの位置感知時点毎に方位角度測定用PSDで検知したそのコーナーキューブプリズムの反射面各部の方位角度データを集積してそのコーナーキューブプリズムの反射領域面データを生成し、その反射領域面データを基にそのコーナーキューブプリズムの反射領域面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基にその被変位測定点の変位量を演算して被変位測定点の変位を測定することから、変位測定に用いるコーナーキューブプリズムの反射面に若干の非対称成形歪みがあっても、これによって生ずる測定誤差が除外される。 According to the displacement measuring method and the displacement measuring apparatus for a long-distance object according to the present invention, not only one point of the displacement measuring object but also a plurality of points in a state where the displacement measuring apparatus is once installed and adjusted with respect to the displacement measuring object. It is possible to quickly measure the position and displacement amount of each displacement measurement point and the relative position and displacement amount between each displacement measurement point at once. In addition, PSD has a very high resolution and very fast measurement. In addition, using an angle magnification switch, each displacement measurement is performed with the laser light path length M extended and the laser light projection angle amplified. Since the azimuth angle of the point is directly detected, the displacement measurement results of each displacement measurement point can be obtained accurately and with high resolution without being affected by errors caused by the operation of the left / right / up / down scan drive device, etc. The displacement amount of the displacement measurement object at a long distance of 10 m to 1 km can be measured with high resolution, high accuracy, and high speed in real time. Further, in the process of scanning the displacement measurement region with laser light, the azimuth angle of each part of the reflection surface of the corner cube prism detected by the azimuth angle measurement PSD at each position sensing time of the corner cube prism detected by the optical sensor element Data is collected to generate the reflection area surface data of the corner cube prism, and based on the reflection area surface data, the center position of the reflection area surface of the corner cube prism is calculated to measure the displacement where the corner cube prism is located. Since the azimuth angle data of a point is generated and the displacement of the displacement measurement point is calculated based on the azimuth angle data of the displacement measurement point, the displacement of the displacement measurement point is measured. Even if there is some asymmetrical molding distortion on the reflecting surface of the cube prism, the measurement error caused by this will be eliminated. It is.

この発明に係る変位測定方法の最良の実施形態は、変位測定対象物に所望の任意の数の被変位測定点を設定し、その被変位測定点にコーナーキューブプリズムを配設し、そのコーナーキューブプリズムの全てを見通せる位置で且つ互いに既知の距離dだけ離れた位置に二つの測定地点(A1,A2)を設定し、その各測定地点(A1,A2)から前記コーナーキューブプリズムの全てを含む被変位測定領域に向けてそれぞれレーザー光を投射し、且つその各レーザー光でそれぞれ前記被変位測定領域を左右および上下に走査すると共に、前記被測定領域に向けられたそれぞれのレーザー光の幾らかを前記各測定地点(A1,A2)の方位角度測定用PSDにもそれぞれ投射し、前記各レーザー光の走査過程で同一の被変位測定点に位置する同一のコーナーキューブプリズムで反射して前記各測定地点(A1,A2)のレーザー光投射原点にそれぞれ戻った再帰反射レーザー光を前記各測定地点(A1,A2)の光センサー素子でそれそれ受光してその被変位測定点にあるコーナーキューブプリズムの位置感知時点をそれぞれ検知すると共に、前記レーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長させた状態で、前記各位置感知時点において前記二つの測定地点(A1,A2)の方位角度測定用PSDの受光面でそれぞれ受光したレーザー光の受光位置から前記被変位測定点の方位角度データを検知し、その方位角度データを基に前記被変位測定点の変位量を演算してその被変位測定点の変位を測定する遠距離対象物の変位測定方法である。そして加えて、使用するコーナーキューブプリズムの反射面に非対称成形歪みが残存してその非対称成形歪みによって測定誤差が生ずることも考えられることから、その非対称成形歪みによる測定誤差を除くために、レーザー光で被変位測定領域を走査する過程において、光センサー素子によって検知したコーナーキューブプリズムの位置感知時点毎に方位角度測定用PSDが検知したコーナーキューブプリズムの反射面各部の方位角度データを集積してそのコーナーキューブプリズムの反射領域面データを生成し、その反射領域面データを基にそのコーナーキューブプリズムの反射領域面の中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基に被変位測定点の変位量を演算して被変位測定点の変位を測定する遠距離対象物の変位測定方法である。   In the best embodiment of the displacement measuring method according to the present invention, a desired arbitrary number of displacement measurement points are set on a displacement measurement object, and a corner cube prism is disposed at the displacement measurement point, and the corner cube is arranged. Two measurement points (A1, A2) are set at a position where all the prisms can be seen and separated by a known distance d from each other, and from each of the measurement points (A1, A2), all the corner cube prisms are covered. A laser beam is projected toward the displacement measurement region, and the displacement measurement region is scanned left and right and up and down with each laser beam, and some of the laser beams directed to the measurement region are Each of the measurement points (A1, A2) is projected onto the azimuth angle measurement PSD, and the same corner cue located at the same displacement measurement point in the scanning process of each laser beam. The retroreflective laser beam reflected by the brilliant prism and returned to the laser beam projection origin at each measurement point (A1, A2) is received by the photosensor element at each measurement point (A1, A2), and its displacement is detected. While detecting the position sensing time of the corner cube prism at the measurement point, and extending the laser light path length (M) from the laser light projection origin to the light receiving surface of the azimuth angle measurement PSD, the respective positions At the time of sensing, the azimuth angle data of the displacement measurement point is detected from the light receiving position of the laser beam received by the light receiving surface of the azimuth angle measurement PSD at the two measurement points (A1, A2), and the azimuth angle data is obtained. This is a displacement measuring method for a long-distance object in which the displacement amount of the displacement measurement point is calculated based on the displacement amount of the displacement measurement point. In addition, since it is also possible that asymmetric molding distortion remains on the reflecting surface of the corner cube prism used and the asymmetric molding distortion causes a measurement error, a laser beam is used to eliminate the measurement error due to the asymmetric molding distortion. In the process of scanning the displacement measurement area, the azimuth angle data of each part of the reflecting surface of the corner cube prism detected by the azimuth angle measurement PSD is accumulated at each time the position of the corner cube prism detected by the optical sensor element is detected. Generates the reflection area surface data of the corner cube prism, calculates the center position of the reflection area surface of the corner cube prism based on the reflection area surface data, and the azimuth angle data of the displacement measurement point where the corner cube prism is located Based on the azimuth angle data of the displacement measurement point. A displacement measuring method for long distance object to measure the displacement of the displacement measurement point by calculating the amount of displacement of the position measuring point.

また、この発明に係る変位測定装置の最良の実施形態は、レーザー発光器と、測定地点に設置され前記レーザー発光器から発したレーザー光を受けてそのレーザー光を測定地点から相当距離離れた被変位測定点のコーナーキューブプリズムを含む被変位測定領域に向けて投射する第一のハーフミラーと、その第一のハーフミラーを左右および上下に往復回動させて第一のハーフミラーから投射するレーザー光でもって前記被変位測定領域を走査するスキャン駆動装置と、その走査過程においてコーナーキューブプリズムで反射して前記第一のハーフミラーのレーザー光投射原点に戻った再帰反射レーザー光を受光して前記被変位測定点にあるコーナーキューブプリズムの位置感知時点を検知する光センサー素子と、第一のハーフミラーから前記被変位測定領域に向けて投射したレーザー光の幾らかを変向反射する第二のハーフミラーと、第二のハーフミラーで反射したレーザー光を受光し且つ前記光センサー素子で検知した位置感知時点において受光した前記レーザー光の受光位置から前記被変位測定点の方位角度データを検知する方位角度測定用PSDと、前記第二のハーフミラーと前記方位角度測定用PSDの間に置かれて前記第一のハーフミラーのレーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長する角度切換器と、
前記光センサー素子によって検知したコーナーキューブプリズムの反射位置感知時点毎に前記方位角度測定用PSDで検知したそのコーナーキューブプリズムの反射面各部の方位角度データを蓄積してそのコーナーキューブプリズムの反射領域面データ生成すると共にそのコーナーキューブプリズムの反射領域面データを基にそのコーナーキューブプリズムの反射面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し且つその被変位測定点の方位角度データを基にその被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータを備えた遠距離対象物の変位測定装置である。
The best mode of the displacement measuring apparatus according to the present invention is a laser emitter and a laser beam installed at a measurement point and receiving laser light emitted from the laser emitter, and the laser beam is separated from the measurement point by a considerable distance. A first half mirror that projects toward the displacement measurement region including the corner cube prism at the displacement measurement point, and a laser that projects from the first half mirror by rotating the first half mirror back and forth and up and down. A scanning drive device that scans the displacement measurement region with light, and receives the retroreflective laser light reflected by the corner cube prism and returned to the laser light projection origin of the first half mirror in the scanning process; An optical sensor element that detects the position sensing time of the corner cube prism at the displacement measurement point, and the front from the first half mirror A second half mirror that redirects and reflects some of the laser light projected toward the displacement measurement region, and a position detection time point when the laser light reflected by the second half mirror is received and detected by the optical sensor element The azimuth angle measurement PSD for detecting the azimuth angle data of the displacement measurement point from the light receiving position of the laser beam received in step, and the second half mirror and the azimuth angle measurement PSD are placed between the second half mirror and the azimuth angle measurement PSD. An angle switch for extending the laser beam path length (M) from the laser beam projection origin of one half mirror to the light receiving surface of the azimuth angle measurement PSD;
The azimuth angle data of each part of the reflection surface of the corner cube prism detected by the azimuth angle measurement PSD is accumulated every time the reflection position of the corner cube prism detected by the optical sensor element is sensed, and the reflection area surface of the corner cube prism is stored. In addition to generating the data, the center position of the reflection surface of the corner cube prism is calculated based on the reflection area surface data of the corner cube prism to generate the azimuth angle data of the displacement measurement point where the corner cube prism is located and A displacement measuring apparatus for a long-distance object including a computer equipped with a calculation program for calculating a displacement amount of a displacement measuring point based on azimuth angle data of the displacement measuring point.

以下この発明の実施例を図面を参考に説明する。図1は、この発明に係る遠距離対象物の変位測定装置の基本構成図(同変位測定装置の概略平面図)で、変位測定対象物であるところの高層ビルの経年変化による傾き(傾斜度)を、その高層ビルから相当離れた測定地点から測定する装置の例を示すものである。図2は同変位測定装置における角度倍率切換器部分の詳細図である。図3はこの発明に用いるコーナーキューブプリズムの説明図で、(a)はコーナーキューブプリズムの斜視状態を示し、(b)はレーザー光による同コーナーキューブプリズムの走査状態を模式的に示し、(c)ならびに(d)は同コーナーキューブプリズムの縦断概略を示すものである。図4は変位測定対象物となる上記高層ビルの要部正面図(同高層ビルをZ軸方向に見た図)、図5は同高層ビルの要部側面図(同高層ビルをX軸方向に見た図)である。図6は同変位測定装置の方位角度測定用PSDで検知した被変位測定点の位置が表示されたディスプレー上の変位表示画面図である。図7はこの発明に係る変位測定方法・装置による変位測定の基本説明図であり、図8も同変位測定方法・装置による変位測定の基本説明図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a basic configuration diagram (schematic plan view of the displacement measuring device) of a long-distance object displacement measuring apparatus according to the present invention, and the inclination (gradient degree) of a high-rise building that is a displacement measuring object. ) Is shown as an example of a device that measures from a measurement point considerably away from the high-rise building. FIG. 2 is a detailed view of the angle magnification switching unit in the displacement measuring apparatus. 3A and 3B are explanatory diagrams of the corner cube prism used in the present invention. FIG. 3A is a perspective view of the corner cube prism, FIG. 3B schematically shows a scanning state of the corner cube prism by laser light, and FIG. ) And (d) show the outline of the corner cube prism. 4 is a front view of the main part of the above-mentioned high-rise building as a displacement measurement object (view of the high-rise building in the Z-axis direction), and FIG. Fig. FIG. 6 is a displacement display screen diagram on the display on which the position of the displacement measurement point detected by the azimuth angle measurement PSD of the displacement measuring device is displayed. FIG. 7 is a basic explanatory view of displacement measurement by the displacement measuring method and apparatus according to the present invention, and FIG. 8 is also a basic explanatory view of displacement measurement by the displacement measuring method and apparatus.

図1,2,3,4,5において、Bは地上Gに建設された変位測定対象物(高層ビル)、Aは変位測定対象物Bの変位を測定するための測定地点で、測定地点Aは変位測定対象物(高層ビル)Bから相当の距離N(10m〜1Kmの距離)を隔てた地上Gに設定され、測定地点Aに変位測定装置Eが設置される。また変位測定対象物Bには、必要とする任意の数の被変位測定点P1,P2,P3,P4・・・Pn(被変位測定点P1,P2,P3,P4・・・Pnを総じて被変位測定点Pという)を設定し、各被変位測定点P1,P2,P3,P4・・・PnにそれぞれコーナーキューブプリズムC1,C2,C3,C4・・・Cn(コーナーキューブプリズムC1,C2,C3,C4・・・Cnを総じてコーナーキューブプリズムCという)を配設して取り付けている。そして変位測定のために配設した前記コーナーキューブプリズムCの全てを含む領域を被変位測定領域Baとし、測定地点Aは上記の全てのコーナーキューブプリズムCを見通せる位置、即ち被変位測定領域Baを見通せる位置に設定している。したがって被変位測定領域Baは、測定地点Aを頂点としてその測定地点Aから見て前記コーナーキューブプリズムCが全て包含される3次元領域内にあって、その被変位測定領域Baの3次元座標軸方向(即ちX軸方向,Y軸方向,Z軸方向)の最大幅をそれぞれWx、Wy、Wzで示している。そして、被変位測定領域Baの上記3次元座標軸方向の幅Wx、Wy、Wzは、それぞれ後述するレーザー光による被変位測定領域Baの走査過程における、X軸方向スキャン幅、Y軸方向スキャン幅、Z方向スキャン幅でもある。なお、図4および図5において、H1は被変位測定点P1の地上Gからの垂直距離、H2は被変位測定点P1,P2間の垂直距離、H3は被変位測定点P2,P3間の垂直距離、P4は被変位測定点P3,P4間の垂直距離である。また、コーナーキューブプリズムCは、図3に示すように、互いに直交した三つの内部反射面をもつプリズムで、入射する光を、その入射角度の如何に関わらず、180°折り返して再帰反射する機能を有する周知のものである。 1, 2, 3, 4, and 5, B is a displacement measuring object (high-rise building) constructed on the ground G, A is a measuring point for measuring the displacement of the displacement measuring object B, and measuring point A Is set on the ground G at a considerable distance N (distance of 10 m to 1 km) from the displacement measurement object (high-rise building) B, and the displacement measuring device E is installed at the measurement point A. In addition, the displacement measurement object B has an arbitrary number of required displacement measurement points P1, P2, P3, P4... Pn (displacement measurement points P1, P2, P3, P4. Displacement measurement point P) is set, and each corner measurement prism P1, P2, P3, P4 ... Pn has corner cube prisms C1, C2, C3, C4 ... Cn (corner cube prisms C1, C2,. C3, C4... Cn are collectively attached as corner cube prism C). An area including all the corner cube prisms C arranged for displacement measurement is defined as a displacement measurement area Ba, and a measurement point A is a position where all the corner cube prisms C can be seen, that is, the displacement measurement area Ba is defined as a measurement area Ba. The position is set so that it can be seen through. Therefore, the displacement measurement area Ba is in a three-dimensional area including all the corner cube prisms C as viewed from the measurement point A with the measurement point A as a vertex, and the three-dimensional coordinate axis direction of the displacement measurement area Ba The maximum widths in the X-axis direction, Y-axis direction, and Z-axis direction are indicated by Wx, Wy, and Wz, respectively. The widths Wx, Wy, and Wz of the displacement measurement area Ba in the three-dimensional coordinate axis direction are X-axis direction scan width, Y-axis direction scan width, respectively, in the scanning process of the displacement measurement area Ba by laser light described later. It is also the Z direction scan width. 4 and 5, H1 is the vertical distance from the ground G of the displacement measurement point P1, H2 is the vertical distance between the displacement measurement points P1 and P2, and H3 is the vertical distance between the displacement measurement points P2 and P3. The distance, P4, is the vertical distance between the displacement measurement points P3, P4. Further, as shown in FIG. 3, the corner cube prism C is a prism having three internal reflection surfaces orthogonal to each other, and has a function of returning and retroreflecting incident light by 180 ° regardless of the incident angle. Is a well-known one.

図1において、1はレーザー発光器、2は第一のハーフミラー、3は第二のハーフミラー、4は光センサー素子(例えばフォト・ダイオード)、5は方位角度測定用PSD、6は角度倍率切換器、7は左右スキャン駆動装置(X軸方向スキャン駆動装置)、8は上下スキャン駆動装置(Y軸方向スキャン駆動装置)、11はコンピュータで、これらによって変位測定装置Eの主要部が構成されている。第一のハーフミラー2と光センサー素子4は所定の相互位置関係を保持した状態で左右スキャンユニット(X軸方向スキャンユニット)9を構成し、左右スキャンユニット9に左右スキャン駆動装置7が連結され、左右スキャン駆動装置7によって、第一のハーフミラー2の中心点Fを通る垂直軸Ysを軸として左右スキャンユニット9を左右に(X軸方向に)往復回動させる。その結果、第一のハーフミラー2も、上記垂直軸Ysを軸として左右に(X軸方向に)往復回動する。さらに、左右スキャンユニット9と左右スキャン駆動装置7は上下スキャンユニット10を構成し、上下スキャンユニット10に上下スキャン駆動装置8が連結され、上下スキャン駆動装置8によって、第一のハーフミラー2の中心点Fを通る水平軸Xsを軸として上下スキャンユニット10を上下に(Y軸方向に)往復回動させる。その結果、第一のハーフミラー2も上記水平軸Xsを軸として上下に(Y軸方向に)往復回動する。なお、左右スキャン駆動装置7ならびに上下スキャン駆動装置8の駆動源にはパルスモータあるいは直流モータが用いられている。 In FIG. 1, 1 is a laser emitter, 2 is a first half mirror, 3 is a second half mirror, 4 is an optical sensor element (for example, a photodiode), 5 is an azimuth measuring PSD, and 6 is an angular magnification. A switching device, 7 is a left / right scan drive device (X-axis direction scan drive device), 8 is a vertical scan drive device (Y-axis direction scan drive device), 11 is a computer, and these constitute the main part of the displacement measuring device E. ing. The first half mirror 2 and the optical sensor element 4 constitute a left / right scan unit (X-axis direction scan unit) 9 while maintaining a predetermined mutual positional relationship, and the left / right scan drive unit 7 is connected to the left / right scan unit 9. The left and right scan driving device 7 reciprocates the left and right scan unit 9 left and right (in the X-axis direction) about the vertical axis Ys passing through the center point F of the first half mirror 2. As a result, the first half mirror 2 also reciprocally rotates left and right (in the X-axis direction) about the vertical axis Ys. Further, the left / right scan unit 9 and the left / right scan drive device 7 constitute an upper / lower scan unit 10, and an upper / lower scan drive device 8 is connected to the upper / lower scan unit 10. The vertical scanning unit 10 is reciprocally rotated up and down (in the Y-axis direction) about the horizontal axis Xs passing through the point F. As a result, the first half mirror 2 also reciprocates up and down (in the Y-axis direction) about the horizontal axis Xs. A pulse motor or a direct current motor is used as a drive source for the left / right scan drive device 7 and the vertical scan drive device 8.

第一のハーフミラー2は、測定地点Aに設置されレーザー発光器1から発するレーザー光Lを受けて,そのレーザー光Lを被変位測定領域Baに向けて投射するものであって、第一のハーフミラー2の中心点Fは被変位測定領域Baに向けたレーザー光Lの投射原点(レーザー光投射原点F)にもなっている。左右スキャン駆動装置7と上下スキャン駆動装置8は、第一のハーフミラー2を左右および上下に往復回動させて第一のハーフミラー2から投射するレーザー光LでもってコーナーキューブプリズムCを含む被変位測定領域Baを左右方向(X軸方向)および上下方向(Y軸方向)に走査するものである。また、第二のハーフミラー3は、第一のハーフミラー2の前方(変位測定対象物Bの側)に配設されており、第二のハーフミラー3は、前記の走査過程において第一のハーフミラー2のレーザー光投射原点Fから被変位測定領域Baに向けて投射したレーザー光Lの幾らかを変向反射して、その変向反射したレーザー光Lを、前記被変位測定領域Baに向けたレーザー光Lの投射と同時に、角度倍率切換器6を介して、方位角度測定用PSD5に投射するものである。 The first half mirror 2 is installed at the measurement point A, receives the laser light L emitted from the laser emitter 1, and projects the laser light L toward the displacement measurement area Ba. The center point F of the half mirror 2 is also the projection origin (laser beam projection origin F) of the laser beam L toward the displacement measurement area Ba. The left and right scan driving device 7 and the upper and lower scan driving device 8 include a corner cube prism C with a laser beam L projected from the first half mirror 2 by reciprocatingly rotating the first half mirror 2 left and right and up and down. The displacement measurement area Ba is scanned in the left-right direction (X-axis direction) and the up-down direction (Y-axis direction). The second half mirror 3 is disposed in front of the first half mirror 2 (on the side of the displacement measurement object B), and the second half mirror 3 is the first half mirror 3 in the scanning process. Some of the laser beam L projected from the laser beam projection origin F of the half mirror 2 toward the displacement measurement area Ba is deflected and reflected, and the laser beam L that is reflected and reflected is reflected on the displacement measurement area Ba. Simultaneously with the projection of the directed laser beam L, it is projected onto the azimuth angle measuring PSD 5 via the angle magnification switching unit 6.

角度倍率切換器6は、第二のハーフミラー3と方位角度測定用PSD5の間に置かれて、第一のハーフミラー2のレーザー光投射原点Fから方位角度測定用PSD5の受光面までのレーザー光路長Mを延長する機能を奏する。即ち、角度倍率切換器6は、図2に示すように、45°プリズム(反射ミラーを角度45°に置いたものと同等)と45°直角プリズム(直角面を反射ミラーとしたものと同等)を組み合わせてなる2個のW字状の光蛇行反射体6a,6bを、単位間隔Rを置いて対向させた構造であり、単位間隔Rの光路が蛇行状にn段形成された構造である。そして、第二のハーフミラー3と方位角度測定用PSD5の間に角度倍率測定用PSD6を介在させることにより、第二のハーフミラー3から受けたレーザー光Lを、光蛇行反射体6a,6bの間でn度、蛇行状に反射させることにより、レーザー光投射原点Fから方位角度測定用PSD5の受光面までのレーザー光路長Mを、M1=n×Rだけ延長することができる。なお、レーザー光路長Mを延長させる必要がない場合には、角度倍率切換器6を短絡状態にして、第二のハーフミラー3から方位角度測定用PSD5にレーザー光Lを直接投射する。また角度倍率切換器6は、単位間隔Rの光路の段数nが異なる複数の角度倍率切換ユニットをターンテーブル上に配置し、その複数の角度倍率切換ユニットの中から、所望の光路段数nを備えたユニットを選んで変位測定装置に組み入れるようにしている。即ち、第一のハーフミラー2のレーザー光投射原点Fから方位角度測定用PSD5の受光面までのレーザー光路長Mは、レーザー光投射原点Fから角度倍率切換器6までの光路長M0と、角度倍率切換器6の内部の光路長M1と、角度倍率切換器6から方位角度測定用PSD5の受光面までの光路長M2との和(M=M0+M1+M2)であって、角度倍率切換器6を用いることにより、光路長M2の部分で、レーザー光投射原点Fから方位角度測定用PSD5の受光面までのレーザー光路長Mを、M1=n×Rの範囲で延長可能としている。この種の遠距離対象物の変位測定方法・装置においては、変位測定対象物と測定地点の間の距離Nが大きい程、同じ測定範囲に対する測定方位角度の変化量は小さくなる。したがって、高い分解能で方位角度測定を行いたい場合は、第一のハーフミラー2のレーザー光投射原点Fから方位角度測定用PSD5の受光面までのレーザー光路長Mを長くする程、分解能を高くすることができる。そのため、レーザー光投射原点Fと方位角度測定用PSD5の受光面の間に角度倍率切換器6を介在させることにより、前記レーザー光路長Mを延長できるようにして、変位測定対象物と測定地点の間の距離Nにおうじた角度倍率が得られるようにしている。 The angle magnification switch 6 is placed between the second half mirror 3 and the azimuth angle measurement PSD 5, and lasers from the laser light projection origin F of the first half mirror 2 to the light receiving surface of the azimuth angle measurement PSD 5. The function of extending the optical path length M is achieved. That is, as shown in FIG. 2, the angle magnification switching unit 6 includes a 45 ° prism (equivalent to a reflection mirror placed at an angle of 45 °) and a 45 ° right-angle prism (equivalent to a reflection mirror having a right angle surface). Is a structure in which two W-shaped meandering reflectors 6a and 6b that are combined with each other are opposed to each other with a unit interval R, and the optical path of the unit interval R is formed in n stages in a meandering manner. . Then, by interposing the angle magnification measurement PSD 6 between the second half mirror 3 and the azimuth angle measurement PSD 5, the laser light L received from the second half mirror 3 is transmitted to the optical meander reflectors 6 a and 6 b. The laser light path length M from the laser light projection origin F to the light receiving surface of the azimuth angle measuring PSD 5 can be extended by M1 = n × R by reflecting the light in a meandering manner at n degrees. When there is no need to extend the laser optical path length M, the angle magnification switch 6 is short-circuited, and the laser light L is directly projected from the second half mirror 3 onto the azimuth angle measurement PSD 5. In addition, the angle magnification switching unit 6 arranges a plurality of angle magnification switching units having different number n of optical paths of unit interval R on the turntable, and selects a desired optical path number n from the plurality of angle magnification switching units. The unit provided is selected and incorporated into the displacement measuring device. That is, the laser beam path length M from the laser beam projection origin F of the first half mirror 2 to the light receiving surface of the azimuth angle measurement PSD 5 is equal to the optical path length M0 from the laser beam projection origin F to the angle magnification switch 6 and the angle. The sum of the optical path length M1 in the magnification switch 6 and the optical path length M2 from the angle magnification switch 6 to the light receiving surface of the azimuth angle measurement PSD 5 (M = M0 + M1 + M2). By using the device 6, the laser light path length M from the laser light projection origin F to the light receiving surface of the azimuth angle measurement PSD 5 can be extended in the range of M1 = n × R at the portion of the light path length M2. In this type of long-distance object displacement measurement method and apparatus, the greater the distance N between the displacement object and the measurement point, the smaller the amount of change in the measurement azimuth angle for the same measurement range. Therefore, when it is desired to perform azimuth angle measurement with high resolution, the resolution is increased as the laser light path length M from the laser light projection origin F of the first half mirror 2 to the light receiving surface of the azimuth angle measurement PSD 5 is increased. be able to. Therefore, the laser beam path length M can be extended by interposing the angle magnification switching unit 6 between the laser beam projection origin F and the light receiving surface of the azimuth angle measurement PSD 5 so that the displacement measurement object and the measurement point can be measured. An angular magnification corresponding to the distance N is obtained.

また、第一のハーフミラー2から投射するレーザー光LでもってコーナーキューブプリズムCを含む被変位測定領域Baを走査する過程において、光センサー素子4は、コーナーキューブプリズムCで再帰反射して第一のハーフミラー2を通過した再帰反射レーザー光Lbを受光し、その受光時点でそのコーナーキューブプリズムCの存在(即ちそのコーナーキューブプリズムCが置かれた被変位測定点Pの存在)を感知する。なお、光センサー素子4が再帰反射レーザー光Lbを受光した時点を、本願において「位置感知時点」という。そして、光センサー素子4が前記位置感知時点で受光した再帰反射レーザー光Lbの基となるレーザー光Lの投射方向角度(前記位置感知時点で第一のハーフミラー2から被変位測定領域に向けて投射されコーナーキューブプリズムCを射たレーザー光Lの投射方向角度)を方位角度測定用PSD5によって検知することにより、レーザー光投射原点Fを基準点とするそのコーナーキューブプリズムCの方位角度データ(位置データ)が検知され収集されることになる。 In the process of scanning the displacement measurement area Ba including the corner cube prism C with the laser light L projected from the first half mirror 2, the optical sensor element 4 is retroreflected by the corner cube prism C and first reflected. The retroreflective laser beam Lb having passed through the half mirror 2 is received, and the presence of the corner cube prism C (that is, the presence of the displacement measurement point P on which the corner cube prism C is placed) is sensed at the time of receiving the laser beam. The time point when the optical sensor element 4 receives the retroreflective laser beam Lb is referred to as “position detection time point” in the present application. Then, the projection direction angle of the laser beam L that is the basis of the retroreflective laser beam Lb received by the optical sensor element 4 at the time of position detection (from the first half mirror 2 toward the displacement measurement region at the time of position detection). By detecting the projection direction angle of the laser beam L projected onto the corner cube prism C by the azimuth angle measurement PSD 5, the azimuth angle data (position) of the corner cube prism C with the laser beam projection origin F as a reference point is detected. Data) will be detected and collected.

すなわち、前記位置感知時点で、第一のハーフミラー2から被変位測定領域に向けて投射されたレーザー光Lの幾らかは、第二のハーフミラー3で反射して方位角度測定用PSD5にも投射されるので、コーナーキューブプリズムCを射たレーザー光L(光センサー素子4が位置感知時点で受光した再帰反射レーザー光Lbの基となるレーザー光L)を第二のハーフミラー3を介して方位角度測定用PSD5が受光し、方位角度測定用PSD5の受光面で受光した上記レーザー光Lの受光位置から、そのコーナーキューブプリズムCの方位角度を検知し、そのコーナーキューブプリズムCが配設された被変位測定点Pの方位角度データ(位置データ)を検知し収集することができる。またコンピュータ11は、光センサー素子4で検知した前記位置感知時点や方位角度測定用PSD5で検知した被変位測定点Pの方位角度データ(位置データ)を基にその被変位測定点Pの変位量を演算する演算プログラムを搭載している。 That is, some of the laser light L projected from the first half mirror 2 toward the displacement measurement region at the time of the position sensing is reflected by the second half mirror 3 and also to the azimuth angle measurement PSD 5. Since the light is projected, the laser beam L (the laser beam L that is the basis of the retroreflective laser beam Lb received by the optical sensor element 4 at the time of position detection) is emitted through the second half mirror 3. An azimuth angle of the corner cube prism C is detected from the light receiving position of the laser beam L received by the azimuth angle measurement PSD 5 and received by the light receiving surface of the azimuth angle measurement PSD 5, and the corner cube prism C is disposed. Further, it is possible to detect and collect azimuth angle data (position data) of the displacement measurement point P. The computer 11 also detects the amount of displacement of the displacement measurement point P based on the position sensing time detected by the optical sensor element 4 and the azimuth angle data (position data) of the displacement measurement point P detected by the azimuth angle measurement PSD 5. A calculation program that calculates

この発明に係る変位測定方法・装置においては、コーナーキューブプリズムCを用いることが必須であり、高い測定精度を得るためには、コーナーキューブプリズムCにおける互に直交する三つの反射面が正確な対称形状に加工され仕上げられていなければならない。しかし使用する全てのコーナーキューブプリズムCの反射面が常に正確な対称形状に加工仕上げされているとは限らず、図3の(c)(d)に示すように、コーナーキューブプリズムCの一つの反射面sが、2点鎖線で示す正確な対称形状から若干外れた歪み反射面sとなっているものがあり得る。そこで仮にコーナーキューブプリズムCの反射面が正確な対称形状から若干ずれていた場合でも、それによって測定精度に実質的影響が生じないような手段を講ずる。例えば図3の(c)(d)に示すように、コーナーキューブプリズムCの一つの反射面が正規の反射面(2点鎖線で示す反射面)に対し内側にずれて開放角度が小さくなった状態の歪み反射面sとなっている場合、同図(c)に示すようにコーナーキューブプリズムCのセンター軸Csの下側からレーザー光Lが入射した時と、同図(d)に示すようにコーナーキューブプリズムCのセンター軸Csの上側からレーザー光Lが入射した時とでは、そこで反射される再帰反射レーザー光Lbは、いずれも歪み反射面sが狂っている分だけ内側に返って丁度対称関係になるので、歪み反射面sがあってもコーナーキューブプリズムCの反射領域面の中心値はそれほど変わらないことになる。なお、コーナーキューブプリズムCのセンター軸Csの左右からレーザー光Lが入射する場合も、前記対称性に関しては同じである。この発明では、第一のハーフミラー2から投射するレーザー光LでもってコーナーキューブプリズムCを含む被変位測定領域Baを走査する過程において、図3の(b)に示すように、コーナーキューブプリズムCの反射面の全面を細いレーザー光で緻密に走査し、その走査における多数の位置感知時点Q毎に、そのコーナーキューブプリズムCの反射面各部のデータを方位角度測定用PSDが検知し、そのコーナーキューブプリズムCの反射面各部の方位角度データを集積してそのコーナーキューブプリズムCの反射領域面データを生成し、その反射領域面データを基にコーナーキューブプリズムCの反射領域面の中心値を演算してそのコーナーキューブプリズムCが位置する被変位測定点Pの変位量を演算し被変位測定点Pの変位を測定する。このように、レーザー光LにとるコーナーキューブプリズムCのスキャン密度を微細にすれば、コーナーキューブプリズムCにおけるレーザー光の反射位置データからコーナーキューブプリズムCの形状・大きさに比例した測定データ、即ち反射領域面データを得ることができ、その反射領域面データを平均化演算することにより、コーナーキューブプリズムCの反射面中心位置を検知することができる。その結果、コーナーキューブプリズムCの反射面に若干の非対称歪みが残存する場合でも、その非対称歪みによる測定誤差を取り除くことができる。また更に高精度測定を必要とする場合は、個々のコーナーキューブプリズムCについて反射領域面データを予め測定して、その反射領域面の中心位置片寄り係数を求めておいて、その中心位置片寄り係数を用いてコーナーキューブプリズムの反射面の非対称歪みによる変位測定誤差を除去することもできる。なお図3の(b)において、CxはコーナーキューブプリズムCに対するレーザー光の左右走査方向を示し、CyはコーナーキューブプリズムCの走査過程におけるコーナーキューブプリズムCの反射領域面各部の方位角度データの収集時点軸を示し、QはコーナーキューブプリズムCの走査過程におけるコーナーキューブプリズムCの反射面各部の位置感知時点を示している。また前記コンピュータ11は、コーナーキューブプリズムの反射面の非対称歪みによる変位測定誤差を除去するために、レーザー光の走査過程において光センサー素子によって検知したコーナーキューブプリズムの反射位置感知時点毎に方位角度測定用PSDで検知したそのコーナーキューブプリズムの反射面各部の方位角度データを蓄積してそのコーナーキューブプリズムの反射領域面データを生成し、そのコーナーキューブプリズムの反射領域面データを基にそのコーナーキューブプリズムの反射面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基にその被変位測定点の変位量を演算する演算プログラムを搭載している。 In the displacement measuring method and apparatus according to the present invention, it is essential to use the corner cube prism C. In order to obtain high measurement accuracy, the three reflecting surfaces of the corner cube prism C that are orthogonal to each other are accurately symmetrical. It must be processed into a shape and finished. However, the reflecting surfaces of all the corner cube prisms C to be used are not always processed and finished in an accurate symmetrical shape. As shown in FIGS. The reflective surface s may be a distorted reflective surface s slightly deviating from the exact symmetrical shape indicated by the two-dot chain line. Therefore, even if the reflecting surface of the corner cube prism C is slightly deviated from the exact symmetrical shape, a measure is taken so that the measurement accuracy is not substantially affected thereby. For example, as shown in FIGS. 3C and 3D, one reflecting surface of the corner cube prism C is shifted inward with respect to the regular reflecting surface (the reflecting surface indicated by a two-dot chain line), and the opening angle becomes small. In the case of the distorted reflection surface s in the state, as shown in FIG. 4C, when the laser light L is incident from below the center axis Cs of the corner cube prism C, as shown in FIG. When the laser beam L is incident from the upper side of the center axis Cs of the corner cube prism C, the retroreflected laser beam Lb reflected from the corner cube prism C just returns to the inside by the amount of the distorted reflection surface s. Because of the symmetrical relationship, the center value of the reflection area surface of the corner cube prism C does not change so much even if the distortion reflection surface s is present. Note that the symmetry is the same when the laser light L is incident from the left and right of the center axis Cs of the corner cube prism C. In the present invention, in the process of scanning the displacement measurement area Ba including the corner cube prism C with the laser light L projected from the first half mirror 2, as shown in FIG. The entire surface of the reflective surface is scanned with a fine laser beam, and the azimuth angle measurement PSD detects the data of each part of the reflective surface of the corner cube prism C at each of many position sensing points Q in the scanning. The azimuth angle data of each part of the reflecting surface of the cube prism C is accumulated to generate the reflecting area surface data of the corner cube prism C, and the center value of the reflecting area surface of the corner cube prism C is calculated based on the reflecting area surface data. Then, the displacement amount of the displacement measurement point P where the corner cube prism C is located is calculated, and the displacement of the displacement measurement point P is measured. The Thus, if the scan density of the corner cube prism C taken by the laser light L is made fine, the measurement data proportional to the shape and size of the corner cube prism C from the reflection position data of the laser light at the corner cube prism C, that is, The reflection area surface data can be obtained, and the reflection area center position of the corner cube prism C can be detected by averaging the reflection area surface data. As a result, even when a slight asymmetric distortion remains on the reflecting surface of the corner cube prism C, a measurement error due to the asymmetric distortion can be removed. When higher accuracy measurement is required, the reflection area surface data is measured in advance for each corner cube prism C, the center position deviation coefficient of the reflection area surface is obtained, and the center position deviation is determined. The coefficient can be used to remove a displacement measurement error due to asymmetric distortion of the reflection surface of the corner cube prism. In FIG. 3B, Cx indicates the horizontal scanning direction of the laser light with respect to the corner cube prism C, and Cy indicates the collection of azimuth angle data of each part of the reflection area surface of the corner cube prism C in the scanning process of the corner cube prism C. A time axis is indicated, and Q indicates a position detection time of each part of the reflection surface of the corner cube prism C in the scanning process of the corner cube prism C. Further, the computer 11 measures the azimuth angle at each reflection point sensing time of the corner cube prism detected by the optical sensor element in the laser beam scanning process in order to remove the displacement measurement error due to the asymmetric distortion of the reflection surface of the corner cube prism. The azimuth angle data of each part of the reflection surface of the corner cube prism detected by the PSD is accumulated to generate the reflection area surface data of the corner cube prism, and the corner cube prism is based on the reflection area surface data of the corner cube prism. The azimuth angle data of the displacement measurement point where the corner cube prism is located is generated by calculating the center position of the reflecting surface of the lens, and the displacement amount of the displacement measurement point is calculated based on the azimuth angle data of the displacement measurement point A calculation program is installed.

この発明に係る遠距離対象物の変位測定装置の動作・機能と、この発明に係る遠距離対象物の変位測定方法について更に詳細に説明する。例えば、通常150〜200m程度の高さの高層ビルを変位測定対象物としてその経年変化による傾きを測定する場合、最初に図4に示すように、変位測定対象物Bの変位測定したい任意の位置に任意の数の被変位測定点P1,P2,P3,P4を任意のい設定し、その各被変位測定点P1,P2,P3,P4にそれぞれコーナーキューブプリズムC1,C2,C3,C4を配設して取り付け、これらの被変位測定点P1,P2,P3,P4の全てを含む小領域を被変位測定領域Baとする。 次いで、被変位測定領域Ba内の全ての被変位測定点P1,P2,P3,P4を見通せる地点に測定地点Aを設定し、この測定地点Aに変位測定装置Eを設置して調整する。 The operation and function of the long-distance object displacement measuring apparatus according to the present invention and the long-distance object displacement measuring method according to the present invention will be described in more detail. For example, when a high-rise building with a height of about 150 to 200 m is used as a displacement measurement object and the inclination due to the secular change is measured, as shown in FIG. Set any number of displacement measurement points P1, P2, P3, and P4 to the desired measurement points, and place each corner cube prism C1, C2, C3, and C4 at each of the displacement measurement points P1, P2, P3, and P4. A small area including all of these displacement measurement points P1, P2, P3, and P4 is defined as a displacement measurement area Ba. Next, the measurement point A is set at a point where all the displacement measurement points P1, P2, P3, and P4 in the displacement measurement area Ba can be seen, and the displacement measurement device E is installed and adjusted at the measurement point A.

このように変位測定装置Eを測定地点Aに設置して、レーザー発光器1から第一のハーフミラー2に向けてレーザー光Lを発すると、そのレーザー光Lは第一のハーフミラー2で約90°変向反射して、変位測定対象物Bの被変位測定領域Baに投射される。そして第一のハーフミラー2は、左右スキャン駆動装置(X軸方向スキャン駆動装置)7および上下スキャン駆動装置(Y軸方向スキャン駆動装置)8によって、第一のハーフミラー2の中心点Fを通る垂直軸Ysならびに水平軸Xsをそれぞれ軸として、左右(X軸方向)と上下(Y軸方向)に往復回動しているので、第一のハーフミラー2で反射したレーザー光Lが被変位測定領域Ba上を、X軸方向スキャン幅Wx(X軸方向スキャン角度θx)とY軸方向スキャン幅Wy(Y軸方向スキャン角度θy(図示省略))にわたって走査することになる。なお第一のハーフミラー2の中心点Fは、測定地点Aにおいてレーザー発光器1からレーザー光Lを受けて被変位測定領域Baに向けて反射させ投射するレーザー光投射原点ともなる。また、X軸方向スキャン駆動装置7によるX軸方向の1走査毎に、Y軸方向の走査を1ビット相当量だけ移動させ、Y軸方向の走査が所定の総ビット数に達したときにX軸・Y軸両方向の全走査が終了する。 As described above, when the displacement measuring device E is installed at the measurement point A and the laser light L is emitted from the laser emitter 1 toward the first half mirror 2, the laser light L is approximately emitted by the first half mirror 2. The light is reflected by 90 ° and projected onto the displacement measurement area Ba of the displacement measurement object B. The first half mirror 2 passes through the center point F of the first half mirror 2 by the left / right scan drive device (X-axis direction scan drive device) 7 and the vertical scan drive device (Y-axis direction scan drive device) 8. Since the vertical axis Ys and the horizontal axis Xs are used as axes respectively, the laser beam L reflected by the first half mirror 2 is measured for displacement since it is reciprocally rotated left and right (X-axis direction) and up and down (Y-axis direction). The region Ba is scanned over the X-axis direction scan width Wx (X-axis direction scan angle θx) and the Y-axis direction scan width Wy (Y-axis direction scan angle θy (not shown)). The center point F of the first half mirror 2 also serves as a laser beam projection origin for receiving the laser beam L from the laser emitter 1 at the measurement point A and reflecting and projecting it toward the displacement measurement area Ba. Further, for each scan in the X-axis direction by the X-axis direction scan driving device 7, the scan in the Y-axis direction is moved by an amount equivalent to 1 bit, and when the scan in the Y-axis direction reaches a predetermined total number of bits, X All scanning in both the axis and Y axis directions is completed.

上記のレーザー光Lによる走査過程において、被変位測定領域Baに向けて投射されたレーザー光Lは、コーナーキューブプリズムC1,C2,C3,C4が存在しない箇所では他の物体に当って乱反射し発散してエネルギーが消滅し、あるいは他の物体が無ければ遠くへ放散してエネルギーが消滅するが、各被変位測定点P1,P2,P3,P4においてはコーナーキューブプリズムC1,C2,C3,C4が存在するため、各コーナーキューブプリズムC1,C2,C3,C4に入射したレーザー光Lは、その入射角度の如何を問わず180°反転して再帰反射レーザー光Lbとして再帰反射して、レーザー光Lの入射経路を逆方向に沿って第一のハーフミラー2のレーザー光投射原点Fに帰る。そして、レーザー光投射原点Fに戻った再帰反射レーザー光Lbは第一のハーフミラー2を通過して光センサー素子(例えばフォト・ダイオ−ド)4の受光面で受光され、その受光時点(本願でいう位置感知時点)で第一のハーフミラー2のレーザー光投射原点Fから被変位測定領域Baに向けて投射したレーザー光Lが被変位測定点PのコーナーキューブプリズムCを射て被変位測定点Pの位置を感知したことが検知される。そして同時に、前記位置感知時点で光センサー素子4が感知した再帰反射レーザー光Laの基となるレーザー光L(位置感知時点でレーザー光投射原点Fから被変位測定領域Baに向けて投射され被変位測定点PのコーナーキューブプリズムCを射たレーザー光L)の幾らかは、第二のハーフミラー3で反射して角度倍率切換器6に入り、角度倍率切換器6内で蛇行反射してレーザー光路長Mが延長された状態で方位角度測定用PSD5に投射されるので、方位角度測定用PSD5の受光面上で各コーナーキューブプリズムC1,C2,C3,C4が配設された各被変位測定点P1,P2,P3,P4の方位角度データ(位置データ)が検知される。そして光センサー素子4で検知された位置感知時点データと、方位角度測定用PSD5で検知された方位角度データがコンピュータ11に送られて各被変位測定点P1,P2,P3,P4の方位角度(位置)や変位角度(変位量)が演算されて、各被変位測定点P1,P2,P3,P4の変位を一度にまとめて測定することができる。また、角度倍率切換器6を用いて、レーザー光路長M延長しレーザー光Lの投射角度を増幅した状態で各被変位測定点P1,P2,P3,P4の方位角度を直接検知するので、左右・上下スキャン駆動装置7,8などの動作に起因する誤差の影響を受けることなく、高分解能で正確に各被変位測定点の変位測定結果を得ることができる。 In the scanning process using the laser beam L, the laser beam L projected toward the displacement measurement area Ba strikes another object and diverges at a location where the corner cube prisms C1, C2, C3, and C4 are not present. The energy disappears, or if there is no other object, it dissipates far away and the energy disappears. At each displacement measurement point P1, P2, P3, P4, the corner cube prisms C1, C2, C3, C4 Therefore, the laser light L incident on each of the corner cube prisms C1, C2, C3, and C4 is inverted 180 ° regardless of the incident angle and retroreflected as retroreflective laser light Lb. Is returned to the laser beam projection origin F of the first half mirror 2 along the reverse direction. Then, the retroreflective laser beam Lb that has returned to the laser beam projection origin F passes through the first half mirror 2 and is received by the light receiving surface of the photosensor element (for example, photo diode) 4, and the light reception point (this application) The laser beam L projected from the laser beam projection origin F of the first half mirror 2 toward the displacement measurement area Ba at the position sensing point in FIG. It is detected that the position of the point P has been sensed. At the same time, the laser beam L that is the basis of the retroreflective laser beam La sensed by the photosensor element 4 at the time of position detection (projected from the laser beam projection origin F toward the displacement measurement area Ba at the position detection time) Some of the laser light L) radiated from the corner cube prism C at the measurement point P is reflected by the second half mirror 3 and enters the angle magnification changer 6, and is meandered and reflected by the angle magnification changer 6. Since the projection is projected onto the azimuth angle measurement PSD 5 with the optical path length M extended, each displacement measurement in which the corner cube prisms C1, C2, C3, C4 are arranged on the light receiving surface of the azimuth angle measurement PSD 5 is performed. The azimuth angle data (position data) of the points P1, P2, P3, and P4 is detected. Then, the position sensing time point data detected by the optical sensor element 4 and the azimuth angle data detected by the azimuth angle measurement PSD 5 are sent to the computer 11 and the azimuth angles of the displacement measurement points P1, P2, P3, P4 ( Position) and displacement angle (displacement amount) are calculated, and displacements at each displacement measurement point P1, P2, P3, and P4 can be measured together. Further, the azimuth angle of each displacement measurement point P1, P2, P3, P4 is directly detected in a state where the laser light path length M is extended and the projection angle of the laser light L is amplified by using the angle magnification changer 6, so The displacement measurement result at each displacement measurement point can be accurately obtained with high resolution without being affected by errors caused by the operations of the vertical scan drive devices 7 and 8.

図5は、図4に示したと同じ変位測定対象物B上の同じ被変位測定P1,P2,P3,P4の位置・変位量を、変位測定対象物Bの側面に向かって(図4におけるX方向から)図示したものである。図5において、P10,P20,P30,P40は、それぞれ変位測定対象物B上に設定した各被変位測定点P1,P2,P3,P4の初期時の位置を示し、P1t,P2t,P3t,P4tは、それぞれ前記初期時から年月tを経た現在における前記各被変位測定点P1,P2,P3,P4の位置を示している。C10,C20,C30,C40は、それぞれ前記各被変位測定点P1,P2,P3,P4に配設したコーナーキューブプリズムC1,C2,C3,C4の初期時の位置を示し、C1t,C2t,C3t,C4tは、前記初期時から年月tを経た現在における前記コーナーキューブプリズムC1,C2,C3,C4の位置を示している。したがって、コーナーキューブプリズムC1,C2,C3,C4の初期時の位置C10,C20,C30,C40と現在の位置C1t,C2t,C3t,C4tの間の差は、初期時から現在にまでの間における変位測定対象物Bの経年変化に伴う各被変位測定点P1,P2,P3,P4の変位量、即ち変位測定対象物Bの経年傾き度となる。そして、初期時と現在において、図4,5に示した各被変位測定点P1,P2,P3,P4の初期時の位置(即ちコーナーキューブプリズムC1C2C3C4の初期時の位置)P10(C10),P20(C20),P30(C30),P40(C40)と、現在の位置P1t(C1t),P2t(C2t),P3t(C3t),P4t(C4t)を、測定地点Aから検知し測定し、その検知・測定結果を変位測定装置のディスプレー上に表せば、それぞれ図6の(a),(b)のように表示され、各被変位測定点P1,P2,P3,P4の3次元変位の実態を明確に目視することができる。   5 shows the positions and displacements of the same displacement measurement P1, P2, P3, and P4 on the same displacement measurement object B as shown in FIG. 4 toward the side surface of the displacement measurement object B (X in FIG. 4). (From the direction) In FIG. 5, P10, P20, P30, and P40 indicate the initial positions of the displacement measurement points P1, P2, P3, and P4 set on the displacement measurement object B, respectively. P1t, P2t, P3t, and P4t Indicates the positions of the displacement measurement points P1, P2, P3, and P4 at the present time after the initial time and the year t. C10, C20, C30, and C40 indicate initial positions of the corner cube prisms C1, C2, C3, and C4 disposed at the displacement measurement points P1, P2, P3, and P4, respectively, and C1t, C2t, and C3t , C4t indicate the positions of the corner cube prisms C1, C2, C3, and C4 at the present time after the initial date and time t. Therefore, the difference between the initial position C10, C20, C30, C40 of the corner cube prism C1, C2, C3, C4 and the current position C1t, C2t, C3t, C4t is between the initial time and the present time. This is the displacement amount of each displacement measurement point P1, P2, P3, P4 accompanying the secular change of the displacement measurement object B, that is, the aging inclination of the displacement measurement object B. 4 and 5, the initial positions of the displacement measurement points P1, P2, P3, and P4 (that is, the initial positions of the corner cube prisms C1C2C3C4) P10 (C10), P20 (C20), P30 (C30), P40 (C40) and the current position P1t (C1t), P2t (C2t), P3t (C3t), P4t (C4t) are detected from the measurement point A and detected.・ If the measurement results are displayed on the display of the displacement measuring device, they are displayed as shown in Fig. 6 (a) and (b), respectively, and the actual 3D displacement of each displacement measurement point P1, P2, P3, P4 is displayed. Clearly visible.

次にこの発明に係る遠距離対象物の変位測定装置で検知した被変位測定点Pの方位角度データ(位置データ)から被変位測定点Pの変位量を演算して測定する機能を、変位測定対象物と測定地点の間の距離Nが既知の場合について、図7を参考に説明する。図7において、Pn0,Pntは変位測定対象物B上に設定した任意の被変位測定点Pnの位置を表し、Pn0,は以前に測定した被変位測定点Pnの初期時の位置であり、Pntはその初期時から年月tを経た現在における前記被変位測定点Pnの位置を示している。 Baは被変位測定点Pnの位置Pn0,Pntを含む被変位測定領域である。そこで過去の初期時点と現時点で、それぞれ測定地点A(レーザー光投射原点F)から被変位測定領域Baに向けてレーザー光Lを投射し且つX軸方向に走査した場合を見ると、それぞれの走査過程で被変位測定点Pnの位置Pn0,Pntに配設されたコーナーキューブプリズムに入射したレーザー光Lが再帰反射レーザー光Lbとして反射されてレーザー光投射原点Fに戻り、その再帰反射レーザー光Lbが光センサー素子4の受光面に達し、その受光時点の被変位測定点Pnの位置Pn0,Pntが、方位角度測定用PSD5の受光面でそれぞれ位置Pn0’,Pnt’として検知され、被変位測定点Pnの位置Pn0,PntのX軸方向の位置角度θxo,θxtは変位測定装置Eで求められる。また被変位測定点Pnの位置Pn0,Pntの間のX軸方向の変位量(位置の差)ΔWxは方位角度測定用PSD5の受光面で変位量ΔWx’として検知される。そして図7に照らして明らかなように、二つの被変位測定点Pn0,PntのそれぞれのX軸方向の方位角度(位置角度)θxo,θxtと、変位測定対象物Bと測定地点Aの間の距離Nと、被変位測定点Pnの初期時の位置Pn0と現時点の位置Pntの間のX軸方向変位量ΔWxとの間には次の式(1)で示されるの関係があることから、変位測定装置Eのコンピュータ11で式(1)に沿う演算を実行することにより、X軸方向変位量ΔWxが容易に算出されてX軸方向変位量ΔWxを測定することができる。そして前記のX軸方向変位量ΔWxは、前記初期時から現在までの間に生じた変位測定対象物Bの経年変位による被変位測定点Pnの経年変位に相当する。さらに、全く同様の測定手段で次式(2)に基づく演算を実行することにより、被変位測定点PnのY軸方向変位量ΔWyも演算し測定することができる。そしてコンピュータ11は、光センサー素子4、方位角度測定用PSD5で検知した被変位測定点Pの位置データを基に式(1),(2)に従ってその被変位測定点PのX軸方向変位量ΔWx,Y軸方向変位量ΔWyを演算する演算プログラムを搭載している。   Next, the displacement measurement function has the function of calculating and measuring the displacement amount of the displacement measurement point P from the azimuth angle data (position data) of the displacement measurement point P detected by the displacement measuring device for a long distance object according to the present invention. A case where the distance N between the object and the measurement point is known will be described with reference to FIG. In FIG. 7, Pn0 and Pnt represent the positions of arbitrary displacement measurement points Pn set on the displacement measurement object B, and Pn0 and Pn0 are initial positions of the displacement measurement points Pn previously measured. Indicates the position of the displacement measuring point Pn at the present time after the initial date and time t. Ba is a displacement measurement region including the positions Pn0 and Pnt of the displacement measurement point Pn. Therefore, when the case where the laser beam L is projected from the measurement point A (laser beam projection origin F) toward the displacement measurement area Ba and scanned in the X-axis direction at each of the past initial time point and the present point of time is shown. In the process, the laser beam L incident on the corner cube prism disposed at the positions Pn0 and Pnt of the displacement measurement point Pn is reflected as the retroreflective laser beam Lb and returns to the laser beam projection origin F, and the retroreflected laser beam Lb Reaches the light receiving surface of the optical sensor element 4, and the positions Pn0 and Pnt of the displacement measurement point Pn at the time of light reception are detected as the positions Pn0 'and Pnt' on the light receiving surface of the azimuth angle measurement PSD 5, respectively, and the displacement measurement is performed. Position angles θxo and θxt of the positions Pn0 and Pnt of the point Pn in the X-axis direction are obtained by the displacement measuring device E. Further, a displacement amount (position difference) ΔWx in the X-axis direction between the positions Pn0 and Pnt of the displacement measurement point Pn is detected as a displacement amount ΔWx ′ on the light receiving surface of the azimuth angle measurement PSD 5. As apparent from FIG. 7, the azimuth angles (position angles) θxo and θxt in the X-axis direction of the two displacement measurement points Pn0 and Pnt, and between the displacement measurement object B and the measurement point A, respectively. Since there is a relationship represented by the following equation (1) between the distance N and the initial position Pn0 of the displacement measurement point Pn and the X-axis direction displacement amount ΔWx between the current position Pnt, By executing the calculation according to the equation (1) by the computer 11 of the displacement measuring device E, the X-axis direction displacement amount ΔWx can be easily calculated and the X-axis direction displacement amount ΔWx can be measured. The X-axis direction displacement amount ΔWx corresponds to the secular displacement of the displacement measurement point Pn due to the secular displacement of the displacement measurement object B generated from the initial time to the present time. Furthermore, by executing the calculation based on the following equation (2) with exactly the same measuring means, the Y-axis direction displacement amount ΔWy of the measurement point Pn to be displaced can be calculated and measured. The computer 11 then shifts the displacement measurement point P in the X-axis direction according to the equations (1) and (2) based on the position data of the displacement measurement point P detected by the optical sensor element 4 and the azimuth angle measurement PSD 5. A calculation program for calculating ΔWx and Y-axis direction displacement amount ΔWy is installed.

Figure 2005140510
Figure 2005140510

変位測定対象物Bと測定地点Aの間の距離Nが既知である場合には、図7および式(1),(2)に示すところによって、被変位測定点のX軸方向変位量ΔWx,Y軸方向ΔWy を簡単に測定できるが、距離Nが未知数の場合には、図8と次の式(3),(4),(5),(6),(7),(8)に示すところによって、X軸方向変位量ΔWx,Y軸方向変位量ΔWy,Z軸方向変位量ΔWzを測定することができる。即ち、測定空間を前記同様X,Y,Zとし、X−Y面からZ方向の距離Nを求める。図8に示すように、被測定点Pn0,Pntに対し、互に既知の距離d離れた二つの測定地点A1,A2を設定すれば、被測定点Pn0,
Pntと測定地点A1,A2の間には次の式(3)(4)(5)(6)(7)(8)に示される関係がある
When the distance N between the displacement measurement object B and the measurement point A is known, the amount of displacement ΔWx in the X-axis direction of the measurement point to be displaced is expressed as shown in FIG. 7 and equations (1) and (2). The Y-axis direction ΔWy can be easily measured. However, when the distance N is unknown, the following formulas (3), (4), (5), (6), (7), and (8) are used. As shown, the X-axis direction displacement amount ΔWx, the Y-axis direction displacement amount ΔWy, and the Z-axis direction displacement amount ΔWz can be measured. That is, the measurement space is set to X, Y, and Z as described above, and the distance N in the Z direction from the XY plane is obtained. As shown in FIG. 8, if two measurement points A1 and A2 that are a known distance d apart from each other are set to the measurement points Pn0 and Pnt, the measurement points Pn0 and Pn
Between Pnt and measurement points A1 and A2, there is a relationship represented by the following formulas (3) (4) (5) (6) (7) (8)

Figure 2005140510
Figure 2005140510

そこで、被変位測定点Pn0までの距離をNpnoとし、被変位測定点Pntまでの距離をNpntとすれば、距離をNpno,Npntはそれぞれ次の式(9),(10)に示すところととなる。そしてこの距離Npno,Npntを図7の距離Nとして用いれば、距離Nが未知数であっても、被変位測定点のX軸方向変位量ΔWxやY軸方向変位量ΔWyを求めることができる。また、被変位測定点のZ軸方向変位量ΔWzは、次の式(11)によって求めることができる。   Therefore, if the distance to the displacement measurement point Pn0 is Npno and the distance to the displacement measurement point Pnt is Npnt, the distances Npno and Npnt are as shown in the following equations (9) and (10), respectively. Become. If these distances Npno and Npnt are used as the distance N in FIG. 7, even if the distance N is unknown, the X-axis direction displacement amount ΔWx and the Y-axis direction displacement amount ΔWy of the displacement measurement point can be obtained. Further, the Z-axis direction displacement amount ΔWz of the displacement measurement point can be obtained by the following equation (11).

Figure 2005140510
Figure 2005140510

なお、測定地点A1,A2から全てのコーナーキューブプリズムCを見通す測定視野、即ちレーザー光で走査する被変位測定領域Baは、変位測定対象物Bまでの距離と、必要とする分解能に応じて容易に設定することができ、その被変位測定領域Baに含まれる被変位測定点Pであれば、1度の変位測定装置Eの設定調整で多数の被変位測定点Pの変位を一挙に測定することができる。 Note that the measurement field of view through which all the corner cube prisms C can be seen from the measurement points A1 and A2, that is, the displacement measurement area Ba scanned with laser light, is easy depending on the distance to the displacement measurement object B and the required resolution. If the displacement measurement point P is included in the displacement measurement area Ba, the displacement of the many displacement measurement points P can be measured at once by setting and adjusting the displacement measurement device E once. be able to.

この発明に係る遠距離対象物の変位測定方法ならびに遠距離対象物の変位測定装置は、上記実施例に示す建物の傾き変位測定のほか、ダムの満水時と渇水時における堤防の歪み測定や、ダム堤防の経年変化量の測定や、地盤の沈下・隆起測定、崖崩れの事前察知のための地盤変位検出、トンネルの断面変形測定、既設構築物の近傍での土木・建築工事に伴う既設構築物やその地盤の変位・変形の測定、架橋の揺れや変形の測定、電柱の揺れの測定、劇場の床の揺れの測定、ロボットの性能評価のためのロボットの3次元動作測定、クレーン車からのワーク位置の認識など、多岐にわたる産業分野で利用することが可能である。 Displacement measuring method of long-distance object and displacement measuring apparatus of long-distance object according to the present invention, in addition to the measurement of the inclination displacement of the building shown in the above embodiment, the measurement of levee strain when the dam is full and drought, Measurement of secular change of dam embankment, measurement of ground subsidence and uplift, detection of ground displacement for prior detection of landslides, measurement of cross-sectional deformation of tunnels, existing structures accompanying civil engineering and construction work in the vicinity of existing structures Measurement of displacement and deformation of the ground, measurement of vibration and deformation of bridge, measurement of vibration of power pole, measurement of vibration of theater floor, measurement of three-dimensional movement of robot for performance evaluation of robot, work from crane truck It can be used in various industrial fields such as position recognition.

この発明の一実施例を示す遠距離対象物の変位測定装置の基本構成図。BRIEF DESCRIPTION OF THE DRAWINGS The basic block diagram of the displacement measuring apparatus of the long distance target object which shows one Example of this invention. 同変位測定装置の角度倍率切換器部分の詳細説明図。Detailed explanatory drawing of the angle magnification switching part of the displacement measuring apparatus. この発明に用いるコーナーキューブプリズムの説明図。Explanatory drawing of the corner cube prism used for this invention. 変位測定対象物となる高層ビルの要部正面図。The principal part front view of the high-rise building used as a displacement measuring object. 同高層ビルの要部側面図。The principal part side view of the same high-rise building. この発明に係る変位測定装置の方位角度測定用PSDで検知した被変位測定点の位置が表示されたディスプレー上の変位表示画面図。The displacement display screen figure on the display where the position of the to-be-displaced measurement point detected with PSD for azimuth angle measurement of the displacement measuring device which concerns on this invention was displayed. この発明に係る変位測定方法・装置による変位測定の基本説明図。The basic explanatory view of the displacement measurement by the displacement measuring method and apparatus concerning this invention. この発明に係る変位測定方法・装置による変位測定の基本説明図。The basic explanatory view of the displacement measurement by the displacement measuring method and apparatus concerning this invention.

符号の説明Explanation of symbols

1 : レーザー発光器
2 : 第一のハーフミラー(ミラー)
3 : 第二のハーフミラー
4 : 光センサー素子
5 : 方位角度測定用PSD
6 : 角度倍率切換器
6a,6b : 光蛇行反射体
7 : 左右スキャン駆動装置(X軸方向スキャン駆動装置)
8 : 上下スキャン駆動装置(Y軸方向スキャン駆動装置)
9 : 左右スキャンユニット(X軸方向スキャンユニット)
10: 上下スキャンユニット(Y軸方向スキャンユニット)
11: コンピュータ
A,A1,A2 : 測定地点
B : 変位測定対象物(高層ビル)
Ba : 被変位測定領域
C(C1,C2,C3,C4・・・Cn): コーナーキューブプリズム
Cn0(C10,C20,C30,C40・・・): コーナーキューブプリズムの初期時位置
Cnt(C1t,C2t,C3t,C4t・・・) : コーナーキューブプリズムの現在位置
Cs : コーナーキューブプリズムのセンター軸
Cx : コーナーキューブプリズムに対するレーザー光の左右走査方向
Cy : コーナーキューブプリズムの走査過程における方位角度データの収集時点軸
d : 測定地点A1,A2の間の距離
E : 変位測定装置
F : 第一のハーフミラーの中心点 / レーザー光投射原点
G : 地上
H1 : 被変位測定点P1の地上からの垂直距離
H2,H3,H4 : 被変位測定点の間の垂直距離
L : レーザー光(投射レーザー光)
Lb : 再帰反射レーザー光
M(M0,M1,M2): レーザー光路長
N : 変位測定対象物と測定地点の間の距離
P(P1,P2,P3,P4・・・Pn): 被変位測定点
Pn0(P10,P20,P30,P40・・・Pn0): 被変位測定点Pnの初期時位置
Pn0’: 被変位測定点Pnの方位角度測定用PSD受光面における初期時位置
Pnt(P1t,P2t,P3t,P4t・・・Pnt): 被変位測定点Pnの現在位置
Pnt’: 被変位測定点Pnの方位角度PSD受光面における現在位置
Q : レーザー光による走査過程におけるコーナーキューブプリズムの反射面各部の位置感知時点
R : 角度倍率切換器の光蛇行反射体の間の間隔(角度倍率切換器の単位長さ)
s : コーナーキューブプリズムの歪み反射面
Wx : レーザー光LのX軸方向スキャン幅(被変位測定領域BaのX軸方向幅)
Wy : レーザー光LのY軸方向スキャン幅(被変位測定領域BaのY軸方向幅)
ΔWx : 被変位測定点のX軸方向変位量
ΔWx’: 被変位測定点の方位角度測定用PSD受光面上におけるX軸方向変位量
X : 直交3次元座標軸のX軸
Y : 直交3次元座標軸のY軸
Z : 直交3次元座標軸のZ軸
Xs : 第一のハーフミラーの中心点Fを通る水平軸
Ys : 第一のハーフミラーの中心点Fを通る垂直軸
θx : 左右スキャン角度(X軸方向変位に関するスキャン角度)
θxo : 被変位測定点の初期時のX軸方向変位に関する方位角度
θxt : 被変位測定点の現在のX軸方向変位に関する方位角度


1: Laser emitter 2: First half mirror (mirror)
3: Second half mirror 4: Optical sensor element 5: PSD for azimuth measurement
6: Angle magnification switch
6a, 6b: Optical meandering reflector 7: Left-right scan drive device (X-axis direction scan drive device)
8: Vertical scan drive device (Y-axis direction scan drive device)
9: Left / right scan unit (X-axis direction scan unit)
10: Vertical scan unit (Y-axis direction scan unit)
11: Computer A, A1, A2: Measurement point B: Displacement measurement object (high-rise building)
Ba: Displacement measurement area C (C1, C2, C3, C4 ... Cn): Corner cube prism
Cn0 (C10, C20, C30, C40 ...): Initial position of the corner cube prism
Cnt (C1t, C2t, C3t, C4t ...): Current position of the corner cube prism
Cs: Center axis of corner cube prism
Cx: Left / right scanning direction of laser light to corner cube prism
Cy: Azimuth angle data collection point axis d in corner cube prism scanning process d: Distance between measurement points A1, A2 E: Displacement measuring device F: Center point of first half mirror / Laser light projection origin G: Ground
H1: Vertical distance from the ground of the displacement measurement point P1
H2, H3, H4: Vertical distance between displacement measurement points L: Laser light (projection laser light)
Lb: Retroreflective laser beam M (M0, M1, M2): Laser path length
N: Distance P (P1, P2, P3, P4... Pn) between the displacement measurement object and the measurement point: Displacement measurement point
Pn0 (P10, P20, P30, P40 ... Pn0): Initial position of the displacement measurement point Pn
Pn0 ': Initial position on the PSD light receiving surface for measuring the azimuth angle of the displacement measurement point Pn
Pnt (P1t, P2t, P3t, P4t ... Pnt): Current position of the displacement measurement point Pn
Pnt ': Current position Q at the azimuth angle PSD light-receiving surface of the displacement measurement point Pn: Position sensing time point R of each part of the reflecting surface of the corner cube prism in the scanning process with laser light R: Between the optical meandering reflectors of the angle magnification changer Interval (Unit length of angle magnification switch)
s: Distorted reflection surface of corner cube prism
Wx: X-axis direction scan width of the laser beam L (X-axis direction width of the displacement measurement region Ba)
Wy: Y axis direction scan width of the laser beam L (Y axis direction width of the displacement measurement region Ba)
ΔWx: X-axis direction displacement amount of the displacement measurement point ΔWx ′: X-axis direction displacement amount on the azimuth angle measurement PSD light receiving surface of the displacement measurement point X: X-axis of the orthogonal three-dimensional coordinate axis Y: X-axis of the orthogonal three-dimensional coordinate axis Y axis Z: Z axis of orthogonal 3D coordinate axis
Xs: horizontal axis passing through the center point F of the first half mirror
Ys: vertical axis θx passing through the center point F of the first half mirror: left-right scan angle (scan angle with respect to displacement in the X-axis direction)
θxo: Azimuth angle related to the initial displacement of the displacement measurement point in the X-axis direction θxt: Azimuth angle related to the current displacement of the displacement measurement point in the X-axis direction


Claims (9)

変位測定対象物に任意の数の被変位測定点を設定し、その被変位測定点にコーナーキューブプリズムを配設し、その変位測定対象物から相当距離離れて前記被変位測定点を見通せる位置に測定地点を設定し、その測定地点から前記コーナーキューブプリズムを含む被変位測定領域に向けてレーザー光を投射し且つそのレーザー光で前記被変位測定領域を左右および上下に走査すると共に、前記被変位測定領域に向けたレーザー光の幾らかを方位角度測定用PSDにも同時に投射し、前記レーザー光の走査過程において前記コーナーキューブプリズムで反射して前記測定地点のレーザー光投射原点に戻った再帰反射レーザー光を光センサー素子で受光して前記被変位測定点にあるコーナーキューブプリズムの位置感知時点を検知すると共に、その位置感知時点において前記方位角度測定用PSDの受光面で受光したレーザー光の受光位置から前記被変位測定点の方位角度データを検知し、その方位角度データを基に前記被変位測定点の変位量を演算して前記被変位測定点の変位を測定することを特徴とする遠距離対象物の変位測定方法。 An arbitrary number of displacement measurement points are set on the displacement measurement object, and a corner cube prism is arranged at the displacement measurement object, so that the displacement measurement object can be seen from the displacement measurement object at a considerable distance. A measurement point is set, a laser beam is projected from the measurement point toward a displacement measurement region including the corner cube prism, and the displacement measurement region is scanned left and right and up and down with the laser light, and the displacement A part of the laser beam directed toward the measurement region is simultaneously projected onto the azimuth angle measurement PSD, and is reflected by the corner cube prism in the scanning process of the laser beam and returned to the laser beam projection origin at the measurement point. Laser light is received by the optical sensor element to detect the position sensing time of the corner cube prism at the displacement measurement point, and The azimuth angle data of the displacement measurement point is detected from the light receiving position of the laser beam received by the light receiving surface of the azimuth angle measurement PSD at the time of position sensing, and the displacement amount of the displacement measurement point is based on the azimuth angle data. A displacement measuring method for a long-distance object characterized by calculating the displacement at the displacement measuring point. 変位測定対象物に任意の数の被変位測定点を設定し、その被変位測定点にコーナーキューブプリズムを配設し、その変位測定対象物から相当距離離れて前記被変位測定点を見通せる位置に測定地点を設定し、その測定地点から前記コーナーキューブプリズムを含む被変位測定領域に向けてレーザー光を投射し且つそのレーザー光で前記被変位測定領域を左右および上下に走査すると共に、前記被変位測定領域に向けたレーザー光の幾らかを方位角度測定用PSDにも同時に投射し、前記レーザー光の走査過程において前記コーナーキューブブプリズムで反射して前記測定地点のレーザー光投射原点に戻った再帰反射レーザー光を光センサー素子で受光して前記被変位測定点にあるコーナーキューブプリズムの位置感知時点を検知すると共に、前記レーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長させた状態で、前記位置感知時点において前記方位角度測定用PSDの受光面で受光したレーザー光の受光位置から前記被変位測定点の方位角度データを検知し、その方位角度データを基に前記被変位測定点の変位量を演算して前記被変位測定点の変位を測定することを特徴とする遠距離対象物の変位測定方法。 An arbitrary number of displacement measurement points are set on the displacement measurement object, and a corner cube prism is arranged at the displacement measurement object, so that the displacement measurement object can be seen from the displacement measurement object at a considerable distance. A measurement point is set, a laser beam is projected from the measurement point toward a displacement measurement region including the corner cube prism, and the displacement measurement region is scanned left and right and up and down with the laser light, and the displacement Some reflexes of the laser beam directed to the measurement area are simultaneously projected onto the azimuth angle measurement PSD, reflected by the corner cube prism in the scanning process of the laser beam, and returned to the laser beam projection origin at the measurement point. The reflected laser beam is received by the optical sensor element to detect the position sensing time of the corner cube prism at the displacement measurement point, The laser light received by the light receiving surface of the azimuth angle measuring PSD at the time of position detection in a state where the laser optical path length (M) from the laser light projection origin to the light receiving surface of the azimuth angle measuring PSD is extended. Detecting azimuth angle data of the displacement measurement point from a light receiving position, calculating a displacement amount of the displacement measurement point based on the azimuth angle data, and measuring a displacement of the displacement measurement point. Displacement measurement method for long-distance objects. 設定した測定地点と変位測定対象物の間の距離(N)が未知数の場合、既知の距離dを隔てた二つの位置に測定地点(A1,A2)を設定し、その各測定地点(A1,A2)から被変位測定領域に向けてそれぞれレーザー光を投射し且つその各レーザー光で前記被変位測定領域を左右および上下に走査すると共に、前記被変位測定領域に向けたそれぞれのレーザー光の幾らかを同時に前記各測定地点(A1,A2)の方位角度測定用PSDにもそれぞれ投射し、前記各レーザー光の走査過程で同一の被変位測定点に位置する同一のコーナーキューブプリズムで反射して前記各測定地点(A1,A2)のレーザー光投射原点にそれぞれ戻った再帰反射レーザー光を前記各測定地点(A1,A2)の光センサー素子でそれぞれ受光してその被変位測定点にあるコーナーキューブプリズムの位置感知時点をそれぞれ検知すると共に、その各位置感知時点において前記二つの測定地点(A1,A2)の方位角度測定用PSDの受光面でそれぞれ受光したレーザー光の受光位置から前記被変位測定点の方位角度データをそれぞれ検知し、前記二つの測定地点(A1,A2)の方位角度測定用PSDで検知した前記被変位測定点の方位角度データと前記既知の距離dを基に前記被変位測定点の変位量を演算して前記被変位測定点の変位を測定することを特徴とする請求項1または請求項2に記載した遠距離対象物の変位測定方法。 When the distance (N) between the set measurement point and the displacement measurement object is unknown, the measurement point (A1, A2) is set at two positions separated by a known distance d, and each measurement point (A1, A2) projects a laser beam toward the displacement measurement region and scans the displacement measurement region left and right and up and down with each laser beam, and some amount of each laser beam directed to the displacement measurement region. Are simultaneously projected onto the azimuth angle measurement PSDs of the respective measurement points (A1, A2) and reflected by the same corner cube prism located at the same displacement measurement point in the scanning process of each laser beam. The corner cue at the displacement measurement point by receiving the retroreflective laser beam returned to the laser beam projection origin at each measurement point (A1, A2) by the optical sensor element at each measurement point (A1, A2). The position detection time of the prism is detected, and the displacement measurement is performed from the light receiving position of the laser beam respectively received by the azimuth angle measurement PSD at the two measurement points (A1, A2) at each position detection time. Azimuth angle data of each point is detected, and the displacement is detected based on the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD of the two measurement points (A1, A2) and the known distance d. The displacement measurement method for a long-distance object according to claim 1 or 2, wherein a displacement amount of the measurement point is calculated to measure a displacement of the displacement measurement point. レーザー光の走査過程において光センサー素子によって検知したコーナーキューブプリズムの位置感知時点毎に方位角度測定用PSDが検知したそのコーナーキューブプリズムの反射面各部の方位角度データを集積してそのコーナーキューブプリズムの反射領域面データを生成し、その反射領域面データを基にそのコーナーキューブプリズムの反射領域面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基にその被変位測定点の変位量を演算してその被変位測定点の変位を測定することを特徴とする請求項1ないし請求項3のいずれか1項に記載した遠距離対象物の変位測定方法。 The azimuth angle data of each part of the reflecting surface of the corner cube prism detected by the PSD for measuring the azimuth angle at each point of time when the corner cube prism is detected by the optical sensor element in the scanning process of the laser beam is accumulated. Generate the reflection area surface data, calculate the reflection area surface center position of the corner cube prism based on the reflection area surface data, and generate the azimuth angle data of the displacement measurement point where the corner cube prism is located. 4. The displacement of the displacement measurement point is calculated by calculating the displacement amount of the displacement measurement point based on the azimuth angle data of the displacement measurement point, and measuring the displacement of the displacement measurement point. The displacement measuring method of the long-distance object described in 2. レーザー発光器と;測定地点に設置され前記レーザー発光器から発したレーザー光を受けてそのレーザー光を前記測定地点から相当距離離れた被変位測定点のコーナーキューブプリズムを含む被変位測定領域に向けて投射するミラーと;前記ミラーを左右および上下に往復回動させ前記ミラーから投射するレーザー光でもって前記被変位測定領域を走査するスキャン駆動装置と;前記走査過程において前記コーナーキューブプリズムで反射し前記ミラーのレーザー光投射原点に戻った再帰反射レーザー光を受光して前記被変位測定点にあるコーナーキューブプリズムの位置感知時点を検知する光センサー素子と;前記ミラーから前記被変位測定領域に向けて投射したレーザー光の幾らかを同時に受光し且つ前記光センサー素子で検知した位置感知時点での前記受光レーザー光の受光位置から前記被変位測定点の方位角度データを検知する方位角度測定用PSDと;前記方位角度測定用PSDで検知した被変位測定点の方位角度データを基に前記被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータ;を含むことを特徴とする遠距離対象物の変位測定装置。 A laser emitter; receiving laser light emitted from the laser emitter installed at a measurement point and directing the laser light to a displacement measurement region including a corner cube prism at a measurement point that is distant from the measurement point A scanning drive device that scans the displacement measurement region with a laser beam projected from the mirror by reciprocating the mirror left and right and up and down; and reflected by the corner cube prism in the scanning process. An optical sensor element that receives retroreflected laser light returned to the laser beam projection origin of the mirror and detects the position sensing time of the corner cube prism at the displacement measurement point; and from the mirror toward the displacement measurement region A position where some of the projected laser beams are simultaneously received and detected by the optical sensor element An azimuth angle measurement PSD that detects azimuth angle data of the displacement measurement point from the light receiving position of the received laser beam at a known time; and based on the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD A displacement measuring device for a long-distance object, comprising: a computer having a calculation program for calculating a displacement amount of the displacement measuring point. レーザー発光器と;測定地点に設置され前記レーザー発光器から発したレーザー光を受けてそのレーザー光を前記測定地点から相当距離離れた被変位測定点のコーナーキューブプリズムを含む被変位測定領域に向けて投射するミラーと;前記ミラーを左右および上下に往復回動させ前記ミラーから投射するレーザー光でもって前記被変位測定領域を走査するスキャン駆動装置と;前記走査過程において前記コーナーキューブプリズムで反射し前記ミラーのレーザー光投射原点に戻った再帰反射レーザー光を受光して前記被変位測定点にあるコーナーキューブプリズムの位置感知時点を検知する光センサー素子と;前記ミラーから前記被変位測定領域に向けて投射したレーザー光の幾らかを同時に受光し且つ前記光センサー素子で検知した位置感知時点での前記受光レーザー光の受光位置から前記被変位測定点の方位角度データを検知する方位角度測定用PSDと;前記ミラーと前記方位角度測定用PSDの間に置かれて前記ミラーのレーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長する角度倍率切換器と;前記方位角度測定用PSDで検知した前記被変位測定点の方位角度データを基に前記被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータ;を含むことを特徴とする遠距離対象物の変位測定装置。 A laser emitter; receiving laser light emitted from the laser emitter installed at a measurement point and directing the laser light to a displacement measurement region including a corner cube prism at a measurement point that is distant from the measurement point A scanning drive device that scans the displacement measurement region with a laser beam projected from the mirror by reciprocating the mirror left and right and up and down; and reflected by the corner cube prism in the scanning process. An optical sensor element that receives retroreflected laser light returned to the laser beam projection origin of the mirror and detects the position sensing time of the corner cube prism at the displacement measurement point; and from the mirror toward the displacement measurement region A position where some of the projected laser beams are simultaneously received and detected by the optical sensor element An azimuth angle measurement PSD for detecting azimuth angle data of the displacement measurement point from a light receiving position of the received laser beam at a known time; a laser of the mirror placed between the mirror and the azimuth angle measurement PSD An angle magnification switch for extending the laser optical path length (M) from the light projection origin to the light receiving surface of the azimuth angle measurement PSD; based on the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD A displacement measuring device for a long-distance object, comprising: a computer having a calculation program for calculating a displacement amount of the displacement measuring point. レーザー発光器と;測定地点に設置され前記レーザー発光器から発したレーザー光を受けてそのレーザー光を前記測定地点から相当距離離れた被変位測定点のコーナーキューブプリズムを含む被変位測定領域に向けて投射する第一のミラーと;前記第一のミラーを左右および上下に往復回動させ前記第一のミラーから投射するレーザー光でもって前記被変位測定領域を走査するスキャン駆動装置と;前記走査過程において前記コーナーキューブプリズムで反射し前記第一のミラーのレーザー光投射原点に戻った再帰反射レーザー光を受光して前記被変位測定点にあるコーナーキューブプリズムの位置感知時点を検知する光センサー素子と;前記第一のミラーから前記被変位測定領域に向けて投射したレーザー光の幾らかを変向反射する第二のミラーと;前記第二のミラーで反射したレーザー光を受光し且つ前記光センサー素子で検知した位置感知時点での前記受光レーザー光の受光位置から前記被変位測定点の方位角度データを検知する方位角度測定用PSDと;前記第二のミラーと前記方位角度測定用PSDの間に置かれて前記第一のミラーのレーザー光投射原点から前記方位角度測定用PSDの受光面までのレーザー光路長(M)を延長する角度倍率切換器と;前記方位角度測定用PSDで検知した前記被変位測定点の方位角度データを基に前記被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータ;を含むことを特徴とする遠距離対象物の変位測定装置。 A laser emitter; receiving laser light emitted from the laser emitter installed at a measurement point and directing the laser light to a displacement measurement region including a corner cube prism at a measurement point that is distant from the measurement point A first mirror for projecting; and a scan drive device for scanning the displacement measurement region with a laser beam projected from the first mirror by reciprocatingly rotating the first mirror left and right and up and down; An optical sensor element that receives retroreflected laser light reflected by the corner cube prism in the process and returned to the laser light projection origin of the first mirror to detect the position sensing time of the corner cube prism at the displacement measurement point And a second reflection that redirects and reflects some of the laser light projected from the first mirror toward the displacement measurement region. An azimuth for detecting the azimuth angle data of the measurement point to be displaced from the light receiving position of the received laser light at the time of detecting the position of the laser beam reflected by the second mirror and detected by the optical sensor element. An angle measuring PSD; a laser light path length (between the second mirror and the azimuth angle measuring PSD, from the laser light projection origin of the first mirror to the light receiving surface of the azimuth angle measuring PSD ( An angle magnification switch for extending M); a computer equipped with a calculation program for calculating the displacement amount of the displacement measurement point based on the azimuth angle data of the displacement measurement point detected by the azimuth angle measurement PSD; A displacement measuring apparatus for a long distance object. レーザー光の走査過程において光センサー素子によって検知したコーナーキューブプリズムの反射位置感知時点毎に方位角度測定用PSDで検知したそのコーナーキューブプリズムの反射面各部の方位角度データを蓄積してそのコーナーキューブプリズムの反射領域面データを生成し、そのコーナーキューブプリズムの反射領域面データを基にそのコーナーキューブプリズムの反射面中心位置を演算してそのコーナーキューブプリズムが位置する被変位測定点の方位角度データを生成し、その被変位測定点の方位角度データを基にその被変位測定点の変位量を演算する演算プログラムを搭載したコンピュータ;を含むことを特徴とする請求項5ないし請求項7のいずれか1項に記載した遠距離対象物の変位測定装置。 The corner cube prism accumulates azimuth angle data of each part of the reflection surface of the corner cube prism detected by the azimuth angle measurement PSD at each reflection position sensing point of the corner cube prism detected by the optical sensor element in the laser beam scanning process. The reflection area surface data of the corner cube prism is generated, the center position of the reflection surface of the corner cube prism is calculated based on the reflection area surface data of the corner cube prism, and the azimuth angle data of the displacement measurement point where the corner cube prism is located 8. A computer having a calculation program that generates and calculates a displacement amount of the displacement measurement point based on the azimuth angle data of the displacement measurement point. 8. A displacement measuring apparatus for a long-distance object according to item 1. ミラーをハーフミラーとした請求項5ないし請求項8のいずれか1項に記載の遠距離対象物の変位測定装置。
The displacement measuring apparatus for a long-distance object according to any one of claims 5 to 8, wherein the mirror is a half mirror.
JP2003374030A 2003-11-04 2003-11-04 Displacement measuring method for long distance object and displacement measuring device for long distance object Expired - Fee Related JP4281056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374030A JP4281056B2 (en) 2003-11-04 2003-11-04 Displacement measuring method for long distance object and displacement measuring device for long distance object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374030A JP4281056B2 (en) 2003-11-04 2003-11-04 Displacement measuring method for long distance object and displacement measuring device for long distance object

Publications (2)

Publication Number Publication Date
JP2005140510A true JP2005140510A (en) 2005-06-02
JP4281056B2 JP4281056B2 (en) 2009-06-17

Family

ID=34685882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374030A Expired - Fee Related JP4281056B2 (en) 2003-11-04 2003-11-04 Displacement measuring method for long distance object and displacement measuring device for long distance object

Country Status (1)

Country Link
JP (1) JP4281056B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125805A (en) * 2005-11-04 2007-05-24 Oki Electric Ind Co Ltd Medium handling device
CN103471562A (en) * 2013-09-09 2013-12-25 北京航天计量测试技术研究所 Auto-collimation measurement method and device for long-distance dynamic contact ratio of quasi parallel light
JP2015031648A (en) * 2013-08-06 2015-02-16 株式会社東京精密 Laser tracker
CN104535041A (en) * 2015-01-07 2015-04-22 湖南水口山有色金属集团有限公司 Observation station position determination method and high-rise building inclination deformation measuring method
CN104807415A (en) * 2015-05-05 2015-07-29 上海成盈光电科技有限公司 Tunneling pit automatic deformation detection scanner
CN105157668A (en) * 2015-08-27 2015-12-16 北京航天发射技术研究所 Method for acquiring reference azimuth of rocket aiming system by using reference prism
CN108534688A (en) * 2018-07-06 2018-09-14 北方民族大学 The displacement sensor and its measurement method of amplification factor can be improved
JP2019196983A (en) * 2018-05-10 2019-11-14 株式会社トプコン Surveying system
CN110926422A (en) * 2020-02-20 2020-03-27 杭州鲁尔物联科技有限公司 House inclination monitoring and early warning system
CN111678451A (en) * 2020-05-15 2020-09-18 天津时空经纬测控技术有限公司 Method and apparatus for measuring deformation of carrier, and storage medium
CN114234905A (en) * 2022-02-24 2022-03-25 山东拓普地理信息工程有限公司 Angle measuring instrument for bridge engineering detection
CN115183743A (en) * 2022-06-28 2022-10-14 中国五冶集团有限公司 Tunnel deformation monitoring system and method for tilt sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763147A (en) * 2019-10-31 2020-02-07 中交三航局第三工程有限公司 Cofferdam deformation monitoring method based on three-dimensional laser scanning technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745406A (en) * 1980-09-03 1982-03-15 Hitachi Ltd Three-dimensional coordinate measuring device
JPH01210815A (en) * 1987-02-04 1989-08-24 Michel Paramythioti Method and apparatus for 3-d bakclight survey
JPH06221853A (en) * 1993-01-25 1994-08-12 Agency Of Ind Science & Technol Position detector
JPH11183165A (en) * 1997-12-25 1999-07-09 Fuji Electric Co Ltd Displacement-measuring device and method for controlling its light scan
JPH11280378A (en) * 1998-03-31 1999-10-12 Hitachi Zosen Corp Method and device for measuring clearance of tail section in shield machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745406A (en) * 1980-09-03 1982-03-15 Hitachi Ltd Three-dimensional coordinate measuring device
JPH01210815A (en) * 1987-02-04 1989-08-24 Michel Paramythioti Method and apparatus for 3-d bakclight survey
JPH06221853A (en) * 1993-01-25 1994-08-12 Agency Of Ind Science & Technol Position detector
JPH11183165A (en) * 1997-12-25 1999-07-09 Fuji Electric Co Ltd Displacement-measuring device and method for controlling its light scan
JPH11280378A (en) * 1998-03-31 1999-10-12 Hitachi Zosen Corp Method and device for measuring clearance of tail section in shield machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125805A (en) * 2005-11-04 2007-05-24 Oki Electric Ind Co Ltd Medium handling device
JP2015031648A (en) * 2013-08-06 2015-02-16 株式会社東京精密 Laser tracker
CN103471562A (en) * 2013-09-09 2013-12-25 北京航天计量测试技术研究所 Auto-collimation measurement method and device for long-distance dynamic contact ratio of quasi parallel light
CN104535041A (en) * 2015-01-07 2015-04-22 湖南水口山有色金属集团有限公司 Observation station position determination method and high-rise building inclination deformation measuring method
CN104807415A (en) * 2015-05-05 2015-07-29 上海成盈光电科技有限公司 Tunneling pit automatic deformation detection scanner
CN105157668A (en) * 2015-08-27 2015-12-16 北京航天发射技术研究所 Method for acquiring reference azimuth of rocket aiming system by using reference prism
CN105157668B (en) * 2015-08-27 2017-11-28 北京航天发射技术研究所 The method that rocket sighting system obtains reference bearing by benchmark prism
JP2019196983A (en) * 2018-05-10 2019-11-14 株式会社トプコン Surveying system
JP7085888B2 (en) 2018-05-10 2022-06-17 株式会社トプコン Surveying system
CN108534688A (en) * 2018-07-06 2018-09-14 北方民族大学 The displacement sensor and its measurement method of amplification factor can be improved
CN110926422A (en) * 2020-02-20 2020-03-27 杭州鲁尔物联科技有限公司 House inclination monitoring and early warning system
CN111678451A (en) * 2020-05-15 2020-09-18 天津时空经纬测控技术有限公司 Method and apparatus for measuring deformation of carrier, and storage medium
CN111678451B (en) * 2020-05-15 2022-06-10 天津时空经纬测控技术有限公司 Method and apparatus for measuring deformation of carrier, and storage medium
CN114234905A (en) * 2022-02-24 2022-03-25 山东拓普地理信息工程有限公司 Angle measuring instrument for bridge engineering detection
CN114234905B (en) * 2022-02-24 2022-05-03 山东拓普地理信息工程有限公司 Angle measuring instrument for bridge engineering detection
CN115183743A (en) * 2022-06-28 2022-10-14 中国五冶集团有限公司 Tunnel deformation monitoring system and method for tilt sensor
CN115183743B (en) * 2022-06-28 2023-12-26 中国五冶集团有限公司 Inclination sensor tunnel deformation monitoring system and method

Also Published As

Publication number Publication date
JP4281056B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
CN111521161B (en) Method of determining a direction to a target, surveying arrangement and machine-readable carrier
JP4281056B2 (en) Displacement measuring method for long distance object and displacement measuring device for long distance object
KR101703774B1 (en) Calibration method for a device having a scan function
KR101659893B1 (en) Laser tracker with position-sensitive detectors for searching for a target
US7924441B1 (en) Fast and high-precision 3D tracking and position measurement with MEMS micromirrors
JP3213003B2 (en) Validation method of optical distance measurement of target surface in disturbed environment
US4732472A (en) Methods of, and systems for, determining the position of an object
JP2016516196A (en) Structured optical scanner correction tracked in 6 degrees of freedom
US20150226841A1 (en) Laser tracker with calibration unit for self-calibration
JP2018009957A (en) Three-dimensional position measurement system, three-dimensional position measurement method, and measurement module
JP3347035B2 (en) Optical declination measuring device and underground excavator position measuring device
JP6201252B1 (en) Position measuring apparatus and position measuring method
CN111947594A (en) Dual-wavelength laser three-dimensional shape scanning device and method
JP7085888B2 (en) Surveying system
CN102401901B (en) Distance measurement system and distance measurement method
JP2023021423A (en) Measurement device and control method of measurement device
JPH08271251A (en) Method and apparatus for measurement of position and posture of tunnel excavator
JP2017173258A (en) Distance measurement device, distance measurement method, and program
JPH07139942A (en) Surveying apparatus
Clark et al. Measuring range using a triangulation sensor with variable geometry
CN108088427A (en) A kind of planar laser beam sending method and device
JPH024843B2 (en)
CN108061543A (en) A kind of object space detection method and system
CN107957260A (en) A kind of object relative position detection light beam sending method and device
JPH0617786B2 (en) Linear motion measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees