JP2005140023A - Micro gas turbine power generating installation - Google Patents

Micro gas turbine power generating installation Download PDF

Info

Publication number
JP2005140023A
JP2005140023A JP2003377673A JP2003377673A JP2005140023A JP 2005140023 A JP2005140023 A JP 2005140023A JP 2003377673 A JP2003377673 A JP 2003377673A JP 2003377673 A JP2003377673 A JP 2003377673A JP 2005140023 A JP2005140023 A JP 2005140023A
Authority
JP
Japan
Prior art keywords
spray water
flow rate
water
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003377673A
Other languages
Japanese (ja)
Other versions
JP4131951B2 (en
Inventor
Susumu Nakano
晋 中野
Satoshi Momo
聡 百々
Kuniyoshi Tsubouchi
邦良 坪内
Manabu Yagi
学 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003377673A priority Critical patent/JP4131951B2/en
Publication of JP2005140023A publication Critical patent/JP2005140023A/en
Application granted granted Critical
Publication of JP4131951B2 publication Critical patent/JP4131951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro gas turbine power generating installation for handling a wide range of flow amount of sprayed water in a wide range while simplifying its flow control. <P>SOLUTION: The micro gas turbine power generating installation comprises a saturation moistening water line 30 for supplying a required flow amount of sprayed water to lower the temperature of air discharged form a compressor to a saturated air temperature and a supersaturation moistening water line 31 for spraying water to secure the required amount of air to satisfy a required load during the temperature rise of the atmospheric air. Water amount control is applied only for the amount of sprayed water to be supplied from the saturation moistening water line and the supply of the sprayed water from the supersaturation moistening water line 31 is carried out with ON/OFF control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水噴霧により発電出力を増加させるマイクロガスタービン設備に関する。   The present invention relates to a micro gas turbine facility that increases power generation output by water spray.

水噴霧によって発電出力を増強するタイプの再生式ガスタービンとしては、例えば特開2001−254632号公報に記載の技術がある。この特開2001−254632号公報には、再生式ガスタービン圧縮機吐出部に温水噴射による加湿器を設けて、発電出力を増加させることを可能とする熱電併給設備について記載されている。   As a type of regenerative gas turbine that enhances the power generation output by water spray, for example, there is a technique described in Japanese Patent Application Laid-Open No. 2001-254632. Japanese Patent Laid-Open No. 2001-254632 describes a combined heat and power supply facility that can increase a power generation output by providing a humidifier by hot water injection at a discharge portion of a regenerative gas turbine compressor.

特開2001−254632号公報(図3)Japanese Patent Laid-Open No. 2001-254632 (FIG. 3)

水噴霧によって圧縮機吐出空気を加湿する場合、限られたスペースで噴霧水を完全に蒸発させるためには、噴霧水の水滴径を微小にする必要がある。微小水滴を発生させる噴霧ノズルでは、単独のノズルでは自ずと供給流量に限界がある。このため、広範囲な噴霧水流量をカバーすることが要求される場合、複数のノズルを備え、これらのノズルの流量制御を実施する必要がある。一方、マイクロガスタービンの利点は構造が単純で部品点数が少ないこと、さらには運転制御は回転数と燃料流量の制御のみで行うという点にある。水噴霧を伴う場合には、これに噴霧水の流量制御が加わることになり、その流量制御のためにシンプルが特徴であるマイクロタービンの運転制御は複雑化し、その利点が失われる。   When the compressor discharge air is humidified by water spray, it is necessary to make the water droplet diameter of the spray water minute in order to completely evaporate the spray water in a limited space. In the spray nozzle that generates minute water droplets, the supply flow rate is naturally limited by a single nozzle. For this reason, when it is required to cover a wide range of spray water flow rates, it is necessary to provide a plurality of nozzles and control the flow rate of these nozzles. On the other hand, the advantage of the micro gas turbine is that the structure is simple and the number of parts is small, and that the operation control is performed only by controlling the rotation speed and the fuel flow rate. When water spray is accompanied, the flow rate control of the spray water is added to this, and the operation control of the micro turbine, which is characterized by simplicity for the flow rate control, becomes complicated and the advantages are lost.

本発明の目的は、広範囲な噴霧水流量領域を扱えて、その流量制御を簡単にすることができるマイクロガスタービン発電設備を提供することにある。   An object of the present invention is to provide a micro gas turbine power generation facility capable of handling a wide range of spray water flow rate and simplifying the flow rate control.

上記目的を達成する為に、空気を圧縮する圧縮機と、圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で発生する燃焼ガスによって駆動されるタービンと、該タービンの排気ガスと前記燃焼器に導かれる圧縮空気とを熱交換する再生熱交換器とを有するマイクロガスタービン設備において、圧縮機吐出空気への噴霧水を供給する給水ラインとして、給水流量を連続的に調整する第1の噴霧水供給ラインと、遮断弁の開閉によって規定流量の供給の有無を調節する第2の噴霧水供給ラインを設ける。   In order to achieve the above object, a compressor that compresses air, a combustor that combusts compressed air and fuel, a turbine that is driven by combustion gas generated in the combustor, and an exhaust gas of the turbine And a regenerative heat exchanger for exchanging heat between the compressed air guided to the combustor and a feed water line for supplying spray water to the compressor discharge air, the feed water flow rate is continuously adjusted A first spray water supply line and a second spray water supply line for adjusting the presence or absence of supply of the prescribed flow rate by opening and closing the shut-off valve are provided.

本発明によれば、噴霧水を利用するマイクロガスタービン発電設備において、広範囲な噴霧水流量領域を扱えて、その流量制御を簡単にすることができる。   According to the present invention, in a micro gas turbine power generation facility using spray water, a wide range of spray water flow rate regions can be handled, and the flow rate control can be simplified.

以下、本発明に関わるマイクロガスタービン発電設備の実施例について、図1から図4を用いて説明する。   Embodiments of a micro gas turbine power generation facility according to the present invention will be described below with reference to FIGS.

図1は本発明の一実施例であるマイクロガスタービン発電設備のシステム系統図を示す。図示するマイクロガスタービン発電設備は、タービン1,圧縮機2,発電機3,電力変換器4,再生熱交換器5および燃焼器6によって構成される再生サイクルからなるガスタービンシステムである。発電機3は、界磁発生に永久磁石を用いた永久磁石三相発電機で、駆動軸15にはその同一軸の延長端に圧縮機2とタービン1が取り付けられている。また、発電機3は電力変換器4と動力配線16で接続されている。電力変換器4は、交流電力を直流に変えるコンバータとその直流電力を商用周波数に合わせた交流電力に変換するインバータで構成されている。   FIG. 1 is a system diagram of a micro gas turbine power generation facility according to an embodiment of the present invention. The illustrated micro gas turbine power generation facility is a gas turbine system including a regeneration cycle including a turbine 1, a compressor 2, a generator 3, a power converter 4, a regeneration heat exchanger 5 and a combustor 6. The generator 3 is a permanent magnet three-phase generator using a permanent magnet for generating a field, and the compressor 2 and the turbine 1 are attached to the drive shaft 15 at the extended end of the same shaft. Further, the generator 3 is connected to the power converter 4 by a power wiring 16. The power converter 4 includes a converter that converts AC power into DC and an inverter that converts the DC power into AC power that matches a commercial frequency.

タービンシステムの運転開始時は、図示していない系統側から電気を引き入れ、発電機に供給して発電機3を電動機として作動させる。共通の駆動軸15の回転により、圧縮機2とタービン1が回転する。圧縮機2はフィルタ7を介して外気を吸い込み、昇圧して再生熱交換器5を通して燃焼器6に吐出空気を供給する。駆動軸15の回転数の増加に伴い吐出空気圧力が増加し、規定の回転数または吐出圧力に到達したところで、燃料供給ラインである燃料配管8に設置された燃料供給弁9を開けて燃料を燃焼器6に供給し、圧縮機からの吐出空気と混合させ燃焼させる。燃焼ガスはタービン1で膨張仕事をして再生熱交換器5を通り、タービンシステム外部に排出される。燃焼ガスのタービン1での膨張仕事の増加により発電機3で発電が開始されると、電力変換器4は、動力配線16を介して流入する電力を系統側電力の周波数に変換して出力する。   At the start of operation of the turbine system, electricity is drawn from the system side (not shown) and supplied to the generator to operate the generator 3 as an electric motor. The compressor 2 and the turbine 1 are rotated by the rotation of the common drive shaft 15. The compressor 2 sucks outside air through the filter 7, increases the pressure, and supplies discharge air to the combustor 6 through the regenerative heat exchanger 5. As the rotational speed of the drive shaft 15 increases, the discharge air pressure increases, and when the specified rotational speed or discharge pressure is reached, the fuel supply valve 9 installed in the fuel pipe 8 serving as a fuel supply line is opened to supply fuel. It is supplied to the combustor 6 and mixed with the discharge air from the compressor and burned. The combustion gas performs expansion work in the turbine 1, passes through the regenerative heat exchanger 5, and is discharged outside the turbine system. When power generation is started by the generator 3 due to an increase in expansion work of the combustion gas in the turbine 1, the power converter 4 converts the power flowing in via the power wiring 16 into the frequency of the system side power and outputs it. .

また、図示するマイクロタービン設備では、タービン1からの排ガスは配管13を介して再生熱交換器5に導かれる。再生熱交換器5内では、圧縮機からの吐出配管11によって導かれた圧縮空気と熱交換して、圧縮機からの吐出空気温度を上昇させる。圧縮機吐出空気を加熱した排ガスは、配管14を通して再生熱交換器5から排出される。   In the illustrated micro turbine facility, the exhaust gas from the turbine 1 is guided to the regenerative heat exchanger 5 through the pipe 13. In the regenerative heat exchanger 5, heat is exchanged with the compressed air guided by the discharge pipe 11 from the compressor to raise the temperature of the discharge air from the compressor. The exhaust gas that has heated the compressor discharge air is discharged from the regenerative heat exchanger 5 through the pipe 14.

図示するような再生サイクルでは、再生熱交換器5で排気からいかに多くの熱エネルギーを回収できるかがサイクルの効率向上と発電出力の増加に繋がる。そこで、本実施例では再生熱交換器5での熱交換量を増加させる目的で、吐出空気に水噴霧を行う第1の噴霧水供給ラインとして飽和加湿水ライン30を圧縮機吐出配管11に設置している。この飽和加湿水ライン30には、再生熱交換器5に供給される空気に水噴霧する噴霧水ノズル
17,給水流量をコントロールする噴霧水流量制御弁18,給水を遮断する遮断弁23、及び噴霧水ノズル17で噴霧する水を供給する導水管19によって構成される。水噴霧の効果は、水噴霧による加湿で再生熱交換器の低温側空気配管の入口温度を低下させて、再生熱交換器での熱交換量を増加させて排熱回収量を増加させることと、水噴霧によって燃焼器への流量そのものが増加するという効果がある。
In the regeneration cycle as shown in the figure, how much heat energy can be recovered from the exhaust by the regeneration heat exchanger 5 leads to an improvement in cycle efficiency and an increase in power generation output. Therefore, in this embodiment, for the purpose of increasing the heat exchange amount in the regenerative heat exchanger 5, a saturated humidified water line 30 is installed in the compressor discharge pipe 11 as a first spray water supply line for spraying water on the discharge air. doing. The saturated humidified water line 30 includes a spray water nozzle 17 that sprays water on the air supplied to the regenerative heat exchanger 5, a spray water flow rate control valve 18 that controls the feed water flow rate, a shutoff valve 23 that shuts off the feed water, and a spray. A water conduit 19 for supplying water sprayed by the water nozzle 17 is used. The effect of water spray is to reduce the inlet temperature of the low-temperature side air piping of the regenerative heat exchanger by humidification with water spray, and to increase the heat exchange amount in the regenerative heat exchanger to increase the amount of exhaust heat recovery. The water spray itself has the effect of increasing the flow rate to the combustor.

噴霧水の量は、再生熱交換器の低温空気側(圧縮機吐出空気)の入口圧力状態において、空気温度を飽和温度まで低下させるのに必要な量である。圧縮機の吐出空気温度は、吸気側、つまり大気温度条件によって変わるため、噴霧水ノズル17から噴霧する水量は噴霧水流量制御弁18でコントロールする。なお、大気温度の上昇によって、例えば、タービン設計点(ISO条件、15℃,101.3kPa ,30%相対湿度)での定格出力を発生するのに必要な空気流量が不足する場合、先に示した水噴霧による流量増加効果で、不足空気流量を補うことができる。このように、圧縮機吐出空気に供給される水分量は、外気温度と、要求負荷によって、広範囲の流量が必要になる。さらに噴霧された水は、その後、再生熱交換器5に流入するため、水滴が再生熱交換器の高温壁に付着することで生じる熱衝撃による損傷を回避するため、再生熱交換器の入口までの距離で完全に蒸発していることが望ましい。   The amount of spray water is an amount necessary for lowering the air temperature to the saturation temperature in the inlet pressure state on the low temperature air side (compressor discharge air) of the regenerative heat exchanger. Since the discharge air temperature of the compressor varies depending on the intake side, that is, the atmospheric temperature condition, the amount of water sprayed from the spray water nozzle 17 is controlled by the spray water flow rate control valve 18. It should be noted that if the air flow rate required to generate the rated output at the turbine design point (ISO conditions, 15 ° C., 101.3 kPa, 30% relative humidity) is insufficient due to an increase in atmospheric temperature, for example, Insufficient air flow can be compensated by the effect of increasing the flow rate by spraying water. Thus, the amount of water supplied to the compressor discharge air needs a wide range of flow rates depending on the outside air temperature and the required load. Further, since the sprayed water flows into the regenerative heat exchanger 5 thereafter, in order to avoid damage due to thermal shock caused by water droplets adhering to the high temperature wall of the regenerative heat exchanger, the water up to the inlet of the regenerative heat exchanger It is desirable that it is completely evaporated at a distance of.

そこで本実施例では、圧縮機吐出空気に水噴霧する第2の噴霧水供給ラインとして、導水管22,遮断弁21、及び噴霧水ノズル20によって構成される過飽和加湿水ライン
31を圧縮機吐出配管11に設置している。すなわち、本実施例では飽和加湿水ライン
30と過飽和加湿水ライン31の二つのラインによって水噴霧を行うように構成している。導水管19の上流側に設置される遮断弁23はON/OFF操作で、このラインへの水の供給自体をコントロールしている。
Therefore, in the present embodiment, as the second spray water supply line for spraying water on the compressor discharge air, the supersaturated humidified water line 31 constituted by the water conduit 22, the shutoff valve 21, and the spray water nozzle 20 is used as the compressor discharge pipe. 11 is installed. That is, in this embodiment, the water spraying is performed by the two lines of the saturated humidified water line 30 and the supersaturated humidified water line 31. The shutoff valve 23 installed on the upstream side of the water conduit 19 is ON / OFF operated to control the water supply itself to this line.

噴霧水の制御は、大気温度があまり高くない状態で、圧縮機からの吐出空気量で設計の定格出力を発電できる場合は、配管11における再生熱交換器5の入口の空気圧力状態における飽和温度まで温度低下させるのに必要な量だけの水を噴霧水ノズル17から供給する。噴霧水量は全て流量制御弁18によって流量制御される。飽和温度まで温度低下させるのに必要な水量は、再生熱交換器の入口に設置された温度計26と圧力計27からデータによって算出される。   In the control of the spray water, when the rated output of the design can be generated by the amount of air discharged from the compressor in a state where the atmospheric temperature is not so high, the saturation temperature in the air pressure state at the inlet of the regenerative heat exchanger 5 in the pipe 11 As much water as necessary to lower the temperature is supplied from the spray water nozzle 17. The amount of spray water is all controlled by the flow control valve 18. The amount of water required to lower the temperature to the saturation temperature is calculated from data from a thermometer 26 and a pressure gauge 27 installed at the inlet of the regenerative heat exchanger.

大気温度が上昇して、定格出力発電に対する空気流量が不足するような大気状態になった場合は、噴霧水ノズル20からの噴霧水によって噴霧水量を増加する。ここで、噴霧水ノズル20が設置される過飽和加湿水ライン31の噴霧水流量は、遮断弁21の開閉操作のみで制御されるため、規定流量100%が供給されるか、0%となるかの2通りの供給方法のみである。タービンシステムとしては、噴霧水ノズル17から成る飽和加湿水ライン30の水の連続制御と、噴霧水ノズル20から成る過飽和加湿水ライン31のON/
OFF制御によって供給される水との合計量となる。
When the atmospheric temperature rises and the air flow for the rated output power generation becomes insufficient, the amount of spray water is increased by the spray water from the spray water nozzle 20. Here, since the spray water flow rate of the supersaturated humidification water line 31 in which the spray water nozzle 20 is installed is controlled only by the opening / closing operation of the shut-off valve 21, is the specified flow rate 100% supplied or is 0%? There are only two supply methods. The turbine system includes continuous control of water in a saturated humidified water line 30 composed of a spray water nozzle 17 and ON / OFF of a supersaturated humidified water line 31 composed of a spray water nozzle 20.
This is the total amount of water supplied by the OFF control.

図2(a)は、再生熱交換器入口状態を飽和温度まで低下させるのに必要な加湿水流量と外気温との関係を示したもので、図2(b)は、再生熱交換器入口で図2(a)に示された加湿水が供給された場合のタービンシステムの発電出力を示したものである。外気温度が例えば30℃を超えるような状態になると、タービンの定格出力発生に必要な空気量が不足するため、飽和状態までの加湿を行っても出力低下が生じる。   FIG. 2 (a) shows the relationship between the humidified water flow rate required to lower the regeneration heat exchanger inlet state to the saturation temperature and the outside air temperature, and FIG. 2 (b) shows the regeneration heat exchanger inlet. 2 shows the power generation output of the turbine system when the humidified water shown in FIG. 2 (a) is supplied. When the outside air temperature exceeds 30 ° C., for example, the amount of air necessary for generating the rated output of the turbine is insufficient, so that the output is reduced even when humidification is performed up to the saturation state.

図3は、本発明の噴霧水の供給方法を示した図である。図3は図2と同様に外気温に対する噴霧水量の関係を示したものである。図2(a)において、再生熱交換器入口において飽和温度までの温度低下で、タービン発電量が定格発電を確保できる外気温(図中のA点)までは、飽和加湿水ライン30のみによる噴霧水の供給を行う。このとき、噴霧水量は外気温に合わせて、飽和加湿水ライン30に設置された流量制御弁によって制御される。図中A点以上の外気温の高い領域では、飽和加湿水ライン30からの噴霧水の供給を止め、代わりに過飽和加湿水ライン31の遮断弁を開放してこのラインから噴霧水を供給する。過飽和加湿水ライン31での噴霧水量は、図3(a)に示すように、飽和加湿水ライン30での噴霧水供給量よりも多くなるように導水管,遮断弁およびノズルを設定しておく。図中A点以上の外気温の高い状態では、発電出力が、要求負荷に達するまで噴霧水の供給を行う。図3(a)のB点は、過飽和加湿水の供給だけでは要求負荷に見合う発電ができなくなった点であり、飽和加湿水ライン30からの噴霧水の供給も開始して、必要な噴霧水量を確保する。図中B点以上の領域に対しては、要求負荷を満足する発電量に達するまで噴霧水流量を供給し、流量のコントロールは飽和加湿水ライン30に設置された流量制御弁によって行われる。   FIG. 3 is a view showing the spray water supply method of the present invention. FIG. 3 shows the relationship of the amount of spray water with respect to the outside air temperature as in FIG. In FIG. 2A, spraying by only the saturated humidified water line 30 until the outside temperature (point A in the figure) where the turbine power generation amount can ensure the rated power generation due to the temperature drop to the saturation temperature at the regeneration heat exchanger inlet. Supply water. At this time, the amount of spray water is controlled by a flow control valve installed in the saturated humidified water line 30 in accordance with the outside air temperature. In the region where the outside air temperature is higher than the point A in the figure, the supply of spray water from the saturated humidified water line 30 is stopped, and instead, the shutoff valve of the supersaturated humidified water line 31 is opened and the spray water is supplied from this line. As shown in FIG. 3A, the water conduit, the shutoff valve, and the nozzle are set so that the amount of spray water in the supersaturated humidified water line 31 is larger than the amount of sprayed water supplied in the saturated humidified water line 30. . In the state where the outside air temperature is higher than the point A in the figure, the spray water is supplied until the power generation output reaches the required load. Point B in FIG. 3 (a) is a point where power generation commensurate with the required load can no longer be achieved simply by supplying supersaturated humidified water. The supply of sprayed water from saturated humidified water line 30 is also started, and the required amount of sprayed water Secure. In the region above the point B in the figure, the spray water flow rate is supplied until the amount of power generation that satisfies the required load is reached, and the flow rate is controlled by a flow rate control valve installed in the saturated humidified water line 30.

図3(a)に示した噴霧水の供給方法では、流量のコントロールは飽和加湿水ライン
30に設置された流量制御弁のみで、他のラインに関してはON/OFF指令のみの制御となる。
In the spray water supply method shown in FIG. 3A, the flow rate is controlled only by a flow rate control valve installed in the saturated humidified water line 30, and only the ON / OFF command is controlled for the other lines.

図1に示した噴霧水供給システム構成と図3に示した噴霧水供給方法によって、広範囲な外気温領域まで、要求負荷を満足できる噴霧水流量の供給ができ、さらに噴霧水流量のコントロールは、飽和加湿水ライン30に設置された流量制御弁のみで、噴霧水流量の制御が簡素化できるという効果がある。   The spray water supply system configuration shown in FIG. 1 and the spray water supply method shown in FIG. 3 can supply a spray water flow rate that satisfies the required load up to a wide range of outside air temperature. There is an effect that the control of the spray water flow rate can be simplified only by the flow rate control valve installed in the saturated humidified water line 30.

また、噴霧水流量が2本のラインからの供給で足りない場合には、遮断弁,導水管,噴霧ノズルから成る過飽和加湿水ライン31を増加して対応でき、要求負荷を満足する噴霧水量が確保されるまで過飽和加湿水ライン31の遮断弁を順次開放して、水を供給し、最後に再度、飽和加湿水ラインの流量制御弁の開度調整を行う。この場合も、図1及び図3に示したものと同様に広範囲の流量を単純な操作で制御できるという効果がある。   In addition, when the supply of spray water is insufficient from two lines, it is possible to increase the number of supersaturated humidified water lines 31 including shutoff valves, water conduits, and spray nozzles. The shut-off valve of the supersaturated humidified water line 31 is sequentially opened until water is secured, and water is supplied. Finally, the opening degree of the flow control valve of the saturated humidified water line is adjusted again. In this case as well, there is an effect that a wide range of flow rates can be controlled by a simple operation as in the case shown in FIGS.

本発明の他の実施例を図4に示す。図1と同じ構成については説明を省略する。図4に示す本実施例は、圧縮機2からの吐出空気配管11を2つの配管24と25に分岐して、飽和加湿水ライン30からの噴霧水供給と、過飽和加湿水ライン31からの噴霧水供給をそれぞれ別配管で実施するものである。導水管19,流量制御弁18,噴霧水ノズル17から成る飽和加湿水ライン30は、配管24に取り付けられ、導水管22,遮断弁21,噴霧水ノズル20から成る過飽和加湿水ライン31は配管25に取り付けられている。図4の実施例では、飽和加湿水ライン30からの噴霧水と、過飽和加湿水ライン31からの噴霧水は、別配管に設置されるため、それぞれのノズルから噴霧される水滴の干渉を避けられる。これにより、水滴の合体による水滴径の肥大化を防止でき噴霧水の蒸発を早めるという効果がある。また、再生熱交換器5への水滴流入を防止できるため、流入水滴の再生熱交換器壁面への付着により生じる熱衝撃を防止でき、再生熱交換器の長寿命化が図れるという効果がある。   Another embodiment of the present invention is shown in FIG. The description of the same configuration as in FIG. 1 is omitted. In the present embodiment shown in FIG. 4, the discharge air pipe 11 from the compressor 2 is branched into two pipes 24 and 25, the spray water supply from the saturated humidified water line 30, and the spray from the supersaturated humidified water line 31. Water supply is carried out by separate piping. A saturated humidified water line 30 composed of the water conduit 19, the flow control valve 18 and the spray water nozzle 17 is attached to the pipe 24, and a supersaturated humidified water line 31 composed of the water conduit 22, the shut-off valve 21 and the spray water nozzle 20 is connected to the pipe 25. Is attached. In the embodiment of FIG. 4, since the spray water from the saturated humidified water line 30 and the spray water from the supersaturated humidified water line 31 are installed in separate pipes, interference of water droplets sprayed from the respective nozzles can be avoided. . Thereby, the enlargement of the water droplet diameter due to the coalescence of water droplets can be prevented, and there is an effect that the evaporation of spray water is accelerated. Further, since it is possible to prevent water droplets from flowing into the regenerative heat exchanger 5, it is possible to prevent thermal shock caused by adhesion of the inflowing water droplets to the wall surface of the regenerative heat exchanger, and it is possible to extend the life of the regenerative heat exchanger.

以上のように、図1〜図4に示す実施例では、飽和空気温度まで圧縮機吐出空気温度を低下させるのに必要な噴霧水流量を供給する飽和加湿水ラインと、大気温度上昇時に要求負荷に必要な空気量確保のために水噴霧する過飽和加湿水ラインとを分割して、水量制御は飽和加湿水ラインから供給される噴霧水量のみとし、過飽和加湿水を行う噴霧水ラインからはON/OFF制御による噴霧水の供給を行っている。2系統に分けた噴霧水供給ラインにより、発電効率向上と、大気温が上昇した場合にも要求負荷を満足するのに必要となる広範囲な噴霧水量を供給でき、さらにその流量制御を簡素化できる。これにより、噴霧水を利用するマイクロタービンシステムにおいて、噴霧水供給ラインと噴霧水流量の制御が簡素化でき、かつ、大気温の高い雰囲気条件においても設計計画点の大気温度と同等の発電出力が得られる。   As described above, in the embodiment shown in FIGS. 1 to 4, the saturated humidified water line that supplies the spray water flow rate necessary for lowering the compressor discharge air temperature to the saturated air temperature, and the required load when the atmospheric temperature rises. The supersaturated humidified water line that sprays water to secure the amount of air required to divide the water is controlled only by the amount of sprayed water supplied from the saturated humidified water line. Spray water is supplied by OFF control. The spray water supply line divided into two systems can improve the power generation efficiency, supply a wide range of spray water required to satisfy the required load even when the temperature rises, and simplify the flow control. . This makes it possible to simplify the control of the spray water supply line and the flow rate of the spray water in a micro turbine system that uses spray water, and to generate a power output that is equivalent to the air temperature at the design plan point even under atmospheric conditions with a high atmospheric temperature. can get.

本発明の一実施例を示す図。The figure which shows one Example of this invention. 飽和加湿水量と外気温の関係と、その時のタービン発電量の関係を示す図。The figure which shows the relationship between the amount of saturation humidification water, external temperature, and the turbine electric power generation amount at that time. 本発明による噴霧水の供給方法と外気温の関係と、その時のタービン発電量の関係を示す図。The figure which shows the relationship between the supply method of spray water by this invention, external temperature, and the relationship of the turbine electric power generation amount at that time. 本発明の他の実施例を示す図。The figure which shows the other Example of this invention.

符号の説明Explanation of symbols

1…タービン、2…圧縮機、3…発電機、4…双方向電力変換器、5…再生熱交換器、6…燃焼器、7…吸気フィルタ、8…燃料配管、9…燃料供給弁、15…駆動軸、16…動力配線、17,20…噴霧水ノズル、18…噴霧水流量制御弁、19,22…導水管、
21,23…遮断弁、26…温度計、27…圧力計、30…飽和加湿水ライン、31…過飽和加湿水ライン。
DESCRIPTION OF SYMBOLS 1 ... Turbine, 2 ... Compressor, 3 ... Generator, 4 ... Bidirectional power converter, 5 ... Regenerative heat exchanger, 6 ... Combustor, 7 ... Intake filter, 8 ... Fuel piping, 9 ... Fuel supply valve, DESCRIPTION OF SYMBOLS 15 ... Drive shaft, 16 ... Power wiring, 17, 20 ... Spray water nozzle, 18 ... Spray water flow control valve, 19, 22 ... Water guide pipe,
21 ... 23 shutoff valve, 26 ... thermometer, 27 ... pressure gauge, 30 ... saturated humidified water line, 31 ... supersaturated humidified water line.

Claims (7)

空気を圧縮する圧縮機と、圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で発生する燃焼ガスによって駆動されるタービンと、該タービンの排気ガスと前記燃焼器に導かれる圧縮空気とを熱交換する再生熱交換器とを有するマイクロガスタービン設備において、
圧縮機吐出空気への噴霧水を供給する給水ラインとして、流量調節弁により給水流量を連続的に調整する第1の噴霧水供給ラインと、遮断弁により規定流量の供給の有無を調節する第2の噴霧水供給ラインを設けたことを特徴とするマイクロガスタービン発電設備。
Compressor for compressing air, combustor for burning compressed air and fuel, turbine driven by combustion gas generated in the combustor, exhaust gas of the turbine, and compression guided to the combustor In a micro gas turbine facility having a regenerative heat exchanger for exchanging heat with air,
As a water supply line for supplying spray water to the compressor discharge air, a first spray water supply line that continuously adjusts the supply water flow rate by a flow rate adjustment valve, and a second that adjusts whether or not a specified flow rate is supplied by a shut-off valve A micro gas turbine power generation facility provided with a spray water supply line.
前記第1の噴霧水供給ラインは、圧縮機吐出空気の再生熱交換器入口の状態が飽和温度まで低下するよう噴霧水の供給を行うことを特徴とする請求項1に記載のマイクロガスタービン発電設備。   2. The micro gas turbine power generation according to claim 1, wherein the first spray water supply line supplies the spray water so that the state of the regenerative heat exchanger inlet of the compressor discharge air is lowered to a saturation temperature. Facility. 再生熱交換器の入口圧力と温度から噴霧水流量を制御することを特徴とする請求項1または請求項2に記載したマイクロガスタービン発電設備。   3. The micro gas turbine power generation facility according to claim 1, wherein the flow rate of the spray water is controlled from the inlet pressure and temperature of the regenerative heat exchanger. 前記遮断弁が閉状態の時は、再生熱交換器入口における圧縮機吐出空気の状態が飽和温度まで低下するように調節弁で噴霧水の供給量を制御し、遮断弁が開状態のときは、発電機出力が要求される出力に達するまで噴霧水を供給するよう流量制御を行い、遮断弁の開閉操作は外気温が規定する温度まで上昇したときに開となるよう制御することを特徴とする請求項1から請求項3の何れかに記載のマイクロガスタービン発電設備。   When the shut-off valve is closed, the supply amount of spray water is controlled by a control valve so that the state of the compressor discharge air at the inlet of the regenerative heat exchanger is lowered to the saturation temperature, and when the shut-off valve is open The flow rate is controlled so that spray water is supplied until the generator output reaches the required output, and the shut-off valve opening / closing operation is controlled to be opened when the outside air temperature rises to a specified temperature. The micro gas turbine power generation facility according to any one of claims 1 to 3. 前記圧縮機吐出空気に噴霧水を供給する噴霧水供給設備を圧縮機吐出空気配管に設置したことを特徴とする請求項1から請求項4のいずれかに記載のマイクロガスタービン発電設備。   The micro gas turbine power generation facility according to any one of claims 1 to 4, wherein a spray water supply facility for supplying spray water to the compressor discharge air is installed in a compressor discharge air pipe. 前記圧縮機から再生熱交換器に圧縮機吐出空気を供給する配管を分岐させ、一方の配管には流量調節弁によって噴霧水流量を調節するラインを、他方の配管には遮断弁によって規定流量の供給の有無を調整するラインを設置したことを特徴とする請求項1から請求項4のいずれかに記載のマイクロガスタービン発電設備。   A pipe for supplying compressor discharge air from the compressor to the regenerative heat exchanger is branched, one line has a line for adjusting the spray water flow rate by a flow rate control valve, and the other pipe has a specified flow rate by a shutoff valve. The micro gas turbine power generation facility according to any one of claims 1 to 4, wherein a line for adjusting the presence or absence of supply is installed. 空気を圧縮する圧縮機と、圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で発生する燃焼ガスによって駆動されるタービンと、該タービンの排気ガスと前記燃焼器に導かれる圧縮空気とを熱交換する再生熱交換器とを有するマイクロガスタービン設備の制御方法において、
圧縮機吐出空気への噴霧水を供給する給水ラインとして、流量調節弁によって給水流量を連続的に調整する第1の噴霧水供給ラインと、遮断弁によって規定流量の供給の有無を調節する第2の噴霧水供給ラインを備え、
前記遮断弁が閉状態の時は、再生熱交換器入口における圧縮機吐出空気の状態が飽和温度まで低下するように調節弁で噴霧水の供給量を制御し、遮断弁が開状態のときは、発電機出力が要求される出力に達するまで噴霧水を供給するよう流量制御を行い、遮断弁の開閉操作は外気温が規定する温度まで上昇したときに開となるよう制御することを特徴とするマイクロガスタービン発電設備の制御方法。

Compressor for compressing air, combustor for burning compressed air and fuel, turbine driven by combustion gas generated in the combustor, exhaust gas of the turbine, and compression guided to the combustor In a control method of a micro gas turbine facility having a regenerative heat exchanger for exchanging heat with air,
As a water supply line for supplying spray water to the compressor discharge air, a first spray water supply line that continuously adjusts the supply water flow rate by a flow rate adjustment valve, and a second that adjusts whether or not a specified flow rate is supplied by a shut-off valve Equipped with a spray water supply line
When the shut-off valve is closed, the supply amount of spray water is controlled by a control valve so that the state of the compressor discharge air at the inlet of the regenerative heat exchanger is lowered to the saturation temperature, and when the shut-off valve is open The flow rate is controlled so that spray water is supplied until the generator output reaches the required output, and the shut-off valve opening / closing operation is controlled to open when the outside air temperature rises to the specified temperature. A control method for a micro gas turbine power generation facility.

JP2003377673A 2003-11-07 2003-11-07 Micro gas turbine power generation equipment Expired - Fee Related JP4131951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377673A JP4131951B2 (en) 2003-11-07 2003-11-07 Micro gas turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377673A JP4131951B2 (en) 2003-11-07 2003-11-07 Micro gas turbine power generation equipment

Publications (2)

Publication Number Publication Date
JP2005140023A true JP2005140023A (en) 2005-06-02
JP4131951B2 JP4131951B2 (en) 2008-08-13

Family

ID=34688286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377673A Expired - Fee Related JP4131951B2 (en) 2003-11-07 2003-11-07 Micro gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP4131951B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302277A (en) * 2007-06-06 2008-12-18 Toyobo Co Ltd System for treating gas containing organic solvent
JPWO2007069308A1 (en) * 2005-12-14 2009-05-21 株式会社日立製作所 Micro gas turbine system
JP2012115833A (en) * 2012-01-17 2012-06-21 Toyobo Co Ltd System for treatment of organic solvent-containing gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5480792B2 (en) * 2010-12-09 2014-04-23 株式会社日立製作所 Gas turbine system and humidification control method for gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007069308A1 (en) * 2005-12-14 2009-05-21 株式会社日立製作所 Micro gas turbine system
JP2008302277A (en) * 2007-06-06 2008-12-18 Toyobo Co Ltd System for treating gas containing organic solvent
JP2012115833A (en) * 2012-01-17 2012-06-21 Toyobo Co Ltd System for treatment of organic solvent-containing gas

Also Published As

Publication number Publication date
JP4131951B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JPWO2007069308A1 (en) Micro gas turbine system
EP1132594B1 (en) Gas turbine power generation equipment and air humidifying apparatus
JP4275690B2 (en) Gas turbine system
JP6276520B2 (en) Gas turbine compressor inlet pressurization and flow control system
US7096659B1 (en) Gas turbine electric power generation equipment and air humidifier
US6578354B2 (en) Gas turbine electric power generation equipment and air humidifier
EP1860300B1 (en) High humidity gas turbine equipment
JP2001303971A (en) Device for supplying coolant to combustion turbine and method relative thereto
JP6976042B2 (en) Power generation system exhaust cooling
JP2013160233A (en) System and method for gas turbine inlet air heating
JP6570836B2 (en) Industrial furnace, energy-saving operation method of industrial furnace, and modification method of industrial furnace
JP2015094248A (en) High-humidity utilization gas turbine system
JP4131951B2 (en) Micro gas turbine power generation equipment
JP6137831B2 (en) Gas turbine cogeneration system using high humidity air
JP5787791B2 (en) SOFC combined power generation apparatus and operation method thereof
US20150121871A1 (en) Forced cooling in steam turbine plants
JP3683521B2 (en) Cogeneration system operation method
JP3082843B2 (en) Air-cooled condenser in gas turbine combined plant
JP4923010B2 (en) Equipment with a compressor that sprays water into the intake air
JP3220859U (en) Gas turbine and air turbine combined power generation facilities
JP4287754B2 (en) Gas turbine power generation equipment
JP4550677B2 (en) High humidity gas turbine equipment and operation method thereof
JP4898597B2 (en) Gas turbine equipment and operation method of gas turbine equipment
JPH09287482A (en) Cogeneration system
JP2005098156A (en) Gas turbine cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees